Search Results

Search found 6839 results on 274 pages for 'functional tests'.

Page 60/274 | < Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >

  • Does Test Driven Development (TDD) improve Quality and Correctness? (Part 1)

    - by David V. Corbin
    Since the dawn of the computer age, various methodologies have been introduced to improve quality and reduce cost. In this posting, I will by sharing my experiences with Test Driven Development; both its benefits and limitations. To start this topic, we need to agree on what TDD is. The first is to define each of the three words as used in this context. Test - An item or action which measures something in some quantifiable form. Driven - The primary motivation or focus of a series of activities (process) Development - All phases of a software project/product from concept through delivery. The above are very simple definitions that result in the following: "TDD is a process where the primary focus is on measuring and quantifying all aspects of the creation of a (software) product." There are many places where TDD is used outside of software development, even though it is not known by this name. Consider the (conventional) education process that most of us grew up on. The focus was to get the best grades as measured by different tests. Many of these tests measured rote memorization and not understanding of the subject matter. The result of this that many people graduated with high scores but without "quality and correctness" in their ability to utilize the subject matter (of course, the flip side is true where certain people DID understand the material but were not very good at taking this type of test). Returning to software development, let us look at some common scenarios. While these items are generally applicable regardless of platform, language and tools; the remainder of this post will utilize Microsoft Visual Studio and Team Foundation Server (TFS) for examples. It should be realized that everyone does at least some aspect of TDD. At the most rudimentary level, getting a program to compile involves a "pass/fail" measurement (is the syntax valid) that drives their ability to proceed further (run the program). Other developers may create "Unit Tests" in the belief that having a test for every method/property of a class and good code coverage is the goal of TDD. These items may be helpful and even important, but really only address a small aspect of the overall effort. To see TDD in a bigger view, lets identify the various activities that are part of the Software Development LifeCycle. These are going to be presented in a Waterfall style for simplicity, but each item also occurs within Iterative methodologies such as Agile/Scrum. the key ones here are: Requirements Gathering Architecture Design Implementation Quality Assurance Can each of these items be subjected to a process which establishes metrics (quantified metrics) that reflect both the quality and correctness of each item? It should be clear that conventional Unit Tests do not apply to all of these items; at best they can verify that a local aspect (e.g. a Class/Method) of implementation matches the (test writers perspective of) the appropriate design document. So what can we do? For each of area, the goal is to create tests that are quantifiable and durable. The ability to quantify the measurements (beyond a simple pass/fail) is critical to tracking progress(eventually measuring the level of success that has been achieved) and for providing clear information on what items need to be addressed (along with the appropriate time to address them - in varying levels of detail) . Durability is important so that the test can be reapplied (ideally in an automated fashion) over the entire cycle. Returning for a moment back to our "education example", one must also be careful of how the tests are organized and how the measurements are taken. If a test is in a multiple choice format, there is a significant statistical probability that a correct answer might be the result of a random guess. Also, in many situations, having the student simply provide a final answer can obscure many important elements. For example, on a math test, having the student simply provide a numeric answer (rather than showing the methodology) may result in a complete mismatch between the process and the result. It is hard to determine which is worse: The student who makes a simple arithmetric error at one step of a long process (resulting in a wrong answer) or The student who (without providing the "workflow") uses a completely invalid approach, yet still comes up with the right number. The "Wrong Process"/"Right Answer" is probably the single biggest problem in software development. Even very simple items can suffer from this. As an example consider the following code for a "straight line" calculation....Is it correct? (for Integral Points)         int Solve(int m, int b, int x) { return m * x + b; }   Most people would respond "Yes". But let's take the question one step further... Is it correct for all possible values of m,b,x??? (no fair if you cheated by being focused on the bolded text!)  Without additional information regarding constrains on "the possible values of m,b,x" the answer must be NO, there is the risk of overflow/wraparound that will produce an incorrect result! To properly answer this question (i.e. Test the Code), one MUST be able to backtrack from the implementation through the design, and architecture all the way back to the requirements. And the requirement itself must be tested against the stakeholder(s). It is only when the bounding conditions are defined that it is possible to determine if the code is "Correct" and has "Quality". Yet, how many of us (myself included) have written such code without even thinking about it. In many canses we (think we) "know" what the bounds are, and that the code will be correct. As we all know, requirements change, "code reuse" causes implementations to be applied to different scenarios, etc. This leads directly to the types of system failures that plague so many projects. This approach to TDD is much more holistic than ones which start by focusing on the details. The fundamental concepts still apply: Each item should be tested. The test should be defined/implemented before (or concurrent with) the definition/implementation of the actual item. We also add concepts that expand the scope and alter the style by recognizing: There are many things beside "lines of code" that benefit from testing (measuring/evaluating in a formal way) Correctness and Quality can not be solely measured by "correct results" In the future parts, we will examine in greater detail some of the techniques that can be applied to each of these areas....

    Read the article

  • Auto Mocking using JustMock

    - by mehfuzh
    Auto mocking containers are designed to reduce the friction of keeping unit test beds in sync with the code being tested as systems are updated and evolve over time. This is one sentence how you define auto mocking. Of course this is a more or less formal. In a more informal way auto mocking containers are nothing but a tool to keep your tests synced so that you don’t have to go back and change tests every time you add a new dependency to your SUT or System Under Test. In Q3 2012 JustMock is shipped with built in auto mocking container. This will help developers to have all the existing fun they are having with JustMock plus they can now mock object with dependencies in a more elegant way and without needing to do the homework of managing the graph. If you are not familiar with auto mocking then I won't go ahead and educate you rather ask you to do so from contents that is already made available out there from community as this is way beyond the scope of this post. Moving forward, getting started with Justmock auto mocking is pretty simple. First, I have to reference Telerik.JustMock.Container.DLL from the installation folder along with Telerik.JustMock.DLL (of course) that it uses internally and next I will write my tests with mocking container. It's that simple! In this post first I will mock the target with dependencies using current method and going forward do the same with auto mocking container. In short the sample is all about a report builder that will go through all the existing reports, send email and log any exception in that process. This is somewhat my  report builder class looks like: Reporter class depends on the following interfaces: IReporBuilder: used to  create and get the available reports IReportSender: used to send the reports ILogger: used to log any exception. Now, if I just write the test without using an auto mocking container it might end up something like this: Now, it looks fine. However, the only issue is that I am creating the mock of each dependency that is sort of a grunt work and if you have ever changing list of dependencies then it becomes really hard to keep the tests in sync. The typical example is your ASP.NET MVC controller where the number of service dependencies grows along with the project. The same test if written with auto mocking container would look like: Here few things to observe: I didn't created mock for each dependencies There is no extra step creating the Reporter class and sending in the dependencies Since ILogger is not required for the purpose of this test therefore I can be completely ignorant of it. How cool is that ? Auto mocking in JustMock is just released and we also want to extend it even further using profiler that will let me resolve not just interfaces but concrete classes as well. But that of course starts the debate of code smell vs. working with legacy code. Feel free to send in your expert opinion in that regard using one of telerik’s official channels. Hope that helps

    Read the article

  • Nester

    - by csharp-source.net
    Nester is a tool for mutation testing of your C# source code in order to assess the adequacy of your unit tests. It involves modification of programs to see if existing tests can distinguish the original program from the modified program.

    Read the article

  • Do you test your SQL/HQL/Criteria ?

    - by 0101
    Do you test your SQL or SQL generated by your database framework? There are frameworks like DbUnit that allow you to create real in-memory database and execute real SQL. But its very hard to use(not developer-friendly so to speak), because you need to first prepare test data(and it should not be shared between tests). P.S. I don't mean mocking database or framework's database methods, but tests that make you 99% sure that your SQL is working even after some hardcore refactoring.

    Read the article

  • Using IIS Logs for Performance Testing with Visual Studio

    - by Tarun Arora
    In this blog post I’ll show you how you can play back the IIS Logs in Visual Studio to automatically generate the web performance tests. You can also download the sample solution I am demo-ing in the blog post. Introduction Performance testing is as important for new websites as it is for evolving websites. If you already have your website running in production you could mine the information available in IIS logs to analyse the dense zones (most used pages) and performance test those pages rather than wasting time testing & tuning the least used pages in your application. What are IIS Logs To help with server use and analysis, IIS is integrated with several types of log files. These log file formats provide information on a range of websites and specific statistics, including Internet Protocol (IP) addresses, user information and site visits as well as dates, times and queries. If you are using IIS 7 and above you will find the log files in the following directory C:\Interpub\Logs\ Walkthrough 1. Download and Install Log Parser from the Microsoft download Centre. You should see the LogParser.dll in the install folder, the default install location is C:\Program Files (x86)\Log Parser 2.2. LogParser.dll gives us a library to query the iis log files programmatically. By the way if you haven’t used Log Parser in the past, it is a is a powerful, versatile tool that provides universal query access to text-based data such as log files, XML files and CSV files, as well as key data sources on the Windows operating system such as the Event Log, the Registry, the file system, and Active Directory. More details… 2. Create a new test project in Visual Studio. Let’s call it IISLogsToWebPerfTestDemo.   3.  Delete the UnitTest1.cs class that gets created by default. Right click the solution and add a project of type class library, name it, IISLogsToWebPerfTestEngine. Delete the default class Program.cs that gets created with the project. 4. Under the IISLogsToWebPerfTestEngine project add a reference to Microsoft.VisualStudio.QualityTools.WebTestFramework – c:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\PublicAssemblies\Microsoft.VisualStudio.QualityTools.WebTestFramework.dll LogParser also called MSUtil - c:\users\tarora\documents\visual studio 2010\Projects\IisLogsToWebPerfTest\IisLogsToWebPerfTestEngine\obj\Debug\Interop.MSUtil.dll 5. Right click IISLogsToWebPerfTestEngine project and add a new classes – IISLogReader.cs The IISLogReader class queries the iis logs using the log parser. using System; using System.Collections.Generic; using System.Text; using MSUtil; using LogQuery = MSUtil.LogQueryClassClass; using IISLogInputFormat = MSUtil.COMIISW3CInputContextClassClass; using LogRecordSet = MSUtil.ILogRecordset; using Microsoft.VisualStudio.TestTools.WebTesting; using System.Diagnostics; namespace IisLogsToWebPerfTestEngine { // By making use of log parser it is possible to query the iis log using select queries public class IISLogReader { private string _iisLogPath; public IISLogReader(string iisLogPath) { _iisLogPath = iisLogPath; } public IEnumerable<WebTestRequest> GetRequests() { LogQuery logQuery = new LogQuery(); IISLogInputFormat iisInputFormat = new IISLogInputFormat(); // currently these columns give us suffient information to construct the web test requests string query = @"SELECT s-ip, s-port, cs-method, cs-uri-stem, cs-uri-query FROM " + _iisLogPath; LogRecordSet recordSet = logQuery.Execute(query, iisInputFormat); // Apply a bit of transformation while (!recordSet.atEnd()) { ILogRecord record = recordSet.getRecord(); if (record.getValueEx("cs-method").ToString() == "GET") { string server = record.getValueEx("s-ip").ToString(); string path = record.getValueEx("cs-uri-stem").ToString(); string querystring = record.getValueEx("cs-uri-query").ToString(); StringBuilder urlBuilder = new StringBuilder(); urlBuilder.Append("http://"); urlBuilder.Append(server); urlBuilder.Append(path); if (!String.IsNullOrEmpty(querystring)) { urlBuilder.Append("?"); urlBuilder.Append(querystring); } // You could make substitutions by introducing parameterized web tests. WebTestRequest request = new WebTestRequest(urlBuilder.ToString()); Debug.WriteLine(request.UrlWithQueryString); yield return request; } recordSet.moveNext(); } Console.WriteLine(" That's it! Closing the reader"); recordSet.close(); } } }   6. Connect the dots by adding the project reference ‘IisLogsToWebPerfTestEngine’ to ‘IisLogsToWebPerfTest’. Right click the ‘IisLogsToWebPerfTest’ project and add a new class ‘WebTest1Coded.cs’ The WebTest1Coded.cs inherits from the WebTest class. By overriding the GetRequestMethod we can inject the log files to the IISLogReader class which uses Log parser to query the log file and extract the web requests to generate the web test request which is yielded back for play back when the test is run. namespace IisLogsToWebPerfTest { using System; using System.Collections.Generic; using System.Text; using Microsoft.VisualStudio.TestTools.WebTesting; using Microsoft.VisualStudio.TestTools.WebTesting.Rules; using IisLogsToWebPerfTestEngine; // This class is a coded web performance test implementation, that simply passes // the path of the iis logs to the IisLogReader class which does the heavy // lifting of reading the contents of the log file and converting them to tests. // You could have multiple such classes that inherit from WebTest and implement // GetRequestEnumerator Method and pass differnt log files for different tests. public class WebTest1Coded : WebTest { public WebTest1Coded() { this.PreAuthenticate = true; } public override IEnumerator<WebTestRequest> GetRequestEnumerator() { // substitute the highlighted path with the path of the iis log file IISLogReader reader = new IISLogReader(@"C:\Demo\iisLog1.log"); foreach (WebTestRequest request in reader.GetRequests()) { yield return request; } } } }   7. Its time to fire the test off and see the iis log playback as a web performance test. From the Test menu choose Test View Window you should be able to see the WebTest1Coded test show up. Highlight the test and press Run selection (you can also debug the test in case you face any failures during test execution). 8. Optionally you can create a Load Test by keeping ‘WebTest1Coded’ as the base test. Conclusion You have just helped your testing team, you now have become the coolest developer in your organization! Jokes apart, log parser and web performance test together allow you to save a lot of time by not having to worry about what to test or even worrying about how to record the test. If you haven’t already, download the solution from here. You can take this to the next level by using LogParser to extract the log files as part of an end of day batch to a database. See the usage trends by user this solution over a longer term and have your tests consume the web requests now stored in the database to generate the web performance tests. If you like the post, don’t forget to share … Keep RocKiNg!

    Read the article

  • NUnitAddin

    - by csharp-source.net
    NUnitAddin is a simple addin for VisualStudio 2005 used in association with NUnit framework. The NUnit Addin allows you to run unit tests inside Visual Studio 2005. Features: * Read Visual Studio 2005 files: .sln * Build visual tree from .sln files * Run tests in Visual Studio 2005

    Read the article

  • Has test driven development (TDD) actually benefited a real world project?

    - by James
    I am not new to coding. I have been coding (seriously) for over 15 years now. I have always had some testing for my code. However, over the last few months I have been learning test driven design/development (TDD) using Ruby on Rails. So far, I'm not seeing the benefit. I see some benefit to writing tests for some things, but very few. And while I like the idea of writing the test first, I find I spend substantially more time trying to debug my tests to get them to say what I really mean than I do debugging actual code. This is probably because the test code is often substantially more complicated than the code it tests. I hope this is just inexperience with the available tools (RSpec in this case). I must say though, at this point, the level of frustration mixed with the disappointing lack of performance is beyond unacceptable. So far, the only value I'm seeing from TDD is a growing library of RSpec files that serve as templates for other projects/files. Which is not much more useful, maybe less useful, than the actual project code files. In reading the available literature, I notice that TDD seems to be a massive time sink up front, but pays off in the end. I'm just wondering, are there any real world examples? Does this massive frustration ever pay off in the real world? I really hope I did not miss this question somewhere else on here. I searched, but all the questions/answers are several years old at this point. It was a rare occasion when I found a developer who would say anything bad about TDD, which is why I have spent as much time on this as I have. However, I noticed that nobody seems to point to specific real-world examples. I did read one answer that said the guy debugging the code in 2011 would thank you for have a complete unit testing suite (I think that comment was made in 2008). So, I'm just wondering, after all these years, do we finally have any examples showing the payoff is real? Has anybody actually inherited or gone back to code that was designed/developed with TDD and has a complete set of unit tests and actually felt a payoff? Or did you find that you were spending so much time trying to figure out what the test was testing (and why it was important) that you just tossed out the whole mess and dug into the code?

    Read the article

  • What is the Coded UI feature of VS2010 and VS2012?

    - by TATWORTH
    A question recently arose as to what is coded UI? It is a feature of the ultimate and premium versions of Visual Studio 2012 (and 2010).It is described as "Automate user interface tests to validate application UI"Here are some useful links about it:http://codedui101.blogspot.co.uk/2011/07/what-is-codedui.htmlhttp://msdn.microsoft.com/en-us/vstudio/ee957688.aspxhttp://msdn.microsoft.com/en-us/library/dd286726.aspxhttp://www.microsoft.com/visualstudio/eng/products/comparehttp://www.dotnetcurry.com/ShowArticle.aspx?ID=798http://channel9.msdn.com/Blogs/kmcgrath/Introduction-to-Creating-Coded-UI-Tests-with-Visual-Studio-2010

    Read the article

  • 12.04, and 13.10 slower than xp on Lenovo thinkpad R61e. Any bloatware to remove?

    - by Alex
    My mom's Laptop is running really slow with 12.04 and 13.10 right after installation. ubuntu claims it should run nice and smoothly for the hardware thats on it. Lenovo ThinkPad R61e: CPU - Pentium Dual Core t2370 1.73ghz x 2 Ram - 1GB DDR2 667mhz GPU - intel 965gm x86/mmx/sse2 HDD - 80gb sata i tried hardware tests and they fail right that the very beginning of the testing. it does the same for bootable hardware tests (on a cd or usb) Is there any bloatware that can be removed that common windows users would never use?

    Read the article

  • What is the most appropriate testing method in this scenario?

    - by Daniel Bruce
    I'm writing some Objective-C apps (for OS X/iOS) and I'm currently implementing a service to be shared across them. The service is intended to be fairly self-contained. For the current functionality I'm envisioning there will be only one method that clients will call to do a fairly complicated series of steps both using private methods on the class, and passing data through a bunch of "data mangling classes" to arrive at an end result. The gist of the code is to fetch a log of changes, stored in a service-internal data store, that has occurred since a particular time, simplify the log to only include the last applicable change for each object, attach the serialized values for the affected objects and return this all to the client. My question then is, how do I unit-test this entry point method? Obviously, each class would have thorough unit tests to ensure that their functionality works as expected, but the entry point seems harder to "disconnect" from the rest of the world. I would rather not send in each of these internal classes IoC-style, because they're small and are only made classes to satisfy the single-responsibility principle. I see a couple possibilities: Create a "private" interface header for the tests with methods that call the internal classes and test each of these methods separately. Then, to test the entry point, make a partial mock of the service class with these private methods mocked out and just test that the methods are called with the right arguments. Write a series of fatter tests for the entry point without mocking out anything, testing the entire functionality in one go. This looks, to me, more like "integration testing" and seems brittle, but it does satisfy the "only test via the public interface" principle. Write a factory that returns these internal services and take that in the initializer, then write a factory that returns mocked versions of them to use in tests. This has the downside of making the construction of the service annoying, and leaks internal details to the client. Write a "private" initializer that take these services as extra parameters, use that to provide mocked services, and have the public initializer back-end to this one. This would ensure that the client code still sees the easy/pretty initializer and no internals are leaked. I'm sure there's more ways to solve this problem that I haven't thought of yet, but my question is: what's the most appropriate approach according to unit testing best practices? Especially considering I would prefer to write this test-first, meaning I should preferably only create these services as the code indicates a need for them.

    Read the article

  • OSB unit testing, part 1 by Qualogy

    - by JuergenKress
    First you need to implement the simple bpel process like this : In my current project, I inherited a lot of OSB components that have been developed by (former) team members, but they all lack unit tests. This is a situation I really dislike, since this makes it much harder to refactor or bug-fix the existing code base. So, for all newly created components (and components I have to bug-fix) I strive to add unit tests. Of course, the unit tests will be created using my favourite testing tool: soapUI ! Unit of test The unit test should be created for the service composition, which in OSB terms should be the proxy service combination with its business service. Now, since you do not want to rely on any other services, you should provide mock services for all services invoked from your Component-Under-Test. In a previous article, I wrote about mocking your services in soapUI. While this approach would also be valid here, creating a mock service (and certainly deploying it on a separate WebServer) does violate one of the core principles of unit testing: to make your unit tests as self-contained as possible, i.e. not depending on any external components. In this article, I will show you how to achieve this by simply providing a mock response inside your unit test. Scenario The scenario I implement for testing is a simple currency converter; the external request consists of a from and a to currency, and an amount (in currency from). The service will perform an exchange rate lookup using the WebServiceX CurrencyConverter and return a response to the caller consisting of both the source and target currencies and amounts. For the purpose of unit testing, I will implement a mock response for the exchange rate lookup. Read the complete article here. SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Facebook Wiki Technorati Tags: Qualogy,OSB,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

  • Starting a new Open-source project - 2 - CommonEventLog is available.

    - by TATWORTH
    On this project I needed to provide unit tests both in NUnit and MSTest. I will write about this later.Once done, both projects ran without errors being detected. I loaded up the main project as source to CodePlex. (Resharper was very helpful in that it would run both sets of tests - thank you Jet Brains!) Can't code withoutIn-depth C# code analysis with instant errorand warning highlighting and quick-fixes

    Read the article

  • Continuous integration for Ubuntu Phone?

    - by Klax
    Is there any kind of framework that lets a controlling PC automate the flashing of a connected phone, waiting for the phone to boot and then tell it to download and execute tests from a repository? I know about Autopilot for applications, but I'm more interested in CI of boot loaders, drivers and platform stuff. A related question: Is there a global repository of tests for Ubuntu Phone? Best regards

    Read the article

  • Unit Testing Myths and Practices

    We all understand the value of Unit Testing, but how come so few organisations maintain unit tests for their in-house applications? We can no longer pretend that unit testing is a universal panacea for ensuring less-buggy applications. Instead, we should be prepared to actively justify the use of unit tests, and be more savvy about where in the development cycle the unit test resources should be most effectively used.

    Read the article

  • Oracle Fusion CRM Implementation Bootcamp for EMEA Systems Integrators - Paris July 24-26th

    - by Richard Lefebvre
    To support partner success and increase win potential with Fusion CRM, we are organizing a unique bootcamp on Fusion CRM intended for Oracle EMEA partners on July 24th to 26th. Join us for this outstanding Bootcamp and learn from Oracle Corporation in-depth know-how on Fusion CRM. The official announcement will be forthcoming, yet we wanted you to determine the appropriate candidate to attend this workshop. Further to this we will send the actual invitation to the selected candidate. Due to the limited number of seats, we will be limiting the number of registrations per SI company and will be selecting the participants. If you are interested to have one or more representatives of your company to attend this bootcamp, please send an email to [email protected] by June 18th indicating the name and email address of the participants you would like to nominate, ranked by priority. What will we cover: This Bootcamp presents the fundamental concepts of the Oracle Fusion CRM applications. It introduces you to each functional area of the product, how it is used, and what you need to consider when implementing it for an organization. While we do examine implementation considerations, we do not address the detailed steps of implementation. Instead, we direct you to the relevant resources to learn more. Topics covered: Fusion CRM Introduction Fusion CRM Security Introduction Fusion Functional Setup Manager Introduction Customer Model Introduction Customer Center Introduction Customer Data Management Introduction Marketing & Campaigns Introduction Lead Management Introduction Territory Management Introduction Territory Modeling Introduction with Exercise Opportunity Management Introduction Forecasting Introduction Analytics Introduction CRM For Microsoft Outlook Introduction Customizing with Composers Introduction Roundtable Discussions, and time for hands-on labs (day 2, 3, 4) Next Steps, available resources, ongoing learning path, partner environments, keeping in touch and feedback Bootcamp Goals: Enable a new Fusion CRM implementation team member to: Describe the scope of Oracle Fusion CRM applications Describe the basic security model Describe the customer model Perform common sales and marketing user transactions Access and navigate the Functional Setup Manager Model territories in Fusion CRM using sample business requirements Do necessary planning before implementing the offerings and options Describe the analytics available with the Fusion CRM product Describe the basic page customizations that can be done to meet business requirements Find documentation and other courses to assist in performing setup tasks Expectations: This Bootcamp program should prime the SI organization implementation consultants to attain the basic skills necessary to support a consulting practice in the delivery, scoping, pricing, and planning of your Fusion CRM Implementations. Oracle University will begin to offer additional deep skill training, starting this summer, designed to follow the Introduction Bootcamp. Participants will be expected to participate in labs, exercises, workshops and roundtable discussions with the Oracle Product Managers. Who should attend: This class is designed for your lead CRM Implementation consultants, those who will support your Fusion CRM consulting practice as it grows. These individuals may be members of a centre of excellence, or skills leadership office. The individual who is attending the bootcamp must have prior experience implementing a CRM solution. Intended Audience: Oracle Diamond, Platinum and Gold Level SIs (Top SIs) with specialization in Oracle Applications CRM implementations, with a commitment to achieving Fusion CRM Implementation Specialization. Commitment expressed through an investment in a Center of Excellence/Innovation Center for Fusion CRM Applications. Individuals who will support the implementation practice as it is forming and will deliver Fusion CRM On Premise and Cloud Services implementations. Functional practice leaders, the future Fusion Application Wizards within the SI's organization. This Bootcamp is designed for people who: Will deliver Fusion CRM implementations Have had little or no exposure to Fusion CRM applications Are familiar with at least one other CRM application Have a business analyst level of technical background Prerequisites: Please note, that participants will be asked to take self-service-trainings (video format) and pass the related assessments prior to joining the Bootcamp. Fees: This event is FREE of charge for Oracle partners. When: 24 July – 26 July, 2012 (8:30 - 18:00 each day, including the last day; with recommended but optional evening events on all three days from 18:00 - 20:00 hrs) Where: Paris, France (Location to be defined) Travel: To make your travel hassel free, we kindly suggest you to plan your arrival to Paris on July 23rd and your departure on the 27th. Agenda: The final agenda and registration details will be issued closer to the event date.  

    Read the article

  • Looking for a real-world example illustrating that composition can be superior to inheritance

    - by Job
    I watched a bunch of lectures on Clojure and functional programming by Rich Hickey as well as some of the SICP lectures, and I am sold on many concepts of functional programming. I incorporated some of them into my C# code at a previous job, and luckily it was easy to write C# code in a more functional style. At my new job we use Python and multiple inheritance is all the rage. My co-workers are very smart but they have to produce code fast given the nature of the company. I am learning both the tools and the codebase, but the architecture itself slows me down as well. I have not written the existing class hierarchy (neither would I be able to remember everything about it), and so, when I started adding a fairly small feature, I realized that I had to read a lot of code in the process. At the surface the code is neatly organized and split into small functions/methods and not copy-paste-repetitive, but the flip side of being not repetitive is that there is some magic functionality hidden somewhere in the hierarchy chain that magically glues things together and does work on my behalf, but it is very hard to find and follow. I had to fire up a profiler and run it through several examples and plot the execution graph as well as step through a debugger a few times, search the code for some substring and just read pages at the time. I am pretty sure that once I am done, my resulting code will be short and neatly organized, and yet not very readable. What I write feels declarative, as if I was writing an XML file that drives some other magic engine, except that there is no clear documentation on what the XML should look like and what the engine does except for the existing examples that I can read as well as the source code for the 'engine'. There has got to be a better way. IMO using composition over inheritance can help quite a bit. That way the computation will be linear rather than jumping all over the hierarchy tree. Whenever the functionality does not quite fit into an inheritance model, it will need to be mangled to fit in, or the entire inheritance hierarchy will need to be refactored/rebalanced, sort of like an unbalanced binary tree needs reshuffling from time to time in order to improve the average seek time. As I mentioned before, my co-workers are very smart; they just have been doing things a certain way and probably have an ability to hold a lot of unrelated crap in their head at once. I want to convince them to give composition and functional as opposed to OOP approach a try. To do that, I need to find some very good material. I do not think that a SCIP lecture or one by Rich Hickey will do - I am afraid it will be flagged down as too academic. Then, simple examples of Dog and Frog and AddressBook classes do not really connivence one way or the other - they show how inheritance can be converted to composition but not why it is truly and objectively better. What I am looking for is some real-world example of code that has been written with a lot of inheritance, then hit a wall and re-written in a different style that uses composition. Perhaps there is a blog or a chapter. I am looking for something that can summarize and illustrate the sort of pain that I am going through. I already have been throwing the phrase "composition over inheritance" around, but it was not received as enthusiastically as I had hoped. I do not want to be perceived as a new guy who likes to complain and bash existing code while looking for a perfect approach while not contributing fast enough. At the same time, my gut is convinced that inheritance is often the instrument of evil and I want to show a better way in a near future. Have you stumbled upon any great resources that can help me?

    Read the article

  • The long road to bug-free software

    - by Tony Davis
    The past decade has seen a burgeoning interest in functional programming languages such as Haskell or, in the Microsoft world, F#. Though still on the periphery of mainstream programming, functional programming concepts are gradually seeping into the imperative C# language (for example, Lambda expressions have their root in functional programming). One of the more interesting concepts from functional programming languages is the use of formal methods, the lofty ideal behind which is bug-free software. The idea is that we write a specification that describes exactly how our function (say) should behave. We then prove that our function conforms to it, and in doing so have proved beyond any doubt that it is free from bugs. All programmers already use one form of specification, specifically their programming language's type system. If a value has a specific type then, in a type-safe language, the compiler guarantees that value cannot be an instance of a different type. Many extensions to existing type systems, such as generics in Java and .NET, extend the range of programs that can be type-checked. Unfortunately, type systems can only prevent some bugs. To take a classic problem of retrieving an index value from an array, since the type system doesn't specify the length of the array, the compiler has no way of knowing that a request for the "value of index 4" from an array of only two elements is "unsafe". We restore safety via exception handling, but the ideal type system will prevent us from doing anything that is unsafe in the first place and this is where we start to borrow ideas from a language such as Haskell, with its concept of "dependent types". If the type of an array includes its length, we can ensure that any index accesses into the array are valid. The problem is that we now need to carry around the length of arrays and the values of indices throughout our code so that it can be type-checked. In general, writing the specification to prove a positive property, even for a problem very amenable to specification, such as a simple sorting algorithm, turns out to be very hard and the specification will be different for every program. Extend this to writing a specification for, say, Microsoft Word and we can see that the specification would end up being no simpler, and therefore no less buggy, than the implementation. Fortunately, it is easier to write a specification that proves that a program doesn't have certain, specific and undesirable properties, such as infinite loops or accesses to the wrong bit of memory. If we can write the specifications to prove that a program is immune to such problems, we could reuse them in many places. The problem is the lack of specification "provers" that can do this without a lot of manual intervention (i.e. hints from the programmer). All this might feel a very long way off, but computing power and our understanding of the theory of "provers" advances quickly, and Microsoft is doing some of it already. Via their Terminator research project they have started to prove that their device drivers will always terminate, and in so doing have suddenly eliminated a vast range of possible bugs. This is a huge step forward from saying, "we've tested it lots and it seems fine". What do you think? What might be good targets for specification and verification? SQL could be one: the cost of a bug in SQL Server is quite high given how many important systems rely on it, so there's a good incentive to eliminate bugs, even at high initial cost. [Many thanks to Mike Williamson for guidance and useful conversations during the writing of this piece] Cheers, Tony.

    Read the article

  • The long road to bug-free software

    - by Tony Davis
    The past decade has seen a burgeoning interest in functional programming languages such as Haskell or, in the Microsoft world, F#. Though still on the periphery of mainstream programming, functional programming concepts are gradually seeping into the imperative C# language (for example, Lambda expressions have their root in functional programming). One of the more interesting concepts from functional programming languages is the use of formal methods, the lofty ideal behind which is bug-free software. The idea is that we write a specification that describes exactly how our function (say) should behave. We then prove that our function conforms to it, and in doing so have proved beyond any doubt that it is free from bugs. All programmers already use one form of specification, specifically their programming language's type system. If a value has a specific type then, in a type-safe language, the compiler guarantees that value cannot be an instance of a different type. Many extensions to existing type systems, such as generics in Java and .NET, extend the range of programs that can be type-checked. Unfortunately, type systems can only prevent some bugs. To take a classic problem of retrieving an index value from an array, since the type system doesn't specify the length of the array, the compiler has no way of knowing that a request for the "value of index 4" from an array of only two elements is "unsafe". We restore safety via exception handling, but the ideal type system will prevent us from doing anything that is unsafe in the first place and this is where we start to borrow ideas from a language such as Haskell, with its concept of "dependent types". If the type of an array includes its length, we can ensure that any index accesses into the array are valid. The problem is that we now need to carry around the length of arrays and the values of indices throughout our code so that it can be type-checked. In general, writing the specification to prove a positive property, even for a problem very amenable to specification, such as a simple sorting algorithm, turns out to be very hard and the specification will be different for every program. Extend this to writing a specification for, say, Microsoft Word and we can see that the specification would end up being no simpler, and therefore no less buggy, than the implementation. Fortunately, it is easier to write a specification that proves that a program doesn't have certain, specific and undesirable properties, such as infinite loops or accesses to the wrong bit of memory. If we can write the specifications to prove that a program is immune to such problems, we could reuse them in many places. The problem is the lack of specification "provers" that can do this without a lot of manual intervention (i.e. hints from the programmer). All this might feel a very long way off, but computing power and our understanding of the theory of "provers" advances quickly, and Microsoft is doing some of it already. Via their Terminator research project they have started to prove that their device drivers will always terminate, and in so doing have suddenly eliminated a vast range of possible bugs. This is a huge step forward from saying, "we've tested it lots and it seems fine". What do you think? What might be good targets for specification and verification? SQL could be one: the cost of a bug in SQL Server is quite high given how many important systems rely on it, so there's a good incentive to eliminate bugs, even at high initial cost. [Many thanks to Mike Williamson for guidance and useful conversations during the writing of this piece] Cheers, Tony.

    Read the article

  • What is better in WPF for UI layout, using one Grid, or nested Grids.

    - by Matthijs Wessels
    I am making a UI in WPF, I have a bunch of functional areas and I use a Grid to organize it. Now the Grid that I want is not uniform, as in, some functional area will span multiple cells in the Grid. I was wondering what the best practise is in solving this. Should I create one grid and then for each functional area set it to span multiple cells, or should I split it up into multiple nested Grids. In this image, the leftmost panel (panels separated by the gray bar) is what I want. The middle panel shows one grid where the blue lines are overlapped by a functional area. The rightmost panel shows how I could do it with nested grids. You can see the green grid has one horizontal split. In the bottom cell is the yellow Grid with a vertical split. In side the left cell is the red Grid with again a horizontal split. I was just wondering what is best practise, the middle or the right panel.

    Read the article

  • How to get the related_name of a many-to-many-field?

    - by amann
    I am trying to get the related_name of a many-to-many-field. The m2m-field is located betweeen the models "Group" and "Lection" and is declared in the group-model as following: lections = models.ManyToManyField(Lection, blank=True) The field looks like this: <django.db.models.fields.related.ManyToManyField object at 0x012AD690> The print of field.__dict__ is: {'_choices': [], '_m2m_column_cache': 'group_id', '_m2m_name_cache': 'group', '_m2m_reverse_column_cache': 'lection_id', '_m2m_reverse_name_cache': 'lection', '_unique': False, 'attname': 'lections', 'auto_created': False, 'blank': True, 'column': 'lections', 'creation_counter': 71, 'db_column': None, 'db_index': False, 'db_table': None, 'db_tablespace': '', 'default': <class django.db.models.fields.NOT_PROVIDED at 0x00FC8780>, 'editable': True, 'error_messages': {'blank': <django.utils.functional.__proxy__ object at 0x00FC 7B50>, 'invalid_choice': <django.utils.functional.__proxy__ object at 0x00FC7A50>, 'null': <django.utils.functional.__proxy__ object at 0x00FC7 A70>}, 'help_text': <django.utils.functional.__proxy__ object at 0x012AD6F0>, 'm2m_column_name': <function _curried at 0x012A88F0>, 'm2m_db_table': <function _curried at 0x012A8AF0>, 'm2m_field_name': <function _curried at 0x012A8970>, 'm2m_reverse_field_name': <function _curried at 0x012A89B0>, 'm2m_reverse_name': <function _curried at 0x012A8930>, 'max_length': None, 'name': 'lections', 'null': False, 'primary_key': False, 'rel': <django.db.models.fields.related.ManyToManyRel object at 0x012AD6B0>, 'related': <RelatedObject: mymodel:group related to lections>, 'related_query_name': <function _curried at 0x012A8670>, 'serialize': True, 'unique_for_date': None, 'unique_for_month': None, 'unique_for_year': None, 'validators': [], 'verbose_name': 'lections'} Now the field should be accessed via a lection-instance. So this is done by lection.group_set But i need to access it dynamically, so there is the need to get the related_name attribute from somewhere. Here in the documentation, there is a note that it is possible to access ManyToManyField.related_name, but this doesn't work for my somehow.. Help would be a lot appreciated. Thanks in advance.

    Read the article

  • Comparing Nginx+PHP-FPM to Apache-mod_php

    - by Rushi
    I'm running Drupal and trying to figure out the best stack to serve it. Apache + mod_php or Nginx + PHP-FPM I used ApacheBench (ab) and Siege to test both setups and I'm seeing Apache performing better. This surprises me a little bit since I've heard a lot of good things about Nginx + PHP-FPM. My current Nginx setup is something that is a bit out of the box, and the same goes for PHP-FPM What optimizations I can make to speed up the Nginx + PHP-FPM combo over Apache and mo_php ? In my tests using ab, Apache is outperforming Nginx significantly (higher requets/second and finishing tests much faster) I've googled around a bit, but since I've never using Nginx, PHP-FPM or FastCGI, I don't exactly know where to start PHP v5.2.13, Drupal v6, latest PHP-FPM and Nginx compiled from source. Apache v2.0.63 ApacheBench Nginx + PHP-FPM Server Software: nginx/0.7.67 Server Hostname: test2.com Server Port: 80 Concurrency Level: 25 ---> Time taken for tests: 158.510008 seconds Complete requests: 1000 Failed requests: 0 Write errors: 0 ---> Requests per second: 6.31 [#/sec] (mean) Time per request: 3962.750 [ms] (mean) Time per request: 158.510 [ms] (mean, across all concurrent requests) Transfer rate: 181.38 [Kbytes/sec] received ApacheBench Apache using mod_php Server Software: Apache/2.0.63 Server Hostname: test1.com Server Port: 80 Concurrency Level: 25 --> Time taken for tests: 63.556663 seconds Complete requests: 1000 Failed requests: 0 Write errors: 0 --> Requests per second: 15.73 [#/sec] (mean) Time per request: 1588.917 [ms] (mean) Time per request: 63.557 [ms] (mean, across all concurrent requests) Transfer rate: 103.94 [Kbytes/sec] received

    Read the article

  • SuPHP custom php.ini doesn't get read

    - by Mathieu Dumoulin
    Took me about 4 hours to get a FastCGI + SuPHP running off Ubuntu 11.10 and i'm now happy that it works mighty fine except for ONE big problem. Custom php.ini's don't seem to load. I tried changing some options and then firing off a phpinfo() and nothing changes in the phpinfo() which leads me to think that there is definitely a problem with the loading of the configuration file. <IfModule mod_suphp.c> AddHandler x-httpd-php .php <Location /> SuPHP_AddHandler x-httpd-php </Location> suPHP_ConfigPath /home/mdumoulin/Documents/tests/tests suPHP_Engine on </IfModule> As you can see, i took great care in making sure i wasn't referencing the php.ini file itself but the directory of the vhost. In the php.ini located in "/home/mdumoulin/Documents/tests/tests/php.ini", you can find: [PHP] error_reporting = E_ALL & ~E_DEPRECATED & ~E_NOTICE display_errors = Off And the log in /var/log/suphp/suphp.log doesn't contain anything relevant, (only old errors that occured before this post while i was testing suphp... So i'm stumped there, dunno what more i can do! Anyone got an idea? EDIT: FINALY, got time to work on this, i disabled FCGI and only enabled SuPHP but after restarting i still see "Server API: CGI/FastCGI". Is this what i should be getting or not? I believe that it's normal i get CGI since SUPHP works with a CGI... But i'm not too sure anymore...

    Read the article

  • Company Review: Google Products

    Google, Inc offers an array of products and services to all of its end-users. However their search capabilities are the foundation for Google’s current success and their primary business focus. Currently, Google offers over twenty different search applications that allow users to search the internet for books, maps, videos, images, products and much more. Their product decisions have allowed users demands to be met while focusing on the free based model. This allows users to access Google data free of charge and indirectly gives Google a strong competitive advantage of other competitors along with the accuracy of the search results. According to Google, Inc, they offer the following types of searching capabilities: Alerts Get email updates on the topics of your choice Blog Search Find blogs on your favorite topics  Books Search the full text of books  Custom Search Create a customized search experience for your community  Desktop Search and personalize your computer  Dictionary Search for definitions of words and phrases Directory Search the web, organized by topic or category Earth Explore the world from your computer Finance Business info, news and interactive charts GOOG-411 Find and connect for free with businesses from your phone  Images Search for images on the web Maps View maps and directions News Search thousands of news stories Patent Search Search the full text of US Patents Product Search Search for stuff to buy Scholar Search scholarly papers Toolbar Add a search box to your browser Trends Explore past and present search trends Videos Search for videos on the web Web Search Search billions of web pages Web Search Features Find movies, music, stocks, books and more mapping Google’s free based business model is only one way it differentiates itself from its competition. There is also a strong focus on the accuracy of search results and the speed in which they are returned to the end-user. Quality function deployment (QFD) is a structured method used to help connect user needs to the design features of a project proposed to address those needs. This method is particularly useful in accounting for needs that are not easily articulated or precisely defined according to the U. S. Department of Transportation Federal Highway Administration. Due to the fact that QFD is so customer driven Google is always in a constant state of change in attempt to reengineer its search algorithms, and other dependant systems so that end-users requirements are constantly being met. Value engineering is a key example of this, Google is constantly trying to improve all aspects of its products, improve system maintainability, and system interoperability. Bridgefield Group defines value engineering as an organized methodology that identifies and selects the lowest lifecycle cost options in design, materials and processes that achieves the desired level of performance, reliability and customer satisfaction. In addition, it seeks to remove unnecessary costs in the above areas and is often a joint effort with cross-functional internal teams and relevant suppliers. Common issues that appear when developing large scale systems like Google’s search applications include modular design of a product and/or service and providing accurate value analysis. A design approach that adheres to four fundamental tenets of cohesiveness, encapsulation, self-containment, and high binding to design a system component as an independently operable unit subject to change is how the Open System Joint Task Force defines modular design. More specifically M. S. Schmaltz defines modular software design as having a large collection of statements strung together in one partition of in-line code; we segment or divide the statements into logical groups called modules. Each module performs one or two tasks, and then passes control to another module. By breaking up the code into "bite-sized chunks", so to speak, we are able to better control the flow of data and control. This is especially true in large software systems. Value analysis is a process to evaluate products and services based on effectiveness, safety, and cost. Value analysis involves assessing the quality as well as the cost of a product or service as defined by the Healthcare Financial Management Association.  “Operations Management deals with the design and management of products, processes, services and supply chains. It considers the acquisition, development, and utilization of resources that firms need to deliver the goods and services their clients want.” (MIT,2010) Google, Inc encourages an open environment between all employees, also known as Googlers. This is reinforced by a cross-section team or cross-functional teams comprised from multiple departments assigned to every project so that every department like marketing, finance, and quality assurance has input on every project. In addition, Google is known for their openness to new ideas regardless of the status or seniority of an employee. In fact, Google allows for 20% of an employee’s time can be devoted to developing new ideas and/or pet projects. HumTech.com defines a cross-functional team as a collection of people with varied levels of skills and experience brought together to accomplish a task. As the name implies, Cross-Functional Team members come from different organizational units. Cross-Functional Teams may be permanent or ad hoc. Google’s search application product strategy primarily focuses on mass customization. This is allows Google to create a base search application and allows results to be returned to the end-users quickly based on specific parameters and search settings. In addition, they also store the data that is returned in case other desire the same results based on other end-users supplying the same customized settings. This allows Google to appear to render search results in virtually real-time to the user while allowing for complete customization of the searching criteria. Greg Vogl, a professor at Uganda Martyrs University, defines mass customization as when a business gives its customers the opportunity to tailor its products or services to the customer's specifications. The IT staff at Google play a key role in ensuring that the search application’s product strategy is maintained simply because the IT staff designs, develops, and maintains all of their proprietary applications. In fact, they also maintain all network infrastructure to ensure that it is available to all end-users. References: http://www.google.com/intl/en/options/ http://ops.fhwa.dot.gov/freight/publications/ftat_user_guide/sec5.htm http://www.bridgefieldgroup.com/bridgefieldgroup/glos9.htm#V http://www.acq.osd.mil/osjtf/termsdef.html http://www.cise.ufl.edu/~mssz/Pascal-CGS2462/prog-dsn.html http://www.hfma.org/publications/business_caring_newsletter/exclusives/Supply+and+Inventory+Terms+Defined.htm http://mitsloan.mit.edu/omg/om-definition.php http://www.humtech.com/opm/grtl/ols/ols3.cfm http://www.gregvogl.net/courses/mis1/glossary.htm

    Read the article

  • BI Applications overview

    - by sv744
    Welcome to Oracle BI applications blog! This blog will talk about various features, general roadmap, description of functionality and implementation steps related to Oracle BI applications. In the first post we start with an overview of the BI apps and will delve deeper into some of the topics below in the upcoming weeks and months. If there are other topics you would like us to talk about, pl feel free to provide feedback on that. The Oracle BI applications are a set of pre-built applications that enable pervasive BI by providing role-based insight for each functional area, including sales, service, marketing, contact center, finance, supplier/supply chain, HR/workforce, and executive management. For example, Sales Analytics includes role-based applications for sales executives, sales management, as well as front-line sales reps, each of whom have different needs. The applications integrate and transform data from a range of enterprise sources—including Siebel, Oracle, PeopleSoft, SAP, and others—into actionable intelligence for each business function and user role. This blog  starts with the key benefits and characteristics of Oracle BI applications. In a series of subsequent blogs, each of these points will be explained in detail. Why BI apps? Demonstrate the value of BI to a business user, show reports / dashboards / model that can answer their business questions as part of the sales cycle. Demonstrate technical feasibility of BI project and significantly lower risk and improve success Build Vs Buy benefit Don’t have to start with a blank sheet of paper. Help consolidate disparate systems Data integration in M&A situations Insulate BI consumers from changes in the OLTP Present OLTP data and highlight issues of poor data / missing data – and improve data quality and accuracy Prebuilt Integrations BI apps support prebuilt integrations against leading ERP sources: Fusion Applications, E- Business Suite, Peoplesoft, JD Edwards, Siebel, SAP Co-developed with inputs from functional experts in BI and Applications teams. Out of the box dimensional model to source model mappings Multi source and Multi Instance support Rich Data Model    BI apps have a very rich dimensionsal data model built over 10 years that incorporates best practises from BI modeling perspective as well as reflect the source system complexities  Thanks for reading a long post, and be on the lookout for future posts.  We will look forward to your valuable feedback on these topics as well as suggestions on what other topics would you like us to cover. I Conformed dimensional model across all business subject areas allows cross functional reporting, e.g. customer / supplier 360 Over 360 fact tables across 7 product areas CRM – 145, SCM – 47, Financials – 28, Procurement – 20, HCM – 27, Projects – 18, Campus Solutions – 21, PLM - 56 Supported by 300 physical dimensions Support for extensive calendars; Gregorian, enterprise and ledger based Conformed data model and metrics for real time vs warehouse based reporting  Multi-tenant enabled Extensive BI related transformations BI apps ETL and data integration support various transformations required for dimensional models and reporting requirements. All these have been distilled into common patterns and abstracted logic which can be readily reused across different modules Slowly Changing Dimension support Hierarchy flattening support Row / Column Hybrid Hierarchy Flattening As Is vs. As Was hierarchy support Currency Conversion :-  Support for 3 corporate, CRM, ledger and transaction currencies UOM conversion Internationalization / Localization Dynamic Data translations Code standardization (Domains) Historical Snapshots Cycle and process lifecycle computations Balance Facts Equalization of GL accounting chartfields/segments Standardized values for categorizing GL accounts Reconciliation between GL and subledgers to track accounted/transferred/posted transactions to GL Materialization of data only available through costly and complex APIs e.g. Fusion Payroll, EBS / Fusion Accruals Complex event Interpretation of source data – E.g. o    What constitutes a transfer o    Deriving supervisors via position hierarchy o    Deriving primary assignment in PSFT o    Categorizing and transposition to measures of Payroll Balances to specific metrics to support side by side comparison of measures of for example Fixed Salary, Variable Salary, Tax, Bonus, Overtime Payments. o    Counting of Events – E.g. converting events to fact counters so that for example the number of hires can easily be added up and compared alongside the total transfers and terminations. Multi pass processing of multiple sources e.g. headcount, salary, promotion, performance to allow side to side comparison. Adding value to data to aid analysis through banding, additional domain classifications and groupings to allow higher level analytical reporting and data discovery Calculation of complex measures examples: o    COGs, DSO, DPO, Inventory turns  etc o    Transfers within a Hierarchy or out of / into a hierarchy relative to view point in hierarchy. Configurability and Extensibility support  BI apps offer support for extensibility for various entities as automated extensibility or part of extension methodology Key Flex fields and Descriptive Flex support  Extensible attribute support (JDE)  Conformed Domains ETL Architecture BI apps offer a modular adapter architecture which allows support of multiple product lines into a single conformed model Multi Source Multi Technology Orchestration – creates load plan taking into account task dependencies and customers deployment to generate a plan based on a customers of multiple complex etl tasks Plan optimization allowing parallel ETL tasks Oracle: Bit map indexes and partition management High availability support    Follow the sun support. TCO BI apps support several utilities / capabilities that help with overall total cost of ownership and ensure a rapid implementation Improved cost of ownership – lower cost to deploy On-going support for new versions of the source application Task based setups flows Data Lineage Functional setup performed in Web UI by Functional person Configuration Test to Production support Security BI apps support both data and object security enabling implementations to quickly configure the application as per the reporting security needs Fine grain object security at report / dashboard and presentation catalog level Data Security integration with source systems  Extensible to support external data security rules Extensive Set of KPIs Over 7000 base and derived metrics across all modules Time series calculations (YoY, % growth etc) Common Currency and UOM reporting Cross subject area KPIs (analyzing HR vs GL data, drill from GL to AP/AR, etc) Prebuilt reports and dashboards 3000+ prebuilt reports supporting a large number of industries Hundreds of role based dashboards Dynamic currency conversion at dashboard level Highly tuned Performance The BI apps have been tuned over the years for both a very performant ETL and dashboard performance. The applications use best practises and advanced database features to enable the best possible performance. Optimized data model for BI and analytic queries Prebuilt aggregates& the ability for customers to create their own aggregates easily on warehouse facts allows for scalable end user performance Incremental extracts and loads Incremental Aggregate build Automatic table index and statistics management Parallel ETL loads Source system deletes handling Low latency extract with Golden Gate Micro ETL support Bitmap Indexes Partitioning support Modularized deployment, start small and add other subject areas seamlessly Source Specfic Staging and Real Time Schema Support for source specific operational reporting schema for EBS, PSFT, Siebel and JDE Application Integrations The BI apps also allow for integration with source systems as well as other applications that provide value add through BI and enable BI consumption during operational decision making Embedded dashboards for Fusion, EBS and Siebel applications Action Link support Marketing Segmentation Sales Predictor Dashboard Territory Management External Integrations The BI apps data integration choices include support for loading extenral data External data enrichment choices : UNSPSC, Item class etc. Extensible Spend Classification Broad Deployment Choices Exalytics support Databases :  Oracle, Exadata, Teradata, DB2, MSSQL ETL tool of choice : ODI (coming), Informatica Extensible and Customizable Extensible architecture and Methodology to add custom and external content Upgradable across releases

    Read the article

< Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >