Search Results

Search found 38289 results on 1532 pages for 'text encoding'.

Page 63/1532 | < Previous Page | 59 60 61 62 63 64 65 66 67 68 69 70  | Next Page >

  • uninitialized constant Encoding rake db:migrate

    - by Denis
    Hi, My RoR App use rails 2.1.2 When I run rake db:migrate --trace I get the following error, Any idea? ** Invoke db:migrate (first_time) ** Invoke environment (first_time) ** Execute environment ** Execute db:migrate rake aborted! uninitialized constant Encoding /Users/denisjacquemin/Documents/code/projects/BmfOnRails/vendor/rails/activesupport/lib/active_support/dependencies.rb:278:in `load_missing_constant' /Users/denisjacquemin/Documents/code/projects/BmfOnRails/vendor/rails/activesupport/lib/active_support/dependencies.rb:467:in `const_missing' /Users/denisjacquemin/Documents/code/projects/BmfOnRails/vendor/rails/activesupport/lib/active_support/dependencies.rb:479:in `const_missing' /Library/Ruby/Gems/1.8/gems/sqlite3-0.0.8/lib/sqlite3/encoding.rb:9:in `find' /Library/Ruby/Gems/1.8/gems/sqlite3-0.0.8/lib/sqlite3/database.rb:66:in `initialize' /Users/denisjacquemin/Documents/code/projects/BmfOnRails/vendor/rails/activerecord/lib/active_record/connection_adapters/sqlite3_adapter.rb:13:in `new' /Users/denisjacquemin/Documents/code/projects/BmfOnRails/vendor/rails/activerecord/lib/active_record/connection_adapters/sqlite3_adapter.rb:13:in `sqlite3_connection' /Users/denisjacquemin/Documents/code/projects/BmfOnRails/vendor/rails/activerecord/lib/active_record/connection_adapters/abstract/connection_specification.rb:292:in `send' /Users/denisjacquemin/Documents/code/projects/BmfOnRails/vendor/rails/activerecord/lib/active_record/connection_adapters/abstract/connection_specification.rb:292:in `connection=' /Users/denisjacquemin/Documents/code/projects/BmfOnRails/vendor/rails/activerecord/lib/active_record/connection_adapters/abstract/connection_specification.rb:260:in `retrieve_connection' /Users/denisjacquemin/Documents/code/projects/BmfOnRails/vendor/rails/activerecord/lib/active_record/connection_adapters/abstract/connection_specification.rb:78:in `connection' /Users/denisjacquemin/Documents/code/projects/BmfOnRails/vendor/rails/activerecord/lib/active_record/migration.rb:408:in `initialize' /Users/denisjacquemin/Documents/code/projects/BmfOnRails/vendor/rails/activerecord/lib/active_record/migration.rb:373:in `new' /Users/denisjacquemin/Documents/code/projects/BmfOnRails/vendor/rails/activerecord/lib/active_record/migration.rb:373:in `up' /Users/denisjacquemin/Documents/code/projects/BmfOnRails/vendor/rails/activerecord/lib/active_record/migration.rb:356:in `migrate' /Users/denisjacquemin/Documents/code/projects/BmfOnRails/vendor/rails/railties/lib/tasks/databases.rake:99 /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/lib/rake.rb:636:in `call' /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/lib/rake.rb:636:in `execute' /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/lib/rake.rb:631:in `each' /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/lib/rake.rb:631:in `execute' /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/lib/rake.rb:597:in `invoke_with_call_chain' /System/Library/Frameworks/Ruby.framework/Versions/1.8/usr/lib/ruby/1.8/monitor.rb:242:in `synchronize' /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/lib/rake.rb:590:in `invoke_with_call_chain' /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/lib/rake.rb:583:in `invoke' /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/lib/rake.rb:2051:in `invoke_task' /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/lib/rake.rb:2029:in `top_level' /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/lib/rake.rb:2029:in `each' /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/lib/rake.rb:2029:in `top_level' /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/lib/rake.rb:2068:in `standard_exception_handling' /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/lib/rake.rb:2023:in `top_level' /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/lib/rake.rb:2001:in `run' /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/lib/rake.rb:2068:in `standard_exception_handling' /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/lib/rake.rb:1998:in `run' /Users/denisjacquemin/.gem/ruby/1.8/gems/rake-0.8.7/bin/rake:31 /usr/bin/rake:19:in `load' /usr/bin/rake:19 My database.yml development: adapter: sqlite3 database: db/development.sqlite3 pool: 5 timeout: 5000 thanks

    Read the article

  • PHP detecting filesystem encoding

    - by Evert
    Hi guys, I need to save files with non-latin filenames on a filesytem, using PHP. I want to make this work cross-platform. How do I know what encoding I can use to write the file? I understand many modern filesystems are UTF-8 based (is this correct?), but I doubt Windows XP is (for instance). So, is there a robust detection mechanism? Evert

    Read the article

  • Change encoding to UTF-8 recursively on Windows?

    - by Pekka
    Does anybody know a tool, preferably for the Explorer context menu, to recursively change the encoding of files in a project from / to UTF-8 and other encodings? Freeware or not too expensive would be great. Edit: Thanks for the answers, +1 for all of them as they are all fine but I am a lazy bastard sometimes, and would really like to be able to just right click a folder and say "convert all .php files to UTF-8". :) Further suggestions are appreciated.

    Read the article

  • Encoding in SQL to CSV

    - by Z77
    When do I execute query COPY TO ... CSV, I create CSV file. BUt when open it column with names in excel that should be with national characters are not as it should be. So my question is, If it is possible within a sql query to change this encoding to utf8? Or something else? Because I want that new created CSV file to be as final product for user on web. I hope someone understood what I want:)

    Read the article

  • ASP.NET + QueryString Encoding Problem

    - by ParagM
    I'm passing query string parameter to .aspx page with 'Ñ' character in value. But Request.QueryString returns some other box '[]' character in return. I think this request encoding issue. and I do not want to use that HttpUtility.UrlDecode and HttpUtility.UrlEncode methods. Does anyone know how to solve this?

    Read the article

  • Can't change text color in Microsoft Word 2010

    - by Wesley
    I have Microsoft Office 2010 32-bit running on Windows 7 32-bit. When text is highlighted and a color is selected from the mini-toolbar or the ribbon, the text does not change color. If I change the color for multiple words, and select a different color for each word, the toolbar and ribbon will reflect each of the different colors that I chose, however it is not displayed in the document. So it appears that Word is aware of the text color and not as if it is simply not applying the change. What may be causing this inability to view text colors and how might I fix it? My only troubleshooting attempt so far has been to perform a repair installation of Office. EDIT 1 I created a document, typed a word, selected it and changed the color. I then saved the document as HTML. The text did not change color. This is the HTML in the document: <html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"> <head> <meta http-equiv=Content-Type content="text/html; charset=windows-1252"> <meta name=ProgId content=Word.Document> <meta name=Generator content="Microsoft Word 14"> <meta name=Originator content="Microsoft Word 14"> <link rel=File-List href="Document_1_files/filelist.xml"> <!--[if gte mso 9]><xml> <o:DocumentProperties> <o:Author>Name</o:Author> <o:LastAuthor>Name</o:LastAuthor> <o:Revision>2</o:Revision> <o:TotalTime>0</o:TotalTime> <o:Created>2012-01-05T21:43:00Z</o:Created> <o:LastSaved>2012-01-05T21:43:00Z</o:LastSaved> <o:Pages>1</o:Pages> <o:Characters>5</o:Characters> <o:Company>Microsoft</o:Company> <o:Lines>1</o:Lines> <o:Paragraphs>1</o:Paragraphs> <o:CharactersWithSpaces>5</o:CharactersWithSpaces> <o:Version>14.00</o:Version> </o:DocumentProperties> <o:OfficeDocumentSettings> <o:AllowPNG/> </o:OfficeDocumentSettings> </xml><![endif]--> <link rel=themeData href="Document_1_files/themedata.thmx"> <link rel=colorSchemeMapping href="Document_1_files/colorschememapping.xml"> <!--[if gte mso 9]><xml> <w:WordDocument> <w:SpellingState>Clean</w:SpellingState> <w:GrammarState>Clean</w:GrammarState> <w:TrackMoves>false</w:TrackMoves> <w:TrackFormatting/> <w:PunctuationKerning/> <w:ValidateAgainstSchemas/> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:DoNotPromoteQF/> <w:LidThemeOther>EN-US</w:LidThemeOther> <w:LidThemeAsian>X-NONE</w:LidThemeAsian> <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript> <w:Compatibility> <w:BreakWrappedTables/> <w:SnapToGridInCell/> <w:WrapTextWithPunct/> <w:UseAsianBreakRules/> <w:DontGrowAutofit/> <w:SplitPgBreakAndParaMark/> <w:EnableOpenTypeKerning/> <w:DontFlipMirrorIndents/> <w:OverrideTableStyleHps/> </w:Compatibility> <m:mathPr> <m:mathFont m:val="Cambria Math"/> <m:brkBin m:val="before"/> <m:brkBinSub m:val="&#45;-"/> <m:smallFrac m:val="off"/> <m:dispDef/> <m:lMargin m:val="0"/> <m:rMargin m:val="0"/> <m:defJc m:val="centerGroup"/> <m:wrapIndent m:val="1440"/> <m:intLim m:val="subSup"/> <m:naryLim m:val="undOvr"/> </m:mathPr></w:WordDocument> </xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true" DefSemiHidden="true" DefQFormat="false" DefPriority="99" LatentStyleCount="267"> <w:LsdException Locked="false" Priority="0" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Normal"/> <w:LsdException Locked="false" Priority="9" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="heading 1"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9"/> <w:LsdException Locked="false" Priority="39" Name="toc 1"/> <w:LsdException Locked="false" Priority="39" Name="toc 2"/> <w:LsdException Locked="false" Priority="39" Name="toc 3"/> <w:LsdException Locked="false" Priority="39" Name="toc 4"/> <w:LsdException Locked="false" Priority="39" Name="toc 5"/> <w:LsdException Locked="false" Priority="39" Name="toc 6"/> <w:LsdException Locked="false" Priority="39" Name="toc 7"/> <w:LsdException Locked="false" Priority="39" Name="toc 8"/> <w:LsdException Locked="false" Priority="39" Name="toc 9"/> <w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption"/> <w:LsdException Locked="false" Priority="10" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Title"/> <w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font"/> <w:LsdException Locked="false" Priority="11" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/> <w:LsdException Locked="false" Priority="22" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Strong"/> <w:LsdException Locked="false" Priority="20" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/> <w:LsdException Locked="false" Priority="59" SemiHidden="false" UnhideWhenUsed="false" Name="Table Grid"/> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text"/> <w:LsdException Locked="false" Priority="1" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 1"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 1"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 1"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision"/> <w:LsdException Locked="false" Priority="34" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/> <w:LsdException Locked="false" Priority="29" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Quote"/> <w:LsdException Locked="false" Priority="30" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 1"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 1"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 2"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 2"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 2"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 2"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 2"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 3"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 3"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 3"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 3"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 3"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 4"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 4"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 4"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 4"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 4"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 5"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 5"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 5"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 5"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 5"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 6"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 6"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 6"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 6"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 6"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/> <w:LsdException Locked="false" Priority="19" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/> <w:LsdException Locked="false" Priority="21" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/> <w:LsdException Locked="false" Priority="31" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/> <w:LsdException Locked="false" Priority="32" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/> <w:LsdException Locked="false" Priority="33" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Book Title"/> <w:LsdException Locked="false" Priority="37" Name="Bibliography"/> <w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading"/> </w:LatentStyles> </xml><![endif]--> <style> <!-- /* Font Definitions */ @font-face {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4; mso-font-charset:0; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:-520092929 1073786111 9 0 415 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin-top:0in; margin-right:0in; margin-bottom:10.0pt; margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} span.GramE {mso-style-name:""; mso-gram-e:yes;} .MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} .MsoPapDefault {mso-style-type:export-only; margin-bottom:10.0pt; line-height:115%;} @page WordSection1 {size:8.5in 11.0in; margin:1.0in 1.0in 1.0in 1.0in; mso-header-margin:.5in; mso-footer-margin:.5in; mso-paper-source:0;} div.WordSection1 {page:WordSection1;} --> </style> <!--[if gte mso 10]> <style> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} </style> <![endif]--><!--[if gte mso 9]><xml> <o:shapedefaults v:ext="edit" spidmax="1026"/> </xml><![endif]--><!--[if gte mso 9]><xml> <o:shapelayout v:ext="edit"> <o:idmap v:ext="edit" data="1"/> </o:shapelayout></xml><![endif]--> </head> <body lang=EN-US style='tab-interval:.5in'> <div class=WordSection1> <p class=MsoNormal><o:p>&nbsp;</o:p></p> <p class=MsoNormal><span class=GramE><span style='color:red'>blah</span></span><span style='color:red'><o:p></o:p></span></p> </div> </body> </html> EDIT 2 I recorded a macro and did the following: Typed a word Selected the word Changed the color. Oddly, I had some strange issues while the macro was recorded. I could not select text with my cursor. I had to select the text with control a and then apply the color change. I then couldn't deselect the selected text. Nonetheless, the text showed that it had a different color in the toolbar, but the color did not display in the document. Here's the macro: Sub Change_Text_Color() ' ' Change_Text_Color Macro ' ' Selection.TypeText Text:="Test Text" Selection.WholeStory Selection.WholeStory End Sub EDIT 3 I opened WordPad and created some text and was able to successfully change the color. If I copy and paste the colored text into a Word 2010 document, the color is lost. However, if you place the I-beam in the text and then look at the color selection drop-down menu on the ribbon or mini-toolbar, you can see that the proper color that the text should be in is highlighted. Edit 4 I uninstalled the entire Office 2010 Suite, rebooted and then reinstalled the suite. No change in behavior. Edit 5 Text cannot be colored in Excel either.

    Read the article

  • Full-text indexing? You must read this

    - by Kyle Hatlestad
    For those of you who may have missed it, Peter Flies, Principal Technical Support Engineer for WebCenter Content, gave an excellent webcast on database searching and indexing in WebCenter Content.  It's available for replay along with a download of the slidedeck.  Look for the one titled 'WebCenter Content: Database Searching and Indexing'. One of the items he led with...and concluded with...was a recommendation on optimizing your search collection if you are using full-text searching with the Oracle database.  This can greatly improve your search performance.  And this would apply to both Oracle Text Search and DATABASE.FULLTEXT search methods.  Peter describes how a collection can become fragmented over time as content is added, updated, and deleted.  Just like you should defragment your hard drive from time to time to get your files placed on the disk in the most optimal way, you should do the same for the search collection. And optimizing the collection is just a simple procedure call that can be scheduled to be run automatically.   [Read more] 

    Read the article

  • Full-text indexing? You must read this

    - by Kyle Hatlestad
    For those of you who may have missed it, Peter Flies, Principal Technical Support Engineer for WebCenter Content, gave an excellent webcast on database searching and indexing in WebCenter Content.  It's available for replay along with a download of the slidedeck.  Look for the one titled 'WebCenter Content: Database Searching and Indexing'. One of the items he led with...and concluded with...was a recommendation on optimizing your search collection if you are using full-text searching with the Oracle database.  This can greatly improve your search performance.  And this would apply to both Oracle Text Search and DATABASE.FULLTEXT search methods.  Peter describes how a collection can become fragmented over time as content is added, updated, and deleted.  Just like you should defragment your hard drive from time to time to get your files placed on the disk in the most optimal way, you should do the same for the search collection. And optimizing the collection is just a simple procedure call that can be scheduled to be run automatically.   beginctx_ddl.optimize_index('FT_IDCTEXT1','FULL', parallel_degree =>'1');end; When I checked my own test instance, I found my collection had a row fragmentation of about 80% After running the optimization procedure, it went down to 0% The knowledgebase article On Index Fragmentation and Optimization When Using OracleTextSearch or DATABASE.FULLTEXT [ID 1087777.1] goes into detail on how to check your current index fragmentation, how to run the procedure, and then how to schedule the procedure to run automatically.  While the article mentions scheduling the job weekly, Peter says he now is recommending this be run daily, especially on more active systems. And just as a reminder, be sure to involve your DBA with your WebCenter Content implementation as you go to production and over time.  We recently had a customer complain of slow performance of the application when it was discovered the database was starving for memory.  So it's always helpful to keep a watchful eye on your database.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Installing e text editor

    - by kristian nissen
    I am trying to get e-text editor to run. I read http://www.e-texteditor.com/forum/viewtopic.php?p=14953#14953 and Compile e-text editor on Linux as well. But on my 10.04 Lucid it fails at the following step: ./build_externals_linux.sh debug with the following error messages: Building debug binaries Building 32-bit binaries Going to place output in /opt/etexteditor/external/out.debug ./build_externals_linux.sh: line 41: pushd: bakefile: No such file or directory ./build_externals_linux.sh: line 42: ./configure: No such file or directory Cannot compile bakefile ./build_externals_linux.sh: line 46: popd: directory stack empty ./build_externals_linux.sh: line 49: pushd: metakit: No such file or directory ./build_externals_linux.sh: line 50: cd: builds: No such file or directory Cannot compile MetaKit ./build_externals_linux.sh: line 56: popd: directory stack empty ./build_externals_linux.sh: line 59: pushd: pcre: No such file or directory ./build_externals_linux.sh: line 60: ./configure: No such file or directory Cannot compile pcre ./build_externals_linux.sh: line 66: popd: directory stack empty ./build_externals_linux.sh: line 69: pushd: tinyxml: No such file or directory make: *** No rule to make target `clean'. Stop. cannot compile TinyXML ./build_externals_linux.sh: line 77: popd: directory stack empty ./build_externals_linux.sh: line 80: pushd: libtommath: No such file or directory make: *** No rule to make target `clean'. Stop. Cannot compile LTM ./build_externals_linux.sh: line 85: popd: directory stack empty ./build_externals_linux.sh: line 88: pushd: libtomcrypt: No such file or directory make: *** No rule to make target `clean'. Stop. Cannot compile LTC ./build_externals_linux.sh: line 93: popd: directory stack empty ./build_externals_linux.sh: line 96: pushd: wxwidgets: No such file or directory ./build_externals_linux.sh: line 97: ./configure: No such file or directory Cannot compile wxWidgets ./build_externals_linux.sh: line 104: popd: directory stack empty ./build_externals_linux.sh: line 107: pushd: webkit: No such file or directory make: *** No rule to make target `clean'. Stop. ./build_externals_linux.sh: line 109: ./WebKitTools/Scripts/build-webkit: No such file or directory Cannot compile WebKit ./build_externals_linux.sh: line 113: popd: directory stack empty what am I missing?

    Read the article

  • A New Native Silverlight 4 Rich Text Editor Coming Up

    The eagerly awaited release of Silverlight 4.0 is now a fact and we have great news to share with you. Here at Telerik we are going to have a new addition to our Silverlight suite a brand new native Silverlight 4.0 rich text box. RadRichTextBox offers MS Word-like text editing and formatting capabilities which come with unmatched performance, paged and flow layout. The new control utilizes UI Virtualization and Recycling, easy to use API for accessing/modifying document and layout structure, and more. A CTP of RadRichTextBox is going to be released with the upcoming RadControls for Silverlight 2010.Q1 SP1. The official version is expected to be part of the Q2 2010 release. To illustrate better some of the new features lets see a short example of the document model in pure XAML: As we said above, the structure of the document is like the documents in WPF. In the ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Problem manipulating text using grep

    - by moata_u
    I want to search for a line that contains log4j and take 7 lines before and 3 lines after the match. grep -B7 -A3 "log4j" web.xml After that I want to add comment tags before this paragraph and after it. <!-- paragraph that i found by grep --> I wrote this script bellow: search=`find . -name 'web.xml'` text=`grep -B7 -A3 "log4j" $search` sed -i "/$text/c $newparagraph" $search It's not working. Is there any way to just add comment symbol not replace the paragraph? What I want to the script to do: search for the paragraph append append -- at the end Edit: This is the paragraph that am trying manipulate : <context-param> <param-name>log4jConfigLocation</param-name> <param-value>/WEB-INF/classes/log4j.properties</param-value> </context-param> <listener> <listenerclass> org.springframework.web.util.Log4jConfigListener </listener-class> </listener> This paragraph is part of many paragraphs! I want make it like this: <!-- <context-param> <param-name>log4jConfigLocation</param-name> <param-value>/WEB-INF/classes/log4j.properties</param-value> </context-param> <listener> <listenerclass> org.springframework.web.util.Log4jConfigListener </listener-class> </listener> -->

    Read the article

  • No text in working indicator-messages after enabling different icons depending on the status

    - by user106750
    My indicator-messages has some problems. As you can see in the image, there appears no text. The indicator is working correctly, if there is some income, a number will appear in its proper place or I will be able to see the minutes passed after I got an email, but still no information. As you can see in the picture, I changed the envelope icon for the status one. I configured it as is indicated in http://www.omgubuntu.co.uk/2012/08/ubuntu-add-new-message-indicator-icons, with the indicator changing depending on the status. But I modified it so I see the bubble. The bubble gets the arrow when I'm absent, for example, or an "X" of I'm disconnected, and also turns blue if there an income. I believe the problem is related with this new indicator. The first days, it was working fine, but then the text dissapeared. I've tried uninstalling and reinstalling the packet, with no success. I'm using ubuntu 12.10 64bits with Unity. Someone has an idea how to fix this? I would prefer conserving the characteristic of having different icons. Thanks a lot!!! Image here: http://i.stack.imgur.com/Ucgi4.png

    Read the article

  • Using Java PDFBox library to write Russian PDF

    - by Brad
    I am using a Java library called PDFBox trying to write text to a PDF. It works perfect for English text, but when i tried to write Russian text inside the PDF the letters appeared so strange. It seems the problem is in the font used, but i am not so sure about that, so i hope if anyone could guide me through this. Here is the important code lines : PDTrueTypeFont font = PDTrueTypeFont.loadTTF( pdfFile, new File( "fonts/VREMACCI.TTF" ) ); // Windows Russian font imported to write the Russian text. font.setEncoding( new WinAnsiEncoding() ); // Define the Encoding used in writing. // Some code here to open the PDF & define a new page. contentStream.drawString( "??????? ????????????" ); // Write the Russian text. The WinAnsiEncoding source code is : Click here --------------------- Edit on 18 November 2009 After some investigation, i am now sure it is an Encoding problem, this could be solved by defining my own Encoding using the helpful PDFBox class called DictionaryEncoding. I am not sure how to use it, but here is what i have tried until now : COSDictionary cosDic = new COSDictionary(); cosDic.setString( COSName.getPDFName("Ercyrillic"), "0420 " ); // Russian letter. font.setEncoding( new DictionaryEncoding( cosDic ) ); This does not work, as it seems i am filling the dictionary in a wrong way, when i write a PDF page using this it appears blank. The DictionaryEncoding source code is : Click here Thanks . . .

    Read the article

  • Can I convert an ASCII MD5 hashed password into a Unicode MD5 hashed password?

    - by Jimmy Moo Moo
    Hello, I'm looking for help to convert an ASCII MD5 hashed password into a Unicode MD5 hashed password? For example, I'll use the string "password" . When it's converted to an ascii byte array, I get a base64 encoded hash of X03MO1qnZdYdgyfeuILPmQ== When it's converted into a unicode byte array, I get a base64 encoded hash of sIHb6F4ew//D1OfQInQAzQ== All my passwords are stored in an md5 hash that was applied to an ascii byte array, but I'm trying to migrate my application's user data to a system that stores password in an md5 hash that is applied a unicode byte array. In case it's not clear, with the following C#code: var passwordBytes = Encoding.ASCII.GetBytes("password"); var hashAlgorithm = HashAlgorithm.Create("MD5"); var hashBytes = hashAlgorithm.ComputeHash(passwordBytes); My current system uses this, but the system I'm moving to has a diff first time. It usese Encoding.Unicode.GetBytes. Does anybody know how I can convert my passwords? From X03MO1qnZdYdgyfeuILPmQ== into sIHb6F4ew//D1OfQInQAzQ== I'm guessing the answer is that I can't.. the encoding is being done before the hashing, but I thought I'd inquire the bright minds of stackoverflow and see if anybody has a way.

    Read the article

  • Using Java PDFBox library to write Russian PDF

    - by Brad
    Hello , I am using a Java library called PDFBox trying to write text to a PDF. It works perfect for English text, but when i tried to write Russian text inside the PDF the letters appeared so strange. It seems the problem is in the font used, but i am not so sure about that, so i hope if anyone could guide me through this. Here is the important code lines : PDTrueTypeFont font = PDTrueTypeFont.loadTTF( pdfFile, new File( "fonts/VREMACCI.TTF" ) ); // Windows Russian font imported to write the Russian text. font.setEncoding( new WinAnsiEncoding() ); // Define the Encoding used in writing. // Some code here to open the PDF & define a new page. contentStream.drawString( "??????? ????????????" ); // Write the Russian text. The WinAnsiEncoding source code is : Click here --------------------- Edit on 18 November 2009 After some investigation, i am now sure it is an Encoding problem, this could be solved by defining my own Encoding using the helpful PDFBox class called DictionaryEncoding. I am not sure how to use it, but here is what i have tried until now : COSDictionary cosDic = new COSDictionary(); cosDic.setString( COSName.getPDFName("Ercyrillic"), "0420 " ); // Russian letter. font.setEncoding( new DictionaryEncoding( cosDic ) ); This does not work, as it seems i am filling the dictionary in a wrong way, when i write a PDF page using this it appears blank. The DictionaryEncoding source code is : Click here Thanks . . .

    Read the article

  • Which coding system should I use in Emacs?

    - by Vivi
    I am a newbie in Emacs, and I am not a programmer. I have just tried to save a simple *.rtf file with some websites and tips on how to use emacs and I got These default coding systems were tried to encode text in the buffer `notes.rtf': (iso-latin-1-dos (315 . 8216) (338 . 8217) (1514 . 8220) (1525 . 8221)) However, each of them encountered characters it couldn't encode: iso-latin-1-dos cannot encode these: ‘ ’ “ ” .... etc, etc, etc Now what is that? Now it is asking me to chose an encoding system Select coding system (default chinese-iso-8bit): I don't even know what an encoding system is, and I would rather not have to choose one every time I try and save a document... Is there any way I can set an encoding system that will work with all my files so I don't have to worry about this? I saw another question and asnswer elsewhere in this website (see it here) and it seems that if I type the following (defun set-coding-system () (setq buffer-file-coding-system 'utf-8-unix)) (add-hook 'find-file-hook 'set-coding-system) then I can have Emacs do this, but I am not sure... Can someone confirm this to me? Thanks so much :)

    Read the article

  • Compressibility Example

    - by user285726
    From my algorithms textbook: The annual county horse race is bringing in three thoroughbreds who have never competed against one another. Excited, you study their past 200 races and summarize these as prob- ability distributions over four outcomes: first (“first place”), second, third, and other. Outcome Aurora Whirlwind Phantasm 0.15 0.30 0.20 first 0.10 0.05 0.30 second 0.70 0.25 0.30 third 0.05 0.40 0.20 other Which horse is the most predictable? One quantitative approach to this question is to look at compressibility. Write down the history of each horse as a string of 200 values (first, second, third, other). The total number of bits needed to encode these track- record strings can then be computed using Huffman’s algorithm. This works out to 290 bits for Aurora, 380 for Whirlwind, and 420 for Phantasm (check it!). Aurora has the shortest encoding and is therefore in a strong sense the most predictable. How did they get 420 for Phantasm? I keep getting 400 bytes, as so: Combine first, other = 0.4, combine second, third = 0.6. End up with 2 bits encoding each position. Is there something I've misunderstood about the Huffman encoding algorithm? Textbook available here: http://www.cs.berkeley.edu/~vazirani/algorithms.html (page 156).

    Read the article

  • Detect remote charset in php

    - by yallaa
    Hello, I would like to determine a remote page's encoding through detection of the Content-Type header tag <meta http-equiv="Content-Type" content="text/html; charset=XXXXX" /> if present. I retrieve the remote page and try to do a regex to find the required setting if present. I am still learning hence the problem below... Here is what I have: $EncStart = 'charset='; $EncEnd = '" \/\>'; preg_match( "/$EncStart(.*)$EncEnd/s", $RemoteContent, $RemoteEncoding ); echo = $RemoteEncoding[ 1 ]; The above does indeed echo the name of the encoding but it does not know where to stop so it prints out the rest of the line then most of the rest of the remote page in my test. Example: When testing a remote russian page it printed: windows-1251" / rest of page .... Which means that $EncStart was okay, but the $EncEnd part of the regex failed to stop the matching. This meta header usually ends in 3 different possibility after the name of the encoding. "> | "/> | " /> I do not know weather this is usable to satisfy the end of the maching and if yes how to escape it. I played with different ways of doing it but none worked. Thank you in advance for lending a hand.

    Read the article

  • Digitize video?

    - by kire
    I got some movies on a VCR that i want to move to my computer somehow. (for personal use) I have a video capture card and all hardware required. I'm looking for the software - programs, codecs etc. I like the format that most torrents come in and got some of these i'd like to use as reference for comparison. How can i see what codec, bitrate, etc a movie is using so i can pick this and know that it will work and look good. For AVI-files the bitrate is visible in explorer but it doesn't mention the codec used and i also have a lot of MKV-files that explorer can't handle. All kinds of tips, tricks and other suggestions are welcome. This is completely new to me. How do I avoid that video/audio gets out of sync for example, many movies you download have audio out of sync so i guess this can happen quite easily. The encoding-program has to run on windows and for playback the movies should work on at least VLC for windows.

    Read the article

  • Burn .srt subtitles to AVC encoded video (transcoding with hardsubs) [closed]

    - by Saxtus
    Possible Duplicate: How do I hard code a movie with subtitles? I am looking for a software (or combination of software) that will allow me to hard burn subtitles from an .srt file, that has italics and bold typefaces, to an H.264/AVC encoded video so it can played from a desktop player that can't display external subtitles correctly. Ideally it could use Directshow as input as DirectVobSub makes nice job showing the subtitles as they should (allowing me to globally adjust font and size). CUDA use, to speed up encoding, will be great but not necessary. Video source is also H.264/AVC encoded. Audio is AC-3 5.1 and should be retained too but I have no problem re-muxin it later as long as it keeps synced. Until now I've unsuccessfully tested: Avisynth 2.58 Unable to make Direcvobsub to launch through it TextSub() command renders subtitles with fixed font/size and doesn't decode tags Malformed audio TMPGEnc 4.0 XPress 4.7.4.299 Audio downmixed to 2.0 Importing of subtitles doesn't decode tags Badaboom 1.2.1.7 No importing of subtitles at all SUPER © 2010.build.37 "Directshow decode" has similar effect as Avisynth above Other modes doesn't appear to allow any subtitles in Thank you.

    Read the article

< Previous Page | 59 60 61 62 63 64 65 66 67 68 69 70  | Next Page >