Search Results

Search found 7086 results on 284 pages for 'proprietary syntax'.

Page 63/284 | < Previous Page | 59 60 61 62 63 64 65 66 67 68 69 70  | Next Page >

  • How to bind "rest" variables to list of values in macro in Scheme

    - by Slartibartfast
    I want to make a helper macro for writing match-extensions. I have something like this: (define-match-expander my-expander (? (stx) (let* ([dat (cdr (syntax-e stx))] [var1 (car dat))] [var2 (cadr dat)]) ;transformer goes here ))) So I wanted a macro that will do this let binding. I've started with something like this: (define-syntax-rule (define-my-expander (id vars ...) body) (define-match-expander id (? (stx) (match-let ([(vars ...) (cdr (syntax-e stx))]) body)))) but match-let isn't defined in transformation time. First question would be is there any other way of doing this (making this expanders, I mean)? Maybe there is already something similar in plt-scheme that I'm not aware of, or I'm doing it wrong in some way. Regardless of answer on the first question, if I ever want to bound list of variables to list of values inside of a macro, how should I do it? EDIT: In combination with Eli's answer macro now looks like this: (define-syntax-rule (define-my-expander (id vars ...) body) (define-match-expander id (? (stx) (syntax-case stx () [(_ vars ...) body]))))

    Read the article

  • What does the "=>" mean in asp.net mvc?

    - by quakkels
    Hey SO, I've got a pretty noob question for ya. I keep seeing this syntax: <%= Html.LabelFor(model => model.Email) %> ...and I have no idea what the = means. I thought it was syntax for linq2sql or ado.net entity framework but I'm just using straight ado.net. I don't understand why the VWD used that syntax when generating the Create form. What does = mean?

    Read the article

  • ignoring folders in mercurial

    - by damian
    Caveat: I try all the posibilities listed here: http://stackoverflow.com/questions/254002/how-can-i-ignore-everything-under-a-folder-in-mercurial. None works as I hope. I want to ignore every thing under the folder test. But not ignore srcProject\test\TestManager I try syntax: glob test/** And it ignores test and srcProject\test\TestManager With: syntax: regexp ^/test/ It's the same thing. Also with: syntax: regexp test\\* I have install TortoiseHG 0.4rc2 with Mercurial-626cb86a6523+tortoisehg, Python-2.5.1, PyGTK-2.10.6, GTK-2.10.11 in Windows

    Read the article

  • What does the "=>" mean?

    - by quakkels
    Hey SO, I've got a pretty noob question for ya. I keep seeing this syntax: <%= Html.LabelFor(model => model.Email) %> ...and I have no idea what the = means. I thought it was syntax for linq2sql or ado.net entity framework but I'm just using straight ado.net. I don't understand why the VWD used that syntax when generating the Create form. What does = mean?

    Read the article

  • How to upgrade internal php version of Zend Studio / Eclipse

    - by Moak
    I was following this tutorial when typing up this code: public function search($term){ $filter = function($tag) use ($term){ if(stristr($tag,$term)) return true; return false; }; return array_filter($this->_tags,$filter); } I get following errors in Zend Studio 8 syntax error, unexpected '{' syntax error, unexpected 'function' syntax error, unexpected 'use' However the code works fine on my Xampp with php 5.3.1 - How can I find the version of PHP in Zend Studio, and how can I upgrade it?

    Read the article

  • Incorrect emacs indentation in a C++ class with DLL export specification

    - by Michael Daum
    I often write classes with a DLL export/import specification, but this seems to confuse emacs' syntax parser. I end up with something like: class myDllSpec Foo { public: Foo( void ); }; Notice that the "public:" access spec is indented incorrectly, as well as everything that follows it. When I ask emacs to describe the syntax at the beginning of the line containing public, I get a return of: ((label 352)) If I remove the myDllSpec, the indentation is correct, and emacs tells me that the syntax there is: ((inclass 352) (access-label 352)) Which seems correct and reasonable. So I conclude that the syntax parser is not able to handle the DLL export spec, and that this is what's causing my indentation trouble. Unfortunately, I don't know how to teach the parser about my labels. Seems that this is pretty common practice, so I'm hoping there's a way around it.

    Read the article

  • Code snippet manager suggestions

    - by dave
    I'm looking for a code snippet manager per the following: Usable on Windows stand-alone product desktop-based (not online) Free or paid Has PHP syntax highlighting I've found the following, but they don't seem to quite ring the bell (although they are good products): -- Snip-It Pro (not free) -- Has syntax highlighting, but seems "not there yet." -- The Guide (free: SourceForge) Tree-based info manager, no syntax highlighting. -- ActionOutline (free, upgrade not free) Tree-based info manager, no syntax highlighting. There have been questions about this before on stackoverflow, but the last one was over a year ago (over 400 answers), which is where I got the products listed above. Just wondering if I've overlooked anything produced more recently. Thanks for any help.

    Read the article

  • Using ECF shared editing with Python

    - by hekevintran
    I can use the shared editing feature of ECF with Java fine perfectly fine. When I try to do it with Python files it also works, but there is no syntax highlighting. I installed PyDev to get syntax highlighting, but then the context menu does not have the "share editor" option. I removed PyDev and the option came back. I installed Dynamic Languages Toolkit in hopes that its Python syntax highlighting was compatible and I got the same effect (context menu lacks the "share editor" option). Is there a way to have a shared editing session with Python files and syntax highlighting?

    Read the article

  • Odd PHP Error Message

    - by John
    When I run some php code I've written, I get the following message: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'condition, price, name, email) VALUES('Fake Title', 'Fake Subhead', 'Fake Author' at line 1 I do not see anything wrong with my syntax, however, which is like: mysql_query("INSERT INTO table (x1, x2, x3) VALUES('$y1', '$y2', '$y3')"); Any ideas?

    Read the article

  • Dynamic JSON Parsing in .NET with JsonValue

    - by Rick Strahl
    So System.Json has been around for a while in Silverlight, but it's relatively new for the desktop .NET framework and now moving into the lime-light with the pending release of ASP.NET Web API which is bringing a ton of attention to server side JSON usage. The JsonValue, JsonObject and JsonArray objects are going to be pretty useful for Web API applications as they allow you dynamically create and parse JSON values without explicit .NET types to serialize from or into. But even more so I think JsonValue et al. are going to be very useful when consuming JSON APIs from various services. Yes I know C# is strongly typed, why in the world would you want to use dynamic values? So many times I've needed to retrieve a small morsel of information from a large service JSON response and rather than having to map the entire type structure of what that service returns, JsonValue actually allows me to cherry pick and only work with the values I'm interested in, without having to explicitly create everything up front. With JavaScriptSerializer or DataContractJsonSerializer you always need to have a strong type to de-serialize JSON data into. Wouldn't it be nice if no explicit type was required and you could just parse the JSON directly using a very easy to use object syntax? That's exactly what JsonValue, JsonObject and JsonArray accomplish using a JSON parser and some sweet use of dynamic sauce to make it easy to access in code. Creating JSON on the fly with JsonValue Let's start with creating JSON on the fly. It's super easy to create a dynamic object structure. JsonValue uses the dynamic  keyword extensively to make it intuitive to create object structures and turn them into JSON via dynamic object syntax. Here's an example of creating a music album structure with child songs using JsonValue:[TestMethod] public void JsonValueOutputTest() { // strong type instance var jsonObject = new JsonObject(); // dynamic expando instance you can add properties to dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; album.Artist = "AC/DC"; album.YearReleased = 1977; album.Songs = new JsonArray() as dynamic; dynamic song = new JsonObject(); song.SongName = "Dirty Deeds Done Dirt Cheap"; song.SongLength = "4:11"; album.Songs.Add(song); song = new JsonObject(); song.SongName = "Love at First Feel"; song.SongLength = "3:10"; album.Songs.Add(song); Console.WriteLine(album.ToString()); } This produces proper JSON just as you would expect: {"AlbumName":"Dirty Deeds Done Dirt Cheap","Artist":"AC\/DC","YearReleased":1977,"Songs":[{"SongName":"Dirty Deeds Done Dirt Cheap","SongLength":"4:11"},{"SongName":"Love at First Feel","SongLength":"3:10"}]} The important thing about this code is that there's no explicitly type that is used for holding the values to serialize to JSON. I am essentially creating this value structure on the fly by adding properties and then serialize it to JSON. This means this code can be entirely driven at runtime without compile time restraints of structure for the JSON output. Here I use JsonObject() to create a new object and immediately cast it to dynamic. JsonObject() is kind of similar in behavior to ExpandoObject in that it allows you to add properties by simply assigning to them. Internally, JsonValue/JsonObject these values are stored in pseudo collections of key value pairs that are exposed as properties through the DynamicObject functionality in .NET. The syntax gets a little tedious only if you need to create child objects or arrays that have to be explicitly defined first. Other than that the syntax looks like normal object access sytnax. Always remember though these values are dynamic - which means no Intellisense and no compiler type checking. It's up to you to ensure that the values you create are accessed consistently and without typos in your code. Note that you can also access the JsonValue instance directly and get access to the underlying type. This means you can assign properties by string, which can be useful for fully data driven JSON generation from other structures. Below you can see both styles of access next to each other:// strong type instance var jsonObject = new JsonObject(); // you can explicitly add values here jsonObject.Add("Entered", DateTime.Now); // expando style instance you can just 'use' properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; JsonValue internally stores properties keys and values in collections and you can iterate over them at runtime. You can also manipulate the collections if you need to to get the object structure to look exactly like you want. Again, if you've used ExpandoObject before JsonObject/Value are very similar in the behavior of the structure. Reading JSON strings into JsonValue The JsonValue structure supports importing JSON via the Parse() and Load() methods which can read JSON data from a string or various streams respectively. Essentially JsonValue includes the core JSON parsing to turn a JSON string into a collection of JsonValue objects that can be then referenced using familiar dynamic object syntax. Here's a simple example:[TestMethod] public void JsonValueParsingTest() { var jsonString = @"{""Name"":""Rick"",""Company"":""West Wind"",""Entered"":""2012-03-16T00:03:33.245-10:00""}"; dynamic json = JsonValue.Parse(jsonString); // values require casting string name = json.Name; string company = json.Company; DateTime entered = json.Entered; Assert.AreEqual(name, "Rick"); Assert.AreEqual(company, "West Wind"); } The JSON string represents an object with three properties which is parsed into a JsonValue object and cast to dynamic. Once cast to dynamic I can then go ahead and access the object using familiar object syntax. Note that the actual values - json.Name, json.Company, json.Entered - are actually of type JsonPrimitive and I have to assign them to their appropriate types first before I can do type comparisons. The dynamic properties will automatically cast to the right type expected as long as the compiler can resolve the type of the assignment or usage. The AreEqual() method oesn't as it expects two object instances and comparing json.Company to "West Wind" is comparing two different types (JsonPrimitive to String) which fails. So the intermediary assignment is required to make the test pass. The JSON structure can be much more complex than this simple example. Here's another example of an array of albums serialized to JSON and then parsed through with JsonValue():[TestMethod] public void JsonArrayParsingTest() { var jsonString = @"[ { ""Id"": ""b3ec4e5c"", ""AlbumName"": ""Dirty Deeds Done Dirt Cheap"", ""Artist"": ""AC/DC"", ""YearReleased"": 1977, ""Entered"": ""2012-03-16T00:13:12.2810521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/61kTaH-uZBL._AA115_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/gp/product/B00008BXJ4/ref=as_li_ss_tl?ie=UTF8&tag=westwindtechn-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=B00008BXJ4"", ""Songs"": [ { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Dirty Deeds Done Dirt Cheap"", ""SongLength"": ""4:11"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Love at First Feel"", ""SongLength"": ""3:10"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Big Balls"", ""SongLength"": ""2:38"" } ] }, { ""Id"": ""67280fb8"", ""AlbumName"": ""Echoes, Silence, Patience & Grace"", ""Artist"": ""Foo Fighters"", ""YearReleased"": 2007, ""Entered"": ""2012-03-16T00:13:12.2810521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/41mtlesQPVL._SL500_AA280_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/gp/product/B000UFAURI/ref=as_li_ss_tl?ie=UTF8&tag=westwindtechn-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=B000UFAURI"", ""Songs"": [ { ""AlbumId"": ""67280fb8"", ""SongName"": ""The Pretender"", ""SongLength"": ""4:29"" }, { ""AlbumId"": ""67280fb8"", ""SongName"": ""Let it Die"", ""SongLength"": ""4:05"" }, { ""AlbumId"": ""67280fb8"", ""SongName"": ""Erase/Replay"", ""SongLength"": ""4:13"" } ] }, { ""Id"": ""7b919432"", ""AlbumName"": ""End of the Silence"", ""Artist"": ""Henry Rollins Band"", ""YearReleased"": 1992, ""Entered"": ""2012-03-16T00:13:12.2800521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/51FO3rb1tuL._SL160_AA160_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/End-Silence-Rollins-Band/dp/B0000040OX/ref=sr_1_5?ie=UTF8&qid=1302232195&sr=8-5"", ""Songs"": [ { ""AlbumId"": ""7b919432"", ""SongName"": ""Low Self Opinion"", ""SongLength"": ""5:24"" }, { ""AlbumId"": ""7b919432"", ""SongName"": ""Grip"", ""SongLength"": ""4:51"" } ] } ]"; dynamic albums = JsonValue.Parse(jsonString); foreach (dynamic album in albums) { Console.WriteLine(album.AlbumName + " (" + album.YearReleased.ToString() + ")"); foreach (dynamic song in album.Songs) { Console.WriteLine("\t" + song.SongName ); } } Console.WriteLine(albums[0].AlbumName); Console.WriteLine(albums[0].Songs[1].SongName);}   It's pretty sweet how easy it becomes to parse even complex JSON and then just run through the object using object syntax, yet without an explicit type in the mix. In fact it looks and feels a lot like if you were using JavaScript to parse through this data, doesn't it? And that's the point…© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  Web Api  JSON   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Changes to the LINQ-to-StreamInsight Dialect

    - by Roman Schindlauer
    In previous versions of StreamInsight (1.0 through 2.0), CepStream<> represents temporal streams of many varieties: Streams with ‘open’ inputs (e.g., those defined and composed over CepStream<T>.Create(string streamName) Streams with ‘partially bound’ inputs (e.g., those defined and composed over CepStream<T>.Create(Type adapterFactory, …)) Streams with fully bound inputs (e.g., those defined and composed over To*Stream – sequences or DQC) The stream may be embedded (where Server.Create is used) The stream may be remote (where Server.Connect is used) When adding support for new programming primitives in StreamInsight 2.1, we faced a choice: Add a fourth variety (use CepStream<> to represent streams that are bound the new programming model constructs), or introduce a separate type that represents temporal streams in the new user model. We opted for the latter. Introducing a new type has the effect of reducing the number of (confusing) runtime failures due to inappropriate uses of CepStream<> instances in the incorrect context. The new types are: IStreamable<>, which logically represents a temporal stream. IQStreamable<> : IStreamable<>, which represents a queryable temporal stream. Its relationship to IStreamable<> is analogous to the relationship of IQueryable<> to IEnumerable<>. The developer can compose temporal queries over remote stream sources using this type. The syntax of temporal queries composed over IQStreamable<> is mostly consistent with the syntax of our existing CepStream<>-based LINQ provider. However, we have taken the opportunity to refine certain aspects of the language surface. Differences are outlined below. Because 2.1 introduces new types to represent temporal queries, the changes outlined in this post do no impact existing StreamInsight applications using the existing types! SelectMany StreamInsight does not support the SelectMany operator in its usual form (which is analogous to SQL’s “CROSS APPLY” operator): static IEnumerable<R> SelectMany<T, R>(this IEnumerable<T> source, Func<T, IEnumerable<R>> collectionSelector) It instead uses SelectMany as a convenient syntactic representation of an inner join. The parameter to the selector function is thus unavailable. Because the parameter isn’t supported, its type in StreamInsight 1.0 – 2.0 wasn’t carefully scrutinized. Unfortunately, the type chosen for the parameter is nonsensical to LINQ programmers: static CepStream<R> SelectMany<T, R>(this CepStream<T> source, Expression<Func<CepStream<T>, CepStream<R>>> streamSelector) Using Unit as the type for the parameter accurately reflects the StreamInsight’s capabilities: static IQStreamable<R> SelectMany<T, R>(this IQStreamable<T> source, Expression<Func<Unit, IQStreamable<R>>> streamSelector) For queries that succeed – that is, queries that do not reference the stream selector parameter – there is no difference between the code written for the two overloads: from x in xs from y in ys select f(x, y) Top-K The Take operator used in StreamInsight causes confusion for LINQ programmers because it is applied to the (unbounded) stream rather than the (bounded) window, suggesting that the query as a whole will return k rows: (from win in xs.SnapshotWindow() from x in win orderby x.A select x.B).Take(k) The use of SelectMany is also unfortunate in this context because it implies the availability of the window parameter within the remainder of the comprehension. The following compiles but fails at runtime: (from win in xs.SnapshotWindow() from x in win orderby x.A select win).Take(k) The Take operator in 2.1 is applied to the window rather than the stream: Before After (from win in xs.SnapshotWindow() from x in win orderby x.A select x.B).Take(k) from win in xs.SnapshotWindow() from b in     (from x in win     orderby x.A     select x.B).Take(k) select b Multicast We are introducing an explicit multicast operator in order to preserve expression identity, which is important given the semantics about moving code to and from StreamInsight. This also better matches existing LINQ dialects, such as Reactive. This pattern enables expressing multicasting in two ways: Implicit Explicit var ys = from x in xs          where x.A > 1          select x; var zs = from y1 in ys          from y2 in ys.ShiftEventTime(_ => TimeSpan.FromSeconds(1))          select y1 + y2; var ys = from x in xs          where x.A > 1          select x; var zs = ys.Multicast(ys1 =>     from y1 in ys1     from y2 in ys1.ShiftEventTime(_ => TimeSpan.FromSeconds(1))     select y1 + y2; Notice the product translates an expression using implicit multicast into an expression using the explicit multicast operator. The user does not see this translation. Default window policies Only default window policies are supported in the new surface. Other policies can be simulated by using AlterEventLifetime. Before After xs.SnapshotWindow(     WindowInputPolicy.ClipToWindow,     SnapshotWindowInputPolicy.Clip) xs.SnapshotWindow() xs.TumblingWindow(     TimeSpan.FromSeconds(1),     HoppingWindowOutputPolicy.PointAlignToWindowEnd) xs.TumblingWindow(     TimeSpan.FromSeconds(1)) xs.TumblingWindow(     TimeSpan.FromSeconds(1),     HoppingWindowOutputPolicy.ClipToWindowEnd) Not supported … LeftAntiJoin Representation of LASJ as a correlated sub-query in the LINQ surface is problematic as the StreamInsight engine does not support correlated sub-queries (see discussion of SelectMany). The current syntax requires the introduction of an otherwise unsupported ‘IsEmpty()’ operator. As a result, the pattern is not discoverable and implies capabilities not present in the server. The direct representation of LASJ is used instead: Before After from x in xs where     (from y in ys     where x.A > y.B     select y).IsEmpty() select x xs.LeftAntiJoin(ys, (x, y) => x.A > y.B) from x in xs where     (from y in ys     where x.A == y.B     select y).IsEmpty() select x xs.LeftAntiJoin(ys, x => x.A, y => y.B) ApplyWithUnion The ApplyWithUnion methods have been deprecated since their signatures are redundant given the standard SelectMany overloads: Before After xs.GroupBy(x => x.A).ApplyWithUnion(gs => from win in gs.SnapshotWindow() select win.Count()) xs.GroupBy(x => x.A).SelectMany(     gs =>     from win in gs.SnapshotWindow()     select win.Count()) xs.GroupBy(x => x.A).ApplyWithUnion(gs => from win in gs.SnapshotWindow() select win.Count(), r => new { r.Key, Count = r.Payload }) from x in xs group x by x.A into gs from win in gs.SnapshotWindow() select new { gs.Key, Count = win.Count() } Alternate UDO syntax The representation of UDOs in the StreamInsight LINQ dialect confuses cardinalities. Based on the semantics of user-defined operators in StreamInsight, one would expect to construct queries in the following form: from win in xs.SnapshotWindow() from y in MyUdo(win) select y Instead, the UDO proxy method is referenced within a projection, and the (many) results returned by the user code are automatically flattened into a stream: from win in xs.SnapshotWindow() select MyUdo(win) The “many-or-one” confusion is exemplified by the following example that compiles but fails at runtime: from win in xs.SnapshotWindow() select MyUdo(win) + win.Count() The above query must fail because the UDO is in fact returning many values per window while the count aggregate is returning one. Original syntax New alternate syntax from win in xs.SnapshotWindow() select win.UdoProxy(1) from win in xs.SnapshotWindow() from y in win.UserDefinedOperator(() => new Udo(1)) select y -or- from win in xs.SnapshotWindow() from y in win.UdoMacro(1) select y Notice that this formulation also sidesteps the dynamic type pitfalls of the existing “proxy method” approach to UDOs, in which the type of the UDO implementation (TInput, TOuput) and the type of its constructor arguments (TConfig) need to align in a precise and non-obvious way with the argument and return types for the corresponding proxy method. UDSO syntax UDSO currently leverages the DataContractSerializer to clone initial state for logical instances of the user operator. Initial state will instead be described by an expression in the new LINQ surface. Before After xs.Scan(new Udso()) xs.Scan(() => new Udso()) Name changes ShiftEventTime => AlterEventStartTime: The alter event lifetime overload taking a new start time value has been renamed. CountByStartTimeWindow => CountWindow

    Read the article

  • Changes to the LINQ-to-StreamInsight Dialect

    - by Roman Schindlauer
    In previous versions of StreamInsight (1.0 through 2.0), CepStream<> represents temporal streams of many varieties: Streams with ‘open’ inputs (e.g., those defined and composed over CepStream<T>.Create(string streamName) Streams with ‘partially bound’ inputs (e.g., those defined and composed over CepStream<T>.Create(Type adapterFactory, …)) Streams with fully bound inputs (e.g., those defined and composed over To*Stream – sequences or DQC) The stream may be embedded (where Server.Create is used) The stream may be remote (where Server.Connect is used) When adding support for new programming primitives in StreamInsight 2.1, we faced a choice: Add a fourth variety (use CepStream<> to represent streams that are bound the new programming model constructs), or introduce a separate type that represents temporal streams in the new user model. We opted for the latter. Introducing a new type has the effect of reducing the number of (confusing) runtime failures due to inappropriate uses of CepStream<> instances in the incorrect context. The new types are: IStreamable<>, which logically represents a temporal stream. IQStreamable<> : IStreamable<>, which represents a queryable temporal stream. Its relationship to IStreamable<> is analogous to the relationship of IQueryable<> to IEnumerable<>. The developer can compose temporal queries over remote stream sources using this type. The syntax of temporal queries composed over IQStreamable<> is mostly consistent with the syntax of our existing CepStream<>-based LINQ provider. However, we have taken the opportunity to refine certain aspects of the language surface. Differences are outlined below. Because 2.1 introduces new types to represent temporal queries, the changes outlined in this post do no impact existing StreamInsight applications using the existing types! SelectMany StreamInsight does not support the SelectMany operator in its usual form (which is analogous to SQL’s “CROSS APPLY” operator): static IEnumerable<R> SelectMany<T, R>(this IEnumerable<T> source, Func<T, IEnumerable<R>> collectionSelector) It instead uses SelectMany as a convenient syntactic representation of an inner join. The parameter to the selector function is thus unavailable. Because the parameter isn’t supported, its type in StreamInsight 1.0 – 2.0 wasn’t carefully scrutinized. Unfortunately, the type chosen for the parameter is nonsensical to LINQ programmers: static CepStream<R> SelectMany<T, R>(this CepStream<T> source, Expression<Func<CepStream<T>, CepStream<R>>> streamSelector) Using Unit as the type for the parameter accurately reflects the StreamInsight’s capabilities: static IQStreamable<R> SelectMany<T, R>(this IQStreamable<T> source, Expression<Func<Unit, IQStreamable<R>>> streamSelector) For queries that succeed – that is, queries that do not reference the stream selector parameter – there is no difference between the code written for the two overloads: from x in xs from y in ys select f(x, y) Top-K The Take operator used in StreamInsight causes confusion for LINQ programmers because it is applied to the (unbounded) stream rather than the (bounded) window, suggesting that the query as a whole will return k rows: (from win in xs.SnapshotWindow() from x in win orderby x.A select x.B).Take(k) The use of SelectMany is also unfortunate in this context because it implies the availability of the window parameter within the remainder of the comprehension. The following compiles but fails at runtime: (from win in xs.SnapshotWindow() from x in win orderby x.A select win).Take(k) The Take operator in 2.1 is applied to the window rather than the stream: Before After (from win in xs.SnapshotWindow() from x in win orderby x.A select x.B).Take(k) from win in xs.SnapshotWindow() from b in     (from x in win     orderby x.A     select x.B).Take(k) select b Multicast We are introducing an explicit multicast operator in order to preserve expression identity, which is important given the semantics about moving code to and from StreamInsight. This also better matches existing LINQ dialects, such as Reactive. This pattern enables expressing multicasting in two ways: Implicit Explicit var ys = from x in xs          where x.A > 1          select x; var zs = from y1 in ys          from y2 in ys.ShiftEventTime(_ => TimeSpan.FromSeconds(1))          select y1 + y2; var ys = from x in xs          where x.A > 1          select x; var zs = ys.Multicast(ys1 =>     from y1 in ys1     from y2 in ys1.ShiftEventTime(_ => TimeSpan.FromSeconds(1))     select y1 + y2; Notice the product translates an expression using implicit multicast into an expression using the explicit multicast operator. The user does not see this translation. Default window policies Only default window policies are supported in the new surface. Other policies can be simulated by using AlterEventLifetime. Before After xs.SnapshotWindow(     WindowInputPolicy.ClipToWindow,     SnapshotWindowInputPolicy.Clip) xs.SnapshotWindow() xs.TumblingWindow(     TimeSpan.FromSeconds(1),     HoppingWindowOutputPolicy.PointAlignToWindowEnd) xs.TumblingWindow(     TimeSpan.FromSeconds(1)) xs.TumblingWindow(     TimeSpan.FromSeconds(1),     HoppingWindowOutputPolicy.ClipToWindowEnd) Not supported … LeftAntiJoin Representation of LASJ as a correlated sub-query in the LINQ surface is problematic as the StreamInsight engine does not support correlated sub-queries (see discussion of SelectMany). The current syntax requires the introduction of an otherwise unsupported ‘IsEmpty()’ operator. As a result, the pattern is not discoverable and implies capabilities not present in the server. The direct representation of LASJ is used instead: Before After from x in xs where     (from y in ys     where x.A > y.B     select y).IsEmpty() select x xs.LeftAntiJoin(ys, (x, y) => x.A > y.B) from x in xs where     (from y in ys     where x.A == y.B     select y).IsEmpty() select x xs.LeftAntiJoin(ys, x => x.A, y => y.B) ApplyWithUnion The ApplyWithUnion methods have been deprecated since their signatures are redundant given the standard SelectMany overloads: Before After xs.GroupBy(x => x.A).ApplyWithUnion(gs => from win in gs.SnapshotWindow() select win.Count()) xs.GroupBy(x => x.A).SelectMany(     gs =>     from win in gs.SnapshotWindow()     select win.Count()) xs.GroupBy(x => x.A).ApplyWithUnion(gs => from win in gs.SnapshotWindow() select win.Count(), r => new { r.Key, Count = r.Payload }) from x in xs group x by x.A into gs from win in gs.SnapshotWindow() select new { gs.Key, Count = win.Count() } Alternate UDO syntax The representation of UDOs in the StreamInsight LINQ dialect confuses cardinalities. Based on the semantics of user-defined operators in StreamInsight, one would expect to construct queries in the following form: from win in xs.SnapshotWindow() from y in MyUdo(win) select y Instead, the UDO proxy method is referenced within a projection, and the (many) results returned by the user code are automatically flattened into a stream: from win in xs.SnapshotWindow() select MyUdo(win) The “many-or-one” confusion is exemplified by the following example that compiles but fails at runtime: from win in xs.SnapshotWindow() select MyUdo(win) + win.Count() The above query must fail because the UDO is in fact returning many values per window while the count aggregate is returning one. Original syntax New alternate syntax from win in xs.SnapshotWindow() select win.UdoProxy(1) from win in xs.SnapshotWindow() from y in win.UserDefinedOperator(() => new Udo(1)) select y -or- from win in xs.SnapshotWindow() from y in win.UdoMacro(1) select y Notice that this formulation also sidesteps the dynamic type pitfalls of the existing “proxy method” approach to UDOs, in which the type of the UDO implementation (TInput, TOuput) and the type of its constructor arguments (TConfig) need to align in a precise and non-obvious way with the argument and return types for the corresponding proxy method. UDSO syntax UDSO currently leverages the DataContractSerializer to clone initial state for logical instances of the user operator. Initial state will instead be described by an expression in the new LINQ surface. Before After xs.Scan(new Udso()) xs.Scan(() => new Udso()) Name changes ShiftEventTime => AlterEventStartTime: The alter event lifetime overload taking a new start time value has been renamed. CountByStartTimeWindow => CountWindow

    Read the article

  • Maven. What to do with "homeless" jars?

    - by Jake
    I have some proprietary.jar that I need to include in my project, but I don't wish to install it to the local repository. What I did initially was to put the jar into version control in my project's lib/ folder, and then specify the Maven dependency as: <!-- LOCAL DEPENDENCY --> <dependency> <groupId>topsecret</groupId> <artifactId>proprietary</artifactId> <version>0.0.1</version> <scope>system</scope> <systemPath>${basedir}/lib/java/proprietary.jar</systemPath> </dependency> However, this becomes a big problem when my project becomes someone else's dependency. Maven will not be able to validate this POM because the path is not absolute. What is the best way to overcome this problem?

    Read the article

  • New regular expression features in PCRE 8.34 and 8.35

    - by Jan Goyvaerts
    PCRE 8.34 adds some new regex features and changes the behavior of a few to make it better compatible with the latest versions of Perl. There are no changes to the regex syntax in PCRE 8.35. \o{377} is now an octal escape just like \377. This syntax was first introduced in Perl 5.12. It avoids any confusion between octal escapes and backreferences. It also allows octal numbers beyond 377 to be used. E.g. \o{400} is the same as \x{100}. If you have any reason to use octal escapes instead of hexadecimal escapes then you should definitely use the new syntax. Because of this change, \o is now an error when it doesn’t form a valid octal escape. Previously \o was a literal o and \o{377} was a sequence of 337 o‘s. In free-spacing mode, whitespace between a quantifier and the ? that makes it lazy or the + that makes it possessive is now ignored. In Perl this has always been the case. In PCRE 8.33 and prior, whitespace ended a quantifier and any following ? or + was seen as a second quantifier and thus an error. The shorthand \s now matches the vertical tab character in addition to the other whitespace characters it previously matched. Perl 5.18 made the same change. Many other regex flavors have always included the vertical tab in \s, just like POSIX has always included it in [[:space:]]. Names of capturing groups are no longer allowed to start with a digit. This has always been the case in Perl since named groups were added to Perl 5.10. PCRE 8.33 and prior even allowed group names to consist entirely of digits. [[:<:]] and [[::]] are now treated as POSIX-style word boundaries. They match at the start and the end of a word. Though they use similar syntax, these have nothing to do with POSIX character classes and cannot be used inside character classes. Perl does not support POSIX word boundaries. The same changes affect PHP 5.5.10 (and later) and R 3.0.3 (and later) as they have been updated to use PCRE 8.34. RegexBuddy and RegexMagic have been updated to support the latest versions of PCRE, PHP, and R. Older versions that were previously supported are still supported, so you can compare or convert your regular expressions between the latest versions of PCRE, PHP, and R and whichever version you were using previously.

    Read the article

  • FTP client host mismatch (2 replies)

    I am trying to use ftp from a windows host to another windows host. However, when I invoked it, I found the target host using unix syntax for the ftp even tho it is a windows server, which is why I kept getting syntax errors. What is causing this and how can I fix? Thanks in advance

    Read the article

  • Fireball.CodeEditor

    - by csharp-source.net
    Fireball.CodeEditor is a source editor control with syntax highlight support. It supports some common programming language and you can add your own syntax. Also on the website you can find a software called FireEdit. It is a open source small code editor with support for extensibility from plugins system, more info on the web site, join the forum and help the staff to add feature and find bugs, by testing the control or the application or by making a plugin.

    Read the article

  • OWB 11gR2 &ndash; OMB and File Editing

    - by David Allan
    Here we will see how we can use the IDE for editing OMB scripts. The 11gR2 release is based on the common Oracle platform IDE used also by JDeveloper. It comes with a bunch of standard behavior for editing and rendering code. One of the lesser known things is that if you drop a text file into OWB you can edit it. So you can drop your tcl scripts right into OWB and edit in-place, and don’t need another IDE like Eclipse just for this task. Cool, so you have the file here. There may be no line numbers, you can toggle line numbers on by right clicking in the gutter. If we edit the file within the OWB IDE, the save is a little different from normal. OWB doesn’t normally manipulate files so things like ctrl-s to save, saves the OWB objects, but if you edit a file the closing of the file will ask if you want to save it – check it out. Now we enter the realm of ‘he who dares’…. Note the IDE doesn’t know about tcl files out of the box, so you see above there is no syntax highlighting. The code is identified by the extension… .java is java, .html is HTML etc. With OWB, the OMB scripts are tcl, we usually have .tcl extension on these files. One of the things we can do to trick up the syntax highlighting is to simply rename the file to have a .java suffix, then all of a sudden we get syntax highlighting, see the illustration here where side by side we see a the file with a .java extension and a .tcl extension. Not ideal pretending to be .java but gets us a way to having something more useful than notepad. We can then change the syntax highlighting such that we get Eclipse like highlighting within the IDE from the Tools Preferences option; You then get the Eclipse like rendering albeit using a little tweak on the file names… Might be useful if you are doing any kind of heavy duty OMB script development and just want a single IDE. The OMBPlus panel is then at hand for executing and testing it out.

    Read the article

  • Simplifying C++11 optimal parameter passing when a copy is needed

    - by Mr.C64
    It seems to me that in C++11 lots of attention was made to simplify returning values from functions and methods, i.e.: with move semantics it's possible to simply return heavy-to-copy but cheap-to-move values (while in C++98/03 the general guideline was to use output parameters via non-const references or pointers), e.g.: // C++11 style vector<string> MakeAVeryBigStringList(); // C++98/03 style void MakeAVeryBigStringList(vector<string>& result); On the other side, it seems to me that more work should be done on input parameter passing, in particular when a copy of an input parameter is needed, e.g. in constructors and setters. My understanding is that the best technique in this case is to use templates and std::forward<>, e.g. (following the pattern of this answer on C++11 optimal parameter passing): class Person { std::string m_name; public: template <class T, class = typename std::enable_if < std::is_constructible<std::string, T>::value >::type> explicit Person(T&& name) : m_name(std::forward<T>(name)) { } ... }; A similar code could be written for setters. Frankly, this code seems boilerplate and complex, and doesn't scale up well when there are more parameters (e.g. if a surname attribute is added to the above class). Would it be possible to add a new feature to C++11 to simplify code like this (just like lambdas simplify C++98/03 code with functors in several cases)? I was thinking of a syntax with some special character, like @ (since introducing a &&& in addition to && would be too much typing :) e.g.: class Person { std::string m_name; public: /* Simplified syntax to produce boilerplate code like this: template <class T, class = typename std::enable_if < std::is_constructible<std::string, T>::value >::type> */ explicit Person(std::string@ name) : m_name(name) // implicit std::forward as well { } ... }; This would be very convenient also for more complex cases involving more parameters, e.g. Person(std::string@ name, std::string@ surname) : m_name(name), m_surname(surname) { } Would it be possible to add a simplified convenient syntax like this in C++? What would be the downsides of such a syntax?

    Read the article

  • FTP client host mismatch (2 replies)

    I am trying to use ftp from a windows host to another windows host. However, when I invoked it, I found the target host using unix syntax for the ftp even tho it is a windows server, which is why I kept getting syntax errors. What is causing this and how can I fix? Thanks in advance

    Read the article

  • draw bullet at the end of the barrel

    - by Alberto
    excuse my awkwardness, i have this code: [syntax="java"] int x2 = (int) (canon.getSceneCenterCoordinates()[0] + LENGTH_SPRITE/2* Math.cos(canon.getRotation())); int y2 = (int) (canon.getSceneCenterCoordinates()[1] + LENGTH_SPRITE/2* Math.sin(canon.getRotation())); projectile = new Sprite( (float) x2, (float) y2, mProjectileTextureRegion,this.getVertexBufferObjectManager() ); mMainScene.attachChild(projectile); [/syntax] and the bullet are drawn around the cannon in circle.. but not from the end of cannon :( help!

    Read the article

  • typeset: not found error when executing shell script. Am I missing a package or something?

    - by user11045
    Hi, below is the error and corresponding script lines: spec@Lucifer:~/Documents/seagull.svn.LINUX$ ./build.ksh ./build.ksh: 36: typeset: not found ./build.ksh: 39: typeset: not found ./build.ksh: 44: function: not found Command line syntax of - options -exec : mode used for compilation (default RELEASE) -target : target used for compilation (default all) -help : display the command line syntax ./build.ksh: 52: function: not found ERROR: spec@Lucifer:~/Documents/seagull.svn.LINUX$ Script Init of variables BUILD_TARGET=${BUILD_DEFAULT_TARGET} BUILD_EXEC=${BUILD_DEFAULT_EXEC} typeset -u BUILD_OS=uname -s | tr '-' '_' | tr '.' '_' | tr '/' '_' BUILD_CODE_DIRECTORY=code BUILD_DIRECTORY=pwd typeset -u BUILD_ARCH=uname -m | tr '-' '_' | tr '.' '_' | tr '/' '_' BUILD_VERSION_FILE=build.conf BUILD_DIST_MODE=0 BUILD_FORCE_MODE=0

    Read the article

< Previous Page | 59 60 61 62 63 64 65 66 67 68 69 70  | Next Page >