Search Results

Search found 10417 results on 417 pages for 'large'.

Page 66/417 | < Previous Page | 62 63 64 65 66 67 68 69 70 71 72 73  | Next Page >

  • Provide A Scrolling "Camera" View Over A 2D Game Map

    - by BitCrash
    I'm in the process of attempting to create a 2D MMO type game with Kryonet and some basic sprites, mostly for my own learning. I have the back end set up great (By my standards) and I'm moving on to actually getting some things drawn onto the map. I cannot for the life of me figure out a solid way to have a "Camera" follow a player around a large area. The view pane for the game is 640 x 480 pixels, and each tile is 32x32 pixels (Thats 20 tiles wide and 15 high for the viewpane) I have tried a couple things to do this, but they did not seem to work out so well. I had a JScrollPane with 9 "Viewpane"-sized canvases in it, and tried to have the JScrollPane move in accordance with the player. The issue came when I reached the end of the JScrollPane. I tried to "Flip" canvases, sending the canvas currrently drawing the player to the middle of the 9 and load the corresponding maps onto the other ones. It was slow and worked poorly. I'm looking for any advice or previous experience with this; any ideas? Thank you! Edit and Clarification: I did not mean to mention Kryonet, I was merely providing peripheral information in case there was something that would help which I could not foresee. Instead of having an array of 9 canvases, why not just have one large canvas loading a large map every once in a while? I'm willing to have "load times" where as with the canvas array I would have none (in theory) to give the user a smooth experience. I could just change the size and location of the map with a modified setBounds() call on the canvas in a layered pane (layered because I have hidden swing items, like inventories and stuff) I'll try it out and post here how it goes for people asking the same question.

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • What are the pros and cons of using manual list iteration vs recursion through fail

    - by magus
    I come up against this all the time, and I'm never sure which way to attack it. Below are two methods for processing some season facts. What I'm trying to work out is whether to use method 1 or 2, and what are the pros and cons of each, especially large amounts of facts. methodone seems wasteful since the facts are available, why bother building a list of them (especially a large list). This must have memory implications too if the list is large enough ? And it doesn't take advantage of Prolog's natural backtracking feature. methodtwo takes advantage of backtracking to do the recursion for me, and I would guess would be much more memory efficient, but is it good programming practice generally to do this? It's arguably uglier to follow, and might there be any other side effects? One problem I can see is that each time fail is called, we lose the ability to pass anything back to the calling predicate, eg. if it was methodtwo(SeasonResults), since we continually fail the predicate on purpose. So methodtwo would need to assert facts to store state. Presumably(?) method 2 would be faster as it has no (large) list processing to do? I could imagine that if I had a list, then methodone would be the way to go.. or is that always true? Might it make sense in any conditions to assert the list to facts using methodone then process them using method two? Complete madness? But then again, I read that asserting facts is a very 'expensive' business, so list handling might be the way to go, even for large lists? Any thoughts? Or is it sometimes better to use one and not the other, depending on (what) situation? eg. for memory optimisation, use method 2, including asserting facts and, for speed use method 1? season(spring). season(summer). season(autumn). season(winter). % Season handling showseason(Season) :- atom_length(Season, LenSeason), write('Season Length is '), write(LenSeason), nl. % ------------------------------------------------------------- % Method 1 - Findall facts/iterate through the list and process each %-------------------------------------------------------------- % Iterate manually through a season list lenseason([]). lenseason([Season|MoreSeasons]) :- showseason(Season), lenseason(MoreSeasons). % Findall to build a list then iterate until all done methodone :- findall(Season, season(Season), AllSeasons), lenseason(AllSeasons), write('Done'). % ------------------------------------------------------------- % Method 2 - Use fail to force recursion %-------------------------------------------------------------- methodtwo :- % Get one season and show it season(Season), showseason(Season), % Force prolog to backtrack to find another season fail. % No more seasons, we have finished methodtwo :- write('Done').

    Read the article

  • .NET Free memory usage (how to prevent overallocation / release memory to the OS)

    - by Ronan Thibaudau
    I'm currently working on a website that makes large use of cached data to avoid roundtrips. At startup we get a "large" graph (hundreds of thouthands of different kinds of objects). Those objects are retrieved over WCF and deserialized (we use protocol buffers for serialization) I'm using redgate's memory profiler to debug memory issues (the memory didn't seem to fit with how much memory we should need "after" we're done initializing and end up with this report Now what we can gather from this report is that: 1) Most of the memory .NET allocated is free (it may have been rightfully allocated during deserialisation, but now that it's free, i'd like for it to return to the OS) 2) Memory is fragmented (which is bad, as everytime i refresh the cash i need to redo the memory hungry deserialisation process and this, in turn creates large object that may throw an OutOfMemoryException due to fragmentation) 3) I have no clue why the space is fragmented, because when i look at the large object heap, there are only 30 instances, 15 object[] are directly attached to the GC and totally unrelated to me, 1 is a char array also attached directly to the GC Heap, the remaining 15 are mine but are not the cause of this as i get the same report if i comment them out in code. So my question is, what can i do to go further with this? I'm not really sure what to look for in debugging / tools as it seems my memory is fragmented, but not by me, and huge amounts of free spaces are allocated by .net , which i can't release. Also please make sure you understand the question well before answering, i'm not looking for a way to free memory within .net (GC.Collect), but to free memory that is already free in .net , to the system as well as to defragment said memory. Note that a slow solution is fine, if it's possible to manually defragment the large heap i'd be all for it as i can call it at the end of RefreshCache and it's ok if it takes 1 or 2 second to run. Thanks for your help! A few notes i forgot: 1) The project is a .net 2.0 website, i get the same results running it in a .net 4 pool, idem if i run it in a .net 4 pool and convert it to .net 4 and recompile. 2) These are results of a release build, so debug build can not be the issue. 3) And this is probably quite important, i do not get these issues at all in the webdev server, only in IIS, in the webdev i get memory consumption rather close to my actual consumption (well more, but not 5-10X more!)

    Read the article

  • Jquery: Incrimentation for each set of elements in more than 1 div

    - by Jack
    I'm making a Jquery slideshow. It lists thumbnails, that when clicked on, reveal the large image as an overlay. To match up the thumbs with the large images I'm adding attributes to each thumbnail and large image. The attributes contain a number which matches each thumb to its corresponding large image. It works when one slideshow is present on a page. But I want it to work if more than one slideshow is present. Here's the code for adding attributes to thumbs and large images: thumbNo = 0; largeNo = 0; $(this + '.slideshow_content .thumbs img').each(function() { thumbNo++; $(this).attr('thumbimage', thumbNo); $(this).attr("title", "Enter image gallery"); }); $(this + '.slideshow_content .image_container .holder img').each(function() { largeNo++; $(this).addClass('largeImage' + largeNo); }); This works. To make the incrementation work when there are two slideshows on a page, I thought I could stick this code in an each function... $('.slideshow').each(function() { thumbNo = 0; largeNo = 0; $(this + '.slideshow_content .thumbs img').each(function() { thumbNo++; $(this).attr('thumbimage', thumbNo); $(this).attr("title", "Enter image gallery"); }); $(this + '.slideshow_content .image_container .holder img').each(function() { largeNo++; $(this).addClass('largeImage' + largeNo); }); }); The problem with this is that the incrimenting operator does not reset for the second slideshow div (.slideshow), so I end up with thumbs in the first .slideshow div being numbered 1,2,3 etc.. and thumbs in the second .slideshow div being numbered 4,5,6 etc. How do I make the numbers in the second .slideshow div reset and start from 1 again? This is really hard to explain concisely. I hope someone gets the gist.

    Read the article

  • Is this simple XOR encrypted communication absolutely secure?

    - by user3123061
    Say Alice have 4GB USB flash memory and Peter also have 4GB USB flash memory. They once meet and save on both of memories two files named alice_to_peter.key (2GB) and peter_to_alice.key (2GB) which is randomly generated bits. Then they never meet again and communicate electronicaly. Alice also maintains variable called alice_pointer and Peter maintains variable called peter_pointer which is both initially set to zero. Then when Alice needs to send message to Peter they do: encrypted_message_to_peter[n] = message_to_peter[n] XOR alice_to_peter.key[alice_pointer + n] Where n i n-th byte of message. Then alice_pointer is attached at begining of the encrypted message and (alice_pointer + encrypted message) is sent to Peter and then alice_pointer is incremented by length of message (and for maximum security can be used part of key erased) Peter receives encrypted_message, reads alice_pointer stored at beginning of message and do this: message_to_peter[n] = encrypted_message_to_peter[n] XOR alice_to_peter.key[alice_pointer + n] And for maximum security after reading of message also erases used part of key. - EDIT: In fact this step with this simple algorithm (without integrity check and authentication) decreases security, see Paulo Ebermann post below. When Peter needs to send message to Alice they do analogical steps with peter_to_alice.key and with peter_pointer. With this trivial schema they can send for next 50 years each day 2GB / (50 * 365) = cca 115kB of encrypted data in both directions. If they need more data to send, they simple use larger memory for keys for example with today 2TB harddiscs (1TB keys) is possible to exchange next 50years 60MB/day ! (thats practicaly lots of data for example with using compression its more than hour of high quality voice communication) It Seems to me there is no way for attacker to read encrypted message without keys even if they have infinitely fast computer. because even with infinitely fast computer with brute force they get ever possible message that can fit to length of message, but this is astronomical amount of messages and attacker dont know which of them is actual message. I am right? Is this communication schema really absolutely secure? And if its secure, has this communication method its own name? (I mean XOR encryption is well-known, but whats name of this concrete practical application with use large memories at both communication sides for keys? I am humbly expecting that this application has been invented someone before me :-) ) Note: If its absolutely secure then its amazing because with today low cost large memories it is practicaly much cheeper way of secure communication than expensive quantum cryptography and with equivalent security! EDIT: I think it will be more and more practical in future with lower a lower cost of memories. It can solve secure communication forever. Today you have no certainty if someone succesfuly atack to existing ciphers one year later and make its often expensive implementations unsecure. In many cases before comunication exist step where communicating sides meets personaly, thats time to generate large keys. I think its perfect for military communication for example for communication with submarines which can have installed harddrive with large keys and military central can have harddrive for each submarine they have. It can be also practical in everyday life for example for control your bank account because when you create your account you meet with bank etc.

    Read the article

  • PHP PayPal IPN - Getting drop down menu

    - by kimion09
    I'm using Paypal's buy it now buttons along with an IPN handler written in PHP to send me an e-mail whenever a purchase is made. The e-mail is properly being sent and is passing much of the data, but it's not capturing the drop down list for selecting a clothing item's size. Here's my button code fields: <input type="hidden" name="item_name" value="Test Shirt"> <input type="hidden" name="item_number" value="001"> <input type="hidden" name="on0" value="sizes"> Select a size: <select name="os0"> <option value="Small">Small </option> <option value="Medium">Medium </option> <option value="Large">Large </option> <option value="Extra Large">Extra Large </option> </select> My PHP IPN script that captures the data into variables looks like this: $item_name = $_POST['item_name']; $item_number = $_POST['item_number']; $size = $_POST['on0']; $sizeChoice = $_post['os0']; The e-mail properly displays the item name and item number, but nothing for the $size and $sizeChoice variables. It's late so I'm sure I'm looking over something very obvious but am still wondering if I'm just calling it wrong or if I'm forgetting some hidden fields? Thanks :)

    Read the article

  • PostgreSQL: Auto-partition a table

    - by Adam Matan
    Hi, I have a huge database which holds pairs of numbers (A,B), each ranging from 0 to 10,000 and stored as floats. e.g., (1, 9984.4), (2143.44, 124.243), (0.55, 0), ... Since the PostgreSQL table which stores these pairs grew quite large, I have decided to partition it into inheriting sub-tables. I intend to create 100 such tables, each storing a range of 1000x1000. The problem is that these numbers tend to come in large chunks of nearby numbers. It means that in the future, some tables will be nearly empty and some will hold a very large portion of the database. Unfortunately, the distribution of future pairs is yet unknown. I am looking for a way to automatically repartition my table. That means that if a certain subtable holds more than a specific number of pairs, it will be automatically partitioned into four sub-sub tables, and so on. My questions are: Is recursive partitioning and inheritance possible in PostgreSQL 8.3? Will indexes and query plans understand it? What's the best way to split a subtable once it grew too large? I should point out that this isn't a live database, so a downtime of few hours every week is totally acceptable. Thanks in advance, Adam

    Read the article

  • [javascript - jQuery] creating nested array's on the fly

    - by adardesign
    What i am trying to do is to loop this HTML and get an nested array of this HTML values that i want to grab. This script is just part of a whole function. html <div class="configureData"> <div title="Large"> <a href="yellow" title="true" rel="$55.00" name="sku22828"></a> <a href="green" title="true" rel="$55.00" name="sku224438"></a> <a href="Blue" title="true" rel="$55.00" name="sku22222"></a> </div> <div title="Large"> <a href="yellow" title="true" rel="$55.00" name="sku22828"></a> <a href="green" title="true" rel="$55.00" name="sku224438"></a> <a href="Blue" title="true" rel="$55.00" name="sku22222"></a> </div> <div title="Large"> <a href="yellow" title="true" rel="$55.00" name="sku22828"></a> <a href="green" title="true" rel="$55.00" name="sku224438"></a> <a href="Blue" title="true" rel="$55.00" name="sku22222"></a> </div> </div> javascript // this is part of a script..... parseData:function(dH){ dH.find(".configureData div").each(function(indA, eleA){ colorNSize.tempSizeArray[indA] = [eleA.title,[],[],[],[]] $(eleZ).find("a").each(function(indB, eleB){ colorNSize.tempSizeArray[indA][indB+1] = eleC.title }) }) }, I expect the end array should look like this. [ ["large", ["yellow", "green", "blue"], ["true", "true", "true"], ["$55", "$55","$55"] ], ["Medium", ["yellow", "green", "blue"], ["true", "true", "true"], ["$55", "$55","$55"] ] ] // and so on....

    Read the article

  • Ideas Related to Subset Sum with 2,3 and more integers

    - by rolandbishop
    I've been struggling with this problem just like everyone else and I'm quite sure there has been more than enough posts to explain this problem. However in terms of understanding it fully, I wanted to share my thoughts and get more efficient solutions from all the great people in here related to Subset Sum problem. I've searched it over the Internet and there is actually a lot sources but I'm really willing to re-implement an algorithm or finding my own in order to understand fully. The key thing I'm struggling with is the efficiency considering the set size will be large. (I do not have a limit, just conceptually large). The two phases I'm trying to implement ideas on is finding two numbers that are equal to given integer T, finding three numbers and eventually K numbers. Some ideas I've though; For the two integer part I'm thing basically sorting the array O(nlogn) and for each element in the array searching for its negative value. (i.e if the array element is 3 searching for -3). Maybe a hash table inclusion could be better, providing a O(1) indexing the element? For the three or more integers I've found an amazing blog post;http://www.skorks.com/2011/02/algorithms-a-dropbox-challenge-and-dynamic-programming/. However even the author itself states that it is not applicable for large numbers. So I was for 2 and 3 and more integers what ideas could be applied for the subset problem. I'm struggling with setting up a dynamic programming method that will be efficient for the large inputs as well.

    Read the article

  • What is the proper way to set my drawable directories to support the new Dell Streak without losing support for older devices?

    - by emmby
    This seems to be a widespread problem. I have the following drawable directories: drwxr-xr-x 18 mike staff 612 Feb 4 17:28 drawable/ drwxr-xr-x 51 mike staff 1734 Feb 4 17:32 drawable-nodpi/ drwxr-xr-x 44 mike staff 1496 Feb 4 17:30 drawable-normal-mdpi/ My xml drawable resources are in drawable. My resources intended for the large-mdpi (Dell Streak) and normal-hdpi (Droid, Nexus, Incredible, etc.) are all in drawable-nodpi. My resources for normal-mdpi (older phones like the G1) are in drawable-normal-mdpi. Unfortunately, the normal-hdpi phones like the Droid are pulling their resources from drawable-normal-mdpi instead of from drawable-nodpi. This is likely because of the rules in How Android Finds the Best-matching Resource. So the question is, how do I provide support for large-mdpi devices like the Streak along with normal-hdpi devices like the Droid, as well as normal-mdpi devices like the G1? The simplest solution would probably be to make two copies of my large resources, one in normal-hdpi for the droid and one in large-mdpi for the streak, but i'd like to avoid duplicating all of these resources. Update Per Mayra's suggestion, I could make an alias for every resource. However, there are a lot of resources I'd have to make aliases for, which would make maintenance a nightmare going forward, so I'm hoping for another solution.

    Read the article

  • Issues with simple jQuery image gallery with Colorbox plugin

    - by Chris
    I'm putting together an image gallery for an ecommerce site and wanting to use colorbox to launch larger images. My problem is that image launched in colorbox stays as the first one launched and should reflect the image shown as img#bigpic - the link to the image does appear to be updating correctly. Here's the jQuery I have: $(document).ready(function(){ $("#largeimage").colorbox(); imageSwapper(".thumbnails a"); function imageSwapper(link) { $(link).click(function(){ $("#bigpic").attr("src", this.href); $("#largeimage").attr("href", this.rel); return false; }); }; $("#largeimage").bind('mouseenter mouseleave', function(event) { $("#largeimage span").toggleClass('showspan'); }); }); ...and the HTML <a href="_images/products/large/bpn0001_1.jpg" id="largeimage"><span></span><img src="_images/products/bpn0001_1.jpg" id="bigpic" /></a> <div class="thumbnails"> <ul> <li><a href="_images/products/bpn0001_1.jpg" rel="_images/products/large/bpn0001_1.jpg"><img src="_images/products/mini/bpn0001_1.jpg" /></a></li> <li><a href="_images/products/bpn0001_2.jpg" rel="_images/products/large/bpn0001_2.jpg"><img src="_images/products/mini/bpn0001_2.jpg" /></a></li> <li><a href="_images/products/bpn0001_3.jpg" rel="_images/products/large/bpn0001_3.jpg"><img src="_images/products/mini/bpn0001_3.jpg" /></a></li> </ul> </div> Any help would be much appreciated!

    Read the article

  • Faster or more memory-efficient solution in Python for this Codejam problem.

    - by jeroen.vangoey
    I tried my hand at this Google Codejam Africa problem (the contest is already finished, I just did it to improve my programming skills). The Problem: You are hosting a party with G guests and notice that there is an odd number of guests! When planning the party you deliberately invited only couples and gave each couple a unique number C on their invitation. You would like to single out whoever came alone by asking all of the guests for their invitation numbers. The Input: The first line of input gives the number of cases, N. N test cases follow. For each test case there will be: One line containing the value G the number of guests. One line containing a space-separated list of G integers. Each integer C indicates the invitation code of a guest. Output For each test case, output one line containing "Case #x: " followed by the number C of the guest who is alone. The Limits: 1 = N = 50 0 < C = 2147483647 Small dataset 3 = G < 100 Large dataset 3 = G < 1000 Sample Input: 3 3 1 2147483647 2147483647 5 3 4 7 4 3 5 2 10 2 10 5 Sample Output: Case #1: 1 Case #2: 7 Case #3: 5 This is the solution that I came up with: with open('A-large-practice.in') as f: lines = f.readlines() with open('A-large-practice.out', 'w') as output: N = int(lines[0]) for testcase, i in enumerate(range(1,2*N,2)): G = int(lines[i]) for guest in range(G): codes = map(int, lines[i+1].split(' ')) alone = (c for c in codes if codes.count(c)==1) output.write("Case #%d: %d\n" % (testcase+1, alone.next())) It runs in 12 seconds on my machine with the large input. Now, my question is, can this solution be improved in Python to run in a shorter time or use less memory? The analysis of the problem gives some pointers on how to do this in Java and C++ but I can't translate those solutions back to Python.

    Read the article

  • Load and Web Performance Testing using Visual Studio Ultimate 2010-Part 3

    - by Tarun Arora
    Welcome back once again, in Part 1 of Load and Web Performance Testing using Visual Studio 2010 I talked about why Performance Testing the application is important, the test tools available in Visual Studio Ultimate 2010 and various test rig topologies, in Part 2 of Load and Web Performance Testing using Visual Studio 2010 I discussed the details of web performance & load tests as well as why it’s important to follow a goal based pattern while performance testing your application. In part 3 I’ll be discussing Test Result Analysis, Test Result Drill through, Test Report Generation, Test Run Comparison, Asp.net Profiler and some closing thoughts. Test Results – I see some creepy worms! In Part 2 we put together a web performance test and a load test, lets run the test to see load test to see how the Web site responds to the load simulation. While the load test is running you will be able to see close to real time analysis in the Load Test Analyser window. You can use the Load Test Analyser to conduct load test analysis in three ways: Monitor a running load test - A condensed set of the performance counter data is maintained in memory. To prevent the results memory requirements from growing unbounded, up to 200 samples for each performance counter are maintained. This includes 100 evenly spaced samples that span the current elapsed time of the run and the most recent 100 samples.         After the load test run is completed - The test controller spools all collected performance counter data to a database while the test is running. Additional data, such as timing details and error details, is loaded into the database when the test completes. The performance data for a completed test is loaded from the database and analysed by the Load Test Analyser. Below you can see a screen shot of the summary view, this provides key results in a format that is compact and easy to read. You can also print the load test summary, this is generated after the test has completed or been stopped.         Analyse the load test results of a previously run load test – We’ll see this in the section where i discuss comparison between two test runs. The performance counters can be plotted on the graphs. You also have the option to highlight a selected part of the test and view details, drill down to the user activity chart where you can hover over to see more details of the test run.   Generate Report => Test Run Comparisons The level of reports you can generate using the Load Test Analyser is astonishing. You have the option to create excel reports and conduct side by side analysis of two test results or to track trend analysis. The tools also allows you to export the graph data either to MS Excel or to a CSV file. You can view the ASP.NET profiler report to conduct further analysis as well. View Data and Diagnostic Attachments opens the Choose Diagnostic Data Adapter Attachment dialog box to select an adapter to analyse the result type. For example, you can select an IntelliTrace adapter, click OK and open the IntelliTrace summary for the test agent that was used in the load test.   Compare results This creates a set of reports that compares the data from two load test results using tables and bar charts. I have taken these screen shots from the MSDN documentation, I would highly recommend exploring the wealth of knowledge available on MSDN. Leaving Thoughts While load testing the application with an excessive load for a longer duration of time, i managed to bring the IIS to its knees by piling up a huge queue of requests waiting to be processed. This clearly means that the IIS had run out of threads as all the threads were busy processing existing request, one easy way of fixing this is by increasing the default number of allocated threads, but this might escalate the problem. The better suggestion is to try and drill down to the actual root cause of the problem. When ever the garbage collection runs it stops processing any pages so all requests that come in during that period are queued up, but realistically the garbage collection completes in fraction of a a second. To understand this better lets look at the .net heap, it is divided into large heap and small heap, anything greater than 85kB in size will be allocated to the Large object heap, the Large object heap is non compacting and remember large objects are expensive to move around, so if you are allocating something in the large object heap, make sure that you really need it! The small object heap on the other hand is divided into generations, so all objects that are supposed to be short-lived are suppose to live in Gen-0 and the long living objects eventually move to Gen-2 as garbage collection goes through.  As you can see in the picture below all < 85 KB size objects are first assigned to Gen-0, when Gen-0 fills up and a new object comes in and finds Gen-0 full, the garbage collection process is started, the process checks for all the dead objects and assigns them as the valid candidate for deletion to free up memory and promotes all the remaining objects in Gen-0 to Gen-1. So in the future when ever you clean up Gen-1 you have to clean up Gen-0 as well. When you fill up Gen – 0 again, all of Gen – 1 dead objects are drenched and rest are moved to Gen-2 and Gen-0 objects are moved to Gen-1 to free up Gen-0, but by this time your Garbage collection process has started to take much more time than it usually takes. Now as I mentioned earlier when garbage collection is being run all page requests that come in during that period are queued up. Does this explain why possibly page requests are getting queued up, apart from this it could also be the case that you are waiting for a long running database process to complete.      Lets explore the heap a bit more… What is really a case of crisis is when the objects are living long enough to make it to Gen-2 and then dying, this is definitely a high cost operation. But sometimes you need objects in memory, for example when you cache data you hold on to the objects because you need to use them right across the user session, which is acceptable. But if you wanted to see what extreme caching can do to your server then write a simple application that chucks in a lot of data in cache, run a load test over it for about 10-15 minutes, forcing a lot of data in memory causing the heap to run out of memory. If you get to such a state where you start running out of memory the IIS as a mode of recovery restarts the worker process. It is great way to free up all your memory in the heap but this would clear the cache. The problem with this is if the customer had 10 items in their shopping basket and that data was stored in the application cache, the user basket will now be empty forcing them either to get frustrated and go to a competitor website or if the customer is really patient, give it another try! How can you address this, well two ways of addressing this; 1. Workaround – A x86 bit processor only allows a maximum of 4GB of RAM, this means the machine effectively has around 3.4 GB of RAM available, the OS needs about 1.5 GB of RAM to run efficiently, the IIS and .net framework also need their share of memory, leaving you a heap of around 800 MB to play with. Because Team builds by default build your application in ‘Compile as any mode’ it means the application is build such that it will run in x86 bit mode if run on a x86 bit processor and run in a x64 bit mode if run on a x64 but processor. The problem with this is not all applications are really x64 bit compatible specially if you are using com objects or external libraries. So, as a quick win if you compiled your application in x86 bit mode by changing the compile as any selection to compile as x86 in the team build, you will be able to run your application on a x64 bit machine in x86 bit mode (WOW – By running Windows on Windows) and what that means is, you could use 8GB+ worth of RAM, if you take away everything else your application will roughly get a heap size of at least 4 GB to play with, which is immense. If you need a heap size of more than 4 GB you have either build a software for NASA or there is something fundamentally wrong in your application. 2. Solution – Now that you have put a workaround in place the IIS will not restart the worker process that regularly, which means you can take a breather and start working to get to the root cause of this memory leak. But this begs a question “How do I Identify possible memory leaks in my application?” Well i won’t say that there is one single tool that can tell you where the memory leak is, but trust me, ‘Performance Profiling’ is a great start point, it definitely gets you started in the right direction, let’s have a look at how. Performance Wizard - Start the Performance Wizard and select Instrumentation, this lets you measure function call counts and timings. Before running the performance session right click the performance session settings and chose properties from the context menu to bring up the Performance session properties page and as shown in the screen shot below, check the check boxes in the group ‘.NET memory profiling collection’ namely ‘Collect .NET object allocation information’ and ‘Also collect the .NET Object lifetime information’.    Now if you fire off the profiling session on your pages you will notice that the results allows you to view ‘Object Lifetime’ which shows you the number of objects that made it to Gen-0, Gen-1, Gen-2, Large heap, etc. Another great feature about the profile is that if your application has > 5% cases where objects die right after making to the Gen-2 storage a threshold alert is generated to alert you. Since you have the option to also view the most expensive methods and by capturing the IntelliTrace data you can drill in to narrow down to the line of code that is the root cause of the problem. Well now that we have seen how crucial memory management is and how easy Visual Studio Ultimate 2010 makes it for us to identify and reproduce the problem with the best of breed tools in the product. Caching One of the main ways to improve performance is Caching. Which basically means you tell the web server that instead of going to the database for each request you keep the data in the webserver and when the user asks for it you serve it from the webserver itself. BUT that can have consequences! Let’s look at some code, trust me caching code is not very intuitive, I define a cache key for almost all searches made through the common search page and cache the results. The approach works fine, first time i get the data from the database and second time data is served from the cache, significant performance improvement, EXCEPT when two users try to do the same operation and run into each other. But it is easy to handle this by adding the lock as you can see in the snippet below. So, as long as a user comes in and finds that the cache is empty, the user locks and starts to get the cache no more concurrency issues. But lets say you are processing 10 requests per second, by the time i have locked the operation to get the results from the database, 9 other users came in and found that the cache key is null so after i have come out and populated the cache they will still go in to get the results again. The application will still be faster because the next set of 10 users and so on would continue to get data from the cache. BUT if we added another null check after locking to build the cache and before actual call to the db then the 9 users who follow me would not make the extra trip to the database at all and that would really increase the performance, but didn’t i say that the code won’t be very intuitive, may be you should leave a comment you don’t want another developer to come in and think what a fresher why is he checking for the cache key null twice !!! The downside of caching is, you are storing the data outside of the database and the data could be wrong because the updates applied to the database would make the data cached at the web server out of sync. So, how do you invalidate the cache? Well if you only had one way of updating the data lets say only one entry point to the data update you can write some logic to say that every time new data is entered set the cache object to null. But this approach will not work as soon as you have several ways of feeding data to the system or your system is scaled out across a farm of web servers. The perfect solution to this is Micro Caching which means you cache the query for a set time duration and invalidate the cache after that set duration. The advantage is every time the user queries for that data with in the time span for which you have cached the results there are no calls made to the database and the data is served right from the server which makes the response immensely quick. Now figuring out the appropriate time span for which you micro cache the query results really depends on the application. Lets say your website gets 10 requests per second, if you retain the cache results for even 1 minute you will have immense performance gains. You would reduce 90% hits to the database for searching. Ever wondered why when you go to e-bookers.com or xpedia.com or yatra.com to book a flight and you click on the book button because the fare seems too exciting and you get an error message telling you that the fare is not valid any more. Yes, exactly => That is a cache failure! These travel sites or price compare engines are not going to hit the database every time you hit the compare button instead the results will be served from the cache, because the query results are micro cached, its a perfect trade-off, by micro caching the results the site gains 100% performance benefits but every once in a while annoys a customer because the fare has expired. But the trade off works in the favour of these sites as they are still able to process up to 30+ page requests per second which means cater to the site traffic by may be losing 1 customer every once in a while to a competitor who is also using a similar caching technique what are the odds that the user will not come back to their site sooner or later? Recap   Resources Below are some Key resource you might like to review. I would highly recommend the documentation, walkthroughs and videos available on MSDN. You can always make use of Fiddler to debug Web Performance Tests. Some community test extensions and plug ins available on Codeplex might also be of interest to you. The Road Ahead Thank you for taking the time out and reading this blog post, you may also want to read Part I and Part II if you haven’t so far. If you enjoyed the post, remember to subscribe to http://feeds.feedburner.com/TarunArora. Questions/Feedback/Suggestions, etc please leave a comment. Next ‘Load Testing in the cloud’, I’ll be working on exploring the possibilities of running Test controller/Agents in the Cloud. See you on the other side! Thank You!   Share this post : CodeProject

    Read the article

  • 64-bit Archives Needed

    - by user9154181
    A little over a year ago, we received a question from someone who was trying to build software on Solaris. He was getting errors from the ar command when creating an archive. At that time, the ar command on Solaris was a 32-bit command. There was more than 2GB of data, and the ar command was hitting the file size limit for a 32-bit process that doesn't use the largefile APIs. Even in 2011, 2GB is a very large amount of code, so we had not heard this one before. Most of our toolchain was extended to handle 64-bit sized data back in the 1990's, but archives were not changed, presumably because there was no perceived need for it. Since then of course, programs have continued to get larger, and in 2010, the time had finally come to investigate the issue and find a way to provide for larger archives. As part of that process, I had to do a deep dive into the archive format, and also do some Unix archeology. I'm going to record what I learned here, to document what Solaris does, and in the hope that it might help someone else trying to solve the same problem for their platform. Archive Format Details Archives are hardly cutting edge technology. They are still used of course, but their basic form hasn't changed in decades. Other than to fix a bug, which is rare, we don't tend to touch that code much. The archive file format is described in /usr/include/ar.h, and I won't repeat the details here. Instead, here is a rough overview of the archive file format, implemented by System V Release 4 (SVR4) Unix systems such as Solaris: Every archive starts with a "magic number". This is a sequence of 8 characters: "!<arch>\n". The magic number is followed by 1 or more members. A member starts with a fixed header, defined by the ar_hdr structure in/usr/include/ar.h. Immediately following the header comes the data for the member. Members must be padded at the end with newline characters so that they have even length. The requirement to pad members to an even length is a dead giveaway as to the age of the archive format. It tells you that this format dates from the 1970's, and more specifically from the era of 16-bit systems such as the PDP-11 that Unix was originally developed on. A 32-bit system would have required 4 bytes, and 64-bit systems such as we use today would probably have required 8 bytes. 2 byte alignment is a poor choice for ELF object archive members. 32-bit objects require 4 byte alignment, and 64-bit objects require 64-bit alignment. The link-editor uses mmap() to process archives, and if the members have the wrong alignment, we have to slide (copy) them to the correct alignment before we can access the ELF data structures inside. The archive format requires 2 byte padding, but it doesn't prohibit more. The Solaris ar command takes advantage of this, and pads ELF object members to 8 byte boundaries. Anything else is padded to 2 as required by the format. The archive header (ar_hdr) represents all numeric values using an ASCII text representation rather than as binary integers. This means that an archive that contains only text members can be viewed using tools such as cat, more, or a text editor. The original designers of this format clearly thought that archives would be used for many file types, and not just for objects. Things didn't turn out that way of course — nearly all archives contain relocatable objects for a single operating system and machine, and are used primarily as input to the link-editor (ld). Archives can have special members that are created by the ar command rather than being supplied by the user. These special members are all distinguished by having a name that starts with the slash (/) character. This is an unambiguous marker that says that the user could not have supplied it. The reason for this is that regular archive members are given the plain name of the file that was inserted to create them, and any path components are stripped off. Slash is the delimiter character used by Unix to separate path components, and as such cannot occur within a plain file name. The ar command hides the special members from you when you list the contents of an archive, so most users don't know that they exist. There are only two possible special members: A symbol table that maps ELF symbols to the object archive member that provides it, and a string table used to hold member names that exceed 15 characters. The '/' convention for tagging special members provides room for adding more such members should the need arise. As I will discuss below, we took advantage of this fact to add an alternate 64-bit symbol table special member which is used in archives that are larger than 4GB. When an archive contains ELF object members, the ar command builds a special archive member known as the symbol table that maps all ELF symbols in the object to the archive member that provides it. The link-editor uses this symbol table to determine which symbols are provided by the objects in that archive. If an archive has a symbol table, it will always be the first member in the archive, immediately following the magic number. Unlike member headers, symbol tables do use binary integers to represent offsets. These integers are always stored in big-endian format, even on a little endian host such as x86. The archive header (ar_hdr) provides 15 characters for representing the member name. If any member has a name that is longer than this, then the real name is written into a special archive member called the string table, and the member's name field instead contains a slash (/) character followed by a decimal representation of the offset of the real name within the string table. The string table is required to precede all normal archive members, so it will be the second member if the archive contains a symbol table, and the first member otherwise. The archive format is not designed to make finding a given member easy. Such operations move through the archive from front to back examining each member in turn, and run in O(n) time. This would be bad if archives were commonly used in that manner, but in general, they are not. Typically, the ar command is used to build an new archive from scratch, inserting all the objects in one operation, and then the link-editor accesses the members in the archive in constant time by using the offsets provided by the symbol table. Both of these operations are reasonably efficient. However, listing the contents of a large archive with the ar command can be rather slow. Factors That Limit Solaris Archive Size As is often the case, there was more than one limiting factor preventing Solaris archives from growing beyond the 32-bit limits of 2GB (32-bit signed) and 4GB (32-bit unsigned). These limits are listed in the order they are hit as archive size grows, so the earlier ones mask those that follow. The original Solaris archive file format can handle sizes up to 4GB without issue. However, the ar command was delivered as a 32-bit executable that did not use the largefile APIs. As such, the ar command itself could not create a file larger than 2GB. One can solve this by building ar with the largefile APIs which would allow it to reach 4GB, but a simpler and better answer is to deliver a 64-bit ar, which has the ability to scale well past 4GB. Symbol table offsets are stored as 32-bit big-endian binary integers, which limits the maximum archive size to 4GB. To get around this limit requires a different symbol table format, or an extension mechanism to the current one, similar in nature to the way member names longer than 15 characters are handled in member headers. The size field in the archive member header (ar_hdr) is an ASCII string capable of representing a 32-bit unsigned value. This places a 4GB size limit on the size of any individual member in an archive. In considering format extensions to get past these limits, it is important to remember that very few archives will require the ability to scale past 4GB for many years. The old format, while no beauty, continues to be sufficient for its purpose. This argues for a backward compatible fix that allows newer versions of Solaris to produce archives that are compatible with older versions of the system unless the size of the archive exceeds 4GB. Archive Format Differences Among Unix Variants While considering how to extend Solaris archives to scale to 64-bits, I wanted to know how similar archives from other Unix systems are to those produced by Solaris, and whether they had already solved the 64-bit issue. I've successfully moved archives between different Unix systems before with good luck, so I knew that there was some commonality. If it turned out that there was already a viable defacto standard for 64-bit archives, it would obviously be better to adopt that rather than invent something new. The archive file format is not formally standardized. However, the ar command and archive format were part of the original Unix from Bell Labs. Other systems started with that format, extending it in various often incompatible ways, but usually with the same common shared core. Most of these systems use the same magic number to identify their archives, despite the fact that their archives are not always fully compatible with each other. It is often true that archives can be copied between different Unix variants, and if the member names are short enough, the ar command from one system can often read archives produced on another. In practice, it is rare to find an archive containing anything other than objects for a single operating system and machine type. Such an archive is only of use on the type of system that created it, and is only used on that system. This is probably why cross platform compatibility of archives between Unix variants has never been an issue. Otherwise, the use of the same magic number in archives with incompatible formats would be a problem. I was able to find information for a number of Unix variants, described below. These can be divided roughly into three tribes, SVR4 Unix, BSD Unix, and IBM AIX. Solaris is a SVR4 Unix, and its archives are completely compatible with those from the other members of that group (GNU/Linux, HP-UX, and SGI IRIX). AIX AIX is an exception to rule that Unix archive formats are all based on the original Bell labs Unix format. It appears that AIX supports 2 formats (small and big), both of which differ in fundamental ways from other Unix systems: These formats use a different magic number than the standard one used by Solaris and other Unix variants. They include support for removing archive members from a file without reallocating the file, marking dead areas as unused, and reusing them when new archive items are inserted. They have a special table of contents member (File Member Header) which lets you find out everything that's in the archive without having to actually traverse the entire file. Their symbol table members are quite similar to those from other systems though. Their member headers are doubly linked, containing offsets to both the previous and next members. Of the Unix systems described here, AIX has the only format I saw that will have reasonable insert/delete performance for really large archives. Everyone else has O(n) performance, and are going to be slow to use with large archives. BSD BSD has gone through 4 versions of archive format, which are described in their manpage. They use the same member header as SVR4, but their symbol table format is different, and their scheme for long member names puts the name directly after the member header rather than into a string table. GNU/Linux The GNU toolchain uses the SVR4 format, and is compatible with Solaris. HP-UX HP-UX seems to follow the SVR4 model, and is compatible with Solaris. IRIX IRIX has 32 and 64-bit archives. The 32-bit format is the standard SVR4 format, and is compatible with Solaris. The 64-bit format is the same, except that the symbol table uses 64-bit integers. IRIX assumes that an archive contains objects of a single ELFCLASS/MACHINE, and any archive containing ELFCLASS64 objects receives a 64-bit symbol table. Although they only use it for 64-bit objects, nothing in the archive format limits it to ELFCLASS64. It would be perfectly valid to produce a 64-bit symbol table in an archive containing 32-bit objects, text files, or anything else. Tru64 Unix (Digital/Compaq/HP) Tru64 Unix uses a format much like ours, but their symbol table is a hash table, making specific symbol lookup much faster. The Solaris link-editor uses archives by examining the entire symbol table looking for unsatisfied symbols for the link, and not by looking up individual symbols, so there would be no benefit to Solaris from such a hash table. The Tru64 ld must use a different approach in which the hash table pays off for them. Widening the existing SVR4 archive symbol tables rather than inventing something new is the simplest path forward. There is ample precedent for this approach in the ELF world. When ELF was extended to support 64-bit objects, the approach was largely to take the existing data structures, and define 64-bit versions of them. We called the old set ELF32, and the new set ELF64. My guess is that there was no need to widen the archive format at that time, but had there been, it seems obvious that this is how it would have been done. The Implementation of 64-bit Solaris Archives As mentioned earlier, there was no desire to improve the fundamental nature of archives. They have always had O(n) insert/delete behavior, and for the most part it hasn't mattered. AIX made efforts to improve this, but those efforts did not find widespread adoption. For the purposes of link-editing, which is essentially the only thing that archives are used for, the existing format is adequate, and issues of backward compatibility trump the desire to do something technically better. Widening the existing symbol table format to 64-bits is therefore the obvious way to proceed. For Solaris 11, I implemented that, and I also updated the ar command so that a 64-bit version is run by default. This eliminates the 2 most significant limits to archive size, leaving only the limit on an individual archive member. We only generate a 64-bit symbol table if the archive exceeds 4GB, or when the new -S option to the ar command is used. This maximizes backward compatibility, as an archive produced by Solaris 11 is highly likely to be less than 4GB in size, and will therefore employ the same format understood by older versions of the system. The main reason for the existence of the -S option is to allow us to test the 64-bit format without having to construct huge archives to do so. I don't believe it will find much use outside of that. Other than the new ability to create and use extremely large archives, this change is largely invisible to the end user. When reading an archive, the ar command will transparently accept either form of symbol table. Similarly, the ELF library (libelf) has been updated to understand either format. Users of libelf (such as the link-editor ld) do not need to be modified to use the new format, because these changes are encapsulated behind the existing functions provided by libelf. As mentioned above, this work did not lift the limit on the maximum size of an individual archive member. That limit remains fixed at 4GB for now. This is not because we think objects will never get that large, for the history of computing says otherwise. Rather, this is based on an estimation that single relocatable objects of that size will not appear for a decade or two. A lot can change in that time, and it is better not to overengineer things by writing code that will sit and rot for years without being used. It is not too soon however to have a plan for that eventuality. When the time comes when this limit needs to be lifted, I believe that there is a simple solution that is consistent with the existing format. The archive member header size field is an ASCII string, like the name, and as such, the overflow scheme used for long names can also be used to handle the size. The size string would be placed into the archive string table, and its offset in the string table would then be written into the archive header size field using the same format "/ddd" used for overflowed names.

    Read the article

  • Using jQuery validation plugin with tabbed navigation

    - by user3438917
    I have a tabbed navigation wizard, for which the first section needs to be validated before proceeding to the next tab. The validation should trigger when the user hits the "next" button. I am unable to get the validation to trigger though: <form id="target-group" novalidate="novalidate"> <div class="box"> <div class='box-header-main'><h2><img src="assets/img/list.png" /> Target Group Information</h2></div> <br /> <div class='box'> <div class='box-header-property'><h2><span data-bind="text:Name">New Target Group</span> | <i class='fa fa-file'></i></h2></div> <br /> <div class='row'> <div id='flight-wizard'> <div id='content' class='col-lg-12'> <div class='col-lg-12'> <div id='tabs'> <ul> <li id="targetgroup-info-tab"><a href='#tabs-1'><i class="fa fa-info-circle"></i>Target Group Info</a></li> <li id="zone-tab"><a href='#tabs-2'><i class="fa fa-map-marker"></i>Zones</a></li> </ul> <div id='tabs-1'> <div class='row'> <div class='col-xs-6'> <div class='form-group'> Name<sup>*</sup> <input id="selectError0" name="name" class='form-control col-xs-12' data-bind="value: asdf" placeholder='Enter Name ...' /> </div> <form class='form-horizontal'> <div class='form-group'> Product(s)<sup>*</sup> <div class='controls' id='products'> <select id='selectError3' class='form-control' data-bind="options:test, optionsText: 'Name', optionsValue : 'test', value: test, optionsCaption: 'Choose Product...'"></select> </div> </div> </form> </div> <!--RIGHT PANE--> <div class='col-xs-6'> <div class='form-group'> Platform<sup>*</sup> <div class='controls'> <select id="selectError2" class='form-control' data-bind="options:test, optionsText: 'Name', optionsValue: 'test', value : test, optionsCaption: 'Choose Platform...'"></select> </div> </div> <form class='form-horizontal'> <div class='form-group'> AdTypes(s)<sup>*</sup> <div class='controls' id='adtypes'> <select multiple="" id='adtypesselect' class='form-control' data-rel="chosen" data-bind="options:test, optionsText: 'Name', optionsValue : 'test', selectedOptions: test, optionsCaption: 'test...'"></select> </div> </div> </form> <button id="btn_cancel_large" class='btn btn-large btn-primary btn-round'><i class='fa fa-ban' /></i> Cancel</button> <button id="btn-next-large" class='btn btn-large btn-primary btn-round'>Next <i class='fa fa-arrow-circle-right'></i></button> </div> <!--end of right pane--> </div> </div> <div id='tabs-2'> <div class='row'> <div class='col-lg-12'> <div class='row'> <div class='col-lg-12'> <div id='zones_list' class='box-content'> <div id='add-new-targetgroupzone' class='add-new'><i class='fa fa-plus-circle'></i><a href='/#/inventory/targeting/' onclick="return false;">Add Zone</a></div> <table id="results" width="100%"> <thead> <tr> <th>Publisher</th> <th>Property</th> <th>Zone</th> <th>AdTypes</th> <th width='10%'>Quick&nbsp;Actions</th> </tr> </thead> </table> </div> </div> </div> </div> </div> <br /> <div class="btn_row"> <button id="btn_cancel_large2" class='btn btn-large btn-primary btn-round'><i class='fa fa-ban' /></i> Cancel</button> <button id="btn-submit-large" class='btn btn-large btn-primary btn-round'>Submit <i class='fa fa-arrow-circle-down'></i></button> </div> </div> </div> </div> </div> </div> </div> </div> </div> </form> <form id="zones-form" style="display: none;" novalidate="novalidate" class="slideup-form"> <div class="box"> <div class="box-header-panel"> <h2>Add Target Group Zone</h2> <div class="box-icon" id="zones-form-close"> <i class="fa fa-arrow-circle-down"></i> </div> </div> <div class="box-content clearfix"> <div class="box-content"> <table id="zones-list" width="100%"> <thead> <tr> <th>Publisher</th> <th>Property</th> <th>Zone</th> <th>AdTypes</th> <th width='10%'>Quick&nbsp;Actions</th> </tr> </thead> </table> </div> </div> </div> </div> </form> jQuery: $("#target-group").validate({ rules: { name: { required: true } }, messages: { name: "Name required", } }); $('#btn-next-large').click(function () { if ($('#target-group').valid()) $tabs.tabs('select', $(this).attr("rel")); });

    Read the article

  • How to insert sub root node in xml file

    - by pravakar
    Hi guys hope all are doing good. I want to create one sub root node in my xml file like, <CapitalJobsList xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <JobAds> -- element to create <JobAd> <AdvertiserDetails> <AdvertiserId>718508549</AdvertiserId> <AdvertiserName>ABC</AdvertiserName> </AdvertiserDetails> <ConsultantDetails> <ContactName>Naga Divakar</ContactName> <ContactPhone>6239 7755</ContactPhone> <ContactEmail>[email protected]</ContactEmail> <ContactFax>12345678912</ContactFax> </ConsultantDetails> <JobAdDetails> <DateEntered>2009-10-03T21:09:35.500</DateEntered> <AdvertiserJobRef>83754865</AdvertiserJobRef> <Title>IT Operations Manager</Title> <DescriptionShort>Large scale/exciting projects Mentor and manage o...</DescriptionShort> <Description>Large scale/exciting projects Mentor and manage others Management/technical mix This is a fantastic opportunity to join a high profile client who is active across both the commercial and Government domain. As the IT Operations Manager you will be responsible for leading and mentoring a small team of Infrastructure Engineers to ensure the availability and performance of the IT infrastructure. You w</Description> <SalaryMin>0.00</SalaryMin> <SalaryMax>0.00</SalaryMax> <WorkType xsi:nil="true" /> <Location>) as [JobAd/JobAdDetails/Bullets], isnull(Job</Location> <PostCode>2600</PostCode> <ClosingDate>2009-11-01T00:00:00</ClosingDate> <Keywords xsi:nil="true" /> <ApplyEmail xsi:nil="true" /> <ApplyURL>http://jobview.careerone.com.au/GetJob.aspx?JobID=83754865</ApplyURL> </JobAdDetails> <JobAdOptions> <BlindPost xsi:nil="true" /> <AdFormatType xsi:nil="true" /> <AdTemplateName xsi:nil="true" /> <ShowContactDetails xsi:nil="true" /> <ShowSalary xsi:nil="true" /> <HasVideo xsi:nil="true" /> <ResumeRequired>1</ResumeRequired> <ResidentsOnly>0</ResidentsOnly> </JobAdOptions> <CategoryList> <Category xsi:nil="true" /> </CategoryList> <RegionsList> <Region>ACT</Region> </RegionsList> <LevelsList> <Level xsi:nil="true" /> </LevelsList> </JobAd> <JobAd> <AdvertiserDetails> <AdvertiserId>718508549</AdvertiserId> <AdvertiserName>ABC</AdvertiserName> </AdvertiserDetails> <ConsultantDetails> <ContactName>Naga Divakar</ContactName> <ContactPhone>6239 7755</ContactPhone> <ContactEmail>[email protected]</ContactEmail> <ContactFax>12345678912</ContactFax> </ConsultantDetails> <JobAdDetails> <DateEntered>2009-10-03T21:09:35.530</DateEntered> <AdvertiserJobRef>83731488</AdvertiserJobRef> <Title>SAP Developers Required in Canberra - 12 month contract</Title> <DescriptionShort>My client, a large government department in Canbe...</DescriptionShort> <Description>My client, a large government department in Canberra, seeks two SAP Developers for 12 month ongoing contracts. Two SAP Developers Required Expert level ABAP programming skills Large SAP landscape - SAP R/3, SAP Web, SAP BI, SAP ITS My client, a large government department in Canberra, seeks two SAP Developers for 12 month ongoing contracts. My client is a large government department in Canberra, a</Description> <SalaryMin>0.00</SalaryMin> <SalaryMax>0.00</SalaryMax> <WorkType xsi:nil="true" /> <Location>) as [JobAd/JobAdDetails/Bullets], isnull(Job</Location> <PostCode>2600</PostCode> <ClosingDate>2009-11-01T00:00:00</ClosingDate> <Keywords xsi:nil="true" /> <ApplyEmail xsi:nil="true" /> <ApplyURL>http://jobview.careerone.com.au/GetJob.aspx?JobID=83731488</ApplyURL> </JobAdDetails> <JobAdOptions> <BlindPost xsi:nil="true" /> <AdFormatType xsi:nil="true" /> <AdTemplateName xsi:nil="true" /> <ShowContactDetails xsi:nil="true" /> <ShowSalary xsi:nil="true" /> <HasVideo xsi:nil="true" /> <ResumeRequired>1</ResumeRequired> <ResidentsOnly>0</ResidentsOnly> </JobAdOptions> <CategoryList> <Category xsi:nil="true" /> </CategoryList> <RegionsList> <Region>ACT</Region> </RegionsList> <LevelsList> <Level xsi:nil="true" /> </LevelsList> </JobAd> </JobAds> </CapitalJobsList> I have used the sql query for xml path like: select r.advid as [JobAd/AdvertiserDetails/AdvertiserId], CompanyName as [JobAd/AdvertiserDetails/AdvertiserName], firstname +'' ''+ lastname as [JobAd/ConsultantDetails/ContactName], WorkPhone as [JobAd/ConsultantDetails/ContactPhone], AdvEmail as [JobAd/ConsultantDetails/ContactEmail], FaxNo as [JobAd/ConsultantDetails/ContactFax], Job_CreatedDate as [JobAd/JobAdDetails/DateEntered], Job_Id as [JobAd/JobAdDetails/AdvertiserJobRef], Job_Title as [JobAd/JobAdDetails/Title], substring(Job_Description,0,50)+''...'' as [JobAd/JobAdDetails/DescriptionShort], Job_Description as [JobAd/JobAdDetails/Description], CONVERT(DECIMAL(10,2),MinSalary) as [JobAd/JobAdDetails/SalaryMin], CONVERT(DECIMAL(10,2),MaxSalary) as [JobAd/JobAdDetails/SalaryMax], Job_Type as [JobAd/JobAdDetails/WorkType], isnull(Job_Bullets,'') as [JobAd/JobAdDetails/Bullets], isnull(Job_Location,'') as [JobAd/JobAdDetails/Location], Job_PostCode as [JobAd/JobAdDetails/PostCode], Job_ExpireDate as [JobAd/JobAdDetails/ClosingDate], Job_Keywords as [JobAd/JobAdDetails/Keywords], ApplyEmail as [JobAd/JobAdDetails/ApplyEmail], Job_BrandURL+Job_Id as [JobAd/JobAdDetails/ApplyURL], BlindPost as [JobAd/JobAdOptions/BlindPost], AdFormatType as [JobAd/JobAdOptions/AdFormatType], AdTemplateName as [JobAd/JobAdOptions/AdTemplateName], ShowContactDetails as [JobAd/JobAdOptions/ShowContactDetails], ShowSalary as [JobAd/JobAdOptions/ShowSalary], HasVideo as [JobAd/JobAdOptions/HasVideo], ResumeRequired as [JobAd/JobAdOptions/ResumeRequired], ResidentsOnly as [JobAd/JobAdOptions/ResidentsOnly], Job_Category as [JobAd/CategoryList/Category], Job_Location_State as [JobAd/RegionsList/Region], [Level] as [JobAd/LevelsList/Level] from DR_Adv_Registration r, DR_CareerOne_ACTJobs j where r.Advid = j.Advid and job_location_city like(''%'+''+ @City +''+'%'') and job_location_state in('''+ @State +''') and job_status=1 for xml path(''''), Root(''CapitalJobsList''),ELEMENTS XSINIL So, suggest me how to get the sub root node. Thanks in advance

    Read the article

  • RT database scaling

    - by rplevy
    Recently I heard someone suggest that RT request tracker may have scalability issues due to its non-normalized database (someone at a Perl meeting I went to referred to it in a positive light as hyper-normalized, but I think he may have misunderstood what normalization is all about). On the other hand I know that large scale enterprises such as Perl's CPAN use RT. Do es this level of scale require special measures to be taken to handle what happens when the db grows too large? What have your experiences been?

    Read the article

  • How to convert pcm to mp3?

    - by avirk
    I have some .pcm files and I want to convert them on high quality .mp3 format. I tried to find tools by Google search but did not get the right one for me. I will prefer the freeware but if there is not a good freeware then I can also consider the shareware. The pcm format has much large files as I have 200-500 mb so the tool should be able to handle the large files. Please help me regard this problem.

    Read the article

  • Domino Document data compression and design compression

    - by pipalia
    I was thinking of turning this on some large databases not just mail files - we have around 8 - 10GB of large databases as well as small databases of couple of hundred MB in size. But after reading this post I am not too sure: http://www-10.lotus.com/ldd/nd85forum.nsf/4b9931b774db788c85256bf0006b5e6d/1f4e67b569720e54852576c0003cb8ac?OpenDocument Can anyone confirm whether this is true? Are these any ill effects on performance by turning this feature on and if so what's the difference in performance? Thanks.

    Read the article

  • Is DHCP required on a Win2003 secondary DNS server?

    - by Mark
    We have a secondary DNS server and we've been noticing that the DNS.exe process is getting rather large. (Like, rebooting the server large) I read something somewhere that 2k3 has two relevant memory leak issues, one is the DNS (supposedly fixed in 2007), and another for DHCP. DHCP is running on this server, but I don't see why. Hence my question. Is the DHCP service required for (secondary) DNS to function? Server has: 24 cores (X5650), 8GB RAM

    Read the article

  • resume file copy linux

    - by Andrew Johnson
    How do I resume a copy of a large file in linux? I have a huge file (serveral gigabyes) partially copied to a network drive, and it took a long time, and it was mostly done before the copy operation stopped due to a network problem that is now fixed. How do I resume the file copy. I don't want an inefficient script, and ecp didn't work (it doesn't seem to work for large files).

    Read the article

  • iTunes Album Artwork not available in all Sizes

    - by develroot
    I used iTunes and everything worked fine until today. When I try to display Large / Medium artwork, not all the artworks are displayed. However, when I try to display the small artworks, everything works. Large (buggy): Small (normal): Is there a way to fix this? Tech Specs: iTunes on Windows 7 x64, v. 10.3.1. All the artworks are stored locally on my hard drive (.jpg files (i added them manually)).

    Read the article

  • Why do my files fail checksums when transferring to esata dive but not when transfered off the external?

    - by R. Peterson
    I have been using teracopy to verify and the large movie files show artifacting after transfer and fail checksum, small files do not fail, only large files seem to. When I transfer files off the external hard drive no such failure of checksums occur on any of the files, could this be a bad cable, or maybe a bad external interface or esata interface on my computer, I have tried two interfaces for esata, one with a pci card the other on the motherboard, both with similar results, so what maybe the reason if a bad hard drive or external case maybe the problem?

    Read the article

  • Why does dstat show zeroes for disk activity on my virtual private server running Ubuntu?

    - by Jonathan Berger
    I'm trying to monitor the number of disk reads and writes on my VPS (Rackspace in this case) running Ubuntu 9.04. I realize there are many tools to do this, but when using dstat 0.7 I tried the following command: dstat -d The output is just two columns of zeroes even when I upload a large file via scp that should be causing a large number of disk writes. Why is this, and how do I get dstat to correctly display the number of disk reads and writes?

    Read the article

< Previous Page | 62 63 64 65 66 67 68 69 70 71 72 73  | Next Page >