Search Results

Search found 6839 results on 274 pages for 'functional tests'.

Page 64/274 | < Previous Page | 60 61 62 63 64 65 66 67 68 69 70 71  | Next Page >

  • SQLite assembly not copied to output folder for unit testing

    - by Groo
    Problem: SQLite assembly referenced in my DAL assembly does not get copied to the output folder when doing unit tests (Copy local is set to true). I am working on a .Net 3.5 app in VS2008, with NHibernate & SQLite in my DAL. Data access is exposed through the IRepository interface (repository factory) to other layers, so there is no need to reference NHibernate or the System.Data.SQLite assemblies in other layers. For unit testing, there is a public factory method (also in my DAL) which creates an in-memory SQLite session and creates a new IRepository implementation. This is also done to avoid have a shared SQLite in-memory config for all assemblies which need it, and to avoid referencing those DAL internal assemblies. The problem is when I run unit tests which reside a separate project - if I don't add System.Data.SQLite as a reference to the unit test project, it doesn't get copied to the TestResults...\Out folder (although this project references my DAL project, which references System.Data.SQLite, which has its Copy local property set to true), so the tests fail while NHibernate is being configured. If I add the reference to my testing project, then it does get copied and unit tests work. What am I doing wrong?

    Read the article

  • nunit-console can not loacte fixture

    - by tguclu
    Hi I have 2.5.8 and VS2010 I want to run tests against a dll and if I type >nunit-console a.dll I also have these suites namespace LicMgmtLib.Tests { /// <summary> /// Contains the complete suite for LicMgmtLibTest project /// </summary> public class AllTests { [Suite] public static IEnumerable Suite { get { List<Type> suite = new List<Type>(); foreach (Type testCase in UnitTests.Suite) { suite.Add(testCase); } return suite; } } } } and namespace LicMgmtLib.Tests { /// <summary> /// Contains the unit test cases for LicMgmtLibTest project /// </summary> public class UnitTests { [Suite] public static IEnumerable Suite { get { List<Type> suite = new List<Type>(); suite.Add(typeof(LicenceManagerTests)); suite.Add(typeof(CertManagerTests)); return suite; } } } } If I would like to run tests using Suites I type nunit-console a.dll /fixture=AllTests.Suite but it fails with the message >Unable to locate fixture AllTests.Suite If you wonder why I use Suites ,I don't know. We are using MSBuild in our project and this is a requirement of MSBuild I guess. Any help appreciated Regards

    Read the article

  • Problem with Unit testing of ASP.NET project (NullReferenceException when running the test)

    - by Alex
    Hi, I'm trying to create a bunch of MS visual studio unit tests for my n-tiered web app but for some reason I can't run those tests and I get the following error - "Object reference not set to an instance of an object" What I'm trying to do is testing of my data access layer where I use LINQ data context class to execute a certain function and return a result,however during the debugging process I found out that all the tests fail as soon as they get to the LINQ data context class and it has something to do with the connection string but I cant figure out what is the problem. The debugging of tests fails here(the second line): public EICDataClassesDataContext() : base(global::System.Configuration.ConfigurationManager.ConnectionStrings["EICDatabaseConnectionString"].ConnectionString, mappingSource) { OnCreated(); } And my test is as follows: TestMethod()] public void OnGetCustomerIDTest() { FrontLineStaffDataAccess target = new FrontLineStaffDataAccess(); // TODO: Initialize to an appropriate value string regNo = "jonh"; // TODO: Initialize to an appropriate value int expected = 10; // TODO: Initialize to an appropriate value int actual; actual = target.OnGetCustomerID(regNo); Assert.AreEqual(expected, actual); } The method which I call from DAL is: public int OnGetCustomerID(string regNo) { using (LINQDataAccess.EICDataClassesDataContext dataContext = new LINQDataAccess.EICDataClassesDataContext()) { IEnumerable<LINQDataAccess.GetCustomerIDResult> sProcCustomerIDResult = dataContext.GetCustomerID(regNo); int customerID = sProcCustomerIDResult.First().CustomerID; return customerID; } } So basically everything fails after it reaches the 1st line of DA layer method and when it tries to instantiate the LINQ data access class... I've spent around 10 hours trying to troubleshoot the problem but no result...I would really appreciate any help! UPDATE: Finally I've fixed this!!!!:) I dont know why but for some reasons in the app.config file the connection to my database was as follows: AttachDbFilename=|DataDirectory|\EICDatabase.MDF So what I did is I just changed the path and instead of |DataDirectory| I put the actual path where my MDF file sits,i.e C:\Users\1\Documents\Visual Studio 2008\Projects\EICWebSystem\EICWebSystem\App_Data\EICDatabase.mdf After I had done that it worked out!But still it's a bit not clear what was the problem...probably incorrect path to the database?My web.config of ASP.NET project contains the |DataDirectory|\EICDatabase.MDF path though..

    Read the article

  • Parse XML function names and call within whole assembly

    - by Matt Clarkson
    Hello all, I have written an application that unit tests our hardware via a internet browser. I have command classes in the assembly that are a wrapper around individual web browser actions such as ticking a checkbox, selecting from a dropdown box as such: BasicConfigurationCommands EventConfigurationCommands StabilizationCommands and a set of test classes, that use the command classes to perform scripted tests: ConfigurationTests StabilizationTests These are then invoked via the GUI to run prescripted tests by our QA team. However, as the firmware is changed quite quickly between the releases it would be great if a developer could write an XML file that could invoke either the tests or the commands: <?xml version="1.0" encoding="UTF-8" ?> <testsuite> <StabilizationTests> <StressTest repetition="10" /> </StabilizationTests> <BasicConfigurationCommands> <SelectConfig number="2" /> <ChangeConfigProperties name="Weeeeee" timeOut="15000" delay="1000"/> <ApplyConfig /> </BasicConfigurationCommands> </testsuite> I have been looking at the System.Reflection class and have seen examples using GetMethod and then Invoke. This requires me to create the class object at compile time and I would like to do all of this at runtime. I would need to scan the whole assembly for the class name and then scan for the method within the class. This seems a large solution, so any information pointing me (and future readers of this post) towards an answer would be great! Thanks for reading, Matt

    Read the article

  • uninitialized constant Test::Unit::TestResult::TestResultFailureSupport

    - by Vitaly Kushner
    I get the error in subj when I'm trying to run specs or generators in a fresh rails project. This happens when I add shoulda to the mix. I added the following in the config/environment.rb: config.gem 'rspec', :version => '1.2.6', :lib => false config.gem 'rspec-rails', :version => '1.2.6', :lib => false config.gem "thoughtbot-shoulda", :version => "2.10.2", :lib => 'shoulda', :source => "http://gems.github.com" I'm on OSX. ruby 1.8.6 (2008-08-11 patchlevel 287) gems 1.3.5 rails 2.3.4 rspec - 1.2.6 shoulda - 2.10.2 test-unit - 2.0.3 I'm aware of this and adding config.gem 'test-unit', :lib => 'test/unit' indeed solves the genrator problem as it doesn't throw an exception, but it prints 0 tests, 0 assertions, 0 failures, 0 errors, 0 pendings, 0 omissions, 0 notifications at the end of the run so I suppose it tries to run tests which is unexpected and undesired, also the specs stop to run at all, seems like rspec is not running at all, when running rake spec I get the test-unit output again (with 0 tests as there are only specs, no tests defined)

    Read the article

  • Test-First development tool for SQL Server 2005?

    - by Jeff Jones
    For several years I have been using a testing tool called qmTest that allows me to do test-driven database development for some Firebird databases. I write a test for a new feature (table, trigger, stored procedure, etc.) until it fails, then modify the database until the test passes. If necessary, I do more work on the test until it fails again, then modify the database until the test passes. Once the test for the feature is complete and passes 100% of the time, I save it in a suite of other tests for the database. Before moving on to another test or a deployment, I run all the tests as a suite to make sure nothing is broken. Tests can have dependencies on other tests, and the results are recorded and displayed in a browser. Nothing new here, I am sure. Our shop is aiming toward standardizing on MSSQLServer and I want to use the same procedure for developing our databases. Does anyone know of tools that allow or encourage this kind of development? I believe the Team System does, but we do not own that at this point, and probably will not for some time. I am not opposed to scripting, but would welcome a more graphical environment. Any suggestions?

    Read the article

  • Unit testing opaque structure based C API

    - by Nicolas Goy
    I have a library I wrote with API based on opaque structures. Using opaque structures has a lot of benefits and I am very happy with it. Now that my API are stable in term of specifications, I'd like to write a complete battery of unit test to ensure a solid base before releasing it. My concern is simple, how do you unit test API based on opaque structures where the main goal is to hide the internal logic? For example, let's take a very simple object, an array with a very simple test: WSArray a = WSArrayCreate(); int foo = 5; WSArrayAppendValue(a, &foo); int *bar = WSArrayGetValueAtIndex(a, 0); if(&foo != bar) printf("Eroneous value returned\n"); else printf("Good value returned\n"); WSRelease(a); Of course, this tests some facts, like the array actually acts as wanted with 1 value, but when I write unit tests, at least in C, I usualy compare the memory footprint of my datastructures with a known state. In my example, I don't know if some internal state of the array is broken. How would you handle that? I'd really like to avoid adding codes in the implementation files only for unit testings, I really emphasis loose coupling of modules, and injecting unit tests into the implementation would seem rather invasive to me. My first thought was to include the implementation file into my unit test, linking my unit test statically to my library. For example: #include <WS/WS.h> #include <WS/Collection/Array.c> static void TestArray(void) { WSArray a = WSArrayCreate(); /* Structure members are available because we included Array.c */ printf("%d\n", a->count); } Is that a good idea? Of course, the unit tests won't benefit from encapsulation, but they are here to ensure it's actually working.

    Read the article

  • Problem with load testing Web Service - VSTS 2008

    - by Carlos
    Hello, I have a webtest with makes a simple call to a WebService which looks like that: MyWebService webService = new MyWebService(); webService.Timeout = 180000; webService.myMethod(); I am not using ThinkTimes, also the Run Duration is set to 5 minutes. When I ran this test simulating only 1 user, I check the counters and I found something like that: Tests Total: 4500 Network Interface\Bytes sent (agent machine): 35,500 Then I ran the same tests, but this time simulating 2 users and I got something like that: Tests Total: 2225 Network Interface\Bytes sent (agent machine): 30,500 So when I increased the numbers of users the tests/sec was half than when I use only 1 user and the bytes sent by the agent was also lower. I think it is strange, because it doesn't seems I have a bottleneck in my agent machine since CPU is never higher than 30% and I have over 1.5GB of RAM free, also my network utilization is like 0.5% of its capacity. In order to troubleshot this I ran a test using Step Pattern, the simulated users went from 20 to 800 users. When I check the requests/sec it is practically constant through the whole test, so it is clear there is something in my test or my environment which is preventing the number of requests from gets higher. It would be a expected behavior if the "response time" was getting higher because it would tell me the requests wasn't been processed properly, but the strange thing is the response time is practically constant all the time and it is pretty low actually. I have no idea why my agent can't send more requests when I increase the numbers of users, any help/tip/guess would be really appreciate.

    Read the article

  • Maven test dependency in multi module project

    - by user209947
    I use maven to build a multi module project. My module 2 depends on Module 1 src at compile scope and module 1 tests in test scope. Module 2 - <dependency> <groupId>blah</groupId> <artifactId>MODULE1</artifactId> <version>blah</version> <classifier>tests</classifier> <scope>test</scope> </dependency> This works fine. Say my module 3 depends on Module1 src and tests at compile time. Module 3 - <dependency> <groupId>blah</groupId> <artifactId>MODULE1</artifactId> <version>blah</version> <classifier>tests</classifier> <scope>complie</scope> </dependency> When I run mvn clean install, my build runs till module 3, fails at module 3 as it couldnt resolve the module 1 test dependency. Then I do a mvn install on module 3 alone, go back and run mvn install on my parent pom to make it build. How can i fix this?

    Read the article

  • How to setup Continuous Integration and Continuous Deployment for Django projects?

    - by ycseattle
    Hello, I am researching about how to set up CI and continuous deployment for a small team project for a Django based web application. Here are needs: Developer check in the code into a hosted SVN server (unfuddle.com) A CI server detects new checkin, check out the source, build, run functional tests. If tests all passed, deploy the code to the webserver on Amazon EC2. For now, the CI server is also responsible to run the functional tests. I figured out that I can use Husdon as the CI server, use Selenium to run functional tests, and use Fabric to deploy the build to remote web server in Amazon cloud. I am new to Django development and not very familiar with opensource tools. My questions are: I can find some information to integrate hudson with selenium, but I couldn't find much information on how to integrate Fabric to Hudson as well. Is this setup viable? Do you see problems? How do I integrate and deploy database changes? Most likely in the early stage we will change database schema very often with code changes. I used to use Visual Studio and the database project made it very simple to deploy. I wonder if there is "established, well-supported" way to do that. Thanks!!

    Read the article

  • Running RSpec Files From ruby code

    - by Brian D.
    I'm trying to run RSpec tests straight from ruby code. More specifically, I'm running some mysql scripts, loading the rails test environment and then I want to run my rspec tests (which is what I'm having trouble with)... I'm trying to do this with a rake task. Here is my code so far: require"spec" require "spec/rake/spectask" RAILS_ENV = 'test' namespace :run_all_tests do desc "Run all of your tests" puts "Reseting test database..." system "mysql --user=root --password=dev < C:\\Brian\\Work\\Personal\\BrianSite\\database\\BrianSite_test_CreateScript.sql" puts "Filling database tables with test data..." system "mysql --user=root --password=dev < C:\\Brian\\Work\\Personal\\BrianSite\\database\\Fill_Test_Tables.sql" puts "Starting rails test environment..." task :run => :environment do puts "RAILS_ENV is #{RAILS_ENV}" # Run rspec test files here... require "spec/models/blog_spec.rb" end end I thought the require "spec/models/blog_spec.rb" would do it, but the tests aren't running. Anyone know where I'm going wrong? Thanks for any help.

    Read the article

  • Prove correctness of unit test

    - by Timo Willemsen
    I'm creating a graph framework for learning purposes. I'm using a TDD approach, so I'm writing a lot of unit tests. However, I'm still figuring out how to prove the correctness of my unit tests For example, I have this class (not including the implementation, and I have simplified it) public class SimpleGraph(){ //Returns true on success public boolean addEdge(Vertex v1, Vertex v2) { ... } //Returns true on sucess public boolean addVertex(Vertex v1) { ... } } I also have created this unit tests @Test public void SimpleGraph_addVertex_noSelfLoopsAllowed(){ SimpleGraph g = new SimpleGraph(); Vertex v1 = new Vertex('Vertex 1'); actual = g.addVertex(v1); boolean expected = false; boolean actual = g.addEdge(v1,v1); Assert.assertEquals(expected,actual); } Okay, awesome it works. There is only one crux here, I have proved that the functions work for this case only. However, in my graph theory courses, all I'm doing is proving theorems mathematically (induction, contradiction etc. etc.). So I was wondering is there a way I can prove my unit tests mathematically for correctness? So is there a good practice for this. So we're testing the unit for correctness, instead of testing it for one certain outcome.

    Read the article

  • How do I use an index in an array reference as a method reference in Perl?

    - by Robert P
    Similar to this question about iterating over subroutine references, and as a result of answering this question about a OO dispatch table, I was wondering how to call a method reference inside a reference, without removing it first, or if it was even possible. For example: package Class::Foo; use 5.012; #Yay autostrict! use warnings; # a basic constructor for illustration purposes.... sub new { my $class = shift; return bless {}, $class; } # some subroutines for flavor... sub sub1 { say 'in sub 1' } sub sub2 { say 'in sub 2' } sub sub3 { say 'in sub 3' } # and a way to dynamically load the tests we're running... sub sublist { my $self = shift; return [ $self->can('sub1'); $self->can('sub3'}; $self->can('sub2'); ]; } package main; my $instance = Class::Foo->new(a => 1, b => 2, c => 3); my $tests = $instance->sublist(); my $index = int(rand($#{$tests})); # <-- HERE So, at HERE, we could do: my $ref = $tests->{$index}; $instance->$ref(); but how would we do this, without removing the reference first?

    Read the article

  • How do you get an object associated with a Future Actor?

    - by Bruce Ferguson
    I would like to be able to get access to the object that is being returned from spawning a future import scala.actors.Future import scala.actors.Futures._ class Object1(i:Int) { def getAValue(): Int = {i} } object Test { def main( args: Array[String] ) = { var tests = List[Future[Object1]]() for(i <- 0 until 10) { val test = future { val obj1 = new Object1(i) println("Processing " + i + "...") Thread.sleep(1000) println("Processed " + i) obj1 } tests = tests ::: List(test) } val timeout = 1000 * 60 * 5 // wait up to 5 minutes val futureTests = awaitAll(timeout,tests: _*) futureTests.foreach(test => println("result: " + future())) } } The output from one run of this code is: Processing 0... Processing 1... Processing 2... Processing 3... Processed 0 Processing 4... Processed 1 Processing 5... Processed 2 Processing 6... Processed 3 Processing 7... Processed 4 Processing 8... Processed 6 Processing 9... Processed 5 Processed 7 Processed 8 Processed 9 result: <function0> result: <function0> result: <function0> result: <function0> result: <function0> result: <function0> result: <function0> result: <function0> result: <function0> result: <function0> I've tried future().getClass(), and the output is result: class scala.actors.FutureActor What I'm looking to be able to access is the obj1 objects. Thanks Bruce

    Read the article

  • Starting an STA thread, but with parameters to the final function

    - by DRapp
    I'm a bit weak on how some delegates behave, such as passing a method as the parameter to be invoked. While trying to do some NUnit test scripts, I have something that I need to run many test with. Each of these tests requires a GUI created and thus the need for an STA thread. So, I have something like public class MyTest { // the Delegate "ThreadStart" is part of the System.Threading namespace and is defined as // public delegate void ThreadStart(); protected void Start_STA_Thread(ThreadStart whichMethod) { Thread thread = new Thread(whichMethod); thread.SetApartmentState(ApartmentState.STA); //Set the thread to STA thread.Start(); thread.Join(); } [Test] public void Test101() { // Since the thread issues an INVOKE of a method, I'm having it call the // corresponding "FromSTAThread" method, such as Start_STA_Thread( Test101FromSTAThread ); } protected void Test101FromSTAThread() { MySTA_RequiredClass oTmp = new MySTA_RequiredClass(); Assert.IsTrue( oTmp.DoSomething() ); } } This part all works fine... Now the next step. I now have a different set of tests that ALSO require an STA thread. However, each "thing" I need to do requires two parameters... both strings (for this case). How do I go about declaring proper delegate so I can pass in the method I need to invoke, AND the two string parameters in one shot... I may have 20+ tests to run with in this pattern and may have future of other similar tests with different parameter counts and types of parameters too. Thanks.

    Read the article

  • ISO C90 forbids mixed declarations and code sscanf

    - by Need4Sleep
    I'm getting a strange error attempting to compile my unit test code,. For some reason the compiler treats my sscanf call as a mixed declaration? I don't quite understand, here is the entire error: cc1: warnings being treated as errors /home/brlcad/brlcad/src/libbn/tests/bn_complex.c: In function 'main': /home/brlcad/brlcad/src/libbn/tests/bn_complex.c:53: error: ISO C90 forbids mixed declarations and code make[2]: *** [src/libbn/tests/CMakeFiles/tester_bn_complex.dir/bn_complex.c.o] Error 1 make[1]: *** [src/libbn/tests/CMakeFiles/tester_bn_complex.dir/all] Error 2 make: *** [all] Error 2 int main(int argc, char *argv[]) { double expRe1, expIm2, expSqRe1, expSqIm2; double actRe1, actIm2, actSqRe1, actSqIm2; actRe1 = actIm2 = actSqRe1 = actSqIm2 = expRe1 = expIm2 = expSqRe1 = expSqIm2 = 0.0; bn_complex_t com1,com2; //a struct that holds two doubles if(argc < 5) bu_exit(1, "ERROR: Invalid parameters[%s]\n", argv[0]); sscanf(argv[1], "%lf,%lf", &com1.re, &com1.im); /* Error is HERE */ sscanf(argv[2], "%lf,%lf", &com2.re, &com2.im); sscanf(argv[3], "%lf,%lf", &expRe1, &expIm2); sscanf(argv[4], "%lf,%lf", &expSqRe1, &expSqIm2); test_div(com1, com2, &actRe1, &actIm2); test_sqrt(com1,com2, &actSqRe1, &actSqIm2); if((fabs(actRe1 - expRe1) < 0.00001) || (fabs(actIm2 - expIm2) < 0.00001)){ printf("Division failed...\n"); return 1; } if((fabs(actSqRe1 - expSqRe1) < 0.00001) || (fabs(actSqIm2 - expSqIm2) < 0.00001)){ printf("Square roots failed...\n"); return 1; } return 0; }

    Read the article

  • Finding patterns of failure in a Unit Test

    - by Pekka
    I'm new to Unit Testing, and I'm only getting into the routine of building test suites. I have what is going to be a rather large project that I want to build tests for from the start. I'm trying to figure out general strategies and patterns for building test suites. When you look at a class, many tests come to you obviously due to the nature of the class. Say for a "user account" class with basic CRUD operations, being related to a database table, we will want to test - well, the CRUD. creating an object and seeing whether it exists query its properties change some properties change some properties to incorrect values and delete it again. As for how to break things, there are "fail" tests common to most CRUD classes like: Invalid input data types A number as the ID key that exceeds the range of the chosen data type Input in an incorrect character encoding Input that is too long And so on and so on. For a unit test concerned with file operations, the list of "breaking things" could be Invalid characters in file name File name too long File name uses incorrect protocol or path I'm pretty sure similar patterns - applicable beyond the unit test one is currently working on - can be found for most units that are being tested. Now my question is: Am I correct in seeing such "breaking patterns"? Or am I getting something completely wrong about Unit testing, and if I did it right, this wouldn't be an issue at all? Is Unit Testing as a process of finding as many ways to break the unit as possible the right way to go? If I am correct: Are there existing definitions, lists, cheat sheets for such patterns? Are there any provisions (mainly in PHPUnit, as that's the framework I'm working in) to automate such patterns? Is there any assistance - in the form of check lists, or software - to aid in writing complete tests?

    Read the article

  • Mercurial repository narrow clone?

    - by Berry Langerak
    Hi. I'm currently in the process of moving from Subversion to Mercurial, and I have to say I don't regret that decision. However, when trying to convert my project, I ran into a problem of Mercurial, which I can't seem to get fixed. I have two distinct projects: one is a framework, and the other is an application that relies on that framework. Here's what the repositories look like: The Framework repository: docs/ deploy/ lib/ tests/ The Application repository: application/ config/ lib/ tests/ www/ What I'd like is for the application's lib directory to contain a copy of the frameworks' lib/ directory. I used to do this using svn:externals. Now, I am aware that Mercurial supports the concept of subrepositories, but that doesn't seem like the "correct" solution, as it doesn't actually pull in the lib/ directory like I wanted, as you'll still have to pull and push changes manually. That, plus once you clone the framework repository, you'll get all of it, not just the lib/ directory. I only need the lib/ directory, not the tests, or the docs. Now, I thought up two different solutions to this problem, but I wonder which is the best. The first solution would be to clone the framework in a different directory altogether and create symlink in the application's lib/ directory which points to the framework's lib/ directory. Putting the symlink in .hgignore should make sure all is well, I think? That means that you could edit the frameworks code, and commit that, and you could edit the application's code and commit that, too. The other option is to have multiple repositories. The framework gets pulled as a whole, which means you'll get the docs/, deploy/, test/ etc. directories, which are not needed for usage of the framework. I thought maybe creating a repository purely for the library might be a solution, although I sincerely doubt it, as the Unit Tests are very dependant upon the library itself. Does anyone know a decent solution for this problem?

    Read the article

  • A basic load test question

    - by user236131
    I have a very basic load test question. I am running a load test using VSTS 2008 and I have test rig with controller + 10 agents. This load test is against a SharePoint farm I have. My goal of the load test is to find out the resource utilization on web+app+db tiers of my farm for any given load scenario. An example of a load scenario is Usage profile: Average collaboration (as defined by SCCP) User Load: 500 (using step load pattern=a step of 50 every 2 mins and a warm up time of 2mins for every step) Think time: 0 Load duration: 8hrs Now, the question is: Is it fair to expect that metrics like Requests/sec, %processor time on web front end / App / DB, Test/sec, and etc become flat or enter a steady state at one point in time during the load test. Like I said, the goal is not to create a bottleneck but to only measure the utilization of resources by the above load profile. I am asking this question because I see something different. At one point in the load test, requests/sec becomes more or less flat. But processor utilization on the web/DB servers keeps increasing. After digging through the data a bit, I see that "tests running" counter also steadily increased over time. So, if I run the load test for more than 8hrs, %processor may go up further. This way, I don't know what to consider as the load excreted by the load profile. What does this "tests running" counter really signify? How is this different from tests/sec? Another question is: how can I find out why "tests running" counter shows an increase overtime? Thanks for your time

    Read the article

  • C# 4: The Curious ConcurrentDictionary

    - by James Michael Hare
    In my previous post (here) I did a comparison of the new ConcurrentQueue versus the old standard of a System.Collections.Generic Queue with simple locking.  The results were exactly what I would have hoped, that the ConcurrentQueue was faster with multi-threading for most all situations.  In addition, concurrent collections have the added benefit that you can enumerate them even if they're being modified. So I set out to see what the improvements would be for the ConcurrentDictionary, would it have the same performance benefits as the ConcurrentQueue did?  Well, after running some tests and multiple tweaks and tunes, I have good and bad news. But first, let's look at the tests.  Obviously there's many things we can do with a dictionary.  One of the most notable uses, of course, in a multi-threaded environment is for a small, local in-memory cache.  So I set about to do a very simple simulation of a cache where I would create a test class that I'll just call an Accessor.  This accessor will attempt to look up a key in the dictionary, and if the key exists, it stops (i.e. a cache "hit").  However, if the lookup fails, it will then try to add the key and value to the dictionary (i.e. a cache "miss").  So here's the Accessor that will run the tests: 1: internal class Accessor 2: { 3: public int Hits { get; set; } 4: public int Misses { get; set; } 5: public Func<int, string> GetDelegate { get; set; } 6: public Action<int, string> AddDelegate { get; set; } 7: public int Iterations { get; set; } 8: public int MaxRange { get; set; } 9: public int Seed { get; set; } 10:  11: public void Access() 12: { 13: var randomGenerator = new Random(Seed); 14:  15: for (int i=0; i<Iterations; i++) 16: { 17: // give a wide spread so will have some duplicates and some unique 18: var target = randomGenerator.Next(1, MaxRange); 19:  20: // attempt to grab the item from the cache 21: var result = GetDelegate(target); 22:  23: // if the item doesn't exist, add it 24: if(result == null) 25: { 26: AddDelegate(target, target.ToString()); 27: Misses++; 28: } 29: else 30: { 31: Hits++; 32: } 33: } 34: } 35: } Note that so I could test different implementations, I defined a GetDelegate and AddDelegate that will call the appropriate dictionary methods to add or retrieve items in the cache using various techniques. So let's examine the three techniques I decided to test: Dictionary with mutex - Just your standard generic Dictionary with a simple lock construct on an internal object. Dictionary with ReaderWriterLockSlim - Same Dictionary, but now using a lock designed to let multiple readers access simultaneously and then locked when a writer needs access. ConcurrentDictionary - The new ConcurrentDictionary from System.Collections.Concurrent that is supposed to be optimized to allow multiple threads to access safely. So the approach to each of these is also fairly straight-forward.  Let's look at the GetDelegate and AddDelegate implementations for the Dictionary with mutex lock: 1: var addDelegate = (key,val) => 2: { 3: lock (_mutex) 4: { 5: _dictionary[key] = val; 6: } 7: }; 8: var getDelegate = (key) => 9: { 10: lock (_mutex) 11: { 12: string val; 13: return _dictionary.TryGetValue(key, out val) ? val : null; 14: } 15: }; Nothing new or fancy here, just your basic lock on a private object and then query/insert into the Dictionary. Now, for the Dictionary with ReadWriteLockSlim it's a little more complex: 1: var addDelegate = (key,val) => 2: { 3: _readerWriterLock.EnterWriteLock(); 4: _dictionary[key] = val; 5: _readerWriterLock.ExitWriteLock(); 6: }; 7: var getDelegate = (key) => 8: { 9: string val; 10: _readerWriterLock.EnterReadLock(); 11: if(!_dictionary.TryGetValue(key, out val)) 12: { 13: val = null; 14: } 15: _readerWriterLock.ExitReadLock(); 16: return val; 17: }; And finally, the ConcurrentDictionary, which since it does all it's own concurrency control, is remarkably elegant and simple: 1: var addDelegate = (key,val) => 2: { 3: _concurrentDictionary[key] = val; 4: }; 5: var getDelegate = (key) => 6: { 7: string s; 8: return _concurrentDictionary.TryGetValue(key, out s) ? s : null; 9: };                    Then, I set up a test harness that would simply ask the user for the number of concurrent Accessors to attempt to Access the cache (as specified in Accessor.Access() above) and then let them fly and see how long it took them all to complete.  Each of these tests was run with 10,000,000 cache accesses divided among the available Accessor instances.  All times are in milliseconds. 1: Dictionary with Mutex Locking 2: --------------------------------------------------- 3: Accessors Mostly Misses Mostly Hits 4: 1 7916 3285 5: 10 8293 3481 6: 100 8799 3532 7: 1000 8815 3584 8:  9:  10: Dictionary with ReaderWriterLockSlim Locking 11: --------------------------------------------------- 12: Accessors Mostly Misses Mostly Hits 13: 1 8445 3624 14: 10 11002 4119 15: 100 11076 3992 16: 1000 14794 4861 17:  18:  19: Concurrent Dictionary 20: --------------------------------------------------- 21: Accessors Mostly Misses Mostly Hits 22: 1 17443 3726 23: 10 14181 1897 24: 100 15141 1994 25: 1000 17209 2128 The first test I did across the board is the Mostly Misses category.  The mostly misses (more adds because data requested was not in the dictionary) shows an interesting trend.  In both cases the Dictionary with the simple mutex lock is much faster, and the ConcurrentDictionary is the slowest solution.  But this got me thinking, and a little research seemed to confirm it, maybe the ConcurrentDictionary is more optimized to concurrent "gets" than "adds".  So since the ratio of misses to hits were 2 to 1, I decided to reverse that and see the results. So I tweaked the data so that the number of keys were much smaller than the number of iterations to give me about a 2 to 1 ration of hits to misses (twice as likely to already find the item in the cache than to need to add it).  And yes, indeed here we see that the ConcurrentDictionary is indeed faster than the standard Dictionary here.  I have a strong feeling that as the ration of hits-to-misses gets higher and higher these number gets even better as well.  This makes sense since the ConcurrentDictionary is read-optimized. Also note that I tried the tests with capacity and concurrency hints on the ConcurrentDictionary but saw very little improvement, I think this is largely because on the 10,000,000 hit test it quickly ramped up to the correct capacity and concurrency and thus the impact was limited to the first few milliseconds of the run. So what does this tell us?  Well, as in all things, ConcurrentDictionary is not a panacea.  It won't solve all your woes and it shouldn't be the only Dictionary you ever use.  So when should we use each? Use System.Collections.Generic.Dictionary when: You need a single-threaded Dictionary (no locking needed). You need a multi-threaded Dictionary that is loaded only once at creation and never modified (no locking needed). You need a multi-threaded Dictionary to store items where writes are far more prevalent than reads (locking needed). And use System.Collections.Concurrent.ConcurrentDictionary when: You need a multi-threaded Dictionary where the writes are far more prevalent than reads. You need to be able to iterate over the collection without locking it even if its being modified. Both Dictionaries have their strong suits, I have a feeling this is just one where you need to know from design what you hope to use it for and make your decision based on that criteria.

    Read the article

  • Mocking the Unmockable: Using Microsoft Moles with Gallio

    - by Thomas Weller
    Usual opensource mocking frameworks (like e.g. Moq or Rhino.Mocks) can mock only interfaces and virtual methods. In contrary to that, Microsoft’s Moles framework can ‘mock’ virtually anything, in that it uses runtime instrumentation to inject callbacks in the method MSIL bodies of the moled methods. Therefore, it is possible to detour any .NET method, including non-virtual/static methods in sealed types. This can be extremely helpful when dealing e.g. with code that calls into the .NET framework, some third-party or legacy stuff etc… Some useful collected resources (links to website, documentation material and some videos) can be found in my toolbox on Delicious under this link: http://delicious.com/thomasweller/toolbox+moles A Gallio extension for Moles Originally, Moles is a part of Microsoft’s Pex framework and thus integrates best with Visual Studio Unit Tests (MSTest). However, the Moles sample download contains some additional assemblies to also support other unit test frameworks. They provide a Moled attribute to ease the usage of mole types with the respective framework (there are extensions for NUnit, xUnit.net and MbUnit v2 included with the samples). As there is no such extension for the Gallio platform, I did the few required lines myself – the resulting Gallio.Moles.dll is included with the sample download. With this little assembly in place, it is possible to use Moles with Gallio like that: [Test, Moled] public void SomeTest() {     ... What you can do with it Moles can be very helpful, if you need to ‘mock’ something other than a virtual or interface-implementing method. This might be the case when dealing with some third-party component, legacy code, or if you want to ‘mock’ the .NET framework itself. Generally, you need to announce each moled type that you want to use in a test with the MoledType attribute on assembly level. For example: [assembly: MoledType(typeof(System.IO.File))] Below are some typical use cases for Moles. For a more detailed overview (incl. naming conventions and an instruction on how to create the required moles assemblies), please refer to the reference material above.  Detouring the .NET framework Imagine that you want to test a method similar to the one below, which internally calls some framework method:   public void ReadFileContent(string fileName) {     this.FileContent = System.IO.File.ReadAllText(fileName); } Using a mole, you would replace the call to the File.ReadAllText(string) method with a runtime delegate like so: [Test, Moled] [Description("This 'mocks' the System.IO.File class with a custom delegate.")] public void ReadFileContentWithMoles() {     // arrange ('mock' the FileSystem with a delegate)     System.IO.Moles.MFile.ReadAllTextString = (fname => fname == FileName ? FileContent : "WrongFileName");       // act     var testTarget = new TestTarget.TestTarget();     testTarget.ReadFileContent(FileName);       // assert     Assert.AreEqual(FileContent, testTarget.FileContent); } Detouring static methods and/or classes A static method like the below… public static string StaticMethod(int x, int y) {     return string.Format("{0}{1}", x, y); } … can be ‘mocked’ with the following: [Test, Moled] public void StaticMethodWithMoles() {     MStaticClass.StaticMethodInt32Int32 = ((x, y) => "uups");       var result = StaticClass.StaticMethod(1, 2);       Assert.AreEqual("uups", result); } Detouring constructors You can do this delegate thing even with a class’ constructor. The syntax for this is not all  too intuitive, because you have to setup the internal state of the mole, but generally it works like a charm. For example, to replace this c’tor… public class ClassWithCtor {     public int Value { get; private set; }       public ClassWithCtor(int someValue)     {         this.Value = someValue;     } } … you would do the following: [Test, Moled] public void ConstructorTestWithMoles() {     MClassWithCtor.ConstructorInt32 =            ((@class, @value) => new MClassWithCtor(@class) {ValueGet = () => 99});       var classWithCtor = new ClassWithCtor(3);       Assert.AreEqual(99, classWithCtor.Value); } Detouring abstract base classes You can also use this approach to ‘mock’ abstract base classes of a class that you call in your test. Assumed that you have something like that: public abstract class AbstractBaseClass {     public virtual string SaySomething()     {         return "Hello from base.";     } }      public class ChildClass : AbstractBaseClass {     public override string SaySomething()     {         return string.Format(             "Hello from child. Base says: '{0}'",             base.SaySomething());     } } Then you would set up the child’s underlying base class like this: [Test, Moled] public void AbstractBaseClassTestWithMoles() {     ChildClass child = new ChildClass();     new MAbstractBaseClass(child)         {                 SaySomething = () => "Leave me alone!"         }         .InstanceBehavior = MoleBehaviors.Fallthrough;       var hello = child.SaySomething();       Assert.AreEqual("Hello from child. Base says: 'Leave me alone!'", hello); } Setting the moles behavior to a value of  MoleBehaviors.Fallthrough causes the ‘original’ method to be called if a respective delegate is not provided explicitly – here it causes the ChildClass’ override of the SaySomething() method to be called. There are some more possible scenarios, where the Moles framework could be of much help (e.g. it’s also possible to detour interface implementations like IEnumerable<T> and such…). One other possibility that comes to my mind (because I’m currently dealing with that), is to replace calls from repository classes to the ADO.NET Entity Framework O/R mapper with delegates to isolate the repository classes from the underlying database, which otherwise would not be possible… Usage Since Moles relies on runtime instrumentation, mole types must be run under the Pex profiler. This only works from inside Visual Studio if you write your tests with MSTest (Visual Studio Unit Test). While other unit test frameworks generally can be used with Moles, they require the respective tests to be run via command line, executed through the moles.runner.exe tool. A typical test execution would be similar to this: moles.runner.exe <mytests.dll> /runner:<myframework.console.exe> /args:/<myargs> So, the moled test can be run through tools like NCover or a scripting tool like MSBuild (which makes them easy to run in a Continuous Integration environment), but they are somewhat unhandy to run in the usual TDD workflow (which I described in some detail here). To make this a bit more fluent, I wrote a ReSharper live template to generate the respective command line for the test (it is also included in the sample download – moled_cmd.xml). - This is just a quick-and-dirty ‘solution’. Maybe it makes sense to write an extra Gallio adapter plugin (similar to the many others that are already provided) and include it with the Gallio download package, if  there’s sufficient demand for it. As of now, the only way to run tests with the Moles framework from within Visual Studio is by using them with MSTest. From the command line, anything with a managed console runner can be used (provided that the appropriate extension is in place)… A typical Gallio/Moles command line (as generated by the mentioned R#-template) looks like that: "%ProgramFiles%\Microsoft Moles\bin\moles.runner.exe" /runner:"%ProgramFiles%\Gallio\bin\Gallio.Echo.exe" "Gallio.Moles.Demo.dll" /args:/r:IsolatedAppDomain /args:/filter:"ExactType:TestFixture and Member:ReadFileContentWithMoles" -- Note: When using the command line with Echo (Gallio’s console runner), be sure to always include the IsolatedAppDomain option, otherwise the tests won’t use the instrumentation callbacks! -- License issues As I already said, the free mocking frameworks can mock only interfaces and virtual methods. if you want to mock other things, you need the Typemock Isolator tool for that, which comes with license costs (Although these ‘costs’ are ridiculously low compared to the value that such a tool can bring to a software project, spending money often is a considerable gateway hurdle in real life...).  The Moles framework also is not totally free, but comes with the same license conditions as the (closely related) Pex framework: It is free for academic/non-commercial use only, to use it in a ‘real’ software project requires an MSDN Subscription (from VS2010pro on). The demo solution The sample solution (VS 2008) can be downloaded from here. It contains the Gallio.Moles.dll which provides the here described Moled attribute, the above mentioned R#-template (moled_cmd.xml) and a test fixture containing the above described use case scenarios. To run it, you need the Gallio framework (download) and Microsoft Moles (download) being installed in the default locations. Happy testing…

    Read the article

  • Setup and Use SpecFlow BDD with DevExpress XAF

    - by Patrick Liekhus
    Let’s get started with using the SpecFlow BDD syntax for writing tests with the DevExpress XAF EasyTest scripting syntax.  In order for this to work you will need to download and install the prerequisites listed below.  Once they are installed follow the steps outlined below and enjoy. Prerequisites Install the following items: DevExpress eXpress Application Framework (XAF) found here SpecFlow found here Liekhus BDD/XAF Testing library found here Assumptions I am going to assume at this point that you have created your XAF application and have your Module, Win.Module and Win ready for usage.  You should have also set any attributes and/or settings as you see fit. Setup So where to start. Create a new testing project within your solution. I typically call this with a similar naming convention as used by XAF, my project name .FunctionalTests (i.e. AlbumManager.FunctionalTests). Add the following references to your project.  It should look like the reference list below. DevExpress.Data.v11.x DevExpress.Persistent.Base.v11.x DevExpress.Persistent.BaseImpl.v11.x DevExpress.Xpo.v11.2 Liekhus.Testing.BDD.Core Liekhus.Testing.BDD.DevExpress TechTalk.SpecFlow TestExecutor.v11.x (found in %Program Files%\DevExpress 2011.x\eXpressApp Framework\Tools\EasyTest Right click the TestExecutor reference and set the “Copy Local” setting to True.  This forces the TestExecutor executable to be available in the bin directory which is where the EasyTest script will be executed further down in the process. Add an Application Configuration File (app.config) to your test application.  You will need to make a few modifications to have SpecFlow generate Microsoft style unit tests.  First add the section handler for SpecFlow and then set your choice of testing framework.  I prefer MS Tests for my projects. Add the EasyTest configuration file to your project.  Add a new XML file and call it Config.xml. Open the properties window for the Config.xml file and set the “Copy to Ouput Directory” to “Copy Always”. You will setup the Config file according to the specifications of the EasyTest library my mapping to your executable and other settings.  You can find the details for the configuration of EasyTest here.  My file looks like this Create a new folder in your test project called “StepDefinitions”.  Add a new SpecFlow Step Definition file item under the StepDefinitions folder.  I typically call this class StepDefinition.cs. Have your step definition inherit from the Liekhus.Testing.BDD.DevExpress.StepDefinition class.  This will give you the default behaviors for your test in the next section. OK.  Now that we have done this series of steps, we will work on simplifying this.  This is an early preview of this new project and is not fully ready for consumption.  If you would like to experiment with it, please feel free.  Our goals are to make this a installable project on it’s own with it’s own project templates and default settings.  This will be coming in later versions.  Currently this project is in Alpha release. Let’s write our first test Remove the basic test that is created for you. We will not use the default test but rather create our own SpecFlow “Feature” files. Add a new item to your project and select the SpecFlow Feature file under C#. Name your feature file as you do your class files after the test they are performing. Writing a feature file uses the Cucumber syntax of Given… When… Then.  Think of it in these terms.  Givens are the pre-conditions for the test.  The Whens are the actual steps for the test being performed.  The Thens are the verification steps that confirm your test either passed or failed.  All of these steps are generated into a an EasyTest format and executed against your XAF project.  You can find more on the Cucumber syntax by using the Secret Ninja Cucumber Scrolls.  This document has several good styles of tests, plus you can get your fill of Chuck Norris vs Ninjas.  Pretty humorous document but full of great content. My first test is going to test the entry of a new Album into the application and is outlined below. The Feature section at the top is more for your documentation purposes.  Try to be descriptive of the test so that it makes sense to the next person behind you.  The Scenario outline is described in the Ninja Scrolls, but think of it as test template.  You can write one test outline and have multiple datasets (Scenarios) executed against that test.  Here are the steps of my test and their descriptions Given I am starting a new test – tells our test to create a new EasyTest file And (Given) the application is open – tells EasyTest to open our application defined in the Config.xml When I am at the “Albums” screen – tells XAF to navigate to the Albums list view And (When) I click the “New:Album” button – tells XAF to click the New Album button on the ribbon And (When) I enter the following information – tells XAF to find the field on the screen and put the value in that field And (When) I click the “Save and Close” button – tells XAF to click the “Save and Close” button on the detail window Then I verify results as “user” – tells the testing framework to execute the EasyTest as your configured user Once you compile and prepare your tests you should see the following in your Test View.  For each of your CreateNewAlbum lines in your scenarios, you will see a new test ready to execute. From here you will use your testing framework of choice to execute the test.  This in turn will execute the EasyTest framework to call back into your XAF application and test your business application. Again, please remember that this is an early preview and we are still working out the details.  Please let us know if you have any comments/questions/concerns. Thanks and happy testing.

    Read the article

  • Behavior Driven Development (BDD) and DevExpress XAF

    - by Patrick Liekhus
    So in my previous posts I showed you how I used EDMX to quickly build my business objects within XPO and XAF.  But how do you test whether your business objects are actually doing what you want and verify that your business logic is correct?  Well I was reading my monthly MSDN magazine last last year and came across an article about using SpecFlow and WatiN to build BDD tests.  So why not use these same techniques to write SpecFlow style scripts and have them generate EasyTest scripts for use with XAF.  Let me outline and show a few things below.  I plan on releasing this code in a short while, I just wanted to preview what I was thinking. Before we begin… First, if you have not read the article in MSDN, here is the link to the article that I found my inspiration.  It covers the overview of BDD vs. TDD, how to write some of the SpecFlow syntax and how use the “Steps” logic to create your own tests. Second, if you have not heard of EasyTest from DevExpress I strongly recommend you review it here.  It basically takes the power of XAF and the beauty of your application and allows you to create text based files to execute automated commands within your application. Why would we do this?  Because as you will see below, the cucumber syntax is easier for business analysts to interpret and digest the business rules from.  You can find most of the information you will need on Cucumber syntax within The Secret Ninja Cucumber Scrolls located here.  The basics of the syntax are that Given X When Y Then Z.  For example, Given I am at the login screen When I enter my login credentials Then I expect to see the home screen.  Pretty easy syntax to follow. Finally, we will need to download and install SpecFlow.  You can find it on their website here.  Once you have this installed then let’s write our first test. Let’s get started… So where to start.  Create a new testing project within your solution.  I typically call this with a similar naming convention as used by XAF, my project name .FunctionalTests (i.e.  AlbumManager.FunctionalTests).  Remove the basic test that is created for you.  We will not use the default test but rather create our own SpecFlow “Feature” files.  Add a new item to your project and select the SpecFlow Feature file under C#.  Name your feature file as you do your class files after the test they are performing. Now you can crack open your new feature file and write the actual test.  Make sure to have your Ninja Scrolls from above as it provides valuable resources on how to write your test syntax.  In this test below you can see how I defined the documentation in the Feature section.  This is strictly for our purposes of readability and do not effect the test.  The next section is the Scenario Outline which is considered a test template.  You can see the brackets <> around the fields that will be filled in for each test.  So in the example below you can see that Given I am starting a new test and the application is open.  This means I want a new EasyTest file and the windows application generated by XAF is open.  Next When I am at the Albums screen tells XAF to navigate to the Albums list view.  And I click the New:Album button, tells XAF to click the new button on the list grid.  And I enter the following information tells XAF which fields to complete with the mapped values.  And I click the Save and Close button causes the record to be saved and the detail form to be closed.  Then I verify results tests the input data against what is visible in the grid to ensure that your record was created. The Scenarios section gives each test a unique name and then fills in the values for each test.  This way you can use the same test to make multiple passes with different data. Almost there.  Now we must save the feature file and the BDD tests will be written using standard unit test syntax.  This is all handled for you by SpecFlow so just save the file.  What you will see in your Test List Editor is a unit test for each of the above scenarios you just built. You can now use standard unit testing frameworks to execute the test as you desire.  As you would expect then, these BDD SpecFlow tests can be automated into your build process to ensure that your business requirements are satisfied each and every time. How does it work? What we have done is to intercept the testing logic at runtime to interpret the SpecFlow syntax into EasyTest syntax.  This is the basic StepDefinitions that we are working on now.  We expect to put these on CodePlex within the next few days.  You can always override and make your own rules as you see fit for your project.  Follow the MSDN magazine above to start your own.  You can see part of our implementation below. As you can gather from the MSDN article and the code sample below, we have created our own common rules to build the above syntax. The code implementation for these rules basically saves your information from the feature file into an EasyTest file format.  It then executes the EasyTest file and parses the XML results of the test.  If the test succeeds the test is passed.  If the test fails, the EasyTest failure message is logged and the screen shot (as captured by EasyTest) is saved for your review. Again we are working on getting this code ready for mass consumption, but at this time it is not ready.  We will post another message when it is ready with all details about usage and setup. Thanks

    Read the article

  • The Incremental Architect&acute;s Napkin - #2 - Balancing the forces

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/06/02/the-incremental-architectacutes-napkin---2---balancing-the-forces.aspxCategorizing requirements is the prerequisite for ecconomic architectural decisions. Not all requirements are created equal. However, to truely understand and describe the requirement forces pulling on software development, I think further examination of the requirements aspects is varranted. Aspects of Functionality There are two sides to Functionality requirements. It´s about what a software should do. I call that the Operations it implements. Operations are defined by expressions and control structures or calls to frameworks of some sort, i.e. (business) logic statements. Operations calculate, transform, aggregate, validate, send, receive, load, store etc. Operations are about behavior; they take input and produce output by considering state. I´m not using the term “function” here, because functions - or methods or sub-programs - are not necessary to implement Operations. Functions belong to a different sub-aspect of requirements (see below). Operations alone are not enough, though, to make a customer happy with regard to his/her Functionality requirements. Only correctly implemented Operations provide full value. This should make clear, why testing is so important. And not just manual tests during development of some operational feature, but automated tests. Because only automated tests scale when over time the number of operations increases. Without automated tests there is no guarantee formerly correct operations are still correct after more got added. To retest all previous operations manually is infeasible. So whoever relies just on manual tests is not really balancing the two forces Operations and Correctness. With manual tests more weight is put on the side of the scale of Operations. That might be ok for a short period of time - but in the long run it will bite you. You need to plan for Correctness in the long run from the first day of your project on. Aspects of Quality As important as Functionality is, it´s not the driver for software development. No software has ever been written to just implement some operation in code. We don´t need computers just to do something. All computers can do with software we can do without them. Well, at least given enough time and resources. We could calculate the most complex formulas without computers. We could do auctions with millions of people without computers. The only reason we want computers to help us with this and a million other Operations is… We don´t want to wait for the results very long. Or we want less errors. Or we want easier accessability to complicated solutions. So the main reason for customers to buy/order software is some Quality. They want some Functionality with a higher Quality (e.g. performance, scalability, usability, security…) than without the software. But Qualities come in at least two flavors: Most important are Primary Qualities. That´s the Qualities software truely is written for. Take an online auction website for example. Its Primary Qualities are performance, scalability, and usability, I´d say. Auctions should come within reach of millions of people; setting up an auction should be very easy; finding a suitable auction and bidding on it should be as fast as possible. Only if those Qualities have been implemented does security become relevant. A secure auction website is important - but not as important as a fast auction website. Nobody would want to use the most secure auction website if it was unbearably slow. But there would be people willing to use the fastest auction website even it was lacking security. That´s why security - with regard to online auction software - is not a Primary Quality, but just a Secondary Quality. It´s a supporting quality, so to speak. It does not deliver value by itself. With a password manager software this might be different. There security might be a Primary Quality. Please get me right: I don´t want to denigrate any Quality. There´s a long list of non-functional requirements at Wikipedia. They are all created equal - but that does not mean they are equally important for all software projects. When confronted with Quality requirements check with the customer which are primary and which are secondary. That will help to make good economical decisions when in a crunch. Resources are always limited - but requirements are a bottomless ocean. Aspects of Security of Investment Functionality and Quality are traditionally the requirement aspects cared for most - by customers and developers alike. Even today, when pressure rises in a project, tunnel vision will focus on them. Any measures to create and hold up Security of Investment (SoI) will be out of the window pretty quickly. Resistance to customers and/or management is futile. As long as SoI is not placed on equal footing with Functionality and Quality it´s bound to suffer under pressure. To look closer at what SoI means will help to become more conscious about it and make customers and management aware of the risks of neglecting it. SoI to me has two facets: Production Efficiency (PE) is about speed of delivering value. Customers like short response times. Short response times mean less money spent. So whatever makes software development faster supports this requirement. This must not lead to duct tape programming and banging out features by the dozen, though. Because customers don´t just want Operations and Quality, but also Correctness. So if Correctness gets compromised by focussing too much on Production Efficiency it will fire back. Customers want PE not just today, but over the whole course of a software´s lifecycle. That means, it´s not just about coding speed, but equally about code quality. If code quality leads to rework the PE is on an unsatisfactory level. Also if code production leads to waste it´s unsatisfactory. Because the effort which went into waste could have been used to produce value. Rework and waste cost money. Rework and waste abound, however, as long as PE is not addressed explicitly with management and customers. Thanks to the Agile and Lean movements that´s increasingly the case. Nevertheless more could and should be done in many teams. Each and every developer should keep in mind that Production Efficiency is as important to the customer as Functionality and Quality - whether he/she states it or not. Making software development more efficient is important - but still sooner or later even agile projects are going to hit a glas ceiling. At least as long as they neglect the second SoI facet: Evolvability. Delivering correct high quality functionality in short cycles today is good. But not just any software structure will allow this to happen for an indefinite amount of time.[1] The less explicitly software was designed the sooner it´s going to get stuck. Big ball of mud, monolith, brownfield, legacy code, technical debt… there are many names for software structures that have lost the ability to evolve, to be easily changed to accomodate new requirements. An evolvable code base is the opposite of a brownfield. It´s code which can be easily understood (by developers with sufficient domain expertise) and then easily changed to accomodate new requirements. Ideally the costs of adding feature X to an evolvable code base is independent of when it is requested - or at least the costs should only increase linearly, not exponentially.[2] Clean Code, Agile Architecture, and even traditional Software Engineering are concerned with Evolvability. However, it seems no systematic way of achieving it has been layed out yet. TDD + SOLID help - but still… When I look at the design ability reality in teams I see much room for improvement. As stated previously, SoI - or to be more precise: Evolvability - can hardly be measured. Plus the customer rarely states an explicit expectation with regard to it. That´s why I think, special care must be taken to not neglect it. Postponing it to some large refactorings should not be an option. Rather Evolvability needs to be a core concern for every single developer day. This should not mean Evolvability is more important than any of the other requirement aspects. But neither is it less important. That´s why more effort needs to be invested into it, to bring it on par with the other aspects, which usually are much more in focus. In closing As you see, requirements are of quite different kinds. To not take that into account will make it harder to understand the customer, and to make economic decisions. Those sub-aspects of requirements are forces pulling in different directions. To improve performance might have an impact on Evolvability. To increase Production Efficiency might have an impact on security etc. No requirement aspect should go unchecked when deciding how to allocate resources. Balancing should be explicit. And it should be possible to trace back each decision to a requirement. Why is there a null-check on parameters at the start of the method? Why are there 5000 LOC in this method? Why are there interfaces on those classes? Why is this functionality running on the threadpool? Why is this function defined on that class? Why is this class depending on three other classes? These and a thousand more questions are not to mean anything should be different in a code base. But it´s important to know the reason behind all of these decisions. Because not knowing the reason possibly means waste and having decided suboptimally. And how do we ensure to balance all requirement aspects? That needs practices and transparency. Practices means doing things a certain way and not another, even though that might be possible. We´re dealing with dangerous tools here. Like a knife is a dangerous tool. Harm can be done if we use our tools in just any way at the whim of the moment. Over the centuries rules and practices have been established how to use knifes. You don´t put them in peoples´ legs just because you´re feeling like it. You hand over a knife with the handle towards the receiver. You might not even be allowed to cut round food like potatos or eggs with it. The same should be the case for dangerous tools like object-orientation, remote communication, threads etc. We need practices to use them in a way so requirements are balanced almost automatically. In addition, to be able to work on software as a team we need transparency. We need means to share our thoughts, to work jointly on mental models. So far our tools are focused on working with code. Testing frameworks, build servers, DI containers, intellisense, refactoring support… That´s all nice and well. I don´t want to miss any of that. But I think it´s not enough. We´re missing mental tools, tools for making thinking and talking about software (independently of code) easier. You might think, enough of such tools already exist like all those UML diagram types or Flow Charts. But then, isn´t it strange, hardly any team is using them to design software? Or is that just due to a lack of education? I don´t think so. It´s a matter value/weight ratio: the current mental tools are too heavy weight compared to the value they deliver. So my conclusion is, we need lightweight tools to really be able to balance requirements. Software development is complex. We need guidance not to forget important aspects. That´s like with flying an airplane. Pilots don´t just jump in and take off for their destination. Yes, there are times when they are “flying by the seats of their pants”, when they are just experts doing thing intuitively. But most of the time they are going through honed practices called checklist. See “The Checklist Manifesto” for very enlightening details on this. Maybe then I should say it like this: We need more checklists for the complex businss of software development.[3] But that´s what software development mostly is about: changing software over an unknown period of time. It needs to be corrected in order to finally provide promised operations. It needs to be enhanced to provide ever more operations and qualities. All this without knowing when it´s going to stop. Probably never - until “maintainability” hits a wall when the technical debt is too large, the brownfield too deep. Software development is not a sprint, is not a marathon, not even an ultra marathon. Because to all this there is a foreseeable end. Software development is like continuously and foreever running… ? And sometimes I dare to think that costs could even decrease over time. Think of it: With each feature a software becomes richer in functionality. So with each additional feature the chance of there being already functionality helping its implementation increases. That should lead to less costs of feature X if it´s requested later than sooner. X requested later could stand on the shoulders of previous features. Alas, reality seems to be far from this despite 20+ years of admonishing developers to think in terms of reusability.[1] ? Please don´t get me wrong: I don´t want to bog down the “art” of software development with heavyweight practices and heaps of rules to follow. The framework we need should be lightweight. It should not stand in the way of delivering value to the customer. It´s purpose is even to make that easier by helping us to focus and decreasing waste and rework. ?

    Read the article

  • Benchmark Linq2SQL, Subsonic2, Subsonic3 - Any other ideas to make them faster ?

    - by Aristos
    I am working with Subsonic 2 more than 3 years now... After Linq appears and then Subsonic 3, I start thinking about moving to the new Linq futures that are connected to sql. I must say that I start move and port my subsonic 2 with SubSonic 3, and very soon I discover that the speed was so slow thats I didn't believe it - and starts all that tests. Then I test Linq2Sql and see also a delay - compare it with Subsonic 2. My question here is, especial for the linq2sql, and the up-coming dotnet version 4, what else can I do to speed it up ? What else on linq2sql settings, or classes, not on this code that I have used for my messures I place here the project that I make the tests, also the screen shots of the results. How I make the tests - and the accurate of my measures. I use only for my question Google chrome, because its difficult for me to show here a lot of other measures that I have done with more complex programs. This is the most simple one, I just measure the Data Read. How can I prove that. I make a simple Thread.Sleep(10 seconds) and see if I see that 10 seconds on Google Chrome Measure, and yes I see it. here are more test with this Sleep thead to see whats actually Chrome gives. 10 seconds delay 100 ms delay Zero delay There is only a small 15ms thats get on messure, is so small compare it with the rest of my tests that I do not care about. So what I measure I measure just the data read via each method - did not count the data or database delay, or any disk read or anything like that. Later on the image with the result I show that no disk activity exist on the measures See this image to see what really I measure and if this is correct Why I chose this kind of test Its simple, it's real, and it's near my real problem that I found the delay of subsonic 3 in real program with real data. Now lets tests the dals Start by see this image I have 4-5 calls on every method, the one after the other. The results are. For a loop of 100 times, ask for 5 Rows, one not exist, approximatively.. Simple adonet:81ms SubSonic 2 :210ms linq2sql :1.70sec linq2sql using CompiledQuery.Compile :239ms Subsonic 3 :15.00sec (wow - extreme slow) The project http://www.planethost.gr/DalSpeedTests.rar Can any one confirm this benchmark, or make any optimizations to help me out ? Other tests Some one publish here this link http://ormbattle.net/ (and then remove it - don not know why) In this page you can find a really useful advanced tests for all, except subsonic 2 and subsonic 3 that I have here ! Optimizing What I really ask here is if some one can now any trick how to optimize the DALs, not by changing the test code, but by changing the code and the settings on each dal. For example... Optimizing Linq2SQL I start search how to optimize Linq2sql and found this article, and maybe more exist. Finally I make the tricks from that page to run, and optimize the code using them all. The speed was near 1.50sec from 1.70.... big improvement, but still slow. Then I found a different way - same idea article, and wow ! the speed is blow up. Using this trick with CompiledQuery.Compile, the time from 1.5sec is now 239ms. Here is the code for the precompiled... Func<DataClassesDataContext, int, IQueryable<Product>> compiledQuery = CompiledQuery.Compile((DataClassesDataContext meta, int IdToFind) => (from myData in meta.Products where myData.ProductID.Equals(IdToFind) select myData)); StringBuilder Test = new StringBuilder(); int[] MiaSeira = { 5, 6, 10, 100, 7 }; using (DataClassesDataContext context = new DataClassesDataContext()) { context.ObjectTrackingEnabled = false; for (int i = 0; i < 100; i++) { foreach (int EnaID in MiaSeira) { var oFindThat2P = compiledQuery(context, EnaID); foreach (Product One in oFindThat2P) { Test.Append("<br />"); Test.Append(One.ProductName); } } } } Optimizing SubSonic 3 and problems I make many performance profiling, and start change the one after the other and the speed is better but still too slow. I post them on subsonic group but they ignore the problem, they say that everything is fast... Here is some capture of my profiling and delay points inside subsonic source code I have end up that subsonic3 make more call on the structure of the database rather than on data itself. Needs to reconsider the hole way of asking for data, and follow the subsonic2 idea if this is possible. Try to make precompile to subsonic 3 like I did in linq2Sql but fail for the moment... Optimizing SubSonic 2 After I discover that subsonic 3 is extreme slow, I start my checks on subsonic 2 - that I have never done before believing that is fast. (and it is) So its come up with some points that can be faster. For example there are many loops like this ones that actually is slow because of string manipulation and compares inside the loop. I must say to you that this code called million of times ! on a period of few minutes ! of data asking from the program. On small amount of tables and small fields maybe this is not a big think for some people, but on large amount of tables, the delay is even more. So I decide and optimize the subsonic 2 by my self, by replacing the string compares, with number compares! Simple. I do that almost on every point that profiler say that is slow. I change also all small points that can be even a little faster, and disable some not so used thinks. The results, 5% faster on NorthWind database, near 20% faster on my database with 250 tables. That is count with 500ms less in 10 seconds process on northwind, 100ms faster on my database on 500ms process time. I do not have captures to show you for that because I have made them with different code, different time, and track them down on paper. Anyway this is my story and my question on all that, what else do you know to make them even faster... For this measures I have use Subsonic 2.2 optimized by me, Subsonic 3.0.0.3 a little optimized by me, and Dot.Net 3.5

    Read the article

< Previous Page | 60 61 62 63 64 65 66 67 68 69 70 71  | Next Page >