Search Results

Search found 9082 results on 364 pages for 'c functions'.

Page 65/364 | < Previous Page | 61 62 63 64 65 66 67 68 69 70 71 72  | Next Page >

  • Handy SQL Server Function Series: Part 1

    - by Most Valuable Yak (Rob Volk)
    I've been preparing to give a presentation on SQL Server for a while now, and a topic that was recommended was SQL Server functions.  More specifically, the lesser-known functions (like @@OPTIONS), and maybe some interesting ways to use well-known functions (like using PARSENAME to split IP addresses)  I think this is a veritable goldmine of useful information, and researching for the presentation has confirmed that beyond my initial expectations.I even found a few undocumented/underdocumented functions, so for the first official article in this series I thought I'd start with 2 of each, COLLATIONPROPERTY() and COLLATIONPROPERTYFROMID().COLLATIONPROPERTY() provides information about (wait for it) collations, SQL Server's method for handling foreign character sets, sort orders, and case- or accent-sensitivity when sorting character data.  The Books Online entry for  COLLATIONPROPERTY() lists 4 options for code page, locale ID, comparison style and version.  Used in conjunction with fn_helpcollations():SELECT *, COLLATIONPROPERTY(name,'LCID') LCID, COLLATIONPROPERTY(name,'CodePage') CodePage, COLLATIONPROPERTY(name,'ComparisonStyle') ComparisonStyle, COLLATIONPROPERTY(name,'Version') Version FROM fn_helpcollations()You can get some excellent information. (c'mon, be honest, did you even know about fn_helpcollations?)Collations in SQL Server have a unique name and ID, and you'll see one or both in various system tables or views like syscolumns, sys.columns, and INFORMATION_SCHEMA.COLUMNS.  Unfortunately they only link the ID and name for collations of existing columns, so if you wanted to know the collation ID of Albanian_CI_AI_WS, you'd have to declare a column with that collation and query the system table.While poking around the OBJECT_DEFINITION() of sys.columns I found a reference to COLLATIONPROPERTYFROMID(), and the unknown property "Name".  Not surprisingly, this is how sys.columns finds the name of the collation, based on the ID stored in the system tables.  (Check yourself if you don't believe me)Somewhat surprisingly, the "Name" property also works for COLLATIONPROPERTY(), although you'd already know the name at that point.  Some wild guesses and tests revealed that "CollationID" is also a valid property for both functions, so now:SELECT *, COLLATIONPROPERTY(name,'LCID') LCID, COLLATIONPROPERTY(name,'CodePage') CodePage, COLLATIONPROPERTY(name,'ComparisonStyle') ComparisonStyle, COLLATIONPROPERTY(name,'Version') Version, COLLATIONPROPERTY(name,'CollationID') CollationID FROM fn_helpcollations() Will get you the collation ID-name link you…probably didn't know or care about, but if you ever get on Jeopardy! and this question comes up, feel free to send some of your winnings my way. :)And last but not least, COLLATIONPROPERTYFROMID() uses the same properties as COLLATIONPROPERTY(), so you can use either one depending on which value you have available.Keep an eye out for Part 2!

    Read the article

  • functional dependencies vs type families

    - by mhwombat
    I'm developing a framework for running experiments with artificial life, and I'm trying to use type families instead of functional dependencies. Type families seems to be the preferred approach among Haskellers, but I've run into a situation where functional dependencies seem like a better fit. Am I missing a trick? Here's the design using type families. (This code compiles OK.) {-# LANGUAGE TypeFamilies, FlexibleContexts #-} import Control.Monad.State (StateT) class Agent a where agentId :: a -> String liveALittle :: Universe u => a -> StateT u IO a -- plus other functions class Universe u where type MyAgent u :: * withAgent :: (MyAgent u -> StateT u IO (MyAgent u)) -> String -> StateT u IO () -- plus other functions data SimpleUniverse = SimpleUniverse { mainDir :: FilePath -- plus other fields } defaultWithAgent :: (MyAgent u -> StateT u IO (MyAgent u)) -> String -> StateT u IO () defaultWithAgent = undefined -- stub -- plus default implementations for other functions -- -- In order to use my framework, the user will need to create a typeclass -- that implements the Agent class... -- data Bug = Bug String deriving (Show, Eq) instance Agent Bug where agentId (Bug s) = s liveALittle bug = return bug -- stub -- -- .. and they'll also need to make SimpleUniverse an instance of Universe -- for their agent type. -- instance Universe SimpleUniverse where type MyAgent SimpleUniverse = Bug withAgent = defaultWithAgent -- boilerplate -- plus similar boilerplate for other functions Is there a way to avoid forcing my users to write those last two lines of boilerplate? Compare with the version using fundeps, below, which seems to make things simpler for my users. (The use of UndecideableInstances may be a red flag.) (This code also compiles OK.) {-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies, FlexibleInstances, UndecidableInstances #-} import Control.Monad.State (StateT) class Agent a where agentId :: a -> String liveALittle :: Universe u a => a -> StateT u IO a -- plus other functions class Universe u a | u -> a where withAgent :: Agent a => (a -> StateT u IO a) -> String -> StateT u IO () -- plus other functions data SimpleUniverse = SimpleUniverse { mainDir :: FilePath -- plus other fields } instance Universe SimpleUniverse a where withAgent = undefined -- stub -- plus implementations for other functions -- -- In order to use my framework, the user will need to create a typeclass -- that implements the Agent class... -- data Bug = Bug String deriving (Show, Eq) instance Agent Bug where agentId (Bug s) = s liveALittle bug = return bug -- stub -- -- And now my users only have to write stuff like... -- u :: SimpleUniverse u = SimpleUniverse "mydir"

    Read the article

  • kernel software trap handling

    - by Tony
    I'm reading a book on Windows Internals and there's something I don't understand: "The kernel handles software interrupts either as part of hardware interrupt handling or synchronously when a thread invokes kernel functions related to the software interrupt." So does this mean that software interrupts or exceptions will only be handled under these conditions: a. When the kernel is executing a function from said thread related to the software exception(trap) b. when it is already handling a hardware trap Is my understanding of this correct? The next bit: "In most cases, the kernel installs front-end trap handling functions that perform general trap handling tasks before and after transferring control to other functions that field the trap." I don't quite understand what it means by 'front-end trap handling functions' and 'field the trap'? Can anyone help me?

    Read the article

  • Can't escape single quotes in shell

    - by user13743
    I'm trying to make a command to do a perl substitution on a batch of php files in a directory. The string I want to replace has single quotes in it, and I can't get it to properly escape the in shell. I tried echoing the string with unescaped quotes, to see what perl would be getting: echo 's/require_once('include.constants.php');/require_once('include.constants.php');require_once("./functions/include.session.inc.php");/g' and it doesn't have the single-quotes in the result: s/require_once\(include.constants.php\);/require_once\(include.constants.php\);require_once\("\./functions/include\.session\.inc\.php"\);/g However, when I try to escape the single quotes: echo 's/require_once\(\'include\.constants\.php\'\);/require_once\(\'include\.constants\.php\'\);require_once\("\./functions/include\.session\.inc\.php"\);/g' I get the prompt to complete the command: > What I want it to parse to is this: What am I doing wrong? s/require_once\('include.constants.php'\);/require_once\('include.constants.php'\);require_once\("\./functions/include\.session\.inc\.php"\);/g

    Read the article

  • Platform Builder: Cloning – the Linker is your Friend

    - by Bruce Eitman
    I was tasked this week with making a minor change to NetMsgBox() behavior. NetMsgBox() is a little function in NETUI that handles MessageBox() for the Network User Interface.  The obvious solution is to clone the entire NETUI directory from Public\Common\Oak\Drivers (see Platform Builder: Clone Public Code for more on cloning). If you haven’t already, take a minute to look in that folder. There are a lot of files in the folder, but I only needed to modify one function in one of those files. There must be a better way. Enter the linker. Instead of cloning the entire folder, here is what I did: Create a new folder in my Platform named NETUI (but the name isn’t important) Copy the C file that I needed to modify to the new folder, in this case netui.c Copy a makefile from one of the other folder (really they are all the same) Run Sysgen_capture Open a build window (see Platform Builder: Build Tools, Opening a Build Window) Change directories to the new folder Run “Sysgen_capture netui” Rename sources.netui to sources Add the C file to sources as SOURCES=netui.c Modify the code Build the code Done That is it, the functions from my new folder now replace the functions from the Public code and link with the rest to create NETUI.dll. There is a catches. If you remove any of the functions from the C file, linking will fail because the remaining functions will be found twice.   Copyright © 2010 – Bruce Eitman All Rights Reserved

    Read the article

  • SQLAuthority News – Learning, Community and Book Signing at #SQLPASS 2012

    - by pinaldave
    SQLPASS event is going excellent we are having great great fun! We are having book signing events and the response is overwhelmingly positive. I am glad that all of you love our books and I totally appreciate your support. Rick and I both are feeling very motivated to write more books in future. Here is our schedule for book signing. SQL Queries 2012 Joes 2 Pros Volume1 Finally a book for the true SQL Server beginner! Whether you are brand new to databases and are thinking of getting your 70-461 certification or already a semi-pro working in the field and need some fingertip support, this is this is the book for you. Joes 2 Pros does not assume you already know anything about databases or SQL server.  This book builds on the success of the previous series and will help anyone transform themselves from a beginner “Joe” into a SQL 2012 “Pro”. Wednesday, November 7, 2012 12pm-1pm – Book Signing at Exhibit Hall Joes Pros booth#117 (FREE BOOK) Rest all the time – I will be at Exhibition Hall Joes 2 Pros Booth #117. Stop by for the goodies! This book is also available on Amazon. SQL 2012 Functions Joes 2 Pros Functions have been around for many years to make our lives easier. Because of them, thousands of lines of valuable programming can be done with one statement. When we know what functions are offered in SQL Server we can get powerful projects done very quickly. Often times, the functions you wished you had are released in the next version. Wednesday, November 7, 2012 7pm-8pm - Embarcadero Booth Book Signing (FREE BOOK) Thursday, November 8, 2012 12pm-1pm - Embarcadero Booth Book Signing (FREE BOOK) This book is also available on Amazon. If you are at SQLPASS stop by Booth #117 – I will be there and many be you can get one of my signed book! Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL PASS, SQL Query, SQL Server, SQL Tips and Tricks, SQLAuthority Book Review, SQLAuthority News, SQLServer, T SQL, Technology

    Read the article

  • sending php mail from localhost

    - by SimplySimon
    I have installed php, mySQL, postfix and sendmail and have set up a simple email script on my local host server. mail() returns 1 (TRUE) when I send an e-mail, however the email does not arrive at the destination. Installation The mail functions are part of the PHP core. There is no installation needed to use these functions. Requirements For the mail functions to be available, PHP requires an installed and working email system. The program to be used is defined by the configuration settings in the php.ini file. Runtime Configuration The behavior of the mail functions is affected by settings in the php.ini file. Mail configuration options: Name Default Description Changeable sendmail_path NULL Unix systems only: Specifies where the sendmail program can be found (usually /usr/sbin/sendmail or /usr/lib/sendmail) PHP_INI_SYSTEM I found it at /usr/lib/sendmail however, I can not find the configuration file, which is where I assume my problem is, as I have not told anything which server I am using to send my mail through. If anyone can help me I would be grateful.

    Read the article

  • does my js replace view?

    - by Milla Well
    I am writing a web application which is based on Codeigniter and jQuery. I primarily use ajax to call my controller functions and it turned out, that there are just 4 view*.php files, because most of my contoller functions return JSON data, which is processed in my jQuery. So my actual code is divided in kind of MVCC model: Codeigniter model (db, computations) Codeigniter controller (filtering, xss-cleaning, checking permissions, call model functions) jQuery controller (callback functions) jQuery view (adding/removing classes, appending elements,... ) So I violate the paradigm of not using the echo function in my Codeiginter controller and simply call echo json_encode($result); because it doesn't make any sense to me to create a view*.php file for one loc. Especially because all the regular view*.php stuff is covered in my jQuery view. I was wondering if I am missing something out, or if there is a way to integrate this jQuery-controller in my Codeigniter. I found some words on this topic, but this seems pretty handmade. Are there some neat solutions? Does a MVCC model make sense?

    Read the article

  • Log Blog

    - by PointsToShare
    © 2011 By: Dov Trietsch. All rights reserved Logging – A log blog In a another blog (Missing Fields and Defaults) I spoke about not doing a blog about log files, but then I looked at it again and realized that this is a nice opportunity to show a simple yet powerful tool and also deal with static variables and functions in C#. My log had to be able to answer a few simple logging rules:   To log or not to log? That is the question – Always log! That is the answer  Do we share a log? Even when a file is opened with a minimal lock, it does not share well and performance greatly suffers. So sharing a log is not a good idea. Also, when sharing, it is harder to find your particular entries and you have to establish rules about retention. My recommendation – Do Not Share!  How verbose? Your log can be very verbose – a good thing when testing, very terse – a good thing in day-to-day runs, or somewhere in between. You must be the judge. In my Blog, I elect to always report a run with start and end times, and always report errors. I normally use 5 levels of logging: 4 – write all, 3 – write more, 2 – write some, 1 – write errors and timing, 0 – write none. The code sample below is more general than that. It uses the config file to set the max log level and each call to the log assigns a level to the call itself. If the level is above the .config highest level, the line will not be written. Programmers decide which log belongs to which level and thus we can set the .config differently for production and testing.  Where do I keep the log? If your career is important to you, discuss this with the boss and with the system admin. We keep logs in the L: drive of our server and make sure that we have a directory for each app that needs a log. When adding a new app, add a new directory. The default location for the log is also found in the .config file Print One or Many? There are two options here:   1.     Print many, Open but once once – you start the stream and close it only when the program ends. This is what you can do when you perform in “batch” mode like in a console app or a stsadm extension.The advantage to this is that starting a closing a stream is expensive and time consuming and because we use a unique file, keeping it open for a long time does not cause contention problems. 2.     Print one entry at a time or Open many – every time you write a line, you start the stream, write to it and close it. This work for event receivers, feature receivers, and web parts. Here scalability requires us to create objects on the fly and get rid of them as soon as possible.  A default value of the onceOrMany resides in the .config.  All of the above applies to any windows or web application, not just SharePoint.  So as usual, here is a routine that does it all, and a few simple functions that call it for a variety of purposes.   So without further ado, here is app.config  <?xml version="1.0" encoding="utf-8" ?> <configuration>     <configSections>         <sectionGroup name="applicationSettings" type="System.Configuration.ApplicationSettingsGroup, System, Version=2.0.0.0, Culture=neutral, ublicKeyToken=b77a5c561934e089" >         <section name="statics.Properties.Settings" type="System.Configuration.ClientSettingsSection, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" requirePermission="false" />         </sectionGroup>     </configSections>     <applicationSettings>         <statics.Properties.Settings>             <setting name="oneOrMany" serializeAs="String">                 <value>False</value>             </setting>             <setting name="logURI" serializeAs="String">                 <value>C:\staticLog.txt</value>             </setting>             <setting name="highestLevel" serializeAs="String">                 <value>2</value>             </setting>         </statics.Properties.Settings>     </applicationSettings> </configuration>   And now the code:  In order to persist the variables between calls and also to be able to persist (or not to persist) the log file itself, I created an EventLog class with static variables and functions. Static functions do not need an instance of the class in order to work. If you ever wondered why our Main function is static, the answer is that something needs to run before instantiation so that other objects may be instantiated, and this is what the “static” Main does. The various logging functions and variables are created as static because they do not need instantiation and as a fringe benefit they remain un-destroyed between calls. The Main function here is just used for testing. Note that it does not instantiate anything, just uses the log functions. This is possible because the functions are static. Also note that the function calls are of the form: Class.Function.  using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.IO; namespace statics {       class Program     {         static void Main(string[] args)         {             //write a single line             EventLog.LogEvents("ha ha", 3, "C:\\hahafile.txt", 4, true, false);             //this single line will not be written because the msgLevel is too high             EventLog.LogEvents("baba", 3, "C:\\babafile.txt", 2, true, false);             //The next 4 lines will be written in succession - no closing             EventLog.LogLine("blah blah", 1);             EventLog.LogLine("da da", 1);             EventLog.LogLine("ma ma", 1);             EventLog.LogLine("lah lah", 1);             EventLog.CloseLog(); // log will close             //now with specific functions             EventLog.LogSingleLine("one line", 1);             //this is just a test, the log is already closed             EventLog.CloseLog();         }     }     public class EventLog     {         public static string logURI = Properties.Settings.Default.logURI;         public static bool isOneLine = Properties.Settings.Default.oneOrMany;         public static bool isOpen = false;         public static int highestLevel = Properties.Settings.Default.highestLevel;         public static StreamWriter sw;         /// <summary>         /// the program will "print" the msg into the log         /// unless msgLevel is > msgLimit         /// onceOrMany is true when once - the program will open the log         /// print the msg and close the log. False when many the program will         /// keep the log open until close = true         /// normally all the arguments will come from the app.config         /// called by many overloads of logLine         /// </summary>         /// <param name="msg"></param>         /// <param name="msgLevel"></param>         /// <param name="logFileName"></param>         /// <param name="msgLimit"></param>         /// <param name="onceOrMany"></param>         /// <param name="close"></param>         public static void LogEvents(string msg, int msgLevel, string logFileName, int msgLimit, bool oneOrMany, bool close)         {             //to print or not to print             if (msgLevel <= msgLimit)             {                 //open the file. from the argument (logFileName) or from the config (logURI)                 if (!isOpen)                 {                     string logFile = logFileName;                     if (logFileName == "")                     {                         logFile = logURI;                     }                     sw = new StreamWriter(logFile, true);                     sw.WriteLine("Started At: " + DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss"));                     isOpen = true;                 }                 //print                 sw.WriteLine(msg);             }             //close when instructed             if (close || oneOrMany)             {                 if (isOpen)                 {                     sw.WriteLine("Ended At: " + DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss"));                     sw.Close();                     isOpen = false;                 }             }         }           /// <summary>         /// The simplest, just msg and level         /// </summary>         /// <param name="msg"></param>         /// <param name="msgLevel"></param>         public static void LogLine(string msg, int msgLevel)         {             //use the given msg and msgLevel and all others are defaults             LogEvents(msg, msgLevel, "", highestLevel, isOneLine, false);         }                 /// <summary>         /// one line at a time - open print close         /// </summary>         /// <param name="msg"></param>         /// <param name="msgLevel"></param>         public static void LogSingleLine(string msg, int msgLevel)         {             LogEvents(msg, msgLevel, "", highestLevel, true, true);         }           /// <summary>         /// used to close. high level, low limit, once and close are set         /// </summary>         /// <param name="close"></param>         public static void CloseLog()         {             LogEvents("", 15, "", 1, true, true);         }           }     }   }   That’s all folks!

    Read the article

  • Customizing the NUnit GUI for data-driven testing

    - by rwong
    My test project consists of a set of input data files which is fed into a piece of legacy third-party software. Since the input data files for this software are difficult to construct (not something that can be done intentionally), I am not going to add new input data files. Each input data file will be subject to a set of "test functions". Some of the test functions can be invoked independently. Other test functions represent the stages of a sequential operation - if an earlier stage fails, the subsequent stages do not need to be executed. I have experimented with the NUnit parametrized test case (TestCaseAttribute and TestCaseSourceAttribute), passing in the list of data files as test cases. I am generally satisfied with the the ability to select the input data for testing. However, I would like to see if it is possible to customize its GUI's tree structure, so that the "test functions" become the children of the "input data". For example: File #1 CheckFileTypeTest GetFileTopLevelStructureTest CompleteProcessTest StageOneTest StageTwoTest StageThreeTest File #2 CheckFileTypeTest GetFileTopLevelStructureTest CompleteProcessTest StageOneTest StageTwoTest StageThreeTest This will be useful for identifying the stage that failed during the processing of a particular input file. Is there any tips and tricks that will enable the new tree layout? Do I need to customize NUnit to get this layout?

    Read the article

  • I don't understand the definition of side effects

    - by Chris Okyen
    I don't understand the wikipedia article on Side Effects: In computer science, a function or expression is said to have a side effect if, in addition to returning a value, it also 1.) Modifies some state or 2.) Has an observable interaction with calling functions or the outside world. I know an example of the first thing that causes a function or expression to have side effects - modifying a state Function and Expression modifying a state : 1.) foo(int X) { return x = x % x; } a = a + 1; What does 2.) - Has an observable interaction with calling functions or the outside world," mean? - Please give an example. The article continues on to say, "For example, a function might modify a global or static variable, modify one of its arguments, raise an exception, write data to a display or file, read data, or call other side-effecting functions...." Are all these examples, examples of 1.) - Modifiying some state , or are they also part of 2.) - Has an observable interaction with calling functions or the outside world?

    Read the article

  • Standard Network Tiers in a Distributed N-Tier System

    Distributed N-Tier client/server architecture allows for segments of an application to be broken up and distributed across multiple locations on a network.  Listed below are standard tiers in a Distributed N-Tier System. End-User Client Tier The End-User Client is responsible for sending and receiving requests from web servers and other applications servers and translating the responses so that the End-User can interpret the data effectively. The primary roles for this tier are to communicate with servers and translate server responses back to the end-user to interpret. Business-Specific Functions Validate Data Display Data Send Data to Webserver Web Server Tier The Web server tier processes new requests for information coming in from the HTTP and HTTPS ports. This primarily handles the generation of user interfaces and calls the application server when needed to access Data and business logic when needed. Business-specific functions Send Data to application server Format Data for Display Validate Data Application Server Tier The application server stores and executes predefined business logic that is applied to various pieces of data as the business determines. The processed data is then returned back to the Webserver. Additionally, this server directly calls the database to obtain and store any data used by the system Business-Specific Functions Validate Data Process Data Send Data to Database Server Database Server Tier The Database Server is responsible for storing and returning all data need by the calling applications. The primary role for this this server is storage. Data is stored as needed and can be recalled at any point later in time. Business-Specific Functions Insert Data Delete Data Return Data to Application Server

    Read the article

  • How should I start refactoring my mostly-procedural C++ application?

    - by oob
    We have a program written in C++ that is mostly procedural, but we do use some C++ containers from the standard library (vector, map, list, etc). We are constantly making changes to this code, so I wouldn't call it a stagnant piece of legacy code that we can just wrap up. There are a lot of issues with this code making it harder and harder for us to make changes, but I see the three biggest issues being: Many of the functions do more (way more) than one thing We violate the DRY principle left and right We have global variables and global state up the wazoo. I was thinking we should attack areas 1 and 2 first. Along the way, we can "de-globalize" our smaller functions from the bottom up by passing in information that is currently global as parameters to the lower level functions from the higher level functions and then concentrate on figuring out how to removing the need for global variables as much as possible. I just finished reading Code Complete 2 and The Pragmatic Programmer, and I learned a lot, but I am feeling overwhelmed. I would like to implement unit testing, change from a procedural to OO approach, automate testing, use a better logging system, fully validate all input, implement better error handling and many other things, but I know if we start all this at once, we would screw ourselves. I am thinking the three I listed are the most important to start with. Any suggestions are welcome. We are a team of two programmers mostly with experience with in-house scripting. It is going to be hard to justify taking the time to refactor, especially if we can't bill the time to a client. Believe it or not, this project has been successful enough to keep us busy full time and also keep several consultants busy using it for client work.

    Read the article

  • Pure functional programming and game state

    - by Fu86
    Is there a common technique to handle state (in general) in a functional programming language? There are solutions in every (functional) programming language to handle global state, but I want to avoid this as far as I could. All state in a pure functional manner are function parameters. So I need to put the whole game state (a gigantic hashmap with the world, players, positions, score, assets, enemies, ...)) as a parameter to all functions which wants to manipulate the world on a given input or trigger. The function itself picks the relevant information from the gamestate blob, do something with it, manipulate the gamestate and return the gamestate. But this looks like a poor mans solution for the problem. If I put the whole gamestate into all functions, there is no benefit for me in contrast to global variables or the imperative approach. I could put just the relevant information into the functions and return the actions which will be taken for the given input. And one single function apply all the actions to the gamestate. But most functions need a lot of "relevant" information. move() need the object position, the velocity, the map for collision, position of all enemys, current health, ... So this approach does not seem to work either. So my question is how do I handle the massive amount of state in a functional programming language -- especially for game development?

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • A Taxonomy of Numerical Methods v1

    - by JoshReuben
    Numerical Analysis – When, What, (but not how) Once you understand the Math & know C++, Numerical Methods are basically blocks of iterative & conditional math code. I found the real trick was seeing the forest for the trees – knowing which method to use for which situation. Its pretty easy to get lost in the details – so I’ve tried to organize these methods in a way that I can quickly look this up. I’ve included links to detailed explanations and to C++ code examples. I’ve tried to classify Numerical methods in the following broad categories: Solving Systems of Linear Equations Solving Non-Linear Equations Iteratively Interpolation Curve Fitting Optimization Numerical Differentiation & Integration Solving ODEs Boundary Problems Solving EigenValue problems Enjoy – I did ! Solving Systems of Linear Equations Overview Solve sets of algebraic equations with x unknowns The set is commonly in matrix form Gauss-Jordan Elimination http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination C++: http://www.codekeep.net/snippets/623f1923-e03c-4636-8c92-c9dc7aa0d3c0.aspx Produces solution of the equations & the coefficient matrix Efficient, stable 2 steps: · Forward Elimination – matrix decomposition: reduce set to triangular form (0s below the diagonal) or row echelon form. If degenerate, then there is no solution · Backward Elimination –write the original matrix as the product of ints inverse matrix & its reduced row-echelon matrix à reduce set to row canonical form & use back-substitution to find the solution to the set Elementary ops for matrix decomposition: · Row multiplication · Row switching · Add multiples of rows to other rows Use pivoting to ensure rows are ordered for achieving triangular form LU Decomposition http://en.wikipedia.org/wiki/LU_decomposition C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-lu-decomposition-for-solving.html Represent the matrix as a product of lower & upper triangular matrices A modified version of GJ Elimination Advantage – can easily apply forward & backward elimination to solve triangular matrices Techniques: · Doolittle Method – sets the L matrix diagonal to unity · Crout Method - sets the U matrix diagonal to unity Note: both the L & U matrices share the same unity diagonal & can be stored compactly in the same matrix Gauss-Seidel Iteration http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method C++: http://www.nr.com/forum/showthread.php?t=722 Transform the linear set of equations into a single equation & then use numerical integration (as integration formulas have Sums, it is implemented iteratively). an optimization of Gauss-Jacobi: 1.5 times faster, requires 0.25 iterations to achieve the same tolerance Solving Non-Linear Equations Iteratively find roots of polynomials – there may be 0, 1 or n solutions for an n order polynomial use iterative techniques Iterative methods · used when there are no known analytical techniques · Requires set functions to be continuous & differentiable · Requires an initial seed value – choice is critical to convergence à conduct multiple runs with different starting points & then select best result · Systematic - iterate until diminishing returns, tolerance or max iteration conditions are met · bracketing techniques will always yield convergent solutions, non-bracketing methods may fail to converge Incremental method if a nonlinear function has opposite signs at 2 ends of a small interval x1 & x2, then there is likely to be a solution in their interval – solutions are detected by evaluating a function over interval steps, for a change in sign, adjusting the step size dynamically. Limitations – can miss closely spaced solutions in large intervals, cannot detect degenerate (coinciding) solutions, limited to functions that cross the x-axis, gives false positives for singularities Fixed point method http://en.wikipedia.org/wiki/Fixed-point_iteration C++: http://books.google.co.il/books?id=weYj75E_t6MC&pg=PA79&lpg=PA79&dq=fixed+point+method++c%2B%2B&source=bl&ots=LQ-5P_taoC&sig=lENUUIYBK53tZtTwNfHLy5PEWDk&hl=en&sa=X&ei=wezDUPW1J5DptQaMsIHQCw&redir_esc=y#v=onepage&q=fixed%20point%20method%20%20c%2B%2B&f=false Algebraically rearrange a solution to isolate a variable then apply incremental method Bisection method http://en.wikipedia.org/wiki/Bisection_method C++: http://numericalcomputing.wordpress.com/category/algorithms/ Bracketed - Select an initial interval, keep bisecting it ad midpoint into sub-intervals and then apply incremental method on smaller & smaller intervals – zoom in Adv: unaffected by function gradient à reliable Disadv: slow convergence False Position Method http://en.wikipedia.org/wiki/False_position_method C++: http://www.dreamincode.net/forums/topic/126100-bisection-and-false-position-methods/ Bracketed - Select an initial interval , & use the relative value of function at interval end points to select next sub-intervals (estimate how far between the end points the solution might be & subdivide based on this) Newton-Raphson method http://en.wikipedia.org/wiki/Newton's_method C++: http://www-users.cselabs.umn.edu/classes/Summer-2012/csci1113/index.php?page=./newt3 Also known as Newton's method Convenient, efficient Not bracketed – only a single initial guess is required to start iteration – requires an analytical expression for the first derivative of the function as input. Evaluates the function & its derivative at each step. Can be extended to the Newton MutiRoot method for solving multiple roots Can be easily applied to an of n-coupled set of non-linear equations – conduct a Taylor Series expansion of a function, dropping terms of order n, rewrite as a Jacobian matrix of PDs & convert to simultaneous linear equations !!! Secant Method http://en.wikipedia.org/wiki/Secant_method C++: http://forum.vcoderz.com/showthread.php?p=205230 Unlike N-R, can estimate first derivative from an initial interval (does not require root to be bracketed) instead of inputting it Since derivative is approximated, may converge slower. Is fast in practice as it does not have to evaluate the derivative at each step. Similar implementation to False Positive method Birge-Vieta Method http://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20method.html C++: http://books.google.co.il/books?id=cL1boM2uyQwC&pg=SA3-PA51&lpg=SA3-PA51&dq=Birge-Vieta+Method+c%2B%2B&source=bl&ots=QZmnDTK3rC&sig=BPNcHHbpR_DKVoZXrLi4nVXD-gg&hl=en&sa=X&ei=R-_DUK2iNIjzsgbE5ID4Dg&redir_esc=y#v=onepage&q=Birge-Vieta%20Method%20c%2B%2B&f=false combines Horner's method of polynomial evaluation (transforming into lesser degree polynomials that are more computationally efficient to process) with Newton-Raphson to provide a computational speed-up Interpolation Overview Construct new data points for as close as possible fit within range of a discrete set of known points (that were obtained via sampling, experimentation) Use Taylor Series Expansion of a function f(x) around a specific value for x Linear Interpolation http://en.wikipedia.org/wiki/Linear_interpolation C++: http://www.hamaluik.com/?p=289 Straight line between 2 points à concatenate interpolants between each pair of data points Bilinear Interpolation http://en.wikipedia.org/wiki/Bilinear_interpolation C++: http://supercomputingblog.com/graphics/coding-bilinear-interpolation/2/ Extension of the linear function for interpolating functions of 2 variables – perform linear interpolation first in 1 direction, then in another. Used in image processing – e.g. texture mapping filter. Uses 4 vertices to interpolate a value within a unit cell. Lagrange Interpolation http://en.wikipedia.org/wiki/Lagrange_polynomial C++: http://www.codecogs.com/code/maths/approximation/interpolation/lagrange.php For polynomials Requires recomputation for all terms for each distinct x value – can only be applied for small number of nodes Numerically unstable Barycentric Interpolation http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715 C++: http://www.gamedev.net/topic/621445-barycentric-coordinates-c-code-check/ Rearrange the terms in the equation of the Legrange interpolation by defining weight functions that are independent of the interpolated value of x Newton Divided Difference Interpolation http://en.wikipedia.org/wiki/Newton_polynomial C++: http://jee-appy.blogspot.co.il/2011/12/newton-divided-difference-interpolation.html Hermite Divided Differences: Interpolation polynomial approximation for a given set of data points in the NR form - divided differences are used to approximately calculate the various differences. For a given set of 3 data points , fit a quadratic interpolant through the data Bracketed functions allow Newton divided differences to be calculated recursively Difference table Cubic Spline Interpolation http://en.wikipedia.org/wiki/Spline_interpolation C++: https://www.marcusbannerman.co.uk/index.php/home/latestarticles/42-articles/96-cubic-spline-class.html Spline is a piecewise polynomial Provides smoothness – for interpolations with significantly varying data Use weighted coefficients to bend the function to be smooth & its 1st & 2nd derivatives are continuous through the edge points in the interval Curve Fitting A generalization of interpolating whereby given data points may contain noise à the curve does not necessarily pass through all the points Least Squares Fit http://en.wikipedia.org/wiki/Least_squares C++: http://www.ccas.ru/mmes/educat/lab04k/02/least-squares.c Residual – difference between observed value & expected value Model function is often chosen as a linear combination of the specified functions Determines: A) The model instance in which the sum of squared residuals has the least value B) param values for which model best fits data Straight Line Fit Linear correlation between independent variable and dependent variable Linear Regression http://en.wikipedia.org/wiki/Linear_regression C++: http://www.oocities.org/david_swaim/cpp/linregc.htm Special case of statistically exact extrapolation Leverage least squares Given a basis function, the sum of the residuals is determined and the corresponding gradient equation is expressed as a set of normal linear equations in matrix form that can be solved (e.g. using LU Decomposition) Can be weighted - Drop the assumption that all errors have the same significance –-> confidence of accuracy is different for each data point. Fit the function closer to points with higher weights Polynomial Fit - use a polynomial basis function Moving Average http://en.wikipedia.org/wiki/Moving_average C++: http://www.codeproject.com/Articles/17860/A-Simple-Moving-Average-Algorithm Used for smoothing (cancel fluctuations to highlight longer-term trends & cycles), time series data analysis, signal processing filters Replace each data point with average of neighbors. Can be simple (SMA), weighted (WMA), exponential (EMA). Lags behind latest data points – extra weight can be given to more recent data points. Weights can decrease arithmetically or exponentially according to distance from point. Parameters: smoothing factor, period, weight basis Optimization Overview Given function with multiple variables, find Min (or max by minimizing –f(x)) Iterative approach Efficient, but not necessarily reliable Conditions: noisy data, constraints, non-linear models Detection via sign of first derivative - Derivative of saddle points will be 0 Local minima Bisection method Similar method for finding a root for a non-linear equation Start with an interval that contains a minimum Golden Search method http://en.wikipedia.org/wiki/Golden_section_search C++: http://www.codecogs.com/code/maths/optimization/golden.php Bisect intervals according to golden ratio 0.618.. Achieves reduction by evaluating a single function instead of 2 Newton-Raphson Method Brent method http://en.wikipedia.org/wiki/Brent's_method C++: http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.cpp Based on quadratic or parabolic interpolation – if the function is smooth & parabolic near to the minimum, then a parabola fitted through any 3 points should approximate the minima – fails when the 3 points are collinear , in which case the denominator is 0 Simplex Method http://en.wikipedia.org/wiki/Simplex_algorithm C++: http://www.codeguru.com/cpp/article.php/c17505/Simplex-Optimization-Algorithm-and-Implemetation-in-C-Programming.htm Find the global minima of any multi-variable function Direct search – no derivatives required At each step it maintains a non-degenerative simplex – a convex hull of n+1 vertices. Obtains the minimum for a function with n variables by evaluating the function at n-1 points, iteratively replacing the point of worst result with the point of best result, shrinking the multidimensional simplex around the best point. Point replacement involves expanding & contracting the simplex near the worst value point to determine a better replacement point Oscillation can be avoided by choosing the 2nd worst result Restart if it gets stuck Parameters: contraction & expansion factors Simulated Annealing http://en.wikipedia.org/wiki/Simulated_annealing C++: http://code.google.com/p/cppsimulatedannealing/ Analogy to heating & cooling metal to strengthen its structure Stochastic method – apply random permutation search for global minima - Avoid entrapment in local minima via hill climbing Heating schedule - Annealing schedule params: temperature, iterations at each temp, temperature delta Cooling schedule – can be linear, step-wise or exponential Differential Evolution http://en.wikipedia.org/wiki/Differential_evolution C++: http://www.amichel.com/de/doc/html/ More advanced stochastic methods analogous to biological processes: Genetic algorithms, evolution strategies Parallel direct search method against multiple discrete or continuous variables Initial population of variable vectors chosen randomly – if weighted difference vector of 2 vectors yields a lower objective function value then it replaces the comparison vector Many params: #parents, #variables, step size, crossover constant etc Convergence is slow – many more function evaluations than simulated annealing Numerical Differentiation Overview 2 approaches to finite difference methods: · A) approximate function via polynomial interpolation then differentiate · B) Taylor series approximation – additionally provides error estimate Finite Difference methods http://en.wikipedia.org/wiki/Finite_difference_method C++: http://www.wpi.edu/Pubs/ETD/Available/etd-051807-164436/unrestricted/EAMPADU.pdf Find differences between high order derivative values - Approximate differential equations by finite differences at evenly spaced data points Based on forward & backward Taylor series expansion of f(x) about x plus or minus multiples of delta h. Forward / backward difference - the sums of the series contains even derivatives and the difference of the series contains odd derivatives – coupled equations that can be solved. Provide an approximation of the derivative within a O(h^2) accuracy There is also central difference & extended central difference which has a O(h^4) accuracy Richardson Extrapolation http://en.wikipedia.org/wiki/Richardson_extrapolation C++: http://mathscoding.blogspot.co.il/2012/02/introduction-richardson-extrapolation.html A sequence acceleration method applied to finite differences Fast convergence, high accuracy O(h^4) Derivatives via Interpolation Cannot apply Finite Difference method to discrete data points at uneven intervals – so need to approximate the derivative of f(x) using the derivative of the interpolant via 3 point Lagrange Interpolation Note: the higher the order of the derivative, the lower the approximation precision Numerical Integration Estimate finite & infinite integrals of functions More accurate procedure than numerical differentiation Use when it is not possible to obtain an integral of a function analytically or when the function is not given, only the data points are Newton Cotes Methods http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas C++: http://www.siafoo.net/snippet/324 For equally spaced data points Computationally easy – based on local interpolation of n rectangular strip areas that is piecewise fitted to a polynomial to get the sum total area Evaluate the integrand at n+1 evenly spaced points – approximate definite integral by Sum Weights are derived from Lagrange Basis polynomials Leverage Trapezoidal Rule for default 2nd formulas, Simpson 1/3 Rule for substituting 3 point formulas, Simpson 3/8 Rule for 4 point formulas. For 4 point formulas use Bodes Rule. Higher orders obtain more accurate results Trapezoidal Rule uses simple area, Simpsons Rule replaces the integrand f(x) with a quadratic polynomial p(x) that uses the same values as f(x) for its end points, but adds a midpoint Romberg Integration http://en.wikipedia.org/wiki/Romberg's_method C++: http://code.google.com/p/romberg-integration/downloads/detail?name=romberg.cpp&can=2&q= Combines trapezoidal rule with Richardson Extrapolation Evaluates the integrand at equally spaced points The integrand must have continuous derivatives Each R(n,m) extrapolation uses a higher order integrand polynomial replacement rule (zeroth starts with trapezoidal) à a lower triangular matrix set of equation coefficients where the bottom right term has the most accurate approximation. The process continues until the difference between 2 successive diagonal terms becomes sufficiently small. Gaussian Quadrature http://en.wikipedia.org/wiki/Gaussian_quadrature C++: http://www.alglib.net/integration/gaussianquadratures.php Data points are chosen to yield best possible accuracy – requires fewer evaluations Ability to handle singularities, functions that are difficult to evaluate The integrand can include a weighting function determined by a set of orthogonal polynomials. Points & weights are selected so that the integrand yields the exact integral if f(x) is a polynomial of degree <= 2n+1 Techniques (basically different weighting functions): · Gauss-Legendre Integration w(x)=1 · Gauss-Laguerre Integration w(x)=e^-x · Gauss-Hermite Integration w(x)=e^-x^2 · Gauss-Chebyshev Integration w(x)= 1 / Sqrt(1-x^2) Solving ODEs Use when high order differential equations cannot be solved analytically Evaluated under boundary conditions RK for systems – a high order differential equation can always be transformed into a coupled first order system of equations Euler method http://en.wikipedia.org/wiki/Euler_method C++: http://rosettacode.org/wiki/Euler_method First order Runge–Kutta method. Simple recursive method – given an initial value, calculate derivative deltas. Unstable & not very accurate (O(h) error) – not used in practice A first-order method - the local error (truncation error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size In evolving solution between data points xn & xn+1, only evaluates derivatives at beginning of interval xn à asymmetric at boundaries Higher order Runge Kutta http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods C++: http://www.dreamincode.net/code/snippet1441.htm 2nd & 4th order RK - Introduces parameterized midpoints for more symmetric solutions à accuracy at higher computational cost Adaptive RK – RK-Fehlberg – estimate the truncation at each integration step & automatically adjust the step size to keep error within prescribed limits. At each step 2 approximations are compared – if in disagreement to a specific accuracy, the step size is reduced Boundary Value Problems Where solution of differential equations are located at 2 different values of the independent variable x à more difficult, because cannot just start at point of initial value – there may not be enough starting conditions available at the end points to produce a unique solution An n-order equation will require n boundary conditions – need to determine the missing n-1 conditions which cause the given conditions at the other boundary to be satisfied Shooting Method http://en.wikipedia.org/wiki/Shooting_method C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-shooting-method-for-solving.html Iteratively guess the missing values for one end & integrate, then inspect the discrepancy with the boundary values of the other end to adjust the estimate Given the starting boundary values u1 & u2 which contain the root u, solve u given the false position method (solving the differential equation as an initial value problem via 4th order RK), then use u to solve the differential equations. Finite Difference Method For linear & non-linear systems Higher order derivatives require more computational steps – some combinations for boundary conditions may not work though Improve the accuracy by increasing the number of mesh points Solving EigenValue Problems An eigenvalue can substitute a matrix when doing matrix multiplication à convert matrix multiplication into a polynomial EigenValue For a given set of equations in matrix form, determine what are the solution eigenvalue & eigenvectors Similar Matrices - have same eigenvalues. Use orthogonal similarity transforms to reduce a matrix to diagonal form from which eigenvalue(s) & eigenvectors can be computed iteratively Jacobi method http://en.wikipedia.org/wiki/Jacobi_method C++: http://people.sc.fsu.edu/~jburkardt/classes/acs2_2008/openmp/jacobi/jacobi.html Robust but Computationally intense – use for small matrices < 10x10 Power Iteration http://en.wikipedia.org/wiki/Power_iteration For any given real symmetric matrix, generate the largest single eigenvalue & its eigenvectors Simplest method – does not compute matrix decomposition à suitable for large, sparse matrices Inverse Iteration Variation of power iteration method – generates the smallest eigenvalue from the inverse matrix Rayleigh Method http://en.wikipedia.org/wiki/Rayleigh's_method_of_dimensional_analysis Variation of power iteration method Rayleigh Quotient Method Variation of inverse iteration method Matrix Tri-diagonalization Method Use householder algorithm to reduce an NxN symmetric matrix to a tridiagonal real symmetric matrix vua N-2 orthogonal transforms     Whats Next Outside of Numerical Methods there are lots of different types of algorithms that I’ve learned over the decades: Data Mining – (I covered this briefly in a previous post: http://geekswithblogs.net/JoshReuben/archive/2007/12/31/ssas-dm-algorithms.aspx ) Search & Sort Routing Problem Solving Logical Theorem Proving Planning Probabilistic Reasoning Machine Learning Solvers (eg MIP) Bioinformatics (Sequence Alignment, Protein Folding) Quant Finance (I read Wilmott’s books – interesting) Sooner or later, I’ll cover the above topics as well.

    Read the article

  • Pure virtual or abstract, what's in a name?

    - by Steven Jeuris
    While discussing a question about virtual functions on Stack Overflow, I wondered whether there was any official naming for pure (abstract) and non-pure virtual functions. I always relied on wikipedia for my information, which states that pure and non-pure virtual functions are the general term. Unfortunately, the article doesn't back it up with a origin or references. To quote Jon Skeet's answer to my reply that pure and non-pure are the general term used: @Steven: Hmm... possibly, but I've only ever seen it in the context of C++ before. I suspect anyone talking about them is likely to have a C++ background :) Did the terms originate from C++, or were they first defined or implemented in a earlier language, and are they the 'official' scientific terms?

    Read the article

  • Objective-C Lesson in Class Design

    - by Pota Onasys
    I have the following classes: Teacher Student Class (like a school class) They all extend from KObject that has the following code: - initWithKey - send - processKey Teacher, Student Class all use the functions processKey and initWithKey from KObject parent class. They implement their own version of send. The problem I have is that KObject should not be instantiated ever. It is more like an abstract class, but there is no abstract class concept in objective-c. It is only useful for allowing subclasses to have access to one property and two functions. What can I do so that KObject cannot be instantiated but still allow subclasses to have access to the functions and properties of KObject?

    Read the article

  • Advanced Control Panel Modules - OliverHine.com for DotNetNuke - Video

    How to install and use 2 Advanced Administrator Control Panels for DotNetNuke. This includes an optimized version for faster page load times and a Ribbon Bar version for improved features. The video contains: Introduction Optimised control panel Page load time test result improvements Ribbon Bar control panel Features of the Ribbon Bar How to download the advanced control panel How to install the advanced control panel How to apply one of the advanced control panels to your DotNetNuke installation How to use the Ribbon Bar control panel Page view modes Page functions Add functions Add module functions Copy an existing module Reference an existing module Common Tasks Demonstration of the various control panel view options available Time Length: 10min 47secsDid you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • API Design Techniques

    - by Dehumanizer
    Is it right or more beautiful to name the functions with an prefix, like in Qt? Or using "many" namespaces, but 'normal' names for functions? For example, slOpenFile(); //"sl" means "some lib" vs some_lib::file_functions::openFile(); UPD: I've read somewhere that the first variant(using some prefix) is better, because the API users can perform 'fast' search among the documentation and in the Internet. E.g. by typing the magic prefix search engine starts to advice the exact functions. Is it enough to use the first variant?

    Read the article

  • How to write functionally in a web framework

    - by Kevin Burke
    I love Rich Hickey, Clojure and Haskell and I get it when he talks about functions and the unreliability of side-effecting code. However I work in an environment where nearly all the functions I write have to read from the database, write to the database, make HTTP requests, decrement a user's balance, modify a frontend HTML component based on a click action, return different results based on the URI or the POST body. We also use PHP for the frontend, which is littered with functions like parse_str(), which modifies an object in place. All of these are side-effecting to one degree or another. Given these constraints and the side-effecting nature of the logic I'm coding, what can I do to make my code more reliable and function-able?

    Read the article

  • Service Layer - how broad should it be, and should it be used also on the local application?

    - by BornToCode
    Background: I need to build a main application with some operations (CRUD and more) (-in winforms), I need to make another application which will re-use some of the functions of the main application (-in webforms). I understood that using service layer is the best approach here. If I understood correctly the service should be calling the function on the BL layer (correct me if I'm wrong) The dilemma: In my main winform UI - should I call the functions from the BL, or from the service? (please explain why) Should I create a service for every single function on the BL even if I need some of the functions only in one UI? for example - should I create services for all the CRUD operations, even though I need to re-use only update operation in the webform? YOUR HELP IS MUCH APPRECIATED

    Read the article

  • Breaking up a large PHP object used to abstract the database. Best practices?

    - by John Kershaw
    Two years ago it was thought a single object with functions such as $database->get_user_from_id($ID) would be a good idea. The functions return objects (not arrays), and the front-end code never worries about the database. This was great, until we started growing the database. There's now 30+ tables, and around 150 functions in the database object. It's getting impractical and unmanageable and I'm going to be breaking it up. What is a good solution to this problem? The project is large, so there's a limit to the extent I can change things. My current plan is to extend the current object for each table, then have the database object contain these. So, the above example would turn into (assume "user" is a table) $database->user->get_user_from_id($ID). Instead of one large file, we would have a file for every table.

    Read the article

  • Service Layer - how broad should it be, and should it also be on the local application?

    - by BornToCode
    Background: I need to build a desktop application with some operations (CRUD and more) (=winforms), I need to make another application which will re-use some of the functions of the main application (=webforms). I understood that using service layer is the best approach here. If I understood correctly the service should be calling the function on the BL layer (correct me if I'm wrong) The dilemma: In my main winform UI - should I call the functions from the BL, or from the service? (please explain why) Should I create a service for every single function on the BL even if I need some of the functions only in one UI? for example - should I create services for all the CRUD operations, even though I need to re-use only update operation in the webform? YOUR HELP IS MUCH APPRECIATED

    Read the article

  • CommonFilter 0.3D now released on CodePlex.

    CommonFilter is a subset of the CommonData project, containing just the functions and unit tests for filtering user input. The functions include filters for: Input of upper case and lower case alpha Input of numeric fields Input of text containing HTML markup to check that it only contains permitted markup. The general functions are available both as a form that silently drops non-permitted characters or in a try-parse format....Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

< Previous Page | 61 62 63 64 65 66 67 68 69 70 71 72  | Next Page >