Search Results

Search found 98173 results on 3927 pages for 'maintaining old code'.

Page 643/3927 | < Previous Page | 639 640 641 642 643 644 645 646 647 648 649 650  | Next Page >

  • Are there plans for a progress indicator?

    - by Bou
    Status menus seem to be intended, among other things, to streamline indications. Some of these indications are not confined to the old Notification Area: others can be found on their own windows and indicate running processes, such as Nautilus copying some files, Firefox performing downloads or Brasero burning a DVD. I have seen a series of mockups showcasing mockups for a progress indicator: I would like to know if there are any actual plans to create a real progress indicator to house this type of indications.

    Read the article

  • Google I/O 2012 - Android Design for Success

    Google I/O 2012 - Android Design for Success Rachel Garb, Jens Nagel, Nate Streu, Matias Duarte You have a great idea for an Android app. You want it to stand out among hundreds of thousands. You want your users to love it and tell everyone they know. The Android User Experience team is here to help. We'll talk about the Android Design guide and other tricks of the trade for creating apps that delight users and help them accomplish their goals. No design background is required. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 46 5 ratings Time: 01:03:04 More in Science & Technology

    Read the article

  • Online ALTER TABLE in MySQL 5.6

    - by Marko Mäkelä
    This is the low-level view of data dictionary language (DDL) operations in the InnoDB storage engine in MySQL 5.6. John Russell gave a more high-level view in his blog post April 2012 Labs Release – Online DDL Improvements. MySQL before the InnoDB Plugin Traditionally, the MySQL storage engine interface has taken a minimalistic approach to data definition language. The only natively supported operations were CREATE TABLE, DROP TABLE and RENAME TABLE. Consider the following example: CREATE TABLE t(a INT); INSERT INTO t VALUES (1),(2),(3); CREATE INDEX a ON t(a); DROP TABLE t; The CREATE INDEX statement would be executed roughly as follows: CREATE TABLE temp(a INT, INDEX(a)); INSERT INTO temp SELECT * FROM t; RENAME TABLE t TO temp2; RENAME TABLE temp TO t; DROP TABLE temp2; You could imagine that the database could crash when copying all rows from the original table to the new one. For example, it could run out of file space. Then, on restart, InnoDB would roll back the huge INSERT transaction. To fix things a little, a hack was added to ha_innobase::write_row for committing the transaction every 10,000 rows. Still, it was frustrating that even a simple DROP INDEX would make the table unavailable for modifications for a long time. Fast Index Creation in the InnoDB Plugin of MySQL 5.1 MySQL 5.1 introduced a new interface for CREATE INDEX and DROP INDEX. The old table-copying approach can still be forced by SET old_alter_table=0. This interface is used in MySQL 5.5 and in the InnoDB Plugin for MySQL 5.1. Apart from the ability to do a quick DROP INDEX, the main advantage is that InnoDB will execute a merge-sort algorithm before inserting the index records into each index that is being created. This should speed up the insert into the secondary index B-trees and potentially result in a better B-tree fill factor. The 5.1 ALTER TABLE interface was not perfect. For example, DROP FOREIGN KEY still invoked the table copy. Renaming columns could conflict with InnoDB foreign key constraints. Combining ADD KEY and DROP KEY in ALTER TABLE was problematic and not atomic inside the storage engine. The ALTER TABLE interface in MySQL 5.6 The ALTER TABLE storage engine interface was completely rewritten in MySQL 5.6. Instead of introducing a method call for every conceivable operation, MySQL 5.6 introduced a handful of methods, and data structures that keep track of the requested changes. In MySQL 5.6, online ALTER TABLE operation can be requested by specifying LOCK=NONE. Also LOCK=SHARED and LOCK=EXCLUSIVE are available. The old-style table copying can be requested by ALGORITHM=COPY. That one will require at least LOCK=SHARED. From the InnoDB point of view, anything that is possible with LOCK=EXCLUSIVE is also possible with LOCK=SHARED. Most ALGORITHM=INPLACE operations inside InnoDB can be executed online (LOCK=NONE). InnoDB will always require an exclusive table lock in two phases of the operation. The execution phases are tied to a number of methods: handler::check_if_supported_inplace_alter Checks if the storage engine can perform all requested operations, and if so, what kind of locking is needed. handler::prepare_inplace_alter_table InnoDB uses this method to set up the data dictionary cache for upcoming CREATE INDEX operation. We need stubs for the new indexes, so that we can keep track of changes to the table during online index creation. Also, crash recovery would drop any indexes that were incomplete at the time of the crash. handler::inplace_alter_table In InnoDB, this method is used for creating secondary indexes or for rebuilding the table. This is the ‘main’ phase that can be executed online (with concurrent writes to the table). handler::commit_inplace_alter_table This is where the operation is committed or rolled back. Here, InnoDB would drop any indexes, rename any columns, drop or add foreign keys, and finalize a table rebuild or index creation. It would also discard any logs that were set up for online index creation or table rebuild. The prepare and commit phases require an exclusive lock, blocking all access to the table. If MySQL times out while upgrading the table meta-data lock for the commit phase, it will roll back the ALTER TABLE operation. In MySQL 5.6, data definition language operations are still not fully atomic, because the data dictionary is split. Part of it is inside InnoDB data dictionary tables. Part of the information is only available in the *.frm file, which is not covered by any crash recovery log. But, there is a single commit phase inside the storage engine. Online Secondary Index Creation It may occur that an index needs to be created on a new column to speed up queries. But, it may be unacceptable to block modifications on the table while creating the index. It turns out that it is conceptually not so hard to support online index creation. All we need is some more execution phases: Set up a stub for the index, for logging changes. Scan the table for index records. Sort the index records. Bulk load the index records. Apply the logged changes. Replace the stub with the actual index. Threads that modify the table will log the operations to the logs of each index that is being created. Errors, such as log overflow or uniqueness violations, will only be flagged by the ALTER TABLE thread. The log is conceptually similar to the InnoDB change buffer. The bulk load of index records will bypass record locking. We still generate redo log for writing the index pages. It would suffice to log page allocations only, and to flush the index pages from the buffer pool to the file system upon completion. Native ALTER TABLE Starting with MySQL 5.6, InnoDB supports most ALTER TABLE operations natively. The notable exceptions are changes to the column type, ADD FOREIGN KEY except when foreign_key_checks=0, and changes to tables that contain FULLTEXT indexes. The keyword ALGORITHM=INPLACE is somewhat misleading, because certain operations cannot be performed in-place. For example, changing the ROW_FORMAT of a table requires a rebuild. Online operation (LOCK=NONE) is not allowed in the following cases: when adding an AUTO_INCREMENT column, when the table contains FULLTEXT indexes or a hidden FTS_DOC_ID column, or when there are FOREIGN KEY constraints referring to the table, with ON…CASCADE or ON…SET NULL option. The FOREIGN KEY limitations are needed, because MySQL does not acquire meta-data locks on the child or parent tables when executing SQL statements. Theoretically, InnoDB could support operations like ADD COLUMN and DROP COLUMN in-place, by lazily converting the table to a newer format. This would require that the data dictionary keep multiple versions of the table definition. For simplicity, we will copy the entire table, even for DROP COLUMN. The bulk copying of the table will bypass record locking and undo logging. For facilitating online operation, a temporary log will be associated with the clustered index of table. Threads that modify the table will also write the changes to the log. When altering the table, we skip all records that have been marked for deletion. In this way, we can simply discard any undo log records that were not yet purged from the original table. Off-page columns, or BLOBs, are an important consideration. We suspend the purge of delete-marked records if it would free any off-page columns from the old table. This is because the BLOBs can be needed when applying changes from the log. We have special logging for handling the ROLLBACK of an INSERT that inserted new off-page columns. This is because the columns will be freed at rollback.

    Read the article

  • parallel_for_each from amp.h – part 1

    - by Daniel Moth
    This posts assumes that you've read my other C++ AMP posts on index<N> and extent<N>, as well as about the restrict modifier. It also assumes you are familiar with C++ lambdas (if not, follow my links to C++ documentation). Basic structure and parameters Now we are ready for part 1 of the description of the new overload for the concurrency::parallel_for_each function. The basic new parallel_for_each method signature returns void and accepts two parameters: a grid<N> (think of it as an alias to extent) a restrict(direct3d) lambda, whose signature is such that it returns void and accepts an index of the same rank as the grid So it looks something like this (with generous returns for more palatable formatting) assuming we are dealing with a 2-dimensional space: // some_code_A parallel_for_each( g, // g is of type grid<2> [ ](index<2> idx) restrict(direct3d) { // kernel code } ); // some_code_B The parallel_for_each will execute the body of the lambda (which must have the restrict modifier), on the GPU. We also call the lambda body the "kernel". The kernel will be executed multiple times, once per scheduled GPU thread. The only difference in each execution is the value of the index object (aka as the GPU thread ID in this context) that gets passed to your kernel code. The number of GPU threads (and the values of each index) is determined by the grid object you pass, as described next. You know that grid is simply a wrapper on extent. In this context, one way to think about it is that the extent generates a number of index objects. So for the example above, if your grid was setup by some_code_A as follows: extent<2> e(2,3); grid<2> g(e); ...then given that: e.size()==6, e[0]==2, and e[1]=3 ...the six index<2> objects it generates (and hence the values that your lambda would receive) are:    (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) So what the above means is that the lambda body with the algorithm that you wrote will get executed 6 times and the index<2> object you receive each time will have one of the values just listed above (of course, each one will only appear once, the order is indeterminate, and they are likely to call your code at the same exact time). Obviously, in real GPU programming, you'd typically be scheduling thousands if not millions of threads, not just 6. If you've been following along you should be thinking: "that is all fine and makes sense, but what can I do in the kernel since I passed nothing else meaningful to it, and it is not returning any values out to me?" Passing data in and out It is a good question, and in data parallel algorithms indeed you typically want to pass some data in, perform some operation, and then typically return some results out. The way you pass data into the kernel, is by capturing variables in the lambda (again, if you are not familiar with them, follow the links about C++ lambdas), and the way you use data after the kernel is done executing is simply by using those same variables. In the example above, the lambda was written in a fairly useless way with an empty capture list: [ ](index<2> idx) restrict(direct3d), where the empty square brackets means that no variables were captured. If instead I write it like this [&](index<2> idx) restrict(direct3d), then all variables in the some_code_A region are made available to the lambda by reference, but as soon as I try to use any of those variables in the lambda, I will receive a compiler error. This has to do with one of the direct3d restrictions, where only one type can be capture by reference: objects of the new concurrency::array class that I'll introduce in the next post (suffice for now to think of it as a container of data). If I write the lambda line like this [=](index<2> idx) restrict(direct3d), all variables in the some_code_A region are made available to the lambda by value. This works for some types (e.g. an integer), but not for all, as per the restrictions for direct3d. In particular, no useful data classes work except for one new type we introduce with C++ AMP: objects of the new concurrency::array_view class, that I'll introduce in the post after next. Also note that if you capture some variable by value, you could use it as input to your algorithm, but you wouldn’t be able to observe changes to it after the parallel_for_each call (e.g. in some_code_B region since it was passed by value) – the exception to this rule is the array_view since (as we'll see in a future post) it is a wrapper for data, not a container. Finally, for completeness, you can write your lambda, e.g. like this [av, &ar](index<2> idx) restrict(direct3d) where av is a variable of type array_view and ar is a variable of type array - the point being you can be very specific about what variables you capture and how. So it looks like from a large data perspective you can only capture array and array_view objects in the lambda (that is how you pass data to your kernel) and then use the many threads that call your code (each with a unique index) to perform some operation. You can also capture some limited types by value, as input only. When the last thread completes execution of your lambda, the data in the array_view or array are ready to be used in the some_code_B region. We'll talk more about all this in future posts… (a)synchronous Please note that the parallel_for_each executes as if synchronous to the calling code, but in reality, it is asynchronous. I.e. once the parallel_for_each call is made and the kernel has been passed to the runtime, the some_code_B region continues to execute immediately by the CPU thread, while in parallel the kernel is executed by the GPU threads. However, if you try to access the (array or array_view) data that you captured in the lambda in the some_code_B region, your code will block until the results become available. Hence the correct statement: the parallel_for_each is as-if synchronous in terms of visible side-effects, but asynchronous in reality.   That's all for now, we'll revisit the parallel_for_each description, once we introduce properly array and array_view – coming next. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Google I/O 2012 - Writing Polished Apps that have Deep Integration into the Google Drive UI

    Google I/O 2012 - Writing Polished Apps that have Deep Integration into the Google Drive UI Mike Procopio, Steve Bazyl We'll go through how to implement complete Drive apps. This is not an introduction to Drive apps, but rather how to build your product into Google Drive, and ensure that the experience is seamless for a user. We will also discuss how to effectively distribute your app in the Chrome Web Store. The example app built in this talk will demonstrate an example use case, but otherwise be production-ready. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 829 5 ratings Time: 50:59 More in Science & Technology

    Read the article

  • Google I/O 2012 - YouTube API + Cloud Rendering = Happy Mobile Gamers

    Google I/O 2012 - YouTube API + Cloud Rendering = Happy Mobile Gamers Jarek Wilkiewicz, Danny Hermes YouTube is one of the top destinations for gamers. Many console developers already incorporate video recording and uploading directly into their titles, but uploading to YouTube from a mobile game presents a unique set of challenges. Come and learn how the YouTube API combined with cloud computing can help enable video uploads in your mobile game. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 100 0 ratings Time: 57:05 More in Science & Technology

    Read the article

  • How do I install Myunity on 12.10?

    - by Brenton Horne
    Basically as is the title how do you install Myunity on 12.10. I've tried adding the repository ppa:myunity/ppa and doing: sudo add-apt-repository ppa:myunity/ppa sudo apt-get update sudo apt-get install myunity At which point I got the error: W: Failed to fetch http://ppa.launchpad.net/myunity/ppa/ubuntu/dists/quantal/main/binary-i386/Packages 404 Not Found E: Some index files failed to download. They have been ignored, or old ones used instead.

    Read the article

  • GDL Presents: Creative Sandbox | Geo API

    GDL Presents: Creative Sandbox | Geo API Tune in to hear about two cool, innovative campaigns that use the Geo API, Nature Valley Trail View and Band of Bridges, from the core creative teams at McCann Erickson NY, Goodby Silverstein & Partners and Famous Interactive in conversation with a Google Maps product expert. They'll talk about how they pushed the possibilities of the Geo API - and will inspire you to do the same. From: GoogleDevelopers Views: 0 0 ratings Time: 01:00:00 More in Science & Technology

    Read the article

  • C#/.NET Little Wonders: Interlocked Read() and Exchange()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Last time we discussed the Interlocked class and its Add(), Increment(), and Decrement() methods which are all useful for updating a value atomically by adding (or subtracting).  However, this begs the question of how do we set and read those values atomically as well? Read() – Read a value atomically Let’s begin by examining the following code: 1: public class Incrementor 2: { 3: private long _value = 0; 4:  5: public long Value { get { return _value; } } 6:  7: public void Increment() 8: { 9: Interlocked.Increment(ref _value); 10: } 11: } 12:  It uses an interlocked increment, as we discuss in my previous post (here), so we know that the increment will be thread-safe.  But, to realize what’s potentially wrong we have to know a bit about how atomic reads are in 32 bit and 64 bit .NET environments. When you are dealing with an item smaller or equal to the system word size (such as an int on a 32 bit system or a long on a 64 bit system) then the read is generally atomic, because it can grab all of the bits needed at once.  However, when dealing with something larger than the system word size (reading a long on a 32 bit system for example), it cannot grab the whole value at once, which can lead to some problems since this read isn’t atomic. For example, this means that on a 32 bit system we may read one half of the long before another thread increments the value, and the other half of it after the increment.  To protect us from reading an invalid value in this manner, we can do an Interlocked.Read() to force the read to be atomic (of course, you’d want to make sure any writes or increments are atomic also): 1: public class Incrementor 2: { 3: private long _value = 0; 4:  5: public long Value 6: { 7: get { return Interlocked.Read(ref _value); } 8: } 9:  10: public void Increment() 11: { 12: Interlocked.Increment(ref _value); 13: } 14: } Now we are guaranteed that we will read the 64 bit value atomically on a 32 bit system, thus ensuring our thread safety (assuming all other reads, writes, increments, etc. are likewise protected).  Note that as stated before, and according to the MSDN (here), it isn’t strictly necessary to use Interlocked.Read() for reading 64 bit values on 64 bit systems, but for those still working in 32 bit environments, it comes in handy when dealing with long atomically. Exchange() – Exchanges two values atomically Exchange() lets us store a new value in the given location (the ref parameter) and return the old value as a result. So just as Read() allows us to read atomically, one use of Exchange() is to write values atomically.  For example, if we wanted to add a Reset() method to our Incrementor, we could do something like this: 1: public void Reset() 2: { 3: _value = 0; 4: } But the assignment wouldn’t be atomic on 32 bit systems, since the word size is 32 bits and the variable is a long (64 bits).  Thus our assignment could have only set half the value when a threaded read or increment happens, which would put us in a bad state. So instead, we could write Reset() like this: 1: public void Reset() 2: { 3: Interlocked.Exchange(ref _value, 0); 4: } And we’d be safe again on a 32 bit system. But this isn’t the only reason Exchange() is valuable.  The key comes in realizing that Exchange() doesn’t just set a new value, it returns the old as well in an atomic step.  Hence the name “exchange”: you are swapping the value to set with the stored value. So why would we want to do this?  Well, anytime you want to set a value and take action based on the previous value.  An example of this might be a scheme where you have several tasks, and during every so often, each of the tasks may nominate themselves to do some administrative chore.  Perhaps you don’t want to make this thread dedicated for whatever reason, but want to be robust enough to let any of the threads that isn’t currently occupied nominate itself for the job.  An easy and lightweight way to do this would be to have a long representing whether someone has acquired the “election” or not.  So a 0 would indicate no one has been elected and 1 would indicate someone has been elected. We could then base our nomination strategy as follows: every so often, a thread will attempt an Interlocked.Exchange() on the long and with a value of 1.  The first thread to do so will set it to a 1 and return back the old value of 0.  We can use this to show that they were the first to nominate and be chosen are thus “in charge”.  Anyone who nominates after that will attempt the same Exchange() but will get back a value of 1, which indicates that someone already had set it to a 1 before them, thus they are not elected. Then, the only other step we need take is to remember to release the election flag once the elected thread accomplishes its task, which we’d do by setting the value back to 0.  In this way, the next thread to nominate with Exchange() will get back the 0 letting them know they are the new elected nominee. Such code might look like this: 1: public class Nominator 2: { 3: private long _nomination = 0; 4: public bool Elect() 5: { 6: return Interlocked.Exchange(ref _nomination, 1) == 0; 7: } 8: public bool Release() 9: { 10: return Interlocked.Exchange(ref _nomination, 0) == 1; 11: } 12: } There’s many ways to do this, of course, but you get the idea.  Running 5 threads doing some “sleep” work might look like this: 1: var nominator = new Nominator(); 2: var random = new Random(); 3: Parallel.For(0, 5, i => 4: { 5:  6: for (int j = 0; j < _iterations; ++j) 7: { 8: if (nominator.Elect()) 9: { 10: // elected 11: Console.WriteLine("Elected nominee " + i); 12: Thread.Sleep(random.Next(100, 5000)); 13: nominator.Release(); 14: } 15: else 16: { 17: // not elected 18: Console.WriteLine("Did not elect nominee " + i); 19: } 20: // sleep before check again 21: Thread.Sleep(1000); 22: } 23: }); And would spit out results like: 1: Elected nominee 0 2: Did not elect nominee 2 3: Did not elect nominee 1 4: Did not elect nominee 4 5: Did not elect nominee 3 6: Did not elect nominee 3 7: Did not elect nominee 1 8: Did not elect nominee 2 9: Did not elect nominee 4 10: Elected nominee 3 11: Did not elect nominee 2 12: Did not elect nominee 1 13: Did not elect nominee 4 14: Elected nominee 0 15: Did not elect nominee 2 16: Did not elect nominee 4 17: ... Another nice thing about the Interlocked.Exchange() is it can be used to thread-safely set pretty much anything 64 bits or less in size including references, pointers (in unsafe mode), floats, doubles, etc.  Summary So, now we’ve seen two more things we can do with Interlocked: reading and exchanging a value atomically.  Read() and Exchange() are especially valuable for reading/writing 64 bit values atomically in a 32 bit system.  Exchange() has value even beyond simply atomic writes by using the Exchange() to your advantage, since it reads and set the value atomically, which allows you to do lightweight nomination systems. There’s still a few more goodies in the Interlocked class which we’ll explore next time! Technorati Tags: C#,CSharp,.NET,Little Wonders,Interlocked

    Read the article

  • Can't install Ubuntu one

    - by Yehonatan Tsirolnik
    While trying to install Ubuntu one it throwes me this error - W:Failed to fetch http://ppa.launchpad.net/rabbitvcs/ppa/ubuntu/dists/DISTIBUTION/main/binary-amd64/PAckages 404 Not Found, W:Failed to fetch http://ppa.launchpad.net/rabbitvcs/ppa/ubuntu/dists/DISTRIBUTION/main/binary-i386/Packages 404 Not Found, E:Some index files failed to download. They have been ignored, or old ones used instead. and I can't install it Thanks.

    Read the article

  • Google I/O 2012 - Playing with Patterns

    Google I/O 2012 - Playing with Patterns "Marco Paglia Best-in-class application designers and developers will talk about their experience in developing for Android, showing screenshots from their app, exploring the challenges they faced, and offering creative solutions congruent with the Android Design guide. Guests will be invited to show examples of visual and interaction patterns in their application that manage to keep it simultaneously consistent and personal. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 1 0 ratings Time: 02:13:20 More in Science & Technology

    Read the article

  • NetBeans IDE 7.3 Knows Null

    - by Geertjan
    What's the difference between these two methods, "test1" and "test2"? public int test1(String str) {     return str.length(); } public int test2(String str) {     if (str == null) {         System.err.println("Passed null!.");         //forgotten return;     }     return str.length(); } The difference, or at least, the difference that is relevant for this blog entry, is that whoever wrote "test2" apparently thinks that the variable "str" may be null, though did not provide a null check. In NetBeans IDE 7.3, you see this hint for "test2", but no hint for "test1", since in that case we don't know anything about the developer's intention for the variable and providing a hint in that case would flood the source code with too many false positives:  Annotations are supported in understanding how a piece of code is intended to be used. If method return types use @Nullable, @NullAllowed, @CheckForNull, the value is considered to be "strongly possible to be null", as well as if the variable is tested to be null, as shown above. When using @NotNull, @NonNull, @Nonnull, the value is considered to be non-null. (The exact FQNs of the annotations are ignored, only simple names are checked.) Here are examples showing where the hints are displayed for the non-null hints (the "strongly possible to be null" hints are not shown below, though you can see one of them in the screenshot above), together with a comment showing what is shown when you hover over the hint: There isn't a "one size fits all" refactoring for these various instances relating to null checks, hence you can't do an automated refactoring across your code base via tools in NetBeans IDE, as shown yesterday for class member reordering across code bases. However, you can, instead, go to Source | Inspect and then do a scan throughout a scope (e.g., current file/package/project or combinations of these or all open projects) for class elements that the IDE identifies as potentially having a problem in this area: Thanks to Jan Lahoda, who reports that this currently also works in NetBeans IDE 7.3 dev builds for fields but that may need to be disabled since right now too many false positives are returned, for help with the info above and any misunderstandings are my own fault!

    Read the article

  • How to become a good team player?

    - by Nick
    I've been programming (obsessively) since I was 12. I am fairly knowledgeable across the spectrum of languages out there, from assembly, to C++, to Javascript, to Haskell, Lisp, and Qi. But all of my projects have been by myself. I got my degree in chemical engineering, not CS or computer engineering, but for the first time this fall I'll be working on a large programming project with other people, and I have no clue how to prepare. I've been using Windows all of my life, but this project is going to be very unix-y, so I purchased a Mac recently in the hopes of familiarizing myself with the environment. I was fortunate to participate in a hackathon with some friends this past year -- both CS majors -- and excitingly enough, we won. But I realized as I worked with them that their workflow was very different from mine. They used Git for version control. I had never used it at the time, but I've since learned all that I can about it. They also used a lot of frameworks and libraries. I had to learn what Rails was pretty much overnight for the hackathon (on the other hand, they didn't know what lexical scoping or closures were). All of our code worked well, but they didn't understand mine, and I didn't understand theirs. I hear references to things that real programmers do on a daily basis -- unit testing, code reviews, but I only have the vaguest sense of what these are. I normally don't have many bugs in my little projects, so I have never needed a bug tracking system or tests for them. And the last thing is that it takes me a long time to understand other people's code. Variable naming conventions (that vary with each new language) are difficult (__mzkwpSomRidicAbbrev), and I find the loose coupling difficult. That's not to say I don't loosely couple things -- I think I'm quite good at it for my own work, but when I download something like the Linux kernel or the Chromium source code to look at it, I spend hours trying to figure out how all of these oddly named directories and files connect. It's a programming sin to reinvent the wheel, but I often find it's just quicker to write up the functionality myself than to spend hours dissecting some library. Obviously, people who do this for a living don't have these problems, and I'll need to get to that point myself. Question: What are some steps that I can take to begin "integrating" with everyone else? Thanks!

    Read the article

  • Bootloader Problems Grub Won't Load Windows 7

    - by user108805
    I sent this to [email protected], still no response thought I could get a faster solution here. I am running Windows 7 64-bit and Ubuntu 12.04 LTS on separate partitions. The message is sent is: Boot-Repair URL: http://paste.ubuntu.com/1365163/ Originally I was unable to access Ubuntu after a windows update (Ubuntu was installed using wubi). Rather than logging into Ubuntu from the Windows 7 Bootloader, it lead to the grub command prompt. No matter what I did here, it would not log me into linux. As a result I uninstalled Ubuntu from the Add/Remove Programs application in Windows 7. I then re-installed Ubuntu 12.04 LTS using a liveCD-USB. This time however, I created a partition. I then restarted and got the GRUB bootloader which loads Ubuntu 12.04 LTS with no problems, however when I select windows (listed as "Windows 7 (loader)"), it just refreshes the grub bootloader instead of loading Windows 7. I then used the Windows 7 repair disk to run bootrec/fixmbr and bootrec/fixboot. This led to no bootloader coming up when I started my computer. Instead I got a blank black screen with a flashing white cursor. I went on to do a bootrec/buildbcd and bootrec/scanos. These did nothing to change the situation. When I ran bootrec/scanos it said that no Windows 7 installations were present. After this I decided to reinstall WIndows 7 only for this to do nothing to change the situation. Afterwards I did a boot-repair in which I began to get the GRUB bootloader, which would load ubuntu 12.04 LTS, but still would not load Windows 7. I also did a sudo update-grub which recognized Windows 7 as being installed, but still didn't fix the issue of loading Windows 7. While running Ubuntu I have no problem accessing my WIndows 7 partition which is formatted as NTFS. It shows all the files and folders reflecting that the re-install did take place, and it also shows all of my old applications and folders in the Windows.old folder. I am completely stuck at this point and have no clue what I should do next. Any help you can offer me will be greatly appreciate. Thank You --gap

    Read the article

  • Google+ Platform Office Hours for June 13th, 2012

    Google+ Platform Office Hours for June 13th, 2012 Here are the show notes for this week's office hours. This week was devoted to your questions and our answers. We covered a wide breadth of topics. 0:43 - Introductions 2:54 - About Tabletop Forge's KickStarter - goo.gl 10:00 - Can I run multiple Hangout Apps at the same time? 12:28 - Is Google looking into adding more powerful Hangout moderation controls? 13:47 - How do you use Hangout Apps with Hangouts on Air? - +Fraser Cain's tips and tricks for Hangouts on Air: goo.gl 23:40 - I have an Android game. How do I port it to the Hangouts API? 27:57 - Pre-hangout Apps, Hangouts on Air pre-rolls, scheduling hangouts and other ways to help viewers find your Hangouts on Air 33:55 - How do I bookmark useful Google+ posts with Google+? 38:13 - Can you add a host ID field to the Hangouts API? When will the overlay garbage collection improve? 40:17 - Hand movement tracking as part of the Hangouts API Thanks to everyone who joined the hangout and asked questions on Google+! From: GoogleDevelopers Views: 698 18 ratings Time: 44:16 More in Science & Technology

    Read the article

  • Legality of similar games

    - by Jamie Taylor
    This is my first question on GD.SE, and I hope it's in the right place. A little background: I'm an amateur (read: not explicitly employed to develop games, but am employed as a software developer) game developer and took a ComSci with Games Development degree. My Question: What is the legal situation/standpoint of creating a copycat title? I know that there are only N number of ways of solving a problem, and N number of ways to design a piece of software. Say that an independent developer designed a copycat game (a Tetris clone in this example) for instance, and decided to use that game to generate income for themselves as well as interest for their other products. Say the developer adds a disclaimer into the software along the lines of "based on , originally released c. by ." Are there any legal problems/grey areas with the developer in this example releasing this game, commercially? Would they run into legal problems? Should the developer in this example expect cease and desist orders or law suit claims from original publishers? Have original publishers been known to, effectively, kill independent projects because they are a little too close to older titles? I know that there was, at least, one attempt by a group of independent developers to remake Sonic the Hedgehog 2 and Sega shut them down. I also know of Sega shutting down development of the independent Streets of Rage Remake. I know that "but it's an old game, your honour," isn't a great legal standpoint when it comes to defending yourself. But, could an independent developer have a law suit filed against them for re-implementing an older title in a new way? I know that there are a lot of copycat versions of the older titles like Tetris available on app stores (and similar services), and that it would be very difficult for a major publisher to shut them all down. Regardless of this, is making a Tetris (or other game) copycat/clone illegal? We were taught lots of different things at University, but we never covered copyright law. I'm presuming that their thought behind it was "IF these students get jobs in games development, they wont need to know anything about the legal side of it, because their employers will have legal departments... presumably" tl;dr Is it illegal to create a clone or copycat of an old title, and make money from it?

    Read the article

  • Load Balance and Parallel Performance

    Load balancing an application workload among threads is critical to performance. However, achieving perfect load balance is non-trivial, and it depends on the parallelism within the application, workload, the number of threads, load balancing policy, and the threading implementation.

    Read the article

< Previous Page | 639 640 641 642 643 644 645 646 647 648 649 650  | Next Page >