Search Results

Search found 4431 results on 178 pages for 'peoplesoft tree powerconnect'.

Page 65/178 | < Previous Page | 61 62 63 64 65 66 67 68 69 70 71 72  | Next Page >

  • Quick guide to Oracle IRM 11g: Server configuration

    - by Simon Thorpe
    Quick guide to Oracle IRM 11g index Welcome to the second article in this quick quide to Oracle IRM 11g. Hopefully you've just finished the first article which takes you through deploying the software onto a Linux server. This article walks you through the configuration of this new service and contains a subset of information from the official documentation and is focused on installing the server on Oracle Enterprise Linux. If you are planning to deploy on a non-Linux platform, you will need to reference the documentation for platform specific information. Contents Introduction Create IRM WebLogic Domain Starting the Admin Server and initial configuration Introduction In the previous article the database was prepared, the WebLogic Application Server installed and the files required for an IRM server installed. But we don't actually have a configured system yet. We need to now create a WebLogic Domain in which the IRM server will run, then configure some of the settings and crypography so that we can create a context and be ready to seal some content and test it all works. This article doesn't cover the configuration of SSL communication from client to server. This is quite a big topic and a separate article has been dedicated for this area. In these articles I also use the hostname, irm.company.internal to reference the IRM server and later on use the hostname irm.company.com in reference to the public facing service. Create IRM WebLogic Domain First step is creating the WebLogic domain, in a console switch to the newly created IRM installation folder as shown below and we will run the domain configuration wizard. [oracle@irm /]$ cd /oracle/middleware/Oracle_IRM/common/bin [oracle@irm bin]$ ./config.sh First thing the wizard will ask is if you wish to create a new or extend an existing domain. This guide is creating a standalone system so you should select to create a new domain. Next step is to choose what technologies from the Oracle ECM Suite you wish this domain to host. You are only interested in selecting the option "Oracle Information Rights Management". When you select this check box you will notice that it also selects "Oracle Enterprise Manager" and "Oracle JRF" as these are dependencies of the IRM server. You then need to specify where you wish to place the domain files. I usually just change the domain name from base_domain or irm_domain and leave the others with their defaults. Now the domain will have a single user initially and by default this user is called "weblogic". I usually change this account name to "sysadmin" or "administrator", but in this guide lets just accept the default. With respects to the next dialog, again for eval or dev reasons, leave the server startup mode as development. The JDK should also be automatically detected. We now need to provide details of the database. This guide is using the Oracle 11gR2 database and the settings I used can be seen in the image to the right. There is a lot of configuration that can now be done for the admin server, any managed servers and where the deployments reside. In this guide I am leaving all of these to their defaults so do not check any of the boxes. However I will on this blog be detailing later how you can go back and setup things such as automated startup of an IRM server which require changes to these default settings. But for now, lets leave it all alone and just click next. Now we are ready to install. Note that from this dialog you can scroll the left window and see there are going to be two servers created from the defaults. The AdminServer which is where you modify settings for the WebLogic Server and also hosts the Oracle Enterprise Manager for IRM which allows to monitor the IRM service performance and also make service related settings (which we shortly do below) and the IRM_server1 which hosts the actual IRM services themselves. So go right ahead and hit create, the process is pretty quick and usually under 10 minutes. When the domain creation ends, it will give you the URL to the admin server. It's worth noting this down and the URL is usually; http://irm.company.internal:7001 Starting the Admin Server and initial configuration First thing to do is to start the WebLogic Admin server and review the initial IRM server settings. In this guide we are going to run the Admin server and IRM server in console windows, in another article I will discuss running these as background services. So for now, start a console and run the Admin server by doing the following. cd /oracle/middleware/user_projects/domains/irm_domain/ ./startWebLogic.sh Wait for the server to start, you are looking for the following line to be reported in the console window. <BEA-00360><Server started in RUNNING mode> First step is configuring the IRM service via Enterprise Manager. Now that the Admin server is running you can point a browser at http://irm.company.internal:7001/em. Login with the username and password you supplied when you created the domain. In Enterprise Manager the IRM service administrator is able to make server wide configuration. However finding where to access the pages with these settings can be a bit of a challenge. After logging in on the left you'll see a tree containing elements of the Enterprise Manager farm Farm_irm_domain. Open up Content Management, then Information Rights Management and finally select the IRM node. On the right then select the IRM menu item, navigate to the Administration section and now we have four options, for now, we are just going to look at General Settings. The image on the right proves that a picture is worth a thousand words (or 113 in this case). The General Settings page allows you to set the cryptographic algorithms used for protecting sealed content. Unless you have a burning need to increase the key lengths or you need to comply to a regulation or government mandate, AES192 is a good start. You can change this later on without worry. The most important setting here we need to make is the Server URL. In this blog article I go over why this URL is so important, basically every single piece of content you protect with Oracle IRM is going to have this URL embedded in it, so if it's wrong or unresolvable, then nobody can open the secured documents. Note that in our environment we have yet to do any SSL configuration of the service. If you intend to build a server without SSL, then use http as the protocol instead of https. But I would recommend using SSL and setting this up is described in the next article. I would also probably up the device count from 1 to 3. This means that any user can retrieve rights to access content onto 3 computers at any one time. The default of 1 doesn't really make sense in development, evaluation nor even production environments and my experience is that 3 is a better number. Next step is to create the keystore for the IRM server. When a classification (called a context) is created, Oracle IRM generates a unique set of symmetric keys which are used to secure the content itself. These keys are then encrypted with a set of "wrapper" asymmetric cryptography keys which are stored externally to the server either in a Java Key Store or a HSM. These keys need to be generated and the following shows my commands and the resulting output. I have greyed out the responses from the commands so you can see the input a little easier. [oracle@irmsrv ~]$ cd /oracle/middleware/wlserver_10.3/server/bin/ [oracle@irmsrv bin]$ ./setWLSEnv.sh CLASSPATH=/oracle/middleware/patch_wls1033/profiles/default/sys_manifest_classpath/weblogic_patch.jar:/oracle/middleware/patch_ocp353/profiles/default/sys_manifest_classpath/weblogic_patch.jar:/usr/java/jdk1.6.0_18/lib/tools.jar:/oracle/middleware/wlserver_10.3/server/lib/weblogic_sp.jar:/oracle/middleware/wlserver_10.3/server/lib/weblogic.jar:/oracle/middleware/modules/features/weblogic.server.modules_10.3.3.0.jar:/oracle/middleware/wlserver_10.3/server/lib/webservices.jar:/oracle/middleware/modules/org.apache.ant_1.7.1/lib/ant-all.jar:/oracle/middleware/modules/net.sf.antcontrib_1.1.0.0_1-0b2/lib/ant-contrib.jar: PATH=/oracle/middleware/wlserver_10.3/server/bin:/oracle/middleware/modules/org.apache.ant_1.7.1/bin:/usr/java/jdk1.6.0_18/jre/bin:/usr/java/jdk1.6.0_18/bin:/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/home/oracle/bin Your environment has been set. [oracle@irmsrv bin]$ cd /oracle/middleware/user_projects/domains/irm_domain/config/fmwconfig/ [oracle@irmsrv fmwconfig]$ keytool -genkeypair -alias oracle.irm.wrap -keyalg RSA -keysize 2048 -keystore irm.jks Enter keystore password: Re-enter new password: What is your first and last name? [Unknown]: Simon Thorpe What is the name of your organizational unit? [Unknown]: Oracle What is the name of your organization? [Unknown]: Oracle What is the name of your City or Locality? [Unknown]: San Francisco What is the name of your State or Province? [Unknown]: CA What is the two-letter country code for this unit? [Unknown]: US Is CN=Simon Thorpe, OU=Oracle, O=Oracle, L=San Francisco, ST=CA, C=US correct? [no]: yes Enter key password for (RETURN if same as keystore password): At this point we now have an irm.jks in the directory /oracle/middleware/user_projects/domains/irm_domain/config/fmwconfig. The reason we store it here is this folder would be backed up as part of a domain backup. As with any cryptographic technology, DO NOT LOSE THESE KEYS OR THIS KEY STORE. Once you've sealed content against a context, the keys will be wrapped with these keys, lose these keys, and you can't get access to any secured content, pretty important. Now we've got the keys created, we need to go back to the IRM Enterprise Manager and set the location of the key store. Going back to the General Settings page in Enterprise Manager scroll down to Keystore Settings. Leave the type as JKS but change the location to; /oracle/Middleware/user_projects/domains/irm_domain/config/fmwconfig/irm.jks and hit Apply. The final step with regards to the key store is we need to tell the server what the password is for the Java Key Store so that it can be opened and the keys accessed. Once more fire up a console window and run these commands (again i've greyed out the clutter to see the commands easier). You will see dummy passed into the commands, this is because the command asks for a username, but in this instance we don't use one, hence the value dummy is passed and it isn't used. [oracle@irmsrv fmwconfig]$ cd /oracle/middleware/Oracle_IRM/common/bin/ [oracle@irmsrv bin]$ ./wlst.sh ... lots of settings fly by... Welcome to WebLogic Server Administration Scripting Shell Type help() for help on available commands wls:/offline>connect('weblogic','password','t3://irmsrv.us.oracle.com:7001') Connecting to t3://irmsrv.us.oracle.com:7001 with userid weblogic ... Successfully connected to Admin Server 'AdminServer' that belongs to domain 'irm_domain'. Warning: An insecure protocol was used to connect to the server. To ensure on-the-wire security, the SSL port or Admin port should be used instead. wls:/irm_domain/serverConfig>createCred("IRM","keystore:irm.jks","dummy","password") Location changed to domainRuntime tree. This is a read-only tree with DomainMBean as the root. For more help, use help(domainRuntime)wls:/irm_domain/serverConfig>createCred("IRM","key:irm.jks:oracle.irm.wrap","dummy","password") Already in Domain Runtime Tree wls:/irm_domain/serverConfig> At last we are now ready to fire up the IRM server itself. The domain creation created a managed server called IRM_server1 and we need to start this, use the following commands in a new console window. cd /oracle/middleware/user_projects/domains/irm_domain/bin/ ./startManagedWebLogic.sh IRM_server1 This will start up the server in the console, unlike the Admin server, you need to provide the username and password for the service to start. Enter in your weblogic username and password when prompted. You can change this behavior by putting the password into a boot.properties file, read more about this in the WebLogic Server documentation. Once running, wait until you see the line; <Notice><WebLogicServer><BEA-000360><Server started in RUNNING mode> At this point we can now login to the Oracle IRM Management Website at the URL. http://irm.company.internal:1600/irm_rights/ The server is just configured for HTTP at the moment, no SSL involved. Just want to ensure we can get a working system up and running. You should now see a login like the image on the right and you can now login using your weblogic username and password. The next article in this guide goes over adding SSL and now testing your server by actually adding a few users, sealing some content and opening this content as a user.

    Read the article

  • JMS Step 6 - How to Set Up an AQ JMS (Advanced Queueing JMS) for SOA Purposes

    - by John-Brown.Evans
    JMS Step 6 - How to Set Up an AQ JMS (Advanced Queueing JMS) for SOA Purposes .jblist{list-style-type:disc;margin:0;padding:0;padding-left:0pt;margin-left:36pt} ol{margin:0;padding:0} .c17_6{vertical-align:top;width:468pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c5_6{vertical-align:top;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c6_6{vertical-align:top;width:156pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c15_6{background-color:#ffffff} .c10_6{color:#1155cc;text-decoration:underline} .c1_6{text-align:center;direction:ltr} .c0_6{line-height:1.0;direction:ltr} .c16_6{color:#666666;font-size:12pt} .c18_6{color:inherit;text-decoration:inherit} .c8_6{background-color:#f3f3f3} .c2_6{direction:ltr} .c14_6{font-size:8pt} .c11_6{font-size:10pt} .c7_6{font-weight:bold} .c12_6{height:0pt} .c3_6{height:11pt} .c13_6{border-collapse:collapse} .c4_6{font-family:"Courier New"} .c9_6{font-style:italic} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal} This post continues the series of JMS articles which demonstrate how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue This example leads you through the creation of an Oracle database Advanced Queue and the related WebLogic server objects in order to use AQ JMS in connection with a SOA composite. If you have not already done so, I recommend you look at the previous posts in this series, as they include steps which this example builds upon. The following examples will demonstrate how to write and read from the queue from a SOA process. 1. Recap and Prerequisites In the previous examples, we created a JMS Queue, a Connection Factory and a Connection Pool in the WebLogic Server Console. Then we wrote and deployed BPEL composites, which enqueued and dequeued a simple XML payload. AQ JMS allows you to interoperate with database Advanced Queueing via JMS in WebLogic server and therefore take advantage of database features, while maintaining compliance with the JMS architecture. AQ JMS uses the WebLogic JMS Foreign Server framework. A full description of this functionality can be found in the following Oracle documentation Oracle® Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server 11g Release 1 (10.3.6) Part Number E13738-06 7. Interoperating with Oracle AQ JMS http://docs.oracle.com/cd/E23943_01/web.1111/e13738/aq_jms.htm#CJACBCEJ For easier reference, this sample will use the same names for the objects as in the above document, except for the name of the database user, as it is possible that this user already exists in your database. We will create the following objects Database Objects Name Type AQJMSUSER Database User MyQueueTable Advanced Queue (AQ) Table UserQueue Advanced Queue WebLogic Server Objects Object Name Type JNDI Name aqjmsuserDataSource Data Source jdbc/aqjmsuserDataSource AqJmsModule JMS System Module AqJmsForeignServer JMS Foreign Server AqJmsForeignServerConnectionFactory JMS Foreign Server Connection Factory AqJmsForeignServerConnectionFactory AqJmsForeignDestination AQ JMS Foreign Destination queue/USERQUEUE eis/aqjms/UserQueue Connection Pool eis/aqjms/UserQueue 2. Create a Database User and Advanced Queue The following steps can be executed in the database client of your choice, e.g. JDeveloper or SQL Developer. The examples below use SQL*Plus. Log in to the database as a DBA user, for example SYSTEM or SYS. Create the AQJMSUSER user and grant privileges to enable the user to create AQ objects. Create Database User and Grant AQ Privileges sqlplus system/password as SYSDBA GRANT connect, resource TO aqjmsuser IDENTIFIED BY aqjmsuser; GRANT aq_user_role TO aqjmsuser; GRANT execute ON sys.dbms_aqadm TO aqjmsuser; GRANT execute ON sys.dbms_aq TO aqjmsuser; GRANT execute ON sys.dbms_aqin TO aqjmsuser; GRANT execute ON sys.dbms_aqjms TO aqjmsuser; Create the Queue Table and Advanced Queue and Start the AQ The following commands are executed as the aqjmsuser database user. Create the Queue Table connect aqjmsuser/aqjmsuser; BEGIN dbms_aqadm.create_queue_table ( queue_table = 'myQueueTable', queue_payload_type = 'sys.aq$_jms_text_message', multiple_consumers = false ); END; / Create the AQ BEGIN dbms_aqadm.create_queue ( queue_name = 'userQueue', queue_table = 'myQueueTable' ); END; / Start the AQ BEGIN dbms_aqadm.start_queue ( queue_name = 'userQueue'); END; / The above commands can be executed in a single PL/SQL block, but are shown as separate blocks in this example for ease of reference. You can verify the queue by executing the SQL command SELECT object_name, object_type FROM user_objects; which should display the following objects: OBJECT_NAME OBJECT_TYPE ------------------------------ ------------------- SYS_C0056513 INDEX SYS_LOB0000170822C00041$$ LOB SYS_LOB0000170822C00040$$ LOB SYS_LOB0000170822C00037$$ LOB AQ$_MYQUEUETABLE_T INDEX AQ$_MYQUEUETABLE_I INDEX AQ$_MYQUEUETABLE_E QUEUE AQ$_MYQUEUETABLE_F VIEW AQ$MYQUEUETABLE VIEW MYQUEUETABLE TABLE USERQUEUE QUEUE Similarly, you can view the objects in JDeveloper via a Database Connection to the AQJMSUSER. 3. Configure WebLogic Server and Add JMS Objects All these steps are executed from the WebLogic Server Administration Console. Log in as the webLogic user. Configure a WebLogic Data Source The data source is required for the database connection to the AQ created above. Navigate to domain > Services > Data Sources and press New then Generic Data Source. Use the values:Name: aqjmsuserDataSource JNDI Name: jdbc/aqjmsuserDataSource Database type: Oracle Database Driver: *Oracle’ Driver (Thin XA) for Instance connections; Versions:9.0.1 and later Connection Properties: Enter the connection information to the database containing the AQ created above and enter aqjmsuser for the User Name and Password. Press Test Configuration to verify the connection details and press Next. Target the data source to the soa server. The data source will be displayed in the list. It is a good idea to test the data source at this stage. Click on aqjmsuserDataSource, select Monitoring > Testing > soa_server1 and press Test Data Source. The result is displayed at the top of the page. Configure a JMS System Module The JMS system module is required to host the JMS foreign server for AQ resources. Navigate to Services > Messaging > JMS Modules and select New. Use the values: Name: AqJmsModule (Leave Descriptor File Name and Location in Domain empty.) Target: soa_server1 Click Finish. The other resources will be created in separate steps. The module will be displayed in the list.   Configure a JMS Foreign Server A foreign server is required in order to reference a 3rd-party JMS provider, in this case the database AQ, within a local WebLogic server JNDI tree. Navigate to Services > Messaging > JMS Modules and select (click on) AqJmsModule to configure it. Under Summary of Resources, select New then Foreign Server. Name: AqJmsForeignServer Targets: The foreign server is targeted automatically to soa_server1, based on the JMS module’s target. Press Finish to create the foreign server. The foreign server resource will be listed in the Summary of Resources for the AqJmsModule, but needs additional configuration steps. Click on AqJmsForeignServer and select Configuration > General to complete the configuration: JNDI Initial Context Factory: oracle.jms.AQjmsInitialContextFactory JNDI Connection URL: <empty> JNDI Properties Credential:<empty> Confirm JNDI Properties Credential: <empty> JNDI Properties: datasource=jdbc/aqjmsuserDataSource This is an important property. It is the JNDI name of the data source created above, which points to the AQ schema in the database and must be entered as a name=value pair, as in this example, e.g. datasource=jdbc/aqjmsuserDataSource, including the “datasource=” property name. Default Targeting Enabled: Leave this value checked. Press Save to save the configuration. At this point it is a good idea to verify that the data source was written correctly to the config file. In a terminal window, navigate to $MIDDLEWARE_HOME/user_projects/domains/soa_domain/config/jms  and open the file aqjmsmodule-jms.xml . The foreign server configuration should contain the datasource name-value pair, as follows:   <foreign-server name="AqJmsForeignServer">         <default-targeting-enabled>true</default-targeting-enabled>         <initial-context-factory>oracle.jms.AQjmsInitialContextFactory</initial-context-factory>         <jndi-property>           <key> datasource </key>           <value> jdbc/aqjmsuserDataSource </value>         </jndi-property>   </foreign-server> </weblogic-jms> Configure a JMS Foreign Server Connection Factory When creating the foreign server connection factory, you enter local and remote JNDI names. The name of the connection factory itself and the local JNDI name are arbitrary, but the remote JNDI name must match a specific format, depending on the type of queue or topic to be accessed in the database. This is very important and if the incorrect value is used, the connection to the queue will not be established and the error messages you get will not immediately reflect the cause of the error. The formats required (Remote JNDI names for AQ JMS Connection Factories) are described in the section Configure AQ Destinations  of the Oracle® Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server document mentioned earlier. In this example, the remote JNDI name used is   XAQueueConnectionFactory  because it matches the AQ and data source created earlier, i.e. thin with AQ. Navigate to JMS Modules > AqJmsModule > AqJmsForeignServer > Connection Factories then New.Name: AqJmsForeignServerConnectionFactory Local JNDI Name: AqJmsForeignServerConnectionFactory Note: this local JNDI name is the JNDI name which your client application, e.g. a later BPEL process, will use to access this connection factory. Remote JNDI Name: XAQueueConnectionFactory Press OK to save the configuration. Configure an AQ JMS Foreign Server Destination A foreign server destination maps the JNDI name on the foreign JNDI provider to the respective local JNDI name, allowing the foreign JNDI name to be accessed via the local server. As with the foreign server connection factory, the local JNDI name is arbitrary (but must be unique), but the remote JNDI name must conform to a specific format defined in the section Configure AQ Destinations  of the Oracle® Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server document mentioned earlier. In our example, the remote JNDI name is Queues/USERQUEUE , because it references a queue (as opposed to a topic) with the name USERQUEUE. We will name the local JNDI name queue/USERQUEUE, which is a little confusing (note the missing “s” in “queue), but conforms better to the JNDI nomenclature in our SOA server and also allows us to differentiate between the local and remote names for demonstration purposes. Navigate to JMS Modules > AqJmsModule > AqJmsForeignServer > Destinations and select New.Name: AqJmsForeignDestination Local JNDI Name: queue/USERQUEUE Remote JNDI Name:Queues/USERQUEUE After saving the foreign destination configuration, this completes the JMS part of the configuration. We still need to configure the JMS adapter in order to be able to access the queue from a BPEL processt. 4. Create a JMS Adapter Connection Pool in Weblogic Server Create the Connection Pool Access to the AQ JMS queue from a BPEL or other SOA process in our example is done via a JMS adapter. To enable this, the JmsAdapter in WebLogic server needs to be configured to have a connection pool which points to the local connection factory JNDI name which was created earlier. Navigate to Deployments > Next and select (click on) the JmsAdapter. Select Configuration > Outbound Connection Pools and New. Check the radio button for oracle.tip.adapter.jms.IJmsConnectionFactory and press Next. JNDI Name: eis/aqjms/UserQueue Press Finish Expand oracle.tip.adapter.jms.IJmsConnectionFactory and click on eis/aqjms/UserQueue to configure it. The ConnectionFactoryLocation must point to the foreign server’s local connection factory name created earlier. In our example, this is AqJmsForeignServerConnectionFactory . As a reminder, this connection factory is located under JMS Modules > AqJmsModule > AqJmsForeignServer > Connection Factories and the value needed here is under Local JNDI Name. Enter AqJmsForeignServerConnectionFactory  into the Property Value field for ConnectionFactoryLocation. You must then press Return/Enter then Save for the value to be accepted. If your WebLogic server is running in Development mode, you should see the message that the changes have been activated and the deployment plan successfully updated. If not, then you will manually need to activate the changes in the WebLogic server console.Although the changes have been activated, the JmsAdapter needs to be redeployed in order for the changes to become effective. This should be confirmed by the message Remember to update your deployment to reflect the new plan when you are finished with your changes. Redeploy the JmsAdapter Navigate back to the Deployments screen, either by selecting it in the left-hand navigation tree or by selecting the “Summary of Deployments” link in the breadcrumbs list at the top of the screen. Then select the checkbox next to JmsAdapter and press the Update button. On the Update Application Assistant page, select “Redeploy this application using the following deployment files” and press Finish. After a few seconds you should get the message that the selected deployments were updated. The JMS adapter configuration is complete and it can now be used to access the AQ JMS queue. You can verify that the JNDI name was created correctly, by navigating to Environment > Servers > soa_server1 and View JNDI Tree. Then scroll down in the JNDI Tree Structure to eis and select aqjms. This concludes the sample. In the following post, I will show you how to create a BPEL process which sends a message to this advanced queue via JMS. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • C#/.NET Fundamentals: Choosing the Right Collection Class

    - by James Michael Hare
    The .NET Base Class Library (BCL) has a wide array of collection classes at your disposal which make it easy to manage collections of objects. While it's great to have so many classes available, it can be daunting to choose the right collection to use for any given situation. As hard as it may be, choosing the right collection can be absolutely key to the performance and maintainability of your application! This post will look at breaking down any confusion between each collection and the situations in which they excel. We will be spending most of our time looking at the System.Collections.Generic namespace, which is the recommended set of collections. The Generic Collections: System.Collections.Generic namespace The generic collections were introduced in .NET 2.0 in the System.Collections.Generic namespace. This is the main body of collections you should tend to focus on first, as they will tend to suit 99% of your needs right up front. It is important to note that the generic collections are unsynchronized. This decision was made for performance reasons because depending on how you are using the collections its completely possible that synchronization may not be required or may be needed on a higher level than simple method-level synchronization. Furthermore, concurrent read access (all writes done at beginning and never again) is always safe, but for concurrent mixed access you should either synchronize the collection or use one of the concurrent collections. So let's look at each of the collections in turn and its various pros and cons, at the end we'll summarize with a table to help make it easier to compare and contrast the different collections. The Associative Collection Classes Associative collections store a value in the collection by providing a key that is used to add/remove/lookup the item. Hence, the container associates the value with the key. These collections are most useful when you need to lookup/manipulate a collection using a key value. For example, if you wanted to look up an order in a collection of orders by an order id, you might have an associative collection where they key is the order id and the value is the order. The Dictionary<TKey,TVale> is probably the most used associative container class. The Dictionary<TKey,TValue> is the fastest class for associative lookups/inserts/deletes because it uses a hash table under the covers. Because the keys are hashed, the key type should correctly implement GetHashCode() and Equals() appropriately or you should provide an external IEqualityComparer to the dictionary on construction. The insert/delete/lookup time of items in the dictionary is amortized constant time - O(1) - which means no matter how big the dictionary gets, the time it takes to find something remains relatively constant. This is highly desirable for high-speed lookups. The only downside is that the dictionary, by nature of using a hash table, is unordered, so you cannot easily traverse the items in a Dictionary in order. The SortedDictionary<TKey,TValue> is similar to the Dictionary<TKey,TValue> in usage but very different in implementation. The SortedDictionary<TKey,TValye> uses a binary tree under the covers to maintain the items in order by the key. As a consequence of sorting, the type used for the key must correctly implement IComparable<TKey> so that the keys can be correctly sorted. The sorted dictionary trades a little bit of lookup time for the ability to maintain the items in order, thus insert/delete/lookup times in a sorted dictionary are logarithmic - O(log n). Generally speaking, with logarithmic time, you can double the size of the collection and it only has to perform one extra comparison to find the item. Use the SortedDictionary<TKey,TValue> when you want fast lookups but also want to be able to maintain the collection in order by the key. The SortedList<TKey,TValue> is the other ordered associative container class in the generic containers. Once again SortedList<TKey,TValue>, like SortedDictionary<TKey,TValue>, uses a key to sort key-value pairs. Unlike SortedDictionary, however, items in a SortedList are stored as an ordered array of items. This means that insertions and deletions are linear - O(n) - because deleting or adding an item may involve shifting all items up or down in the list. Lookup time, however is O(log n) because the SortedList can use a binary search to find any item in the list by its key. So why would you ever want to do this? Well, the answer is that if you are going to load the SortedList up-front, the insertions will be slower, but because array indexing is faster than following object links, lookups are marginally faster than a SortedDictionary. Once again I'd use this in situations where you want fast lookups and want to maintain the collection in order by the key, and where insertions and deletions are rare. The Non-Associative Containers The other container classes are non-associative. They don't use keys to manipulate the collection but rely on the object itself being stored or some other means (such as index) to manipulate the collection. The List<T> is a basic contiguous storage container. Some people may call this a vector or dynamic array. Essentially it is an array of items that grow once its current capacity is exceeded. Because the items are stored contiguously as an array, you can access items in the List<T> by index very quickly. However inserting and removing in the beginning or middle of the List<T> are very costly because you must shift all the items up or down as you delete or insert respectively. However, adding and removing at the end of a List<T> is an amortized constant operation - O(1). Typically List<T> is the standard go-to collection when you don't have any other constraints, and typically we favor a List<T> even over arrays unless we are sure the size will remain absolutely fixed. The LinkedList<T> is a basic implementation of a doubly-linked list. This means that you can add or remove items in the middle of a linked list very quickly (because there's no items to move up or down in contiguous memory), but you also lose the ability to index items by position quickly. Most of the time we tend to favor List<T> over LinkedList<T> unless you are doing a lot of adding and removing from the collection, in which case a LinkedList<T> may make more sense. The HashSet<T> is an unordered collection of unique items. This means that the collection cannot have duplicates and no order is maintained. Logically, this is very similar to having a Dictionary<TKey,TValue> where the TKey and TValue both refer to the same object. This collection is very useful for maintaining a collection of items you wish to check membership against. For example, if you receive an order for a given vendor code, you may want to check to make sure the vendor code belongs to the set of vendor codes you handle. In these cases a HashSet<T> is useful for super-quick lookups where order is not important. Once again, like in Dictionary, the type T should have a valid implementation of GetHashCode() and Equals(), or you should provide an appropriate IEqualityComparer<T> to the HashSet<T> on construction. The SortedSet<T> is to HashSet<T> what the SortedDictionary<TKey,TValue> is to Dictionary<TKey,TValue>. That is, the SortedSet<T> is a binary tree where the key and value are the same object. This once again means that adding/removing/lookups are logarithmic - O(log n) - but you gain the ability to iterate over the items in order. For this collection to be effective, type T must implement IComparable<T> or you need to supply an external IComparer<T>. Finally, the Stack<T> and Queue<T> are two very specific collections that allow you to handle a sequential collection of objects in very specific ways. The Stack<T> is a last-in-first-out (LIFO) container where items are added and removed from the top of the stack. Typically this is useful in situations where you want to stack actions and then be able to undo those actions in reverse order as needed. The Queue<T> on the other hand is a first-in-first-out container which adds items at the end of the queue and removes items from the front. This is useful for situations where you need to process items in the order in which they came, such as a print spooler or waiting lines. So that's the basic collections. Let's summarize what we've learned in a quick reference table.  Collection Ordered? Contiguous Storage? Direct Access? Lookup Efficiency Manipulate Efficiency Notes Dictionary No Yes Via Key Key: O(1) O(1) Best for high performance lookups. SortedDictionary Yes No Via Key Key: O(log n) O(log n) Compromise of Dictionary speed and ordering, uses binary search tree. SortedList Yes Yes Via Key Key: O(log n) O(n) Very similar to SortedDictionary, except tree is implemented in an array, so has faster lookup on preloaded data, but slower loads. List No Yes Via Index Index: O(1) Value: O(n) O(n) Best for smaller lists where direct access required and no ordering. LinkedList No No No Value: O(n) O(1) Best for lists where inserting/deleting in middle is common and no direct access required. HashSet No Yes Via Key Key: O(1) O(1) Unique unordered collection, like a Dictionary except key and value are same object. SortedSet Yes No Via Key Key: O(log n) O(log n) Unique ordered collection, like SortedDictionary except key and value are same object. Stack No Yes Only Top Top: O(1) O(1)* Essentially same as List<T> except only process as LIFO Queue No Yes Only Front Front: O(1) O(1) Essentially same as List<T> except only process as FIFO   The Original Collections: System.Collections namespace The original collection classes are largely considered deprecated by developers and by Microsoft itself. In fact they indicate that for the most part you should always favor the generic or concurrent collections, and only use the original collections when you are dealing with legacy .NET code. Because these collections are out of vogue, let's just briefly mention the original collection and their generic equivalents: ArrayList A dynamic, contiguous collection of objects. Favor the generic collection List<T> instead. Hashtable Associative, unordered collection of key-value pairs of objects. Favor the generic collection Dictionary<TKey,TValue> instead. Queue First-in-first-out (FIFO) collection of objects. Favor the generic collection Queue<T> instead. SortedList Associative, ordered collection of key-value pairs of objects. Favor the generic collection SortedList<T> instead. Stack Last-in-first-out (LIFO) collection of objects. Favor the generic collection Stack<T> instead. In general, the older collections are non-type-safe and in some cases less performant than their generic counterparts. Once again, the only reason you should fall back on these older collections is for backward compatibility with legacy code and libraries only. The Concurrent Collections: System.Collections.Concurrent namespace The concurrent collections are new as of .NET 4.0 and are included in the System.Collections.Concurrent namespace. These collections are optimized for use in situations where multi-threaded read and write access of a collection is desired. The concurrent queue, stack, and dictionary work much as you'd expect. The bag and blocking collection are more unique. Below is the summary of each with a link to a blog post I did on each of them. ConcurrentQueue Thread-safe version of a queue (FIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentStack Thread-safe version of a stack (LIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentBag Thread-safe unordered collection of objects. Optimized for situations where a thread may be bother reader and writer. For more information see: C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection ConcurrentDictionary Thread-safe version of a dictionary. Optimized for multiple readers (allows multiple readers under same lock). For more information see C#/.NET Little Wonders: The ConcurrentDictionary BlockingCollection Wrapper collection that implement producers & consumers paradigm. Readers can block until items are available to read. Writers can block until space is available to write (if bounded). For more information see C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection Summary The .NET BCL has lots of collections built in to help you store and manipulate collections of data. Understanding how these collections work and knowing in which situations each container is best is one of the key skills necessary to build more performant code. Choosing the wrong collection for the job can make your code much slower or even harder to maintain if you choose one that doesn’t perform as well or otherwise doesn’t exactly fit the situation. Remember to avoid the original collections and stick with the generic collections.  If you need concurrent access, you can use the generic collections if the data is read-only, or consider the concurrent collections for mixed-access if you are running on .NET 4.0 or higher.   Tweet Technorati Tags: C#,.NET,Collecitons,Generic,Concurrent,Dictionary,List,Stack,Queue,SortedList,SortedDictionary,HashSet,SortedSet

    Read the article

  • What's up with OCFS2?

    - by wcoekaer
    On Linux there are many filesystem choices and even from Oracle we provide a number of filesystems, all with their own advantages and use cases. Customers often confuse ACFS with OCFS or OCFS2 which then causes assumptions to be made such as one replacing the other etc... I thought it would be good to write up a summary of how OCFS2 got to where it is, what we're up to still, how it is different from other options and how this really is a cool native Linux cluster filesystem that we worked on for many years and is still widely used. Work on a cluster filesystem at Oracle started many years ago, in the early 2000's when the Oracle Database Cluster development team wrote a cluster filesystem for Windows that was primarily focused on providing an alternative to raw disk devices and help customers with the deployment of Oracle Real Application Cluster (RAC). Oracle RAC is a cluster technology that lets us make a cluster of Oracle Database servers look like one big database. The RDBMS runs on many nodes and they all work on the same data. It's a Shared Disk database design. There are many advantages doing this but I will not go into detail as that is not the purpose of my write up. Suffice it to say that Oracle RAC expects all the database data to be visible in a consistent, coherent way, across all the nodes in the cluster. To do that, there were/are a few options : 1) use raw disk devices that are shared, through SCSI, FC, or iSCSI 2) use a network filesystem (NFS) 3) use a cluster filesystem(CFS) which basically gives you a filesystem that's coherent across all nodes using shared disks. It is sort of (but not quite) combining option 1 and 2 except that you don't do network access to the files, the files are effectively locally visible as if it was a local filesystem. So OCFS (Oracle Cluster FileSystem) on Windows was born. Since Linux was becoming a very important and popular platform, we decided that we would also make this available on Linux and thus the porting of OCFS/Windows started. The first version of OCFS was really primarily focused on replacing the use of Raw devices with a simple filesystem that lets you create files and provide direct IO to these files to get basically native raw disk performance. The filesystem was not designed to be fully POSIX compliant and it did not have any where near good/decent performance for regular file create/delete/access operations. Cache coherency was easy since it was basically always direct IO down to the disk device and this ensured that any time one issues a write() command it would go directly down to the disk, and not return until the write() was completed. Same for read() any sort of read from a datafile would be a read() operation that went all the way to disk and return. We did not cache any data when it came down to Oracle data files. So while OCFS worked well for that, since it did not have much of a normal filesystem feel, it was not something that could be submitted to the kernel mail list for inclusion into Linux as another native linux filesystem (setting aside the Windows porting code ...) it did its job well, it was very easy to configure, node membership was simple, locking was disk based (so very slow but it existed), you could create regular files and do regular filesystem operations to a certain extend but anything that was not database data file related was just not very useful in general. Logfiles ok, standard filesystem use, not so much. Up to this point, all the work was done, at Oracle, by Oracle developers. Once OCFS (1) was out for a while and there was a lot of use in the database RAC world, many customers wanted to do more and were asking for features that you'd expect in a normal native filesystem, a real "general purposes cluster filesystem". So the team sat down and basically started from scratch to implement what's now known as OCFS2 (Oracle Cluster FileSystem release 2). Some basic criteria were : Design it with a real Distributed Lock Manager and use the network for lock negotiation instead of the disk Make it a Linux native filesystem instead of a native shim layer and a portable core Support standard Posix compliancy and be fully cache coherent with all operations Support all the filesystem features Linux offers (ACL, extended Attributes, quotas, sparse files,...) Be modern, support large files, 32/64bit, journaling, data ordered journaling, endian neutral, we can mount on both endian /cross architecture,.. Needless to say, this was a huge development effort that took many years to complete. A few big milestones happened along the way... OCFS2 was development in the open, we did not have a private tree that we worked on without external code review from the Linux Filesystem maintainers, great folks like Christopher Hellwig reviewed the code regularly to make sure we were not doing anything out of line, we submitted the code for review on lkml a number of times to see if we were getting close for it to be included into the mainline kernel. Using this development model is standard practice for anyone that wants to write code that goes into the kernel and having any chance of doing so without a complete rewrite or.. shall I say flamefest when submitted. It saved us a tremendous amount of time by not having to re-fit code for it to be in a Linus acceptable state. Some other filesystems that were trying to get into the kernel that didn't follow an open development model had a lot harder time and a lot harsher criticism. March 2006, when Linus released 2.6.16, OCFS2 officially became part of the mainline kernel, it was accepted a little earlier in the release candidates but in 2.6.16. OCFS2 became officially part of the mainline Linux kernel tree as one of the many filesystems. It was the first cluster filesystem to make it into the kernel tree. Our hope was that it would then end up getting picked up by the distribution vendors to make it easy for everyone to have access to a CFS. Today the source code for OCFS2 is approximately 85000 lines of code. We made OCFS2 production with full support for customers that ran Oracle database on Linux, no extra or separate support contract needed. OCFS2 1.0.0 started being built for RHEL4 for x86, x86-64, ppc, s390x and ia64. For RHEL5 starting with OCFS2 1.2. SuSE was very interested in high availability and clustering and decided to build and include OCFS2 with SLES9 for their customers and was, next to Oracle, the main contributor to the filesystem for both new features and bug fixes. Source code was always available even prior to inclusion into mainline and as of 2.6.16, source code was just part of a Linux kernel download from kernel.org, which it still is, today. So the latest OCFS2 code is always the upstream mainline Linux kernel. OCFS2 is the cluster filesystem used in Oracle VM 2 and Oracle VM 3 as the virtual disk repository filesystem. Since the filesystem is in the Linux kernel it's released under the GPL v2 The release model has always been that new feature development happened in the mainline kernel and we then built consistent, well tested, snapshots that had versions, 1.2, 1.4, 1.6, 1.8. But these releases were effectively just snapshots in time that were tested for stability and release quality. OCFS2 is very easy to use, there's a simple text file that contains the node information (hostname, node number, cluster name) and a file that contains the cluster heartbeat timeouts. It is very small, and very efficient. As Sunil Mushran wrote in the manual : OCFS2 is an efficient, easily configured, quickly installed, fully integrated and compatible, feature-rich, architecture and endian neutral, cache coherent, ordered data journaling, POSIX-compliant, shared disk cluster file system. Here is a list of some of the important features that are included : Variable Block and Cluster sizes Supports block sizes ranging from 512 bytes to 4 KB and cluster sizes ranging from 4 KB to 1 MB (increments in power of 2). Extent-based Allocations Tracks the allocated space in ranges of clusters making it especially efficient for storing very large files. Optimized Allocations Supports sparse files, inline-data, unwritten extents, hole punching and allocation reservation for higher performance and efficient storage. File Cloning/snapshots REFLINK is a feature which introduces copy-on-write clones of files in a cluster coherent way. Indexed Directories Allows efficient access to millions of objects in a directory. Metadata Checksums Detects silent corruption in inodes and directories. Extended Attributes Supports attaching an unlimited number of name:value pairs to the file system objects like regular files, directories, symbolic links, etc. Advanced Security Supports POSIX ACLs and SELinux in addition to the traditional file access permission model. Quotas Supports user and group quotas. Journaling Supports both ordered and writeback data journaling modes to provide file system consistency in the event of power failure or system crash. Endian and Architecture neutral Supports a cluster of nodes with mixed architectures. Allows concurrent mounts on nodes running 32-bit and 64-bit, little-endian (x86, x86_64, ia64) and big-endian (ppc64) architectures. In-built Cluster-stack with DLM Includes an easy to configure, in-kernel cluster-stack with a distributed lock manager. Buffered, Direct, Asynchronous, Splice and Memory Mapped I/Os Supports all modes of I/Os for maximum flexibility and performance. Comprehensive Tools Support Provides a familiar EXT3-style tool-set that uses similar parameters for ease-of-use. The filesystem was distributed for Linux distributions in separate RPM form and this had to be built for every single kernel errata release or every updated kernel provided by the vendor. We provided builds from Oracle for Oracle Linux and all kernels released by Oracle and for Red Hat Enterprise Linux. SuSE provided the modules directly for every kernel they shipped. With the introduction of the Unbreakable Enterprise Kernel for Oracle Linux and our interest in reducing the overhead of building filesystem modules for every minor release, we decide to make OCFS2 available as part of UEK. There was no more need for separate kernel modules, everything was built-in and a kernel upgrade automatically updated the filesystem, as it should. UEK allowed us to not having to backport new upstream filesystem code into an older kernel version, backporting features into older versions introduces risk and requires extra testing because the code is basically partially rewritten. The UEK model works really well for continuing to provide OCFS2 without that extra overhead. Because the RHEL kernel did not contain OCFS2 as a kernel module (it is in the source tree but it is not built by the vendor in kernel module form) we stopped adding the extra packages to Oracle Linux and its RHEL compatible kernel and for RHEL. Oracle Linux customers/users obviously get OCFS2 included as part of the Unbreakable Enterprise Kernel, SuSE customers get it by SuSE distributed with SLES and Red Hat can decide to distribute OCFS2 to their customers if they chose to as it's just a matter of compiling the module and making it available. OCFS2 today, in the mainline kernel is pretty much feature complete in terms of integration with every filesystem feature Linux offers and it is still actively maintained with Joel Becker being the primary maintainer. Since we use OCFS2 as part of Oracle VM, we continue to look at interesting new functionality to add, REFLINK was a good example, and as such we continue to enhance the filesystem where it makes sense. Bugfixes and any sort of code that goes into the mainline Linux kernel that affects filesystems, automatically also modifies OCFS2 so it's in kernel, actively maintained but not a lot of new development happening at this time. We continue to fully support OCFS2 as part of Oracle Linux and the Unbreakable Enterprise Kernel and other vendors make their own decisions on support as it's really a Linux cluster filesystem now more than something that we provide to customers. It really just is part of Linux like EXT3 or BTRFS etc, the OS distribution vendors decide. Do not confuse OCFS2 with ACFS (ASM cluster Filesystem) also known as Oracle Cloud Filesystem. ACFS is a filesystem that's provided by Oracle on various OS platforms and really integrates into Oracle ASM (Automatic Storage Management). It's a very powerful Cluster Filesystem but it's not distributed as part of the Operating System, it's distributed with the Oracle Database product and installs with and lives inside Oracle ASM. ACFS obviously is fully supported on Linux (Oracle Linux, Red Hat Enterprise Linux) but OCFS2 independently as a native Linux filesystem is also, and continues to also be supported. ACFS is very much tied into the Oracle RDBMS, OCFS2 is just a standard native Linux filesystem with no ties into Oracle products. Customers running the Oracle database and ASM really should consider using ACFS as it also provides storage/clustered volume management. Customers wanting to use a simple, easy to use generic Linux cluster filesystem should consider using OCFS2. To learn more about OCFS2 in detail, you can find good documentation on http://oss.oracle.com/projects/ocfs2 in the Documentation area, or get the latest mainline kernel from http://kernel.org and read the source. One final, unrelated note - since I am not always able to publicly answer or respond to comments, I do not want to selectively publish comments from readers. Sometimes I forget to publish comments, sometime I publish them and sometimes I would publish them but if for some reason I cannot publicly comment on them, it becomes a very one-sided stream. So for now I am going to not publish comments from anyone, to be fair to all sides. You are always welcome to email me and I will do my best to respond to technical questions, questions about strategy or direction are sometimes not possible to answer for obvious reasons.

    Read the article

  • Git-windows case sensitive file names not handled properly

    - by dhanasekar79
    We have the git bare repository in unix that has files with same name that differs only in cases. Example: GRANT.sql grant.sql When we clone the bare repository from unix in to a windows box, git status detecs the file as modified. The working tree is loaded only with grant.sql, but git status compares grant.sql and GRANT.sql and shows the file as modified in the working tree. I tried using the core.ignorecase false but the result is the same. Is there any way to rix this issue.

    Read the article

  • Design for a machine learning artificial intelligence framework

    - by Lirik
    This is a community wiki which aims to provide a good design for a machine learning/artificial intelligence framework (ML/AI framework). Please contribute to the design of a language-agnostic framework which would allow multiple ML/AI algorithms to be plugged into a single framework which: runs the algorithms with a user-specified data set. facilitates learning, qualification, and classification. allows users to easily plug in new algorithms. can aggregate or create an ensemble of the existing algorithms. can save/load the progress of the algorithm (i.e. save the network and weights of a neural network, save the tree of a decision tree, etc.). What is a good design for this sort of ML/AI framework?

    Read the article

  • Is there any good reason to use <rtexprvalue>false</rtexprvalue> in JSP tags?

    - by Superfilin
    Is there any good reason to disallow scriptlet or EL expression to be inserted as attribute value? Let's say we have tag: <tag> <name>mytag</name> <tag-class>org.apache.beehive.netui.tags.tree.Tree</tag-class> <attribute> <name>attr</name> <required>false</required> <rtexprvalue>false</rtexprvalue> <type>boolean</type> </attribute> </tag> What could be a good reason for dissallowing the below? <my:mytag attr="${setting}" />

    Read the article

  • WPF TreeView drag and drop using preview

    - by imekon
    I'm handling drag and drop events in a TreeView using PreviewMouseDown, PreviewMouseMove and PreviewMouseUp, however, there is an issue. In my PreviewMouseDown handler, I set everything ready in case there's a drag started (detected in the Move event), however I set e.Handled = true. This means that standard selection events don't get generated on my tree! What I want to be able to do in my Up event is to invoke the standard treeview selection changed event - except I cannot call events outside of the tree. So what's the correct way to do this? I have tried using the standard MouseDown, MouseMove and MouseUp events however there's an issue with messing up my multiple selection feature that means I need to use the Preview version of those events.

    Read the article

  • Design for a machine learning artificial intelligence framework (community wiki)

    - by Lirik
    This is a community wiki which aims to provide a good design for a machine learning/artificial intelligence framework (ML/AI framework). Please contribute to the design of a language-agnostic framework which would allow multiple ML/AI algorithms to be plugged into a single framework which: runs the algorithms with a user-specified data set. facilitates learning, qualification, and classification. allows users to easily plug in new algorithms. can aggregate or create an ensemble of the existing algorithms. can save/load the progress of the algorithm (i.e. save the network and weights of a neural network, save the tree of a decision tree, etc.). What is a good design for this sort of ML/AI framework?

    Read the article

  • Serialize struct with pointers to NSData

    - by leolobato
    Hey guys, I need to add some kind of archiving functionality to a Objective-C Trie implementation (NDTrie on github), but I have very little experience with C and it's data structures. struct trieNode { NSUInteger key; NSUInteger count, size; id object; __strong struct trieNode ** children; __strong struct trieNode * parent; }; @interface NDTrie (Private) - (struct trieNode*)root; @end What I need is to create an NSData with the tree structure from that root - or serialize/deserialize the whole tree some other way (conforming to NSCoding?), but I have no clue how to work with NSData and a C struct containing pointers. Performance on deserializing the resulting object would be crucial, as this is an iPhone project and I will need to load it in the background every time the app starts. What would be the best way to achieve this? Thanks!

    Read the article

  • Setting treeview background color in VB6 has a flaw - help?

    - by RenMan
    I have successfully implemented this method of using the Win32 API to set the background color of a treeview in VB 6: http://support.microsoft.com/kb/178491 However, one thing goes wrong: when you expand the tree nodes more than two levels deep, the area to the left of (and sometimes under) the inner plus [+] and minus [-] signs is still white. Does anyone know how to get this area to the correct background color, too? Note: I'm also setting the BackColor of each node, and also the BackColor of the treeview's imagelist. Here's my version of the code: Public Sub TreeView_SetBackgroundColor(TreeView As MSComctlLib.TreeView, BackgroundColor As Long) Dim lStyle As Long, Node As MSComctlLib.Node For Each Node In TreeView.Nodes Node.BackColor = BackgroundColor Next TreeView.ImageList.BackColor = BackgroundColor Call SendMessage( _ TreeView.hwnd, _ TVM_SETBKCOLOR, _ 0, _ ByVal BackgroundColor) 'Now reset the style so that the tree lines appear properly. lStyle = GetWindowLong(TreeView.hwnd, GWL_STYLE) Call SetWindowLong(TreeView.hwnd, GWL_STYLE, lStyle - TVS_HASLINES) Call SetWindowLong(TreeView.hwnd, GWL_STYLE, lStyle) End Sub

    Read the article

  • Difficulty getting Saxon into XQuery mode instead of XSLT

    - by Rosarch
    I'm having difficulty getting XQuery to work. I downloaded Saxon-HE 9.2. It seems to only want to work with XSLT. When I type: java -jar saxon9he.jar I get back usage information for XSLT. When I use the command syntax for XQuery, it doesn't recognize the parameters (like -q), and gives XSLT usage information. Here are some command line interactions: >java -jar saxon9he.jar No source file name Saxon-HE 9.2.0.6J from Saxonica Usage: see http://www.saxonica.com/documentation/using-xsl/commandline.html Options: -a Use xml-stylesheet PI, not -xsl argument -c:filename Use compiled stylesheet from file -config:filename Use configuration file -cr:classname Use collection URI resolver class -dtd:on|off Validate using DTD -expand:on|off Expand defaults defined in schema/DTD -explain[:filename] Display compiled expression tree -ext:on|off Allow|Disallow external Java functions -im:modename Initial mode -ief:class;class;... List of integrated extension functions -it:template Initial template -l:on|off Line numbering for source document -m:classname Use message receiver class -now:dateTime Set currentDateTime -o:filename Output file or directory -opt:0..10 Set optimization level (0=none, 10=max) -or:classname Use OutputURIResolver class -outval:recover|fatal Handling of validation errors on result document -p:on|off Recognize URI query parameters -r:classname Use URIResolver class -repeat:N Repeat N times for performance measurement -s:filename Initial source document -sa Use schema-aware processing -strip:all|none|ignorable Strip whitespace text nodes -t Display version and timing information -T[:classname] Use TraceListener class -TJ Trace calls to external Java functions -tree:tiny|linked Select tree model -traceout:file|#null Destination for fn:trace() output -u Names are URLs not filenames -val:strict|lax Validate using schema -versionmsg:on|off Warn when using XSLT 1.0 stylesheet -warnings:silent|recover|fatal Handling of recoverable errors -x:classname Use specified SAX parser for source file -xi:on|off Expand XInclude on all documents -xmlversion:1.0|1.1 Version of XML to be handled -xsd:file;file.. Additional schema documents to be loaded -xsdversion:1.0|1.1 Version of XML Schema to be used -xsiloc:on|off Take note of xsi:schemaLocation -xsl:filename Stylesheet file -y:classname Use specified SAX parser for stylesheet --feature:value Set configuration feature (see FeatureKeys) -? Display this message param=value Set stylesheet string parameter +param=filename Set stylesheet document parameter ?param=expression Set stylesheet parameter using XPath !option=value Set serialization option >java -jar saxon9he.jar -q:"..\w3xQueryTut.xq" Unknown option -q:..\w3xQueryTut.xq Saxon-HE 9.2.0.6J from Saxonica Usage: see http://www.saxonica.com/documentation/using-xsl/commandline.html Options: -a Use xml-stylesheet PI, not -xsl argument // etc... >java net.sf.saxon.Query -q:"..\w3xQueryTut.xq" Exception in thread "main" java.lang.NoClassDefFoundError: net/sf/saxon/Query Caused by: java.lang.ClassNotFoundException: net.sf.saxon.Query // etc... Could not find the main class: net.sf.saxon.Query. Program will exit. I'm probably making some stupid mistake. Do you know what it could be?

    Read the article

  • BlackBerry Storm - Cannot scroll vertically while in TreeField

    - by sethxian
    I am having issues performing a vertical scroll on the BlackBerry Storm while in a TreeField. The tree nodes expand just fine, even with expanded nodes while in the tree I cannot scroll to the bottom of the expanded list. Sometimes it will scroll a little but then not allow me to scroll back up. Could this be an issue with the screen not being a fixed size? The TreeField is in a VeriticalFieldManager with the VERTICAL_SCROLL and VERTICAL_SCROLLBAR styles. The screen I am using is MainScreen.

    Read the article

  • Registry in .NET: DeleteSubKeyTree says the subkey does not exists, but hey, it does!

    - by CharlesB
    Hi, Trying to delete a subkey tree: HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\FileExts\.hdr. .hdr subkey has one subkey, no values. So I use this code: RegistryKey FileExts = Registry.CurrentUser.CreateSubKey("SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Explorer\\FileExts"); RegistryKey faulty = FileExts.OpenSubKey(".hdr"); Debug.Assert (faulty != null && faulty.SubKeyCount != 0); faulty.Close(); FileExts.DeleteSubKeyTree(".hdr"); And I get the ArgumentException with message "Cannot delete a subkey tree because the subkey does not exist." WTF? I checked and asserted it did exist?

    Read the article

  • Explain BFS and DFS in terms of backtracking

    - by HH
    Wikipedia about DFS Depth-first search (DFS) is an algorithm for traversing or searching a tree, tree structure, or graph. One starts at the root (selecting some node as the root in the graph case) and explores as far as possible along each branch before backtracking. So is BFS? "an algorithm that choose a starting node, checks all nodes -- backtracks --, chooses the shortest path, chose neighbour nodes -- backtracks --, chose the shortest path -- finally finds the optimal path because of traversing each path due to continuos backtracking. Regex, find's pruning -- backtracking? The term backtracking confuseses due to its variety of use. UNIX find's pruning an SO-user explained with backtracking. Regex Buddy uses the term "catastrophic backtracking" if you do not limit the scope of your Regexes. It seems to be too wide umbrella-term. So: how do you define "Backtracking" GRAPH-theoretically? what is "backtracking" in BFS and DFS?

    Read the article

  • How to find out memory layout of your data structure implementation on Linux 64bit machine

    - by ajay
    In this article, http://cacm.acm.org/magazines/2010/7/95061-youre-doing-it-wrong/fulltext the author talks about the memory layouts of 2 data structures - The Binary Heap and the B-Heap and compares how one has better memory layout than the other. http://deliveryimages.acm.org/10.1145/1790000/1785434/figs/f5.jpg http://deliveryimages.acm.org/10.1145/1790000/1785434/figs/f6.jpg I want to get hands on experience on this. I have an implementation of a N-Ary Tree and I want to find out the memory layout of my data structure. What is the best way to come up with a memory layout like the one in the article? Secondly, I think it is easier to identify the memory layout if it is an array based implementation. If the implementation of a Tree uses pointers then what Tools do we have or what kind of approach is required to map it's memory layout? Thanks!

    Read the article

  • TinyMCE editor dislikes being moved around

    - by zneak
    Hello guys, On a page I have, I need to move TinyMCE editors in the DOM tree once in a while. However, for some reason, the editor doesn't like it: it clears itself completely and becomes unusable. As far as I can see, this behavior is consistent between Safari 4 and Firefox 3.6, but not Internet Explorer 7/8. Here's an example. It truly is pissing me off to do something that works in Internet Explorer but not with more appreciable browsers. Is there something I missed in the docs about never trying to move an editor in the DOM tree? Is there some kind of workaround?

    Read the article

  • An approximate algorithm for finding Steiner Forest.

    - by Tadeusz A. Kadlubowski
    Hello. Consider a weighted graph G=(V,E,w). We are given a family of subsets of vertices V_i. Those sets of vertices are not necessarily disjoint. A Steiner Forest is a forest that for each subset of vertices V_i connects all of the vertices in this subset with a tree. Example: only one subset V_1 = V. In this case a Steiner forest is a spanning tree of the whole graph. Enough theory. Finding such a forest with minimal weight is difficult (NP-complete). Do you know any quicker approximate algorithm to find such a forest with non-optimal weight?

    Read the article

  • PyGTK: dynamic label wrapping

    - by detly
    It's a known bug/issue that a label in GTK will not dynamically resize when the parent changes. It's one of those really annoying small details, and I want to hack around it if possible. I followed the approach at 16 software, but as per the disclaimer you cannot then resize it smaller. So I attempted a trick mentioned in one of the comments (the set_size_request call in the signal callback), but this results in some sort of infinite loop (try it and see). Does anyone have any other ideas? (You can't block the signal just for the duration of the call, since as the print statements seem to indicate, the problem starts after the function is left.) The code is below. You can see what I mean if you run it and try to resize the window larger and then smaller. (If you want to see the original problem, comment out the line after "Connect to the size-allocate signal", run it, and resize the window bigger.) The Glade file ("example.glade"): <?xml version="1.0"?> <glade-interface> <!-- interface-requires gtk+ 2.16 --> <!-- interface-naming-policy project-wide --> <widget class="GtkWindow" id="window1"> <property name="visible">True</property> <signal name="destroy" handler="on_destroy"/> <child> <widget class="GtkLabel" id="label1"> <property name="visible">True</property> <property name="label" translatable="yes">In publishing and graphic design, lorem ipsum[p][1][2] is the name given to commonly used placeholder text (filler text) to demonstrate the graphic elements of a document or visual presentation, such as font, typography, and layout. The lorem ipsum text, which is typically a nonsensical list of semi-Latin words, is a hacked version of a Latin text by Cicero, with words/letters omitted and others inserted, but not proper Latin[1][2] (see below: History and discovery). The closest English translation would be "pain itself" (dolorem = pain, grief, misery, suffering; ipsum = itself).</property> <property name="wrap">True</property> </widget> </child> </widget> </glade-interface> The Python code: #!/usr/bin/python import pygtk import gobject import gtk.glade def wrapped_label_hack(gtklabel, allocation): print "In wrapped_label_hack" gtklabel.set_size_request(allocation.width, -1) # If you uncomment this, we get INFINITE LOOPING! # gtklabel.set_size_request(-1, -1) print "Leaving wrapped_label_hack" class ExampleGTK: def __init__(self, filename): self.tree = gtk.glade.XML(filename, "window1", "Example") self.id = "window1" self.tree.signal_autoconnect(self) # Connect to the size-allocate signal self.get_widget("label1").connect("size-allocate", wrapped_label_hack) def on_destroy(self, widget): self.close() def get_widget(self, id): return self.tree.get_widget(id) def close(self): window = self.get_widget(self.id) if window is not None: window.destroy() gtk.main_quit() if __name__ == "__main__": window = ExampleGTK("example.glade") gtk.main()

    Read the article

  • Made an interview mistake. Should I try to correct after the fact?

    - by AT Developer
    Ever been in a situation where you were in an interview, and realized immediately afterwards (after the nervousness wore off) that you did something wrong? I had a phone interview today. I was asked an n-ary tree problem, and coded an algorithm that used a space overhead, then a different algorithm with no space overhead. However, my solution was inefficient, since I traversed the tree top-down rather than bottom-up. The interviewer said I did a good job, but I'm still wondering if he noticed and marked down for my choice of implementation. Should I follow up with an email correcting myself, or just let it and avoid making things worse?

    Read the article

  • MFC CTreeCtrl max visible item text length

    - by Steven smethurst
    Hello I have an application that outputs large amounts of text data to an MFC tree control. When I call SetItemText() with a long string (larger then 1000+ char) only the first ~250 chars are displayed in the control. But when I call GetItemText() on the item the entire string is returned (1000+ chars) My questions are; Is there a MAX visible string length for a MFC tree control? Is there any way to increase the visible limit? I have included example text code below // In header CTreeCtrl m_Tree; // In .cpp file void CTestDlg::OnDiagnosticsDebug() { CString csText; CString csItemText; csText.Format( _T("0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789") ); for( int i = 0 ; i < 10 ; i ++ ) { csItemText += csText ; } bool b = m_Tree.SetItemText( m_Tree.GetRootItem(), csItemText ); return ; }

    Read the article

  • FireLog: proper installation...

    - by kent
    I have installed the firewiresdk26 on my dev mac... and in the Tools/ directory is FireLog. I have run the FireLog 2.0.0.pkg installer on my dev mac, but the payload it deploys is installed in my /System/Library tree, as opposed to my /Developer/SDKs tree. so when I try to include the header iokit/firewire/FireLog.h it does not get found. am I missing something? or doing something wrong? or is this an error in the installer (either FW26 or FireLog installers?) I realize that the FireLog installer is intended to be run on the machine to be debugged remotely and thus it makes sense that the framework is placed in the /System/Library path, however none of the installers gets it into my developer path... I guess I just have to move it over there by hand, but before I do that I wanted to see if I'm just overlooking something silly and need to read the docs with more concentration or something... anyone run into this before? [thx]

    Read the article

  • Jface's CheckboxTreeViewer how to set initial selection

    - by Hypercube
    Hello. This question may sounds trivial, but i am struggling with the issue, so, please help if u can. So, here it is : i am using a CheckboxTreeViewer for some good reasons. I've google-it for some class usages, and i am currently able to check/uncheck all the childrens of a selected node, and to preserve the selection after a live search with a custom implementation of the StyledCellLabelProvider provider. All good so far. However, so far i am unable to programatically select one or more elements of the tree viewer after i display the widget and call the setInput() method of the viewer. So, let's assume for instance that the tree will have 10 main nodes, and 5 leafs on node 6. My question is how do i set the checked state of the 3rd leaf? Thank u.

    Read the article

  • PyQt: How to keep QTreeView nodes correctly expanded after a sort

    - by taynaron
    I'm writing a simple test program using QTreeModel and QTreeView for a more complex project later on. In this simple program, I have data in groups which may be contracted or expanded, as one would expect in a QTreeView. The data may also be sorted by the various data columns (QTreeView.setSortingEnabled is True). Each tree item is a list of data, so the sort function implemented in the TreeModel class uses the built-in python list sort: self.layoutAboutToBeChanged.emit() self.rootItem.childItems.sort(key=lambda x: x.itemData[col], reverse=order) for item in self.rootItem.childItems: item.childItems.sort(key=lambda x: x.itemData[col], reverse=order) self.layoutChanged.emit() The problem is that whenever I change the sorting of the root's child items (the tree is only 2 levels deep, so this is the only level with children) the nodes aren't necessarily expanded as they were before. If I change the sorting back without expanding or collapsing anything, the nodes are expanded as before the sorting change. Can anyone explain to me what I'm doing wrong? I suspect it's something with not properly reassigning QModelIndex with the sorted nodes, but I'm not sure.

    Read the article

  • How to list directory hierarchy in PyGTK treeview widget?

    - by lyrae
    I am trying to generate a hierarchical directory listing in pyGTK. Currently, I have this following directory tree: /root folderA - subdirA - subA.py - a.py folderB - b.py I have written a function that -almost- seem to work: def go(root, piter = None): for filename in os.listdir(root): isdir = os.path.isdir(os.path.join(root, filename)) piter = self.treestore.append(piter, [filename]) if isdir == True: go(os.path.join(root, filename), piter) This is what i get when i run the app: I also think my function is inefficient and that i should be using os.walk(), since it already exists for such purpose. How can I, and what is the proper/most efficient way of generating a directory tree with pyGTK?

    Read the article

< Previous Page | 61 62 63 64 65 66 67 68 69 70 71 72  | Next Page >