Search Results

Search found 7955 results on 319 pages for 'signal processing'.

Page 62/319 | < Previous Page | 58 59 60 61 62 63 64 65 66 67 68 69  | Next Page >

  • libc-bin errors when trying to install php

    - by jonney
    i am trying to update and install php into my ubuntu server 12.04 using the command below: apt-get upgrade php apt-get install php5-curl php5-gd php5-mysql php5-pgsql However i receive this error all the time: gzip: stdout: No space left on device E: mkinitramfs failure cpio 141 gzip 1 update-initramfs: failed for /boot/initrd.img-3.2.0-34-generic with 1. run-parts: /etc/kernel/postinst.d/initramfs-tools exited with return code 1 Failed to process /etc/kernel/postinst.d at /var/lib/dpkg/info/linux-image-3.2.0-34-generic.postinst line 1010. dpkg: error processing linux-image-3.2.0-34-generic (--configure): subprocess installed post-installation script returned error exit status 2 dpkg: dependency problems prevent configuration of linux-image-server: linux-image-server depends on linux-image-3.2.0-33-generic; however: Package linux-image-3.2.0-33-generic is not configured yet. dpkg: error processing linux-image-server (--configure): dependency problems - leaving unconfigured dpkg: dependency problems prevent configuration of linux-server: linux-server depends on linux-image-server (= 3.2.0.33.36); however: Package linux-image-server is not configured yet. dpkg: error processing linux-server (--configure): dependency problems - leaving unconfigured Setting up libpq5 (9.1.10-0ubuntu12.04) ... No apport report written because the error message indicates it's a follow-up error from a previous failure. No apport report written because MaxReports has already been reached Setting up php5-curl (5.3.10-1ubuntu3.8) ... Setting up php5-pgsql (5.3.10-1ubuntu3.8) ... Processing triggers for initramfs-tools ... update-initramfs: Generating /boot/initrd.img-3.2.0-32-generic gzip: stdout: No space left on device E: mkinitramfs failure cpio 141 gzip 1 update-initramfs: failed for /boot/initrd.img-3.2.0-32-generic with 1. dpkg: error processing initramfs-tools (--configure): subprocess installed post-installation script returned error exit status 1 No apport report written because MaxReports has already been reached Processing triggers for libc-bin ... ldconfig deferred processing now taking place Errors were encountered while processing: linux-image-3.2.0-33-generic linux-image-3.2.0-34-generic linux-image-server linux-server initramfs-tools E: Sub-process /usr/bin/dpkg returned an error code (1) Not sure whats wrong and why it cant process the linux-image files?

    Read the article

  • How do I install a Wimax usb driver?

    - by kakaz
    I am using wimax usb modem in Ubuntu 9.04 properly. I am familiar with Ubuntu 10.04 and try to install the same deb file to use my wimax USB modem, but it could not install and give me the following error message: $ sudo dpkg -i green-packet-wimax-usb_i386.iso.deb (Reading database ... 206628 files and directories currently installed.) Preparing to replace green-packet-wimax-usb 1.12 (using green-packet-wimax- usb_i386.iso.deb) ... /var/lib/dpkg/info/green-packet-wimax-usb.prerm: 45: /etc/init.d/wimaxd: not found Removing any system startup links for /etc/init.d/wimaxd ... FATAL: Module mt7118_usb_os not found. Unpacking replacement green-packet-wimax-usb ... Setting up green-packet-wimax-usb (1.12) ... FATAL: Error inserting mt7118_usb_glue (/lib/modules/2.6.32-28-generic/kernel/drivers/net/mt7118_usb_glue.ko): Invalid module format dpkg: error processing green-packet-wimax-usb (--install): subprocess installed post-installation script returned error exit status 1 Processing triggers for ureadahead ... Processing triggers for desktop-file-utils ... Processing triggers for python-gmenu ... Rebuilding /usr/share/applications/desktop.en_US.utf8.cache... Processing triggers for libc-bin ... ldconfig deferred processing now taking place Processing triggers for python-support ... Errors were encountered while processing: The error (Line 9) give me some clue that the mt7118_usb_glue.ko kernel object can't insert it. So, I think this may be due to it's kernel dependencies. Can anybody tell me how I can install this kernel object to my new Ubuntu 10.04 kernel?

    Read the article

  • How to call shared_ptr<boost::signal> from a vector in a loop?

    - by BTR
    I've got a working callback system that uses boost::signal. I'm extending it into a more flexible and efficient callback manager which uses a vector of shared_ptr's to my signals. I've been able to successfully create and add callbacks to the list, but I'm unclear as to how to actually execute the signals. ... // Signal aliases typedef boost::signal<void (float *, int32_t)> Callback; typedef std::shared_ptr<Callback> CallbackRef; // The callback list std::vector<CallbackRef> mCallbacks; // Adds a callback to the list template<typename T> void addCallback(void (T::* callbackFunction)(float * data, int32_t size), T * callbackObject) { CallbackRef mCallback = CallbackRef(new Callback()); mCallback->connect(boost::function<void (float *, int32_t)>(boost::bind(callbackFunction, callbackObject, _1, _2))); mCallbacks.push_back(mCallback); } // Pass the float array and its size to the callbacks void execute(float * data, int32_t size) { // Iterate through the callback list for (vector<CallbackRef>::iterator i = mCallbacks.begin(); i != mCallbacks.end(); ++i) { // What do I do here? // (* i)(data, size); // <-- Dereferencing doesn't work } } ... All of this code works. I'm just not sure how to run the call from within a shared_ptr from with a vector. Any help would be neat-o. Thanks, in advance.

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • Google TV Gets Bad Reception. Can Media Center Pull in the Signal?

    - by andrewbrust
    The news hit Monday morning that Google has decided to delay the release of its Google TV platform, and has asked its OEMs to delay any products that embed the software.  Coming just about two weeks prior to the 2011 Consumer Electronics Show (CES), Google’s timing is about the worst imaginable.  CES is where the platform should have had its coming out party, especially given all the anticipation that has built up since its initial announcement came 7 months ago. At last year’s CES, it seemed every consumer electronics company had fashioned its own software stack for Internet-based video programming and applications/widgets on its TVs, optical disc players and set top boxes.  In one case, I even saw two platforms on a single TV set (one provided by Yahoo and the other one native to the TV set). The whole point of Google TV was to solve this problem and offer a standard, embeddable platform.  But that won’t be happening, at least not for a while.  Google seems unable to get it together, and more proprietary approaches, like Apple TV, don’t seem to be setting the world of TV-Internet convergence on fire, either. It seems to me, that when it comes to building a “TV operating system,” Windows Media Center is still the best of a bad bunch.  But it won’t stay so for much longer without some changes.  Will Redmond pick up the ball that Google has fumbled?  I’m skeptical, but hopeful.  Regardless, here are some steps that could help Microsoft make the most of Google’s faux pas: Introduce a new Media Center version that uses XBox 360, rather than Windows 7 (or 8), as the platform.  TV platforms should be appliance-like, not PC-like.  Combine that notion with the runaway sales numbers for Xbox 360 Kinect, and the mass appeal it has delivered for Xbox, and the switch form Windows makes even more sense. As I have pointed out before, Microsoft’s Xbox implementation of its Mediaroom platform (announced and demoed at last year’s CES) gets Redmond 80% of the way toward this goal.  Nothing stops Microsoft from going the other 20%, other than its own apathy, which I hope has dissipated. Reverse the decision to remove Drive Extender technology from Windows Home Server (WHS), and create deep integration between WHS and Media Center.  I have suggested this previously as well, but the recent announcement that Drive Extender would be dropped from WHS 2.0 creates the need for me to a) join the chorus of people urging Microsoft to reconsider and b) reiterate the importance of Media Center-WHS integration in the context of a Google compete scenario. Enable Windows Phone 7 (WP7) as a Media Center client.  This would tighten the integration loop already established between WP7, Xbox and Zune.  But it would also counter Echostar/DISH Network/Sling Media, strike a blow against Google/Android (and even Apple/iOS) and could be the final strike against TiVO. Bring the WP7 user interface to Media Center and Kinect-enable it.  This would further the integration discussed above and would be appropriate recognition of WP7’s Metro UI having been built on the heritage of the original Media Center itself.  And being able to run your DVR even if you can’t find the remote (or can’t see its buttons in the dark) could be a nifty gimmick. Microsoft can do this but its consumer-oriented organization, responsible for Xbox, Zune and WP7, has to take the reins here, or none of this will likely work.  There’s a significant chance that won’t happen, but I won’t let that stop me from hoping that it does and insisting that it must.  Honestly, this fight is Microsoft’s to lose.

    Read the article

  • Unable to sign in. How to debug?

    - by Dmitriy Budnik
    I had to reboot system with reset button. After reboot I can't sign in. When I enter my password It seems like X-server just restarts. I can sing in as guest and also I can sign in in text TTY. Here is first 150 lines of my lightdm.log: [+0.04s] DEBUG: Logging to /var/log/lightdm/lightdm.log [+0.04s] DEBUG: Starting Light Display Manager 1.2.1, UID=0 PID=1070 [+0.04s] DEBUG: Loaded configuration from /etc/lightdm/lightdm.conf [+0.04s] DEBUG: Using D-Bus name org.freedesktop.DisplayManager [+0.04s] DEBUG: Registered seat module xlocal [+0.04s] DEBUG: Registered seat module xremote [+0.04s] DEBUG: Adding default seat [+0.04s] DEBUG: Starting seat [+0.04s] DEBUG: Starting new display for automatic login as user dmytro [+0.04s] DEBUG: Starting local X display [+3.64s] DEBUG: X server :0 will replace Plymouth [+3.66s] DEBUG: Using VT 7 [+3.66s] DEBUG: Activating VT 7 [+3.66s] DEBUG: Logging to /var/log/lightdm/x-0.log [+3.66s] DEBUG: Writing X server authority to /var/run/lightdm/root/:0 [+3.66s] DEBUG: Launching X Server [+3.66s] DEBUG: Launching process 1154: /usr/bin/X :0 -auth /var/run/lightdm/root/:0 -nolisten tcp vt7 -novtswitch -background none [+3.66s] DEBUG: Waiting for ready signal from X server :0 [+3.66s] DEBUG: Acquired bus name org.freedesktop.DisplayManager [+3.66s] DEBUG: Registering seat with bus path /org/freedesktop/DisplayManager/Seat0 [+10.78s] DEBUG: Got signal 10 from process 1154 [+10.78s] DEBUG: Got signal from X server :0 [+10.78s] DEBUG: Stopping Plymouth, X server is ready [+10.80s] DEBUG: Connecting to XServer :0 [+10.80s] DEBUG: Automatically logging in user dmytro [+10.80s] DEBUG: Started session 1303 with service 'lightdm-autologin', username 'dmytro' [+13.22s] DEBUG: Session 1303 authentication complete with return value 0: Success [+13.26s] DEBUG: Autologin user dmytro authorized [+13.27s] DEBUG: Autologin using session ubuntu [+14.44s] DEBUG: Dropping privileges to uid 1000 [+14.48s] DEBUG: Restoring privileges [+14.49s] DEBUG: Dropping privileges to uid 1000 [+14.49s] DEBUG: Writing /home/dmytro/.dmrc [+14.61s] DEBUG: Restoring privileges [+14.81s] DEBUG: Starting session ubuntu as user dmytro [+14.81s] DEBUG: Session 1303 running command /usr/sbin/lightdm-session gnome-session --session=ubuntu [+15.76s] DEBUG: New display ready, switching to it [+15.76s] DEBUG: Activating VT 7 [+15.76s] DEBUG: Registering session with bus path /org/freedesktop/DisplayManager/Session0 [+16.63s] DEBUG: Session 1303 exited with return value 0 [+16.63s] DEBUG: User session quit [+16.63s] DEBUG: Stopping display [+16.63s] DEBUG: Sending signal 15 to process 1154 [+17.19s] DEBUG: Process 1154 exited with return value 0 [+17.19s] DEBUG: X server stopped [+17.19s] DEBUG: Removing X server authority /var/run/lightdm/root/:0 [+17.19s] DEBUG: Releasing VT 7 [+17.19s] DEBUG: Display server stopped [+17.19s] DEBUG: Display stopped [+17.19s] DEBUG: Active display stopped, switching to greeter [+17.19s] DEBUG: Switching to greeter [+17.19s] DEBUG: Starting new display for greeter [+17.19s] DEBUG: Starting local X display [+17.19s] DEBUG: Using VT 7 [+17.19s] DEBUG: Logging to /var/log/lightdm/x-0.log [+17.19s] DEBUG: Writing X server authority to /var/run/lightdm/root/:0 [+17.19s] DEBUG: Launching X Server [+17.19s] DEBUG: Launching process 1563: /usr/bin/X :0 -auth /var/run/lightdm/root/:0 -nolisten tcp vt7 -novtswitch [+17.19s] DEBUG: Waiting for ready signal from X server :0 [+17.48s] DEBUG: Got signal 10 from process 1563 [+17.48s] DEBUG: Got signal from X server :0 [+17.48s] DEBUG: Connecting to XServer :0 [+17.48s] DEBUG: Starting greeter [+17.48s] DEBUG: Started session 1575 with service 'lightdm', username 'lightdm' [+17.61s] DEBUG: Session 1575 authentication complete with return value 0: Success [+17.61s] DEBUG: Greeter authorized [+17.61s] DEBUG: Logging to /var/log/lightdm/x-0-greeter.log [+17.68s] DEBUG: Session 1575 running command /usr/lib/lightdm/lightdm-greeter-session /usr/sbin/unity-greeter [+20.86s] DEBUG: Greeter connected version=1.2.1 [+20.86s] DEBUG: Greeter connected, display is ready [+20.86s] DEBUG: New display ready, switching to it [+20.86s] DEBUG: Activating VT 7 [+20.86s] DEBUG: Stopping greeter display being switched from [+24.90s] DEBUG: Greeter start authentication for dmytro [+24.90s] DEBUG: Started session 1746 with service 'lightdm', username 'dmytro' [+25.10s] DEBUG: Session 1746 got 1 message(s) from PAM [+25.10s] DEBUG: Prompt greeter with 1 message(s) [+31.87s] DEBUG: Continue authentication [+33.75s] DEBUG: Session 1746 authentication complete with return value 7: Authentication failure [+33.75s] DEBUG: Authenticate result for user dmytro: Authentication failure [+33.75s] DEBUG: Greeter start authentication for dmytro [+33.75s] DEBUG: Session 1746: Sending SIGTERM [+33.75s] DEBUG: Started session 2264 with service 'lightdm', username 'dmytro' [+33.75s] DEBUG: Session 2264 got 1 message(s) from PAM [+33.75s] DEBUG: Prompt greeter with 1 message(s) [+36.41s] DEBUG: Continue authentication [+36.53s] DEBUG: Session 2264 authentication complete with return value 0: Success [+36.53s] DEBUG: Authenticate result for user dmytro: Success [+36.54s] DEBUG: User dmytro authorized [+36.54s] DEBUG: Greeter requests session ubuntu [+36.54s] DEBUG: Using session ubuntu [+36.54s] DEBUG: Stopping greeter [+36.54s] DEBUG: Session 1575: Sending SIGTERM [+37.41s] DEBUG: Greeter closed communication channel [+37.41s] DEBUG: Session 1575 exited with return value 0 [+37.41s] DEBUG: Greeter quit [+37.42s] DEBUG: Dropping privileges to uid 1000 [+37.42s] DEBUG: Restoring privileges [+37.43s] DEBUG: Dropping privileges to uid 1000 [+37.43s] DEBUG: Writing /home/dmytro/.dmrc [+38.35s] DEBUG: Restoring privileges [+40.37s] DEBUG: Starting session ubuntu as user dmytro [+40.37s] DEBUG: Session 2264 running command /usr/sbin/lightdm-session gnome-session --session=ubuntu [+40.39s] DEBUG: Registering session with bus path /org/freedesktop/DisplayManager/Session1 [+50.78s] DEBUG: Session 2264 exited with return value 0 [+50.78s] DEBUG: User session quit [+50.78s] DEBUG: Stopping display [+50.78s] DEBUG: Sending signal 15 to process 1563 [+51.53s] DEBUG: Process 1563 exited with return value 0 [+51.53s] DEBUG: X server stopped [+51.53s] DEBUG: Removing X server authority /var/run/lightdm/root/:0 [+51.53s] DEBUG: Releasing VT 7 [+51.53s] DEBUG: Display server stopped [+51.53s] DEBUG: Display stopped [+51.53s] DEBUG: Active display stopped, switching to greeter [+51.53s] DEBUG: Switching to greeter [+51.53s] DEBUG: Starting new display for greeter [+51.53s] DEBUG: Starting local X display [+51.53s] DEBUG: Using VT 7 [+51.53s] DEBUG: Logging to /var/log/lightdm/x-0.log [+51.53s] DEBUG: Writing X server authority to /var/run/lightdm/root/:0 [+51.53s] DEBUG: Launching X Server [+51.53s] DEBUG: Launching process 2894: /usr/bin/X :0 -auth /var/run/lightdm/root/:0 -nolisten tcp vt7 -novtswitch [+51.53s] DEBUG: Waiting for ready signal from X server :0 [+51.75s] DEBUG: Got signal 10 from process 2894 [+51.75s] DEBUG: Got signal from X server :0 [+51.75s] DEBUG: Connecting to XServer :0 [+51.75s] DEBUG: Starting greeter [+51.75s] DEBUG: Started session 2898 with service 'lightdm', username 'lightdm' [+51.76s] DEBUG: Session 2898 authentication complete with return value 0: Success [+51.76s] DEBUG: Greeter authorized [+51.76s] DEBUG: Logging to /var/log/lightdm/x-0-greeter.log [+51.76s] DEBUG: Session 2898 running command /usr/lib/lightdm/lightdm-greeter-session /usr/sbin/unity-greeter [+53.26s] DEBUG: Greeter connected version=1.2.1 [+53.26s] DEBUG: Greeter connected, display is ready [+53.26s] DEBUG: New display ready, switching to it [+53.26s] DEBUG: Activating VT 7 [+53.26s] DEBUG: Stopping greeter display being switched from [+54.17s] DEBUG: Greeter start authentication for dmytro [+54.17s] DEBUG: Started session 3152 with service 'lightdm', username 'dmytro' [+54.18s] DEBUG: Session 3152 got 1 message(s) from PAM [+54.18s] DEBUG: Prompt greeter with 1 message(s) [+58.61s] DEBUG: Continue authentication [+58.65s] DEBUG: Session 3152 authentication complete with return value 0: Success [+58.65s] DEBUG: Authenticate result for user dmytro: Success [+58.66s] DEBUG: User dmytro authorized [+58.66s] DEBUG: Greeter requests session ubuntu [+58.66s] DEBUG: Using session ubuntu [+58.66s] DEBUG: Stopping greeter [+58.66s] DEBUG: Session 2898: Sending SIGTERM How can I fix it? What other .log files could possibly give me a clue? Update: Possibly it's duplicate of Desktop login fails, terminal works

    Read the article

  • WebCenter Customer Spotlight: Texas Industries, Inc.

    - by me
    Author: Peter Reiser - Social Business Evangelist, Oracle WebCenter  Solution SummaryTexas Industries, Inc. (TXI) is a leading supplier of cement, aggregate, and consumer product building materials for residential, commercial, and public works projects. TXI is based in Dallas and employs around 2,000 employees. The customer had the challenge of decentralized and manual processes for entering 180,000 vendor invoices annually.  Invoice entry was a time- and resource-intensive process that entailed significant personnel requirements. TXI implemented a centralized solution leveraging Oracle WebCenter Imaging, a smart routing solution that enables users to capture invoices electronically with Oracle WebCenter Capture and Oracle WebCenter Forms Recognition to send  the invoices through to Oracle Financials for approvals and processing.  TXI significantly lowered resource needs for payable processing,  increase productivity by 80% and reduce invoice processing cycle times by 84%—from 20 to 30 days to just 3 to 5 days, on average. Company OverviewTexas Industries, Inc. (TXI) is a leading supplier of cement, aggregate, and consumer product building materials for residential, commercial, and public works projects. With operating subsidiaries in six states, TXI is the largest producer of cement in Texas and a major producer in California. TXI is a major supplier of stone, sand, gravel, and expanded shale and clay products, and one of the largest producers of bagged cement and concrete  products in the Southwest. Business ChallengesTXI had the challenge of decentralized and manual processes for entering 180,000 vendor invoices annually.  Invoice entry was a time- and resource-intensive process that entailed significant personnel requirements. Their business objectives were: Increase the efficiency of core business processes, such as invoice processing, to support the organization’s desire to maintain its role as the Southwest’s leader in delivering high-quality, low-cost products to the construction industry Meet the audit and regulatory requirements for achieving Sarbanes-Oxley (SOX) compliance Streamline entry of 180,000 invoices annually to accelerate processing, reduce errors, cut invoice storage and routing costs, and increase visibility into payables liabilities Solution DeployedTXI replaced a resource-intensive, paper-based, decentralized process for invoice entry with a centralized solution leveraging Oracle WebCenter Imaging 11g. They worked with the Oracle Partner Keste LLC to develop a smart routing solution that enables users to capture invoices electronically with Oracle WebCenter Capture and then uses Oracle WebCenter Forms Recognition and the Oracle WebCenter Imaging workflow to send the invoices through to Oracle Financials for approvals and processing. Business Results Significantly lowered resource needs for payable processing through centralization and improved efficiency  Enabled the company to process invoices faster and pay bills earlier, allowing it to take advantage of additional vendor discounts Tracked to increase productivity by 80% and reduce invoice processing cycle times by 84%—from 20 to 30 days to just 3 to 5 days, on average Achieved a 25% reduction in paper invoice storage costs now that invoices are captured digitally, and enabled a 50% reduction in shipping costs, as the company no longer has to send paper invoices between headquarters and production facilities for approvals “Entering and manually processing more than 180,000 vendor invoices annually was time and labor intensive. With Oracle Imaging and Process Management, we have automated and centralized invoice entry and processing at our corporate office, improving productivity by 80% and reducing invoice processing cycle times by 84%—a very important efficiency gain.” Terry Marshall, Vice President of Information Services, Texas Industries, Inc. Additional Information TXI Customer Snapshot Oracle WebCenter Content Oracle WebCenter Capture Oracle WebCenter Forms Recognition

    Read the article

  • Is this possible to re-duplicate the hardware signal on Linux?

    - by Ted Wong
    Since that every things is a file on the UNIX system. If I have a hardware, for example, a mouse, move from left corner to right corner, it should produce some kinds of file to communicate with the system. So, if my assumption is correct, is this possible to do following things: Capture the raw data, which is about moving mouse cursor from left corner to right corner? Reduplicate the raw data, using a program, same producing speed, and data, in order to "redo" moving mouse cursor from left corner to right corner

    Read the article

  • How to handle multi-processing of libraries which already spawn sub-processes?

    - by exhuma
    I am having some trouble coming up with a good solution to limit sub-processes in a script which uses a multi-processed library and the script itself is also multi-processed. Both, the library and script are modifiable by us. I believe the question is more about design than actual code, but for what it's worth, it's written in Python. The goal of the library is to hide implementation details of various internet routers. For that reason, the library has a "Proxy" factory method which takes the IP of a router as parameter. The factory then probes the device using a set of possible proxies. Usually, there is one proxy which immediately knows that is is able to send commands to this device. All others usually take some time to return (given a timeout). One thought was already to simply query the device for an identifier, and then select the proper proxy using that, but in order to do so, you would already need to know how to query the device. Abstracting this knowledge is one of the main purposes of the library, so that becomes a little bit of a "circular-requirement"/deadlock: To connect to a device, you need to know what proxy to use, and to know what proxy to create, you need to connect to a device. So probing the device is - as we can see - the best solution so far, apart from keeping a lookup-table somewhere. The library currently kills all remaining processes once a valid proxy has been found. And yes, there is always only one good proxy per device. Currently there are about 12 proxies. So if one create a proxy instance using the factory, 12 sub-processes are spawned. So far, this has been really useful and worked very well. But recently someone else wanted to use this library to "broadcast" a command to all devices. So he took the library, and wrote his own multi-processed script. This obviously spawned 12 * n processes where n is the number of IPs to which he broadcasted. This has given us two problems: The host on which the command was executed slowed down to a near halt. Aborting the script with CTRL+C ground the system to a total halt. Not even the hardware console responded anymore! This may be due to some Python strangeness which still needs to be investigated. Maybe related to http://bugs.python.org/issue8296 The big underlying question, is how to design a library which does multi-processing, so other applications which use this library and want to be multi-processed themselves do not run into system limitations. My first thought was to require a pool to be passed to the library, and execute all tasks in that pool. In that way, the person using the library has control over the usage of system resources. But my gut tells me that there must be a better solution. Disclaimer: My experience with multiprocessing is fairly limited. I have implemented a few straightforward which did not require access control to resources. So I have not yet any practical experience with semaphores or mutexes. p.s.: In the future, we may have enough information to do this without the probing. But the database which would contain the proper information is not yet operational. Also, the design about multiprocessing a multiprocessed library intrigues me :)

    Read the article

  • What is a reasonable range for signal strength when next to my router?

    - by Jeff
    I know that these things depend largely on specific hardware but I don't even know if I am in the neighborhood. What would a reasonable range of signal strength be when my device is less than 5 feet from my router? House3 is my main router at 61% strength and that seems very low! Repeater is my... repeater which is 50' away in the next room. I'm not terribly concerned with the Repeater until I get my main router settled.

    Read the article

  • Windows AD: Is loopback processing absolutely necessary in order to apply a user policy to users logging into computers in the OU?

    - by Brett
    I've had our AD setup running on server 2008r2 and now 2012, and I swear, a user policy applied to an OU containing only computers actually does apply to users logging into those computers, without loopback processing enabled. Everything I read seems to say that is not how it should work, but it does. Is this normal behavior? Just tested again - created a policy with a drive map (which is a user policy), applied it to an OU containing my terminal server, forced a gpupdate, logged out/in, and sure enough, the drive is mapped. I did NOT turn on loopback processing.

    Read the article

  • How do you get an object associated with a Future Actor?

    - by Bruce Ferguson
    I would like to be able to get access to the object that is being returned from spawning a future import scala.actors.Future import scala.actors.Futures._ class Object1(i:Int) { def getAValue(): Int = {i} } object Test { def main( args: Array[String] ) = { var tests = List[Future[Object1]]() for(i <- 0 until 10) { val test = future { val obj1 = new Object1(i) println("Processing " + i + "...") Thread.sleep(1000) println("Processed " + i) obj1 } tests = tests ::: List(test) } val timeout = 1000 * 60 * 5 // wait up to 5 minutes val futureTests = awaitAll(timeout,tests: _*) futureTests.foreach(test => println("result: " + future())) } } The output from one run of this code is: Processing 0... Processing 1... Processing 2... Processing 3... Processed 0 Processing 4... Processed 1 Processing 5... Processed 2 Processing 6... Processed 3 Processing 7... Processed 4 Processing 8... Processed 6 Processing 9... Processed 5 Processed 7 Processed 8 Processed 9 result: <function0> result: <function0> result: <function0> result: <function0> result: <function0> result: <function0> result: <function0> result: <function0> result: <function0> result: <function0> I've tried future().getClass(), and the output is result: class scala.actors.FutureActor What I'm looking to be able to access is the obj1 objects. Thanks Bruce

    Read the article

  • Where does form processing logic belong in a MVC web application?

    - by AdamTheHutt
    In a web-based application that uses the Model-View-Controller design pattern, the logic relating to processing form submissions seems to belong somewhere in between the Model layer and the Controller layer. This is especially true in the case of a complex form (i.e. where form processing goes well beyond simple CRUD operations). What's the best way to conceptualize this? Are forms simply a kind of glue between models and controllers? Or does form logic belong squarely in the M or C camp? EDIT: I understand the basic flow of information in an MVC application (see chills42's answer for a summary). My question is where the form processing logic belongs - in the controller, in the model, or somewhere else?

    Read the article

  • How to generate a video signal from Android device via USB?

    - by C.Rivlaldo
    Is it possible to create an application for Android, which can generate a video signal (HDMI or VGA) via USB? Any Android device has miniUSB port. Theoretically it's possible to create a small commutator device on microcontroller or microscheme, which will be a USB-host for Android device. You'll connect Android device with commutator and then connect commutator with monitor. For example, the scheme looks like: Android phone - commutator (USB-host) - TV/Monitor. Summary, I need to connect android phone with TV via miniUSB port. I found soft which can use miniUSB - HDMI cable, but those apps only for Motorolla Droid and HTC Evo. I'll glad to get links to existing apps or projects on that theme, to info about software generation HDMI-signal and connecting Android devices with another devices. Thank you and sorry for my bad english!

    Read the article

  • What is wrong with this attempt of sending a break-signal?

    - by Jook
    I have quite a headache about this seemingly easy task: send a break signal to my device, like the wxTerm (or any similar Terminal application) does. This signal has to be 125ms long, according to my tests and the devices specification. It should result in a specific response, but what I get is a longer response than expected, and the transmitted date is false. e.g.: what it should respond 08 00 81 00 00 01 07 00 what it does respond 08 01 0A 0C 10 40 40 07 00 7F What really boggles me is, that after I have used wxTerm to look at my available com-ports (without connecting or sending anything), my code starts to work! I can send then as many breaks as I like, I get my response right from then on. I have to reset my PC in order to try it again. What the heck is going on here?! Here is my code for a reset through a break-signal: minicom_client(boost::asio::io_service& io_service, unsigned int baud, const string& device) : active_(true), io_service_(io_service), serialPort(io_service, device) { if (!serialPort.is_open()) { cerr << "Failed to open serial port\n"; return; } boost::asio::serial_port_base::flow_control FLOW( boost::asio::serial_port_base::flow_control::hardware ); boost::asio::serial_port_base::baud_rate baud_option(baud); serialPort.set_option(FLOW); serialPort.set_option(baud_option); read_start(); std::cout << SetCommBreak(serialPort.native_handle()) << std::endl; std::cout << GetLastError() << std::endl; boost::posix_time::ptime mst1 = boost::posix_time::microsec_clock::local_time(); boost::this_thread::sleep(boost::posix_time::millisec(125)); boost::posix_time::ptime mst2 = boost::posix_time::microsec_clock::local_time(); std::cout << ClearCommBreak(serialPort.native_handle()) << std::endl; std::cout << GetLastError() << std::endl; boost::posix_time::time_duration msdiff = mst2 - mst1; std::cout << msdiff.total_milliseconds() << std::endl; } Edit: It was only necessary to look at the combo-box selection of com-ports of wxTerm - no active connection was needed to be established in order to make my code work. I am guessing, that there is some sort of initialisation missing, which is done, when wxTerm is creating the list for the serial-port combo-box.

    Read the article

  • Upgrading PHP from 5.1 to 5.2 on CentOS 5.4

    - by andufo
    i'm trying to upgrade php 5.1 to 5.2 on a CentOS 5.4 I use: yum upgrade php The result is this (check out the last part): [root@mail httpd]# yum update php Loaded plugins: fastestmirror Loading mirror speeds from cached hostfile * addons: mirror.raystedman.net * base: mirrors.serveraxis.net * centosplus: mirrors.tummy.com * contrib: mirror.raystedman.net * extras: mirror.raystedman.net * updates: mirrors.netdna.com Setting up Update Process Resolving Dependencies --> Running transaction check --> Processing Dependency: php = 5.1.6-27.el5 for package: php-devel --> Processing Dependency: php = 5.1.6 for package: php-eaccelerator ---> Package php.x86_64 0:5.2.10-1.el5.centos set to be updated --> Processing Dependency: php-cli = 5.2.10-1.el5.centos for package: php --> Processing Dependency: php-common = 5.2.10-1.el5.centos for package: php --> Running transaction check --> Processing Dependency: php = 5.1.6 for package: php-eaccelerator ---> Package php-cli.x86_64 0:5.2.10-1.el5.centos set to be updated --> Processing Dependency: php-common = 5.1.6-27.el5 for package: php-xml --> Processing Dependency: php-common = 5.1.6-27.el5 for package: php-pdo --> Processing Dependency: php-common = 5.1.6-27.el5 for package: php-gd --> Processing Dependency: php-common = 5.1.6-27.el5 for package: php-ldap --> Processing Dependency: php-common = 5.1.6-27.el5 for package: php-mbstring --> Processing Dependency: php-common = 5.1.6-27.el5 for package: php-mysql --> Processing Dependency: php-common = 5.1.6-27.el5 for package: php-imap ---> Package php-common.x86_64 0:5.2.10-1.el5.centos set to be updated ---> Package php-devel.x86_64 0:5.2.10-1.el5.centos set to be updated --> Running transaction check --> Processing Dependency: php = 5.1.6 for package: php-eaccelerator ---> Package php-gd.x86_64 0:5.2.10-1.el5.centos set to be updated ---> Package php-imap.x86_64 0:5.2.10-1.el5.centos set to be updated ---> Package php-ldap.x86_64 0:5.2.10-1.el5.centos set to be updated ---> Package php-mbstring.x86_64 0:5.2.10-1.el5.centos set to be updated ---> Package php-mysql.x86_64 0:5.2.10-1.el5.centos set to be updated ---> Package php-pdo.x86_64 0:5.2.10-1.el5.centos set to be updated ---> Package php-xml.x86_64 0:5.2.10-1.el5.centos set to be updated --> Finished Dependency Resolution php-eaccelerator-5.1.6_0.9.5.2-4.el5.rf.x86_64 from installed has depsolving problems --> Missing Dependency: php = 5.1.6 is needed by package php-eaccelerator-5.1.6_0.9.5.2-4.el5.rf.x86_64 (installed) Error: Missing Dependency: php = 5.1.6 is needed by package php-eaccelerator-5.1.6_0.9.5.2-4.el5.rf.x86_64 (installed) You could try using --skip-broken to work around the problem You could try running: package-cleanup --problems package-cleanup --dupes rpm -Va --nofiles --nodigest The program package-cleanup is found in the yum-utils package. [root@mail httpd]# What are the consequences of using --skip-broken? Any recommendations?

    Read the article

  • Why can't I connect to a Cisco wireless access point?

    - by spinlock
    I'm running a Lucid Netbook Remix on my Dell Inspiron 600m and I was not able to connect to the wireless network at the Hacker Dojo in Mountain View yesterday. There were plenty of other people on the network - MS, Mac, and Linux boxes - but my laptop would never get an ip address. I can connect to my home network, which is open, and I've never had a problem connecting at the coffee shop, which uses WPA. The Hacker Dojo is running WPA and we checked the password a number of times but got no love. Any ideas would be greatly appreciated. Additional Info: $iwlist eth1 scan eth1 Scan completed : Cell 01 - Address: EC:C8:82:FA:63:92 ESSID:"HackerDojo-gwifi" Protocol:IEEE 802.11g Mode:Master Frequency:2.412 GHz (Channel 1) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:62 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 280ms ago Cell 02 - Address: 00:18:4D:24:08:61 ESSID:"Green Zone" Protocol:IEEE 802.11bg Mode:Master Frequency:2.417 GHz (Channel 2) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 6 Mb/s 9 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:23 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 11516ms ago Cell 03 - Address: 08:17:35:32:6E:13 ESSID:"\x00" Protocol:IEEE 802.11g Mode:Master Frequency:2.437 GHz (Channel 6) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:71 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 2760ms ago Cell 04 - Address: EC:C8:82:FA:63:90 ESSID:"HackerDojo" Protocol:IEEE 802.11g Mode:Master Frequency:2.412 GHz (Channel 1) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:61 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 772ms ago Cell 05 - Address: 08:17:35:32:6E:11 ESSID:"HackerDojo-Presenter" Protocol:IEEE 802.11g Mode:Master Frequency:2.437 GHz (Channel 6) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:65 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 3308ms ago Cell 06 - Address: 08:17:35:32:7E:31 ESSID:"HackerDojo-Presenter" Protocol:IEEE 802.11g Mode:Master Frequency:2.462 GHz (Channel 11) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:88 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 1668ms ago Cell 07 - Address: 38:E7:D8:01:46:1E ESSID:"JWS_Incredible" Protocol:IEEE 802.11bg Mode:Master Frequency:2.412 GHz (Channel 1) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 500 kb/s; 54 Mb/s Quality:31 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK Extra: Last beacon: 2848ms ago Cell 08 - Address: 08:17:35:32:6E:10 ESSID:"HackerDojo" Protocol:IEEE 802.11g Mode:Master Frequency:2.437 GHz (Channel 6) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:67 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 7848ms ago Cell 09 - Address: 08:17:35:32:7E:30 ESSID:"HackerDojo" Protocol:IEEE 802.11g Mode:Master Frequency:2.462 GHz (Channel 11) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:85 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 8300ms ago Cell 10 - Address: 08:17:35:32:6E:12 ESSID:"HackerDojo-gwifi" Protocol:IEEE 802.11g Mode:Master Frequency:2.437 GHz (Channel 6) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:68 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 232ms ago Cell 11 - Address: 08:17:35:32:7E:32 ESSID:"HackerDojo-gwifi" Protocol:IEEE 802.11g Mode:Master Frequency:2.462 GHz (Channel 11) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:86 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 168ms ago Cell 12 - Address: EC:C8:82:FA:63:91 ESSID:"HackerDojo-Presenter" Protocol:IEEE 802.11g Mode:Master Frequency:2.412 GHz (Channel 1) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:62 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 7408ms ago $iwconfig eth1 eth1 unassociated ESSID:"HackerDojo-gwifi" Nickname:"ipw2100" Mode:Managed Channel=0 Access Point: Not-Associated Bit Rate:0 kb/s Tx-Power:16 dBm Retry short limit:7 RTS thr:off Fragment thr:off Encryption key:off Power Management:off Link Quality:0 Signal level:0 Noise level:0 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

    Read the article

  • Convert Console Output to Array

    - by theundertaker
    Using netsh wlan show networks mode=bssid on Windows CMD yields a listing of available wireless networks. Is it possible to convert the list, which looks something like this: Interface name : Wireless Network Connection There are 11 networks currently visible. SSID 1 : Custom Gifts Memphis Network type : Infrastructure Authentication : Open Encryption : WEP BSSID 1 : 00:24:93:0c:49:e0 Signal : 16% Radio type : 802.11g Channel : 6 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 6 9 12 18 24 36 48 54 SSID 2 : airportthru Network type : Adhoc Authentication : Open Encryption : None BSSID 1 : 62:4c:fe:9c:08:18 Signal : 53% Radio type : 802.11g Channel : 10 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 3 : belkin.ffe Network type : Infrastructure Authentication : WPA2-Personal Encryption : CCMP BSSID 1 : 08:86:3b:9c:8f:fe Signal : 23% Radio type : 802.11n Channel : 1 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 4 : 3333 Network type : Infrastructure Authentication : WPA2-Personal Encryption : CCMP BSSID 1 : 00:0f:cc:6d:ba:ac Signal : 18% Radio type : 802.11g Channel : 6 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 22 24 36 48 54 BSSID 2 : 06:02:6f:c3:06:27 Signal : 20% Radio type : 802.11g Channel : 6 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 5 : linksys Network type : Infrastructure Authentication : Open Encryption : None BSSID 1 : 98:fc:11:69:35:46 Signal : 38% Radio type : 802.11g Channel : 6 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 6 : iHub_0060350392e0 Network type : Infrastructure Authentication : WPA2-Personal Encryption : CCMP BSSID 1 : 00:c0:02:7d:5f:4e Signal : 18% Radio type : 802.11g Channel : 11 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 7 : TopFlight Network type : Infrastructure Authentication : WPA2-Personal Encryption : CCMP BSSID 1 : 00:14:6c:7a:c4:70 Signal : 16% Radio type : 802.11g Channel : 6 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 8 : 2WIRE430 Network type : Infrastructure Authentication : WPA2-Personal Encryption : CCMP BSSID 1 : b8:e6:25:cb:56:a1 Signal : 16% Radio type : 802.11g Channel : 6 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 9 : LUBIN Network type : Infrastructure Authentication : WPA-Personal Encryption : TKIP BSSID 1 : 00:13:10:8d:a7:32 Signal : 65% Radio type : 802.11g Channel : 6 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 10 : TV2 Network Network type : Infrastructure Authentication : WPA2-Personal Encryption : CCMP BSSID 1 : b8:c7:5d:07:6e:cf Signal : 79% Radio type : 802.11n Channel : 11 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 SSID 11 : guywork Network type : Infrastructure Authentication : Open Encryption : WEP BSSID 1 : 00:18:e7:cf:02:20 Signal : 15% Radio type : 802.11n Channel : 6 Basic rates (Mbps) : 1 2 5.5 11 Other rates (Mbps) : 6 9 12 18 24 36 48 54 ... into an array using JavaScript or C#? I know it is but it seems like it may be rather difficult. Are there other avenues of obtaining such network information in the requested format? A JavaScript object would be perfect.

    Read the article

  • Why Swift is 100 times slower than C in this image processing test?

    - by xiaobai
    Like many other developers I have been very excited at the new Swift language from Apple. Apple has boasted its speed is faster than Objective C and can be used to write operating system. And from what I learned so far, it's a very type-safe language and able to have precisely control over the exact data type (like integer length). So it does look like having good potential handling performance critical tasks, like image processing, right? That's what I thought before I carried out a quick test. The result really surprised me. Here is a much simplified image alpha blending code snippet in C: test.c: #include <stdio.h> #include <stdint.h> #include <string.h> uint8_t pixels[640*480]; uint8_t alpha[640*480]; uint8_t blended[640*480]; void blend(uint8_t* px, uint8_t* al, uint8_t* result, int size) { for(int i=0; i<size; i++) { result[i] = (uint8_t)(((uint16_t)px[i]) *al[i] /255); } } int main(void) { memset(pixels, 128, 640*480); memset(alpha, 128, 640*480); memset(blended, 255, 640*480); // Test 10 frames for(int i=0; i<10; i++) { blend(pixels, alpha, blended, 640*480); } return 0; } I compiled it on my Macbook Air 2011 with the following command: gcc -O3 test.c -o test The 10 frame processing time is about 0.01s. In other words, it takes the C code 1ms to process one frame: $ time ./test real 0m0.010s user 0m0.006s sys 0m0.003s Then I have a Swift version of the same code: test.swift: let pixels = UInt8[](count: 640*480, repeatedValue: 128) let alpha = UInt8[](count: 640*480, repeatedValue: 128) let blended = UInt8[](count: 640*480, repeatedValue: 255) func blend(px: UInt8[], al: UInt8[], result: UInt8[], size: Int) { for(var i=0; i<size; i++) { var b = (UInt16)(px[i]) * (UInt16)(al[i]) result[i] = (UInt8)(b/255) } } for i in 0..10 { blend(pixels, alpha, blended, 640*480) } The build command line is: xcrun swift -O3 test.swift -o test Here I use the same O3 level optimization flag to make the comparison hopefully fair. However, the resulting speed is 100 time slower: $ time ./test real 0m1.172s user 0m1.146s sys 0m0.006s In other words, it takes Swift ~120ms to processing one frame which takes C just 1 ms. I also verified the memory initialization time in both test code are very small compared to the blend processing function time. What happened?

    Read the article

  • Does the Lenovo t60p vga port support an s-video signal?

    - by Matthijs Wessels
    I just bought a new television. The problem is it turns out it doesn't have a VGA port. It does have: s-video, component, hdmi and scart. My Lenovo t60p only has vga. If have search frantically for a solution and even though it seems I have sooo many options they are all dead ends. Or I keep ending up having to buy a 100 euro box to convert the signal. However, I found that some video cards support s-video through the vga port. It says look it up in your video cards documentation. I have a Lenovo t60p laptop with a ATI MOBILITY FireGl v5250. But I can't seem to get my hands on any documentation where this is supposed to be documented. I found this website: http://forum.notebookreview.com/showthread.php?t=179529&highlight=s-video There this guy says he thinks it's in the t60 but dropped in the t61, but suggests to the guy with the t60 that it won't work. I can't really conclude anything from that. Furthermore, I am not looking for the best of the best quality. So when I found this: *http://www.amazon.com/VideoSecu-Computor-Presentation-Converter-VGA2TV/dp/B000X3FAJU/ref=pd_cp_e_3_img I woudl be quite happy with this. Except that I don't think I can order it because I don't live in the US. Can anybody give me a definite answer, to whether the vga port of my lenovo t60p ati firegl v5250 supports s-video? So that I can just by a vga to s-video cable to achieve my goal.

    Read the article

  • Ubuntu 11.04 fresh install - "Input signal out of range" or "Mode not supported..."

    - by Dennis
    I recently installed Ubuntu 11.04 using a CD .iso. Installation went fine. Upon completion I rebooted and after a second or two I got a black screen with the message "Input signal out of range". And there it sits... Read a few things about how this could be related to screen resolution, refresh rate, etc. For the heck of it I tried a different monitor. The result is the same but the message provides some clues - "Mode not supported - H:92.7kHz, V:58.3Hz" (the latter is Hz; not kHz). So my thought is that I should probably be able to use the 11.04 install disc to "Try out Ubuntu", find and edit some file that was created by the install with the correct values. Problem is, I am not too sure what I am supposed to edit. Looked at the xorg.conf file but this is so minimal at this point I am not sure it is where I want to go. By the way, the monitor is an I-Inc ix191a. Anyone have any ideas on how to get around this?

    Read the article

< Previous Page | 58 59 60 61 62 63 64 65 66 67 68 69  | Next Page >