Search Results

Search found 18914 results on 757 pages for 'turing machine'.

Page 65/757 | < Previous Page | 61 62 63 64 65 66 67 68 69 70 71 72  | Next Page >

  • Statistical approach to chess?

    - by Chinmay Kanchi
    Reading about how Google solves the translation problem got me thinking. Would it be possible to build a strong chess engine by analysing several million games and determining the best possible move based largely (completely?) on statistics? There are several such chess databases (this is one that has 4.5 million games), and one could potentially weight moves in identical (or mirrored or reflected) positions using factors such as the ratings of the players involved, how old the game is (to factor in improvements in chess theory) etc. Any reasons why this wouldn't be a feasible approach to building a chess engine?

    Read the article

  • Kohonen SOM Maps: Normalizing the input with unknown range

    - by S.N
    According to "Introduction to Neural Networks with Java By Jeff Heaton", the input to the Kohonen neural network must be the values between -1 and 1. It is possible to normalize inputs where the range is known beforehand: For instance RGB (125, 125, 125) where the range is know as values 0 and 255: 1. Divide by 255: (125/255) = 0.49 (0.49,0.49,0.49) 2. Multiply by two and subtract one: ((0.49*2)-1)=-0.02 (-0.02,-0.02,-0.02) The question is how can we normalize the input where the range is unknown like our height or weight. Also, some other papers mention that the input must be normalized to the values between 0 and 1. Which is the proper way, "-1 and 1" or "0 and 1"?

    Read the article

  • cool project to use a genetic algorithm for?

    - by Ryan
    I'm looking for a practical application to use a genetic algorithm for. Some things that have thought of are: Website interface optimization Vehicle optimization with a physics simulator Genetic programming Automatic test case generation But none have really popped out at me. So if you had some free time (a few months) to spend on a genetic algorithms project, what would you choose to tackle?

    Read the article

  • Question on multi-probe Local Sensitive Hashing

    - by Yijinsei
    Hey guys sorry to be asking this kind noob question, but because I really need some guidance on how to use Multi probe LSH pretty urgently, so I did not do much research myself. I realize there is a lib call LSHKIT available that implemented that algorithm, but I have trouble trying to figure out how to use it. Right now, I have a few thousand feature vector 296 dimension, each representing an image. The vector is used to query an user input image, to retrieve the most similar image. The method I used to derive the distance between vector is euclidean distance. I know this might be a rather noob question, but do you guys have knowledge on how should i implement multi probe LSH? I am really very grateful to any answer or response.

    Read the article

  • Clarification How CRF(Conditional random Field) works using examples

    - by Moges.A
    I read different documents how CRF(conditional random field) works but all the papers puts the formula only. Is there any one who can send me a paper that describes about CRF with examples like if we have a sentence "Mr.Smith was born in New York. He has been working for the last 20 years in Microsoft company." if the above sentence is given as an input to train, how does the Model works during the training taking in to consideration for the formula for CRF? Moges.A

    Read the article

  • Good implementations of reinforced learning?

    - by Paperino
    For an ai-class project I need to implement a reinforcement learning algorithm which beats a simple game of tetris. The game is written in Java and we have the source code. I know the basics of reinforcement learning theory but was wondering if anyone in the SO community had hands on experience with this type of thing. What would your recommended readings be for an implementation of reinforced learning in a tetris game? Are there any good open source projects that accomplish similar things that would be worth checking out? Thanks in advanced Edit: The more specific the better, but general resources about the subject are welcomed. Follow up: Thought it would be nice if I posted a followup. Here's the solution (code and writeup) I ended up with for any future students :). Paper / Code

    Read the article

  • Reinforcement learning with neural networks

    - by Betamoo
    I am working on a project with RL & NN I need to determine the action vector structure which will be fed to a neural network.. I have 3 different actions (A & B & Nothing) each with different powers (e.g A100 A50 B100 B50) I wonder what is the best way to feed these actions to a NN in order to yield best results? 1- feed A/B to input 1, while action power 100/50/Nothing to input 2 2- feed A100/A50/Nothing to input 1, while B100/B50/Nothing to input 2 3- feed A100/A50 to input 1, while B100/B50 to input 2, while Nothing flag to input 3 4- Also to feed 100 & 50 or normalize them to 2 & 1 ? I need reasons why to choose one method Any suggestions are recommended Thanks

    Read the article

  • Genetic Programming Online Learning

    - by Lirik
    Has anybody seen a GP implemented with online learning rather than the standard offline learning? I've done some stuff with genetic programs and I simply can't figure out what would be a good way to make the learning process online. Please let me know if you have any ideas, seen any implementations, or have any references that I can look at.

    Read the article

  • VS2010 Developer Image

    - by David Ward
    I am about to create a new developer PC image for developing WPF applications using VS2010, WCF, SQL2008 and SharePoint2010. What OS should I opt for? Windows 7? Windows Server 2008 R2? I'd have thought Windows 7 to make sure that I have a similar experience during development as an end user, however I can't install SharePoint on a client OS and so thought about Windows Server 2008 R2 to help with the SharePoint development process. Thoughts?

    Read the article

  • How do you unit test a method containing a LINQ expression?

    - by Phil.Wheeler
    I'm struggling to get my head around how to accommodate a mocked method that only accepts a Linq expression as its argument. Specifically, the repository I'm using has a First() method that looks like this: public T First(Expression<Func<T, bool>> expression) { return All().Where(expression).FirstOrDefault(); } The difficulty I'm encountering is with my MSpec tests, where I'm (probably incorrectly) trying to mock that call: public abstract class with_userprofile_repository { protected static Mock<IRepository<UserProfile>> repository; Establish context = () => { repository = new Mock<IRepository<UserProfile>>(); repository.Setup<UserProfile>(x => x.First(up => up.OpenID == @"http://testuser.myopenid.com")).Returns(GetDummyUser()); }; protected static UserProfile GetDummyUser() { UserProfile p = new UserProfile(); p.OpenID = @"http://testuser.myopenid.com"; p.FirstName = "Joe"; p.LastLogin = DateTime.Now.Date.AddDays(-7); p.LastName = "Bloggs"; p.Email = "[email protected]"; return p; } } I run into trouble because it's not enjoying the Linq expression: System.NotSupportedException: Expression up = (up.OpenID = "http://testuser.myopenid.com") is not supported. So how does one test these sorts of scenarios?

    Read the article

  • computing z-scores for 2D matrices in scipy/numpy in Python

    - by user248237
    How can I compute the z-score for matrices in Python? Suppose I have the array: a = array([[ 1, 2, 3], [ 30, 35, 36], [2000, 6000, 8000]]) and I want to compute the z-score for each row. The solution I came up with is: array([zs(item) for item in a]) where zs is in scipy.stats.stats. Is there a better built-in vectorized way to do this? Also, is it always good to z-score numbers before using hierarchical clustering with euclidean or seuclidean distance? Can anyone discuss the relative advantages/disadvantages? thanks.

    Read the article

  • using Multi Probe LSH with LSHKIT

    - by Yijinsei
    Hi Guys, I have read through the source code for mplsh, but I still unsure on how to use the indexes generated by lshkit to speed up the process in comparing feature vector in Euclidean Distance. Do you guys have any experience regarding this?

    Read the article

  • plotting results of hierarchical clustering ontop of a matrix of data in python

    - by user248237
    How can I plot a dendrogram right on top of a matrix of values, reordered appropriately to reflect the clustering, in Python? An example is in the bottom of the following figure: http://www.coriell.org/images/microarray.gif I use scipy.cluster.dendrogram to make my dendrogram and perform hierarchical clustering on a matrix of data. How can I then plot the data as a matrix where the rows have been reordered to reflect a clustering induced by the cutting the dendrogram at a particular threshold, and have the dendrogram plotted alongside the matrix? I know how to plot the dendrogram in scipy, but not how to plot the intensity matrix of data with the right scale bar next to it. Any help on this would be greatly appreciated.

    Read the article

  • Naive Bayesian for Topic detection using "Bag of Words" approach

    - by AlgoMan
    I am trying to implement a naive bayseian approach to find the topic of a given document or stream of words. Is there are Naive Bayesian approach that i might be able to look up for this ? Also, i am trying to improve my dictionary as i go along. Initially, i have a bunch of words that map to a topics (hard-coded). Depending on the occurrence of the words other than the ones that are already mapped. And depending on the occurrences of these words i want to add them to the mappings, hence improving and learning about new words that map to topic. And also changing the probabilities of words. How should i go about doing this ? Is my approach the right one ? Which programming language would be best suited for the implementation ?

    Read the article

  • hierarchical clustering with gene expression matrix in python

    - by user248237
    how can I do a hierarchical clustering (in this case for gene expression data) in Python in a way that shows the matrix of gene expression values along with the dendrogram? What I mean is like the example here: http://www.mathworks.cn/access/helpdesk/help/toolbox/bioinfo/ug/a1060813239b1.html shown after bullet point 6 (Figure 1), where the dendrogram is plotted to the left of the gene expression matrix, where the rows have been reordered to reflect the clustering. How can I do this in Python using numpy/scipy or other tools? Also, is it computationally practical to do this with a matrix of about 11,000 genes, using euclidean distance as a metric? thanks.

    Read the article

  • How to perform FST (Finite State Transducer) composition

    - by Tasbeer
    Consider the following FSTs : T1 0 1 a : b 0 2 b : b 2 3 b : b 0 0 a : a 1 3 b : a T2 0 1 b : a 1 2 b : a 1 1 a : d 1 2 a : c How do I perform the composition operation on these two FSTs (i.e. T1 o T2) I saw some algorithms but couldn't understand much. If anyone could explain it in a easy way it would be a major help. Please note that this is NOT a homework. The example is taken from the lecture slides where the solution is given but I couldn't figure out how to get to it.

    Read the article

  • Reinforcement learning And POMDP

    - by Betamoo
    I am trying to use Multi-Layer NN to implement probability function in Partially Observable Markov Process.. I thought inputs to the NN would be: current state, selected action, result state; The output is a probability in [0,1] (prob. that performing selected action on current state will lead to result state) In training, I fed the inputs stated before, into the NN, and I taught it the output=1.0 for each case that already occurred. The problem : For nearly all test case the output probability is near 0.95.. no output was under 0.9 ! Even for nearly impossible results, it gave that high prob. PS:I think this is because I taught it happened cases only, but not un-happened ones.. But I can not at each step in the episode teach it the output=0.0 for every un-happened action! Any suggestions how to over come this problem? Or may be another way to use NN or to implement prob function? Thanks

    Read the article

  • How to compute the probability of a multi-class prediction using libsvm?

    - by Cuga
    I'm using libsvm and the documentation leads me to believe that there's a way to output the believed probability of an output classification's accuracy. Is this so? And if so, can anyone provide a clear example of how to do it in code? Currently, I'm using the Java libraries in the following manner SvmModel model = Svm.svm_train(problem, parameters); SvmNode x[] = getAnArrayOfSvmNodesForProblem(); double predictedValue = Svm.svm_predict(model, x);

    Read the article

  • Neural Network with softmax activation

    - by Cambium
    This is more or less a research project for a course, and my understanding of NN is very/fairly limited, so please be patient :) ============== I am currently in the process of building a neural network that attempts to examine an input dataset and output the probability/likelihood of each classification (there are 5 different classifications). Naturally, the sum of all output nodes should add up to 1. Currently, I have two layers, and I set the hidden layer to contain 10 nodes. I came up with two different types of implementations 1) Logistic sigmoid for hidden layer activation, softmax for output activation 2) Softmax for both hidden layer and output activation I am using gradient descent to find local maximums in order to adjust the hidden nodes' weights and the output nodes' weights. I am certain in that I have this correct for sigmoid. I am less certain with softmax (or whether I can use gradient descent at all), after a bit of researching, I couldn't find the answer and decided to compute the derivative myself and obtained softmax'(x) = softmax(x) - softmax(x)^2 (this returns an column vector of size n). I have also looked into the MATLAB NN toolkit, the derivative of softmax provided by the toolkit returned a square matrix of size nxn, where the diagonal coincides with the softmax'(x) that I calculated by hand; and I am not sure how to interpret the output matrix. I ran each implementation with a learning rate of 0.001 and 1000 iterations of back propagation. However, my NN returns 0.2 (an even distribution) for all five output nodes, for any subset of the input dataset. My conclusions: o I am fairly certain that my gradient of descent is incorrectly done, but I have no idea how to fix this. o Perhaps I am not using enough hidden nodes o Perhaps I should increase the number of layers Any help would be greatly appreciated! The dataset I am working with can be found here (processed Cleveland): http://archive.ics.uci.edu/ml/datasets/Heart+Disease

    Read the article

  • Neural Network: Handling unavailable inputs (missing or incomplete data)

    - by Mike
    Hopefully the last NN question you'll get from me this weekend, but here goes :) Is there a way to handle an input that you "don't always know"... so it doesn't affect the weightings somehow? Soo... if I ask someone if they are male or female and they would not like to answer, is there a way to disregard this input? Perhaps by placing it squarely in the centre? (assuming 1,0 inputs at 0.5?) Thanks

    Read the article

  • How to create a container that holds different types of function pointers in C++?

    - by Alex
    I'm doing a linear genetic programming project, where programs are bred and evolved by means of natural evolution mechanisms. Their "DNA" is basically a container (I've used arrays and vectors successfully) which contain function pointers to a set of functions available. Now, for simple problems, such as mathematical problems, I could use one type-defined function pointer which could point to functions that all return a double and all take as parameters two doubles. Unfortunately this is not very practical. I need to be able to have a container which can have different sorts of function pointers, say a function pointer to a function which takes no arguments, or a function which takes one argument, or a function which returns something, etc (you get the idea)... Is there any way to do this using any kind of container ? Could I do that using a container which contains polymorphic classes, which in their turn have various kinds of function pointers? I hope someone can direct me towards a solution because redesigning everything I've done so far is going to be painful.

    Read the article

< Previous Page | 61 62 63 64 65 66 67 68 69 70 71 72  | Next Page >