Search Results

Search found 7902 results on 317 pages for 'structure'.

Page 63/317 | < Previous Page | 59 60 61 62 63 64 65 66 67 68 69 70  | Next Page >

  • How to pull the file name from a url using javascript/jquery?

    - by jim23
    A certain variable might contain a relative path or an absolute path. Either way, I need to be able to pull the filename from the variable: http://www.somesite.com/dir1/dir2/filename.gif /dir1/dir2/filename.gif The directory structure is also arbitrary. So basically given either of the url's above (with arbirtrary directory structure) I need to pull 'filename.gif'. Thanks in advance

    Read the article

  • Google App Engine Python Datastore

    - by python appengine
    Basically what Im trying to make is a data structure where it has the users name, id, and datejoined. Then i want a "sub-structure" where it has the users "text" and the date it was modified. and the user will have multiple instances of this text. class User(db.Model): ID = db.IntegerProperty() name = db.StringProperty() datejoined = db.DateTimeProperty(auto_now_add=True) class Content(db.Model): text = db.StringProperty() datemod= db.DateTimeProperty(auto_now_add = True) Is the code set up correctly?

    Read the article

  • Calculix Data Visualiser using QT

    - by Ann
    I am doing a project on Calculix Data Visualiser. It is a civil based project. I need to show the structure of beams before applying force and the structure after the force is applied. I need to change the color of the beams to RED where more force is applied. But i am just able to change the color for lines and not for the phase as a whole. SO pls help me out.

    Read the article

  • Module config in Zend Framework 1.10

    - by Ilomac
    I am using reccomended app. structure ( http://framework.zend.com/manual/1.10/en/project-structure.filesystem.html ) in Zend Framework but I cant get each module config working. It just doesn't load modules/mymodule/configs/application.ini file into configuration.

    Read the article

  • Zip only public directory

    - by Nino55
    Hi guys, I've a lot of websites (100+ directories) I want to create a unique zip with only public subdirectory. My structure now is like: - Site 1 --- app --- tmp --- log --- public - Site 2 --- app --- tmp --- log --- public - ... 100+ dirs ... Now I need a unique zip and then after unzip it I want to see this structure: - Site 1 --- public - Site 2 --- public - others Any suggestion how I can do that with linux commands zip/tar ? Thanks so much!

    Read the article

  • Migrating Application Configuration from Windows Registry to SQLite

    - by baris_a
    Currently, I am working on the migration mentioned in the title line. Problem is application configuration that is kept in registry has a tree like structure, for example: X |->Y |->Z |->SomeKey someValue W |->AnotherKey anotherValue and so on. How can I model this structure in SQLite (or any other DB)? If you have experience in similar problems, please send posts. Thanks in advance.

    Read the article

  • Make errors when compiling HPL-2.1 on MOSIX-clustered Debian server

    - by tlake
    I'm trying to compile HPL 2.1 on a MOSIX-clustered Debian server, but the make process terminates with errors as seen below. Included are my makefile and two versions of output: one from a standard execution, and one from an execution run with the debug flag. Any help and guidance would be very much appreciated! The makefile: # ---------------------------------------------------------------------- # - shell -------------------------------------------------------------- # ---------------------------------------------------------------------- # SHELL = /bin/bash # CD = cd CP = cp LN_S = ln -s MKDIR = mkdir RM = /bin/rm -f TOUCH = touch # # ---------------------------------------------------------------------- # - Platform identifier ------------------------------------------------ # ---------------------------------------------------------------------- # ARCH = Linux_PII_CBLAS # # ---------------------------------------------------------------------- # - HPL Directory Structure / HPL library ------------------------------ # ---------------------------------------------------------------------- # TOPdir = $(HOME)/hpl-2.1 INCdir = $(TOPdir)/include BINdir = $(TOPdir)/bin/$(ARCH) LIBdir = $(TOPdir)/lib/$(ARCH) # HPLlib = $(LIBdir)/libhpl.a # # ---------------------------------------------------------------------- # - Message Passing library (MPI) -------------------------------------- # ---------------------------------------------------------------------- # MPinc tells the C compiler where to find the Message Passing library # header files, MPlib is defined to be the name of the library to be # used. The variable MPdir is only used for defining MPinc and MPlib. # MPdir = /usr/local MPinc = -I$(MPdir)/include MPlib = $(MPdir)/lib/libmpi.so # # ---------------------------------------------------------------------- # - Linear Algebra library (BLAS or VSIPL) ----------------------------- # ---------------------------------------------------------------------- # LAinc tells the C compiler where to find the Linear Algebra library # header files, LAlib is defined to be the name of the library to be # used. The variable LAdir is only used for defining LAinc and LAlib. # LAdir = $(HOME)/CBLAS/lib LAinc = LAlib = $(LAdir)/cblas_LINUX.a # # ---------------------------------------------------------------------- # - F77 / C interface -------------------------------------------------- # ---------------------------------------------------------------------- # You can skip this section if and only if you are not planning to use # a BLAS library featuring a Fortran 77 interface. Otherwise, it is # necessary to fill out the F2CDEFS variable with the appropriate # options. **One and only one** option should be chosen in **each** of # the 3 following categories: # # 1) name space (How C calls a Fortran 77 routine) # # -DAdd_ : all lower case and a suffixed underscore (Suns, # Intel, ...), [default] # -DNoChange : all lower case (IBM RS6000), # -DUpCase : all upper case (Cray), # -DAdd__ : the FORTRAN compiler in use is f2c. # # 2) C and Fortran 77 integer mapping # # -DF77_INTEGER=int : Fortran 77 INTEGER is a C int, [default] # -DF77_INTEGER=long : Fortran 77 INTEGER is a C long, # -DF77_INTEGER=short : Fortran 77 INTEGER is a C short. # # 3) Fortran 77 string handling # # -DStringSunStyle : The string address is passed at the string loca- # tion on the stack, and the string length is then # passed as an F77_INTEGER after all explicit # stack arguments, [default] # -DStringStructPtr : The address of a structure is passed by a # Fortran 77 string, and the structure is of the # form: struct {char *cp; F77_INTEGER len;}, # -DStringStructVal : A structure is passed by value for each Fortran # 77 string, and the structure is of the form: # struct {char *cp; F77_INTEGER len;}, # -DStringCrayStyle : Special option for Cray machines, which uses # Cray fcd (fortran character descriptor) for # interoperation. # F2CDEFS = # # ---------------------------------------------------------------------- # - HPL includes / libraries / specifics ------------------------------- # ---------------------------------------------------------------------- # HPL_INCLUDES = -I$(INCdir) -I$(INCdir)/$(ARCH) $(LAinc) $(MPinc) HPL_LIBS = $(HPLlib) $(LAlib) $(MPlib) # # - Compile time options ----------------------------------------------- # # -DHPL_COPY_L force the copy of the panel L before bcast; # -DHPL_CALL_CBLAS call the cblas interface; # -DHPL_CALL_VSIPL call the vsip library; # -DHPL_DETAILED_TIMING enable detailed timers; # # By default HPL will: # *) not copy L before broadcast, # *) call the BLAS Fortran 77 interface, # *) not display detailed timing information. # HPL_OPTS = -DHPL_CALL_CBLAS # # ---------------------------------------------------------------------- # HPL_DEFS = $(F2CDEFS) $(HPL_OPTS) $(HPL_INCLUDES) # # ---------------------------------------------------------------------- # - Compilers / linkers - Optimization flags --------------------------- # ---------------------------------------------------------------------- # CC = /usr/bin/gcc CCNOOPT = $(HPL_DEFS) CCFLAGS = $(HPL_DEFS) -fomit-frame-pointer -O3 -funroll-loops # # On some platforms, it is necessary to use the Fortran linker to find # the Fortran internals used in the BLAS library. # LINKER = ~/BLAS LINKFLAGS = $(CCFLAGS) # ARCHIVER = ar ARFLAGS = r RANLIB = echo # # ---------------------------------------------------------------------- Make output: ~/BLAS -DHPL_CALL_CBLAS -I/homes/laket/hpl-2.1/include -I/homes/laket/hpl-2.1/include/Linux_PII_CBLAS -I/usr/local/include -fomit-frame-pointer -O3 -funroll-loops -o /homes/laket/hpl-2.1/bin/Linux_PII_CBLAS/xhpl HPL_pddriver.o HPL_pdinfo.o HPL_pdtest.o /homes/laket/hpl-2.1/lib/Linux_PII_CBLAS/libhpl.a /homes/laket/CBLAS/lib/cblas_LINUX.a /usr/local/lib/libmpi.so /bin/bash: /homes/laket/BLAS: Is a directory make[2]: *** [dexe.grd] Error 126 make[2]: Target `all' not remade because of errors. make[2]: Leaving directory `/homes/laket/hpl-2.1/testing/ptest/Linux_PII_CBLAS' make[1]: *** [build_tst] Error 2 make[1]: Leaving directory `/homes/laket/hpl-2.1' make: *** [build] Error 2 make: Target `all' not remade because of errors. Make -d output: Considering target file `/homes/laket/hpl-2.1/lib/Linux_PII_CBLAS/libhpl.a'. Looking for an implicit rule for `/homes/laket/hpl-2.1/lib/Linux_PII_CBLAS/libhpl.a'. Trying pattern rule with stem `libhpl.a'. Trying implicit prerequisite `/homes/laket/hpl-2.1/lib/Linux_PII_CBLAS/libhpl.a,v'. Trying pattern rule with stem `libhpl.a'. Trying implicit prerequisite `/homes/laket/hpl-2.1/lib/Linux_PII_CBLAS/RCS/libhpl.a,v'. Trying pattern rule with stem `libhpl.a'. Trying implicit prerequisite `/homes/laket/hpl-2.1/lib/Linux_PII_CBLAS/RCS/libhpl.a'. Trying pattern rule with stem `libhpl.a'. Trying implicit prerequisite `/homes/laket/hpl-2.1/lib/Linux_PII_CBLAS/s.libhpl.a'. Trying pattern rule with stem `libhpl.a'. Trying implicit prerequisite `/homes/laket/hpl-2.1/lib/Linux_PII_CBLAS/SCCS/s.libhpl.a'. No implicit rule found for `/homes/laket/hpl-2.1/lib/Linux_PII_CBLAS/libhpl.a'. Finished prerequisites of target file `/homes/laket/hpl-2.1/lib/Linux_PII_CBLAS/libhpl.a'. No need to remake target `/homes/laket/hpl-2.1/lib/Linux_PII_CBLAS/libhpl.a'. Finished prerequisites of target file `dexe.grd'. Must remake target `dexe.grd'. ~/BLAS -DHPL_CALL_CBLAS -I/homes/laket/hpl-2.1/include -I/homes/laket/hpl-2.1/include/Linux_PII_CBLAS -I/usr/local/include -fomit-frame-pointer -O3 -funroll-loops -o /homes/laket/hpl-2.1/bin/Linux_PII_CBLAS/xhpl HPL_pddriver.o HPL_pdinfo.o HPL_pdtest.o /homes/laket/hpl-2.1/lib/Linux_PII_CBLAS/libhpl.a /homes/laket/CBLAS/lib/cblas_LINUX.a /usr/local/lib/libmpi.so Putting child 0x0129a2c0 (dexe.grd) PID 24853 on the chain. Live child 0x0129a2c0 (dexe.grd) PID 24853 /bin/bash: /homes/laket/BLAS: Is a directory make[2]: Reaping losing child 0x0129a2c0 PID 24853 *** [dexe.grd] Error 126 Removing child 0x0129a2c0 PID 24853 from chain. Failed to remake target file `dexe.grd'. Finished prerequisites of target file `dexe'. Giving up on target file `dexe'. Finished prerequisites of target file `all'. Giving up on target file `all'. make[2]: Target `all' not remade because of errors. make[2]: Leaving directory `/homes/laket/hpl-2.1/testing/ptest/Linux_PII_CBLAS' Reaping losing child 0x010ce900 PID 24841 make[1]: *** [build_tst] Error 2 Removing child 0x010ce900 PID 24841 from chain. Failed to remake target file `build_tst'. make[1]: Leaving directory `/homes/laket/hpl-2.1' Reaping losing child 0x00d91ae0 PID 24774 make: *** [build] Error 2 Removing child 0x00d91ae0 PID 24774 from chain. Failed to remake target file `build'. Finished prerequisites of target file `install'. make: Target `all' not remade because of errors. Giving up on target file `install'. Finished prerequisites of target file `all'. Giving up on target file `all'. Thanks!

    Read the article

  • The Sensemaking Spectrum for Business Analytics: Translating from Data to Business Through Analysis

    - by Joe Lamantia
    One of the most compelling outcomes of our strategic research efforts over the past several years is a growing vocabulary that articulates our cumulative understanding of the deep structure of the domains of discovery and business analytics. Modes are one example of the deep structure we’ve found.  After looking at discovery activities across a very wide range of industries, question types, business needs, and problem solving approaches, we've identified distinct and recurring kinds of sensemaking activity, independent of context.  We label these activities Modes: Explore, compare, and comprehend are three of the nine recognizable modes.  Modes describe *how* people go about realizing insights.  (Read more about the programmatic research and formal academic grounding and discussion of the modes here: https://www.researchgate.net/publication/235971352_A_Taxonomy_of_Enterprise_Search_and_Discovery) By analogy to languages, modes are the 'verbs' of discovery activity.  When applied to the practical questions of product strategy and development, the modes of discovery allow one to identify what kinds of analytical activity a product, platform, or solution needs to support across a spread of usage scenarios, and then make concrete and well-informed decisions about every aspect of the solution, from high-level capabilities, to which specific types of information visualizations better enable these scenarios for the types of data users will analyze. The modes are a powerful generative tool for product making, but if you've spent time with young children, or had a really bad hangover (or both at the same time...), you understand the difficult of communicating using only verbs.  So I'm happy to share that we've found traction on another facet of the deep structure of discovery and business analytics.  Continuing the language analogy, we've identified some of the ‘nouns’ in the language of discovery: specifically, the consistently recurring aspects of a business that people are looking for insight into.  We call these discovery Subjects, since they identify *what* people focus on during discovery efforts, rather than *how* they go about discovery as with the Modes. Defining the collection of Subjects people repeatedly focus on allows us to understand and articulate sense making needs and activity in more specific, consistent, and complete fashion.  In combination with the Modes, we can use Subjects to concretely identify and define scenarios that describe people’s analytical needs and goals.  For example, a scenario such as ‘Explore [a Mode] the attrition rates [a Measure, one type of Subject] of our largest customers [Entities, another type of Subject] clearly captures the nature of the activity — exploration of trends vs. deep analysis of underlying factors — and the central focus — attrition rates for customers above a certain set of size criteria — from which follow many of the specifics needed to address this scenario in terms of data, analytical tools, and methods. We can also use Subjects to translate effectively between the different perspectives that shape discovery efforts, reducing ambiguity and increasing impact on both sides the perspective divide.  For example, from the language of business, which often motivates analytical work by asking questions in business terms, to the perspective of analysis.  The question posed to a Data Scientist or analyst may be something like “Why are sales of our new kinds of potato chips to our largest customers fluctuating unexpectedly this year?” or “Where can innovate, by expanding our product portfolio to meet unmet needs?”.  Analysts translate questions and beliefs like these into one or more empirical discovery efforts that more formally and granularly indicate the plan, methods, tools, and desired outcomes of analysis.  From the perspective of analysis this second question might become, “Which customer needs of type ‘A', identified and measured in terms of ‘B’, that are not directly or indirectly addressed by any of our current products, offer 'X' potential for ‘Y' positive return on the investment ‘Z' required to launch a new offering, in time frame ‘W’?  And how do these compare to each other?”.  Translation also happens from the perspective of analysis to the perspective of data; in terms of availability, quality, completeness, format, volume, etc. By implication, we are proposing that most working organizations — small and large, for profit and non-profit, domestic and international, and in the majority of industries — can be described for analytical purposes using this collection of Subjects.  This is a bold claim, but simplified articulation of complexity is one of the primary goals of sensemaking frameworks such as this one.  (And, yes, this is in fact a framework for making sense of sensemaking as a category of activity - but we’re not considering the recursive aspects of this exercise at the moment.) Compellingly, we can place the collection of subjects on a single continuum — we call it the Sensemaking Spectrum — that simply and coherently illustrates some of the most important relationships between the different types of Subjects, and also illuminates several of the fundamental dynamics shaping business analytics as a domain.  As a corollary, the Sensemaking Spectrum also suggests innovation opportunities for products and services related to business analytics. The first illustration below shows Subjects arrayed along the Sensemaking Spectrum; the second illustration presents examples of each kind of Subject.  Subjects appear in colors ranging from blue to reddish-orange, reflecting their place along the Spectrum, which indicates whether a Subject addresses more the viewpoint of systems and data (Data centric and blue), or people (User centric and orange).  This axis is shown explicitly above the Spectrum.  Annotations suggest how Subjects align with the three significant perspectives of Data, Analysis, and Business that shape business analytics activity.  This rendering makes explicit the translation and bridging function of Analysts as a role, and analysis as an activity. Subjects are best understood as fuzzy categories [http://georgelakoff.files.wordpress.com/2011/01/hedges-a-study-in-meaning-criteria-and-the-logic-of-fuzzy-concepts-journal-of-philosophical-logic-2-lakoff-19731.pdf], rather than tightly defined buckets.  For each Subject, we suggest some of the most common examples: Entities may be physical things such as named products, or locations (a building, or a city); they could be Concepts, such as satisfaction; or they could be Relationships between entities, such as the variety of possible connections that define linkage in social networks.  Likewise, Events may indicate a time and place in the dictionary sense; or they may be Transactions involving named entities; or take the form of Signals, such as ‘some Measure had some value at some time’ - what many enterprises understand as alerts.   The central story of the Spectrum is that though consumers of analytical insights (represented here by the Business perspective) need to work in terms of Subjects that are directly meaningful to their perspective — such as Themes, Plans, and Goals — the working realities of data (condition, structure, availability, completeness, cost) and the changing nature of most discovery efforts make direct engagement with source data in this fashion impossible.  Accordingly, business analytics as a domain is structured around the fundamental assumption that sense making depends on analytical transformation of data.  Analytical activity incrementally synthesizes more complex and larger scope Subjects from data in its starting condition, accumulating insight (and value) by moving through a progression of stages in which increasingly meaningful Subjects are iteratively synthesized from the data, and recombined with other Subjects.  The end goal of  ‘laddering’ successive transformations is to enable sense making from the business perspective, rather than the analytical perspective.Synthesis through laddering is typically accomplished by specialized Analysts using dedicated tools and methods. Beginning with some motivating question such as seeking opportunities to increase the efficiency (a Theme) of fulfillment processes to reach some level of profitability by the end of the year (Plan), Analysts will iteratively wrangle and transform source data Records, Values and Attributes into recognizable Entities, such as Products, that can be combined with Measures or other data into the Events (shipment of orders) that indicate the workings of the business.  More complex Subjects (to the right of the Spectrum) are composed of or make reference to less complex Subjects: a business Process such as Fulfillment will include Activities such as confirming, packing, and then shipping orders.  These Activities occur within or are conducted by organizational units such as teams of staff or partner firms (Networks), composed of Entities which are structured via Relationships, such as supplier and buyer.  The fulfillment process will involve other types of Entities, such as the products or services the business provides.  The success of the fulfillment process overall may be judged according to a sophisticated operating efficiency Model, which includes tiered Measures of business activity and health for the transactions and activities included.  All of this may be interpreted through an understanding of the operational domain of the businesses supply chain (a Domain).   We'll discuss the Spectrum in more depth in succeeding posts.

    Read the article

  • Adding Fake Build Information in TFS 2010

    - by Jakob Ehn
    We have been using TFS 2010 build for distributing a build in parallel on several agents, but where the actual compilation is done by a bunch of external tools and compilers, e.g. no MSBuild involved. We are using the ParallelTemplate.xaml template that Jim Lamb blogged about previously, which distributes each configuration to a different agent. We developed custom activities for running these external compilers and collecting the information and errors by reading standard out/error and pushing it back to the build log. But since we aren’t using MSBuild we don’t the get nice configuration summary section on the build summary page that we are used to. We would like to show the result of each configuration with any errors/warnings as usual, together with a link to the log file. TFS 2010 API to the rescue! What we need to do is adding information to the InformationNode structure that is associated with every TFS build. The log that you normally see in the Log view is built up as a tree structure of IBuildInformationNode objects. This structure can we accessed by using the InformationNodeConverters class. This class also contain some helper methods for creating BuildProjectNode, which contain the information about each project that was build, for example which configuration, number of errors and warnings and link to the log file. Here is a code snippet that first creates a “fake” build from scratch and the add two BuildProjectNodes, one for Debug|x86 and one for Release|x86 with some release information:   TfsTeamProjectCollection collection = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://lt-jakob2010:8080/tfs")); IBuildServer buildServer = collection.GetService<IBuildServer>(); var buildDef = buildServer.GetBuildDefinition("TeamProject", "BuildDefinition"); //Create fake build with random build number var detail = buildDef.CreateManualBuild(new Random().Next().ToString()); // Create Debug|x86 project summary IBuildProjectNode buildProjectNode = detail.Information.AddBuildProjectNode(DateTime.Now, "Debug", "MySolution.sln", "x86", "$/project/MySolution.sln", DateTime.Now, "Default"); buildProjectNode.CompilationErrors = 1; buildProjectNode.CompilationWarnings = 1; buildProjectNode.Node.Children.AddBuildError("Compilation", "File1.cs", 12, 5, "", "Syntax error", DateTime.Now); buildProjectNode.Node.Children.AddBuildWarning("File2.cs", 3, 1, "", "Some warning", DateTime.Now, "Compilation"); buildProjectNode.Node.Children.AddExternalLink("Log File", new Uri(@"\\server\share\logfiledebug.txt")); buildProjectNode.Save(); // Create Releaes|x86 project summary buildProjectNode = detail.Information.AddBuildProjectNode(DateTime.Now, "Release", "MySolution.sln", "x86", "$/project/MySolution.sln", DateTime.Now, "Default"); buildProjectNode.CompilationErrors = 0; buildProjectNode.CompilationWarnings = 0; buildProjectNode.Node.Children.AddExternalLink("Log File", new Uri(@"\\server\share\logfilerelease.txt")); buildProjectNode.Save(); detail.Information.Save(); detail.FinalizeStatus(BuildStatus.Failed); When running this code, it will a create a build that looks like this: As you can see, it created two configurations with error and warning information and a link to a log file. Just like a regular MSBuild would have done. This is very useful when using TFS 2010 Build in heterogeneous environments. It would also be possible to do this when running compilations completely outside TFS build, but then push the results of the into TFS for easy access. You can push all information, including the compilation summary, drop location, test results etc using the API.

    Read the article

  • Reverse subarray of an array with O(1)

    - by Babibu
    I have an idea how to implement sub array reverse with O(1), not including precalculation such as reading the input. I will have many reverse operations, and I can't use the trivial solution of O(N). Edit: To be more clear I want to build data structure behind the array with access layer that knows about reversing requests and inverts the indexing logic as necessary when someone wants to iterate over the array. Edit 2: The data structure will only be used for iterations I been reading this and this and even this questions but they aren't helping. There are 3 cases that need to be taking care of: Regular reverse operation Reverse that including reversed area Intersection between reverse and part of other reversed area in the array Here is my implementation for the first two parts, I will need your help with the last one. This is the rule class: class Rule { public int startingIndex; public int weight; } It is used in my basic data structure City: public class City { Rule rule; private static AtomicInteger _counter = new AtomicInteger(-1); public final int id = _counter.incrementAndGet(); @Override public String toString() { return "" + id; } } This is the main class: public class CitiesList implements Iterable<City>, Iterator<City> { private int position; private int direction = 1; private ArrayList<City> cities; private ArrayDeque<City> citiesQeque = new ArrayDeque<>(); private LinkedList<Rule> rulesQeque = new LinkedList<>(); public void init(ArrayList<City> cities) { this.cities = cities; } public void swap(int index1, int index2){ Rule rule = new Rule(); rule.weight = Math.abs(index2 - index1); cities.get(index1).rule = rule; cities.get(index2 + 1).rule = rule; } @Override public void remove() { throw new IllegalStateException("Not implemented"); } @Override public City next() { City city = cities.get(position); if (citiesQeque.peek() == city){ citiesQeque.pop(); changeDirection(); position += (city.rule.weight + 1) * direction; city = cities.get(position); } if(city.rule != null){ if(city.rule != rulesQeque.peekLast()){ rulesQeque.add(city.rule); position += city.rule.weight * direction; changeDirection(); citiesQeque.push(city); } else{ rulesQeque.removeLast(); position += direction; } } else{ position += direction; } return city; } private void changeDirection() { direction *= -1; } @Override public boolean hasNext() { return position < cities.size(); } @Override public Iterator<City> iterator() { position = 0; return this; } } And here is a sample program: public static void main(String[] args) { ArrayList<City> list = new ArrayList<>(); for(int i = 0 ; i < 20; i++){ list.add(new City()); } CitiesList citiesList = new CitiesList(); citiesList.init(list); for (City city : citiesList) { System.out.print(city + " "); } System.out.println("\n******************"); citiesList.swap(4, 8); for (City city : citiesList) { System.out.print(city + " "); } System.out.println("\n******************"); citiesList.swap(2, 15); for (City city : citiesList) { System.out.print(city + " "); } } How do I handle reverse intersections?

    Read the article

  • User Produtivity Kit - Powerful Packages (Part 1)

    - by [email protected]
    User Productivity Kit provides the ability to create a variety of content types including robust topics on system process and web pages with formatted text and graphics. There are times when you want to enhance content with media types not naively created by User Productivity Kit, media types such as video, custom animations, forms, and more. One method of doing this is to maintain these media files on a web server - separate from the User Productivity Kit player content and link to the files using absolute URLs such as http://myserver/overview.html. While this will get you going, you won't benefit from the content management capabilities of the UPK Developer. Features such as check-in / check-out, history, document properties, folder permissions and more are not available to this external content. Further, if you ever need to move that content to a server with a different name or domain, you'd need to update all your links. UPK version 3.1 introduced a new document type - the package. A package is a group of folders and files that you manage in the Developer library as a single document. These package documents work in the same manner as any other document in the library and you can use all of the collaborative content development features you see with other document types. Packages can be used for anything from single Word documents, PDF files, and graphics to more intricate sets of inter-related files commonly seen with HTML files and their graphics, style sheets, and JavaScript files. The structure of the files and folders within a package will always be preserved so this means that any relative links between files in the package will work. For example, an HTML file containing an image tag with a relative link to a graphic elsewhere in the same package will continue to function properly both when viewed in the Developer and when published to outputs such as the UPK Player. Once you start to use packages, you'll soon discover that there is a lot of existing content that can be re-purposed by placing it into UPK packages. Packages are easily created by selecting File...New...Package. Files can be added in a number of ways including the "Add Files" button, copy & paste from Windows Explorer, and drag & drop. To use one of the files in the package, just create a link to the file in the package you want to target. This is supported throughout the Developer in places such as section & topic concepts, frame links and hyperlinks in web pages. A little more challenging is determining how to structure packages in your library. As I mentioned earlier, a package can contain anything from a single file to dozens of files and folders. So what should you do? You could create a package for each file. You could create one package for all your files. But which one is right? Well, there's not a right and wrong answer to this question. There are advantages and disadvantages to each. The right decision will be influenced by the package files themselves, the structure of the content in the library, the size and working style of the development team, how content is shared between different outlines and more. The first consideration can be assessed the quickest. If the content to be placed in the package is composed of multiple files and those files reference each other, they should be in the same package. There are loads of examples of this type of content. HTML files with graphics and style sheets, HTML files with embedded Flash movies, and Word documents saved as HTML are all examples where the content is composed of multiple files and the files reference each other in some way. Content like this should always be placed in a singe package such that these relative links between the files are preserved and play properly in the UPK Player. In upcoming posts, I'll explain additional considerations.

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • MSTest VS2010 - DeploymentItem copying files to different locations on different machines

    - by Jack
    I have found that DeploymentItem [TestClass(), DeploymentItem(@"TestData\")] is not copying my test data files to the same location when tests are built and run on different machines. The test data files are copied to the "bin\debug" directory in the test project on my machine, but on my friend's machine they are copied to "TestResults\*name_machine YY-MM-DD HH_MM_SS*\Out". The bin\debug directory on my machine can be obtained with the code: string appDirectory = Path.GetDirectoryNameSystem.Reflection.Assembly.GetExecutingAssembly().Location; and the same code will return "TestResults\*name_machine YY-MM-DD HH_MM_SS*\Out" on my friends PC. This however isn't really the problem. The problem is that the test data files I have made have a folder structure, and this folder structure is only maintained on my machine when copied to bin\debug, whereas on my friends machine only the files are added to the "TestResults\*name_machine YY-MM-DD HH_MM_SS*\Out" directory. This means that tests will pass on my machine and fail on his! Is there a way to ensure that DeploymentItem always copys to the bin\debug folder? Or a way to ensure that the folder structure will be retained when DeploymentItem copies the files to the "TestResults\*name_machine YY-MM-DD HH_MM_SS*\Out" folder?

    Read the article

  • Thread-safe data structures

    - by Inso Reiges
    Hello, I have to design a data structure that is to be used in a multi-threaded environment. The basic API is simple: insert element, remove element, retrieve element, check that element exists. The structure's implementation uses implicit locking to guarantee the atomicity of a single API call. After i implemented this it became apparent, that what i really need is atomicity across several API calls. For example if a caller needs to check the existence of an element before trying to insert it he can't do that atomically even if each single API call is atomic: if(!data_structure.exists(element)) { data_structure.insert(element); } The example is somewhat awkward, but the basic point is that we can't trust the result of exists call anymore after we return from atomic context (the generated assembly clearly shows a minor chance of context switch between the two calls). What i currently have in mind to solve this is exposing the lock through the data structure's public API. This way clients will have to explicitly lock things, but at least they won't have to create their own locks. Is there a better commonly-known solution to these kinds of problems? And as long as we're at it, can you advise some good literature on thread-safe design? Thank you.

    Read the article

  • How to control the download url for dotNetFx35setup.exe without using the Visual Studio bootstrapper

    - by tronda
    Previously I've used to Visual Studio 2008 setup.bin to generate a bootstrapper. I had some issues with it which were difficult to resolve and turned to dotNetInstaller. One great thing with the VS 2008 generated bootstrapper, was that I was able to control the download location for the .NET framework. By using the MSBuild task I could specify the componentsLocation: <GenerateBootstrapper ApplicationFile="$(TargetFileName)" ApplicationName="MyApp" ApplicationUrl="http://$(InstallerHost)$(DownloadUrl)" BootstrapperItems="@(BootstrapperFile)" CopyComponents="True" ComponentsLocation="Relative" OutputPath="$(OutputPath)" Path="C:\Program Files\Microsoft SDKs\Windows\v6.0A\Bootstrapper\" /> Here I'm able to use the ComponentsLocation="Relative" and the bootstrapper would download from our own web server - which is what I want. When I no longer have the VS 2008 bootstrapper, I would like to have the same feature. The new boostrapper downloads the dotNetFx35setup.exe from a defined server, but the problem is that this ".NET bootstrapper" connects to Microsoft's servers for downloading the needed packages. Trying to run the following command: dotNetFx35setup.exe /? did not show any options to control the download location. The web server will contain the package structure which the Windows SDK (v6.0A) has within the Bootstrapper\Packages directory. The structure looks like this: Packages DotNetFX DotNetFX30 DotNetFX35 DotNetFx35Client DotNetFx35SP1 ..... When I state a dependency to the .NET Framework 3.5, the DotNetFX35 directory structure gets copied into the bin/Debug directory. I've copied this directory onto the web server and it looks like this: DotNetFX35 dotNetFX20 dotNetFX30 dotNetFX35 x64 netfx35_x64.exe x86 netfx35_x86.exe dotNetMSP dotNetFx35setup.exe The other directories contains mainly MSI, MSP and MSU files. So any pointers on how to control downloading of the .NET framework. Shouldn't I use the dotNetFx35setup.exe file? If not - which should I use?

    Read the article

  • using dojox grid in xpages

    - by Tarun
    how to use dojox datagrid in xpages? If anyone have code snippet please send it to me at [email protected] I am trying with the following code but getting nothing at the output: <xp:this.resources> <xp:dojoModule name="dojox.grid.DataGrid"></xp:dojoModule> <xp:dojoModule name="dojox.grid"></xp:dojoModule> </xp:this.resources> <xp:panel > <xp:scriptBlock id="scriptBlock1"> <xp:this.value><![CDATA[makeGrid = function(){ dojo.require("dijit.form.Button"); dojo.require("dojox.grid.DataGrid"); var subrow1 = [{name: "Product Title"}, {name: "Price"}, {name: "Type"}]; var view = {rows: [ subrow1 ]}; var structure = [ view ]; var data = [ ["Baseball gloves", 12.34, "Sports"], ["Tennis ball", 5.99, "Sports"], ["T-shirt", 12.45, "Clothing"], ["Hat", 12.45, "Clothing"] ]; var productModel = new dojox.grid.data.Table(null, data); productModel.render(); }; XSP.addBeforeLoad(makeGrid);]] <div dojoType="dojox.Grid" autoWidth="true" model="productModel" structure="structure" </xp:panel> Please help !!

    Read the article

  • Singletons, thread safety and structuremap

    - by Ben
    Hi, Currently I have the following class: public class PluginManager { private static bool s_initialized; private static object s_lock = new object(); public static void Initialize() { if (!s_initialized) { lock (s_lock) { if (!s_initialized) { // initialize s_initialized = true; } } } } } The important thing here is that Initialize() should only be executed once whilst the application is running. I thought that I would refactor this into a singleton class since this would be more thread safe?: public sealed class PluginService { static PluginService() { } private static PluginService _instance = new PluginService(); public static PluginService Instance { get { return _instance; } } private bool s_initialized; public void Initialize() { if (!s_initialized) { // initialize s_initialized = true; } } } Question one, is it still necessary to have the lock here (I have removed it) since we will only ever be working on the same instance? Finally, I want to use DI and structure map to initialize my servcices so I have refactored as below: public interface IPluginService { void Initialize(); } public class NewPluginService : IPluginService { private bool s_initialized; public void Initialize() { if (!s_initialized) { // initialize s_initialized = true; } } } And in my registry: ForRequestedType<IPluginService>() .TheDefaultIsConcreteType<NewPluginService>().AsSingletons(); This works as expected (singleton returning true in the following code): var instance1 = ObjectFactory.GetInstance<IPluginService>(); var instance2 = ObjectFactory.GetInstance<IPluginService>(); bool singleton = (instance1 == instance2); So my next question, is the structure map solution as thread safe as the singleton class (second example). The only downside is that this would still allow NewPluginService to be instantiated directly (if not using structure map). Many thanks, Ben

    Read the article

  • converting mysql database to sql server

    - by every_answer_gets_a_point
    i have a mysql database: /* MySQL Data Transfer Source Host: 10.0.0.5 Source Database: jnetdata Target Host: 10.0.0.5 Target Database: jnetdata Date: 5/26/2009 12:27:33 PM */ SET FOREIGN_KEY_CHECKS=0; -- ---------------------------- -- Table structure for chavrusas -- ---------------------------- CREATE TABLE `chavrusas` ( `id` int(11) NOT NULL auto_increment, `date_created` datetime default NULL, `luser_id` int(11) default NULL, `ruser_id` int(11) default NULL, `luser_type` varchar(50) default NULL, `ruser_type` varchar(50) default NULL, `SessionDay` varchar(250) default NULL, `SessionTime` datetime default NULL, `WeeklyReminder` tinyint(1) NOT NULL default '0', `reminder_phone` tinyint(1) NOT NULL default '0', `calling_card` varchar(50) default NULL, `active` tinyint(1) NOT NULL default '0', `notes` mediumtext, `ended` tinyint(1) NOT NULL default '0', `end_date` datetime default NULL, `initiated_by_student` tinyint(1) NOT NULL default '0', `initiated_by_volunteer` tinyint(1) NOT NULL default '0', `student_general_reason` varchar(50) default NULL, `volunteer_general_reason` varchar(50) default NULL, `student_reason` varchar(250) default NULL, `volunteer_reason` varchar(250) default NULL, `student_nli` tinyint(1) NOT NULL default '0', `volunteer_nli` tinyint(1) NOT NULL default '0', `jnet_initiated` tinyint(1) default '0', `belongs_to` varchar(50) default NULL, PRIMARY KEY (`id`) ) ENGINE=MyISAM AUTO_INCREMENT=5913 DEFAULT CHARSET=latin1; -- ---------------------------- -- Table structure for tbluseravailability -- ---------------------------- CREATE TABLE `tbluseravailability` ( `availability_id` int(11) NOT NULL auto_increment, `user_id` int(11) NOT NULL, `weekday_id` int(11) NOT NULL, `timeslot_id` int(11) NOT NULL, PRIMARY KEY (`availability_id`) ) ENGINE=MyISAM AUTO_INCREMENT=10865 DEFAULT CHARSET=latin1; -- ---------------------------- -- Table structure for tblusers -- ---------------------------- CREATE TABLE `tblusers` ( `id` int(11) NOT NULL auto_increment, `password` varchar(50) default NULL, `title` varchar(255) default NULL, `first` varchar(255) default NULL, `last` varchar(255) default NULL, `gender` varchar(255) default NULL, `address` varchar(255) default NULL, `address_2` varchar(255) default NULL, `city` varchar(255) default NULL, `state` varchar(255) default NULL, `postcode` varchar(255) default NULL, `country` varchar(255) default NULL, `email` varchar(255) default NULL, `emailnotes` varchar(255) default NULL, `Home_Phone` varchar(255) default NULL, `Office_Phone` varchar(255) default NULL, `Cell_Phone` varchar(255) default NULL, `Contact_Preference` varchar(255) default NULL, `Birthdate` datetime default NULL, `Age` varchar(255 and it goes on for about 10mb i need to convert it to ms sql, how do i do it?

    Read the article

  • Mercurial Remote Subrepos

    - by Travis G
    I'm trying to set up my Mercurial repository system to work with multiple subrepos. I've basically followed these instructions to set up the client repo with Mercurial client v1.5 and I'm using HgWebDir to host my multiple projects. I have an HgWebDir with the following structure: http://myserver/hg fooproj mylib where mylib is some collection of common template library to be consumed by fooproj. The structure of fooproj looks like this: fooproj doc/ src/ .hgignore .hgsub .hgsubstate And .hgsub looks like: src/mylib = http://myserver/hg/mylib This should work, per my interpretation of the documentation: The first 'nested' is the path in our working dir, and the second is a URL or path to pull from. So, let's say I pull down fooproj to my home folder with: ~$ hg clone http://myserver/hg/fooproj foo Which pulls down the directory structure properly and adds the folder ~/foo/src/mylib which is a local Mercurial repository. This is where the problems begin: the mylib folder is empty aside from the items in .hg. With 2 seconds of investigation, one can see the src/mylib/.hg/hgrc is: [paths] default = http://myserver/hg/fooproj/src/mylib which is completely wrong (attempting a pull of that repo will give a 404 because, well, that URL doesn't make any sense). Logically, the default value should be what I specified in .hgsub or it would get the files from the repository in some way. None of the Mercurial commands return error codes (aside from a pull from within src/mylib), so it clearly believes that it is behaving properly (and just might be), although this does not seem logical at all. What am I doing wrong?

    Read the article

  • simple document server built over Apache HTTP server

    - by abhinav
    Hi, I want to build a simple document server. The requirement for now is : provide a hierarchical directory structure for placing documents (like pdfs, doc files) that is accessible through a browser, and provide the facility to search for documents by name and then be able to download them from server. Right now, placing documents can be done manually (directly place the files into some designated directory). I can do the hierarchical structure part of the problem by adding some configs to Apache's httpd.conf file. Basically I create a root directory for documents and then give an alias to this directory in httpd.conf file. That way, I can browse the directory structure in my browser and also download files placed there. I can provide more detail on this if needed. However, it is the searching documents by name part that I am not able to get to a clear solution yet. I have a few ideas like integrating Lucene with Apache server, or maybe using CouchDb, but I am not very sure of all the details to solve this problem. Could anyone suggest some clear approach as to how to solve this part ?

    Read the article

  • Odd difference between Python 2.5 and Python 2.6 on MacOS 10.6 using ctypes and libproc proc_pidinfo

    - by cemasoniv
    I'm trying to determine the current working directory of a process given its PID. The command-line utility lsof does something similar. Here's the source to the python script: import ctypes from ctypes import util import sys PROC_PIDVNODEPATHINFO = 9 proc = ctypes.cdll.LoadLibrary(util.find_library("libproc")) print(proc.proc_pidinfo) class vnode_info(ctypes.Structure): _fields_ = [('data', ctypes.c_ubyte * 152)] class vnode_info_path(ctypes.Structure): _fields_ = [('vip_vi', vnode_info), ('vip_path', ctypes.c_char * 1024)] class proc_vnodepathinfo(ctypes.Structure): _fields_ = [('pvi_cdir', vnode_info_path), ('pvi_rdir', vnode_info_path)] inst = proc_vnodepathinfo() pid = int(sys.argv[1]) ret = proc.proc_pidinfo( pid, PROC_PIDVNODEPATHINFO, 0, ctypes.byref(inst), ctypes.sizeof(inst) ) print(ret, inst.pvi_cdir.vip_path) However, even though this script behaves as expected on Python 2.6, it does not work in Python 2.5: host:dir user$ sudo /usr/bin/python2.6 script.py 2698 <_FuncPtr object at 0x100419ae0> (2352, '/') host:dir user$ sudo /usr/bin/python2.5 script.py 2698 <_FuncPtr object at 0x19fdc0> (0, '') (PID 2698 is "Activity Monitor.app"). Note the different return values. Since this program strongly based on ctypes, I can't imagine any difference in Python itself that would cause this. The same behavior (as Python 2.5) occurs with my self-built Python 3.2. I'm not sure what versioning information I can give to help track down the weirdness -- or even come up with a solution for 2.5 -- but here's some stuff: host:dir user$ otool -L /usr/bin/python2.6 /usr/bin/python2.6: /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 125.2.0) host:dir user$ otool -L /usr/bin/python2.5 /usr/bin/python2.5 (architecture i386): /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 125.2.0) /usr/bin/python2.5 (architecture ppc7400): /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 125.2.0) host:dir user$ uname -a Darwin host.local 10.8.0 Darwin Kernel Version 10.8.0: Tue Jun 7 16:33:36 PDT 2011; root:xnu-1504.15.3~1/RELEASE_I386 i386 Thanks to anyone that has a clue about what's going on here:)

    Read the article

  • What is the proper query to get all the children in a tree?

    - by Nathan Adams
    Lets say I have the following MySQL structure: CREATE TABLE `domains` ( `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT, `domain` CHAR(50) NOT NULL, `parent` INT(11) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=MYISAM AUTO_INCREMENT=10 DEFAULT CHARSET=latin1 insert into `domains`(`id`,`domain`,`parent`) values (1,'.com',0); insert into `domains`(`id`,`domain`,`parent`) values (2,'example.com',1); insert into `domains`(`id`,`domain`,`parent`) values (3,'sub1.example.com',2); insert into `domains`(`id`,`domain`,`parent`) values (4,'sub2.example.com',2); insert into `domains`(`id`,`domain`,`parent`) values (5,'s1.sub1.example.com',3); insert into `domains`(`id`,`domain`,`parent`) values (6,'s2.sub1.example.com',3); insert into `domains`(`id`,`domain`,`parent`) values (7,'sx1.s1.sub1.example.com',5); insert into `domains`(`id`,`domain`,`parent`) values (8,'sx2.s2.sub1.example.com',6); insert into `domains`(`id`,`domain`,`parent`) values (9,'x.sub2.example.com',4); In my mind that is enough to emulate a simple tree structure: .com | example / \ sub1 sub2 ect My problem is that give sub1.example.com I want to know all the children of sub1.example.com without using multiple queries in my code. I have tried joining the table to itself and tried to use subqueries, I can't think of anything that will reveal all the children. At work we are using MPTT to keep in hierarchal order a list of domains/subdomains however, I feel that there is an easier way to do it. I did some digging and someone did something similar but they required the use of a function in MySQL. I don't think for something simple like this we would need a whole function. Maybe I am just dumb and not seeing some sort of obvious solution. Also, feel free to alter the structure.

    Read the article

  • How do I create a multi-level TreeView using F#?

    - by TwentyMiles
    I would like to display a directory structure using Gtk# widgets through F#, but I'm having a hard time figuring out how to translate TreeViews into F#. Say I had a directory structure that looks like this: Directory1 SubDirectory1 SubDirectory2 SubSubDirectory1 SubDirectory3 Directory2 How would I show this tree structure with Gtk# widgets using F#? EDIT: gradbot's was the answer I was hoping for with a couple of exceptions. If you use ListStore, you loose the ability to expand levels, if you instead use : let musicListStore = new Gtk.TreeStore([|typeof<String>; typeof<String>|]) you get a layout with expandable levels. Doing this, however, breaks the calls to AppendValues so you have to add some clues for the compiler to figure out which overloaded method to use: musicListStore.AppendValues (iter, [|"Fannypack" ; "Nu Nu (Yeah Yeah) (double j and haze radio edit)"|]) Note that the columns are explicitly passed as an array. Finally, you can nest levels even further by using the ListIter returned by Append Values let iter = musicListStore.AppendValues ("Dance") let subiter = musicListStore.AppendValues (iter, [|"Fannypack" ; "Nu Nu (Yeah Yeah) (double j and haze radio edit)"|]) musicListStore.AppendValues (subiter, [|"Some Dude"; "Some Song"|]) |> ignore

    Read the article

< Previous Page | 59 60 61 62 63 64 65 66 67 68 69 70  | Next Page >