Search Results

Search found 22065 results on 883 pages for 'performance testing'.

Page 68/883 | < Previous Page | 64 65 66 67 68 69 70 71 72 73 74 75  | Next Page >

  • How can I improve the performance of this algorithm

    - by Justin
    // Checks whether the array contains two elements whose sum is s. // Input: A list of numbers and an integer s // Output: return True if the answer is yes, else return False public static boolean calvalue (int[] numbers, int s){ for (int i=0; i< numbers.length; i++){ for (int j=i+1; j<numbers.length;j++){ if (numbers[i] < s){ if (numbers[i]+numbers[j] == s){ return true; } } } } return false; }

    Read the article

  • C/C++ variable length automatic array performance

    - by aaa
    hello. Is there significant cpu/memory overhead associated with using automatic arrays with g++/Intel on 64-bit x86 linux platform? int function(int N) { double array[N]; overhead compared to allocating array before hand (assuming function is called multiple times) overhead compared to using new overhead compared to using malloc range of N maybe from 1kb to 16kb roughly, stack overrun is not a problem Thank you

    Read the article

  • Which should I use? (performance)

    - by Yim
    I want to know a simple thing: when setting up a style that is inherited by all its children, is it recommended most specific? (even if you don't care others having this style) Structure: html body parent_content wrapper p I don't care having parent_content or wrapper having the style I do care changing the html or body style (or all p) So what should I use? #parent_content{ color:#555; } #parent_content p{ color:#555; } #wrapper{ color:#555; } ... Also, some links to tutorials about this would be great

    Read the article

  • Will logging debugging incur a performance hit if I don't turn debugging on?

    - by romandas
    On a Cisco device, I know that enabling debugging can incur a performance hit since debugging has such a high priority on the CPU. I know that to log debugging, you have to set logging up to the debugging level (logging buffered 4096 debugging, for example) and also enable debugging on some feature. Does configuring the logging debugging incur the performance hit even if you don't enable debugging on some feature, or would it be safe (assuming you want and can handle all the logging events via syslog) to configure 'logging buffered 4096 debugging' to have maximum logging available if/when someone uses debug?

    Read the article

  • Sysadmin 101: How can I figure out why my server crashes and monitor performance?

    - by bflora
    I have a Drupal-powered site that seems to have neverending performance problems. It was butt-slow about 5 months ago. I brought in some guys who installed nginx for anonymous visitors, ajaxified a few queries so they wouldn't fire during page load, and helped me find a few bottlenecks in the code. For about a month, the site was significantly faster, though not "fast" by any stretch of the word. Meanwhile, I'm now shelling out $400/month to Slicehost to host a site that gets less than 5,000/uniques a day. Yes, you read that right. Go Drupal. Recently the site started crashing again and is slow again. I can't afford to hire people to come in, study my code from top to bottom, and make changes that may or may not help anymore. And I can't afford to throw more hardware at the problem. So I need to figure out what the problem is myself. Questions: When apache crashes, is it possible to find out what caused it to crash? There has to be a way, right? If so, how can I do this? Is there software I can use that will tell me which process caused my server to die? (e.g. "Apache crashed because someone visited page X." or "Apache crashed because you were importing too many RSS items from feed X.") There's got to be a way to learn this, right? What's a good, noob-friendly way to monitor my current apache performance? My developer friends tell me to "just use Top, dude," but Top shows me a bunch of numbers without any context. I have no clue what qualifies as a bad number or a good number in Top, or which processes are relevant and which aren't. Are there any noob-friendly server monitoring tools out there? Ideally, I could have a page that would give me a color-coded indicator about how apache is performing and then show me a list of processes or pages that are sucking right now. This way, I could know when performance is bad and then what's causing it to be so bad. Why does PHP memory matter? My apparently has a 30MB memory foot print. Will it run faster if I bring that number down? Thanks for any advice. I spent a year or so trying to boost my advertising income so I could hire a contractor to solve my performance woes. I didn't want to have to learn all this sysadmin voodoo. I'm now resigned to the fact that might not have a choice.

    Read the article

  • How to increase performance of Acer Aspire One 751h netbook?

    - by Wolfarian
    Hello! I have bought my new netbook Acer Aspire One 751h some days ago and was very unpleased with it performance - videotalking in skype is almost unuseable, watching videos on YouTube(even in standart definition) is like watching slideshow and all netbook have increadible lags if I'm running more then 4-5 programms in one time. So, can somebody tell me how to impruve the performance of the netbook(OS - WinXP SP3)? And can you say me where to control power managment, please? Thank you!

    Read the article

  • What hardware factors may be considered bottlenecks on a Hyper-V virtual server during load testing?

    - by sean
    Our organization is load testing our application using virtual servers via Hyper-V to see what the user load can be using fair equipment on a single box setup. The developer group questioned the validity of the tests given the normal use of the box by the other virtual machines. IT admins answered that it is an acceptable platform to load test on because it has its own CPUs, memory and disks allocated. Is their answer mostly correct? What hardware factors may be considered bottle necks given the other virtual machines when testing our application? For example, would bus speed be a concern or network IO? The application consists of a windows service written using the 4.0 .NET Framework and SQL Server 2008 R2.

    Read the article

  • Weird nfs performance: 1 thread better than 8, 8 better than 2!

    - by Joe
    I'm trying to determine the cause of poor nfs performance between two Xen Virtual Machines (client & server) running on the same host. Specifically, the speed at which I can sequentially read a 1GB file on the client is much lower than what would be expected based on the measured network connection speed between the two VMs and the measured speed of reading the file directly on the server. The VMs are running Ubuntu 9.04 and the server is using the nfs-kernel-server package. According to various NFS tuning resources, changing the number of nfsd threads (in my case kernel threads) can affect performance. Usually this advice is framed in terms of increasing the number from the default of 8 on heavily-used servers. What I find in my current configuration: RPCNFSDCOUNT=8: (default): 13.5-30 seconds to cat a 1GB file on the client so 35-80MB/sec RPCNFSDCOUNT=16: 18s to cat the file 60MB/s RPCNFSDCOUNT=1: 8-9 seconds to cat the file (!!?!) 125MB/s RPCNFSDCOUNT=2: 87s to cat the file 12MB/s I should mention that the file I'm exporting is on a RevoDrive SSD mounted on the server using Xen's PCI-passthrough; on the server I can cat the file in under seconds ( 250MB/s). I am dropping caches on the client before each test. I don't really want to leave the server configured with just one thread as I'm guessing that won't work so well when there are multiple clients, but I might be misunderstanding how that works. I have repeated the tests a few times (changing the server config in between) and the results are fairly consistent. So my question is: why is the best performance with 1 thread? A few other things I have tried changing, to little or no effect: increasing the values of /proc/sys/net/ipv4/ipfrag_low_thresh and /proc/sys/net/ipv4/ipfrag_high_thresh to 512K, 1M from the default 192K,256K increasing the value of /proc/sys/net/core/rmem_default and /proc/sys/net/core/rmem_max to 1M from the default of 128K mounting with client options rsize=32768, wsize=32768 From the output of sar -d I understand that the actual read sizes going to the underlying device are rather small (<100 bytes) but this doesn't cause a problem when reading the file locally on the client. The RevoDrive actually exposes two "SATA" devices /dev/sda and /dev/sdb, then dmraid picks up a fakeRAID-0 striped across them which I have mounted to /mnt/ssd and then bind-mounted to /export/ssd. I've done local tests on my file using both locations and see the good performance mentioned above. If answers/comments ask for more details I will add them.

    Read the article

  • Performance boost for MacBook: Hybrid hard drive or 4GB RAM?

    - by user13572
    I have an aluminium 13" MacBook with 2GB or RAM and 5400RPM 500GB hard drive. The main tasks I perform are developing iPhone and Mac apps in Xcode and websites in Coda. I want to improve the performance so I am considering buying 4GB of RAM or a 500GB Seagate solid-state hybrid drive. What is likely to provide the biggest performance boost?

    Read the article

  • Does chunk size affect the read performance of a Linux md software RAID1 array?

    - by OldWolf
    This came up in relation to this question on determining chunk size of an existing RAID array. The general consensus seems to be that chunk size does not apply to RAID1 as it is not striped. On the other hand, the Linux RAID Wiki claims that it will have an affect on read performance. However, I cannot find any benchmarks testing/proving that. Can anyone point to conclusive documentation that it either does or does not affect read performance?

    Read the article

  • Performance boast for MacBook: Hybrid hard drive or 4GB RAM?

    - by user13572
    I have an aluminium 13" MacBook with 2GB or RAM and 5400RPM 500GB hard drive. The main tasks I perform are developing iPhone and Mac apps in Xcode and websites in Coda. I want to improve the performance so I am considering buying 4GB of RAM or a 500GB Seagate solid-state hybrid drive. What is likely to provide the biggest performance boast?

    Read the article

  • maven test cannot load cross-module resources/properties ?

    - by smallufo
    I have a maven mantained project with some modules . One module contains one XML file and one parsing class. Second module depends on the first module. There is a class that calls the parsing class in the first module , but maven seems cannot test the class in the second module. Maven test reports : java.lang.NullPointerException at java.util.Properties.loadFromXML(Properties.java:851) at foo.firstModule.Parser.<init>(Parser.java:92) at foo.secondModule.Program.<init>(Program.java:84) In "Parser.java" (in the first module) , it uses Properties and InputStream to read/parse an XML file : InputStream xmlStream = getClass().getResourceAsStream("Data.xml"); Properties properties = new Properties(); properties.loadFromXML(xmlStream); The "data.xml" is located in first module's resources/foo/firstModule directory , and it tests OK in the first module. It seems when testing the second module , maven cannot correctly load the Data.xml in the first module . I thought I can solve the problem by using maven-dependency-plugin:unpack to solve it . In the second module's POM file , I add these snippets : <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-dependency-plugin</artifactId> <version>2.1</version> <executions> <execution> <id>data-copying</id> <phase>test-compile</phase> <goals> <goal>unpack</goal> </goals> <configuration> <artifactItems> <artifactItem> <groupId>foo</groupId> <artifactId>firstModule</artifactId> <type>jar</type> <includes>foo/firstModule/Data.xml</includes> <outputDirectory>${project.build.directory}/classes</outputDirectory> </artifactItem> </artifactItems> </configuration> </execution> </executions> </plugin> In this POM file , I try to unpack the first module , and copy the Data.xml to classes/foo/firstModule/ directory , and then run tests. And indeed , it is copied to the right directory , I can find the "Data.xml" file in "target/classes/foo/firstModule" directory. But maven test still complains it cannot read the File (Properties.loadFromXML() throws NPE). I don't know how to solve this problem. I tried other output directory , such as ${project.build.directory}/resources , and ${project.build.directory}/test-classes , but all in vain... Any advices now ? Thanks in advanced. Environments : Maven 2.2.1 , eclipse , m2eclipse

    Read the article

  • Oracle University Begins Beta Testing For New "Oracle Application Express Developer Certified Expert

    - by Paul Sorensen
    Oracle University has begun beta testing for the new Oracle Application Express Developer Certified Expert certification, which requires passing one exam - "Oracle Application Express 3.2: Developing Web Applications" exam (#1Z1-450).In this video, Marcie Young of Oracle Server Technologies takes you on a quick preview of what is on the exam, how to prepare, and what to expect: The "Oracle Application Express: Developing Web Applications" training course teaches many of of the key concepts that are tested in the exam. This course is not a requirement to take the exam, however it is highly recommended.Additionally, Marcie refers to several helpful resources that are highly recommended while preparing, including the Oracle Application Express hosted instance at apex.oracle.com and Oracle Application Express product page on OTN.You can take the "Oracle Application Express 3.2: Developing Web Applications" exam now for only $50 USD while it is in beta. Beta exams are an excellent way to directly provide your input into the final version of the certification exam as well as be one of the very first certified in the track. Furthermore - passing the beta counts for full final exam credit. Note that beta testing is offered for a limited time only.Register now at pearsonvue.com/oracle to take the exam at a Pearson VUE testing center nearest you.QUICK LINKSRegister For Exam: Pearson VUE About Certification Track: Oracle Application Express Developer Certified ExpertAbout Certification Exam: Oracle Application Express 3.2: Developing Web Applications (1Z1-450)Introductory Training (Recommended): "Oracle Application Express: Developing Web Applications"Advanced Training (Suggested): "Oracle Application Express: Advanced Workshop"Oracle Application Express Hosted Instance: apex.oracle.comOracle Application Express Product Page: on OTNLearn More: Oracle Certification Beta Exams

    Read the article

  • ALMing in Hinglish 2&ndash;Windows 8-Manual Testing Metro Style Apps using MTM11

    - by Tarun Arora
    What is ALMing in Hinglish => Introduction     ????? ?????? ??? ?????? ????, ?????? ??????? ?? ?????? ?????? ?? ????? ?????? ?????? 8 ?????? ?????? ??????????? ?? ?????? ???????? ?? ???? ???. ??? ???? ???????????? ????? ??????? 2011 ?? ?????? ?? ?? ???? ????? ?????? 8 ?????? ?????? ??????????? ?? ?????? ???????? ??. ALMing in Hinglish–Windows 8 Metro Style App manual testing using MTM11   In this second in the series of videos I bring to you Shubhra Maji who is a Program Manager on the Visual Studio dev tools team in Hyderabad along with the very seasoned Aditya Agarwal & Srishti Sridhar who have been working in the Visual Studio team from past several releases. The team wonderfully walks us through manually testing Metro Style Apps in Windows 8 using Microsoft Test Manager 2011. A great thank you for watching, if you have any questions/feedback/suggestions please contact us. Stay Tuned for more… Namaste!   You might also like - ALMing in Hinglish 1-Exploratory Testing in VS11 with Nivedita Bawa

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • BizTalk Testing Series - The xpath Function

    - by Michael Stephenson
    Background While the xpath function in a BizTalk orchestration is a very powerful feature I have often come across the situation where someone has hard coded an xpath expression in an orchestration. If you have read some of my previous posts about testing I've tried to get across the general theme like test-driven or test-assisted development approaches where the underlying principle is that your building up your solution of small well tested units that are put together and the resulting solution is usually quite robust. You will be finding more bugs within your unit tests and fewer outside of your team. The thing I don't like about the xpath functions usual usage is when you come across an orchestration which has something like the below snippet in an expression or assign shape: string result = xpath(myMessage,"string(//Order/OrderItem/ProductName)"); My main issue with this is that the xpath statement is hard coded in the orchestration and you don't really know it works until you are running the orchestration. Some of the problems I think you end up with are: You waste time with lengthy debugging of the orchestration when your statement isn't working You might not know the function isn't working quite as expected because the testable unit around it is big You are much more open to regression issues if your schema changes     Approach to Testing The technique I usually follow is to hold the xpath statement as a constant in a helper class or to format a constant with a helper function to get the actual xpath statement. It is then used by the orchestration like follows. string result = xpath(myMessage, MyHelperClass.ProductNameXPathStatement); This means that because the xpath statement is available outside of the orchestration it now becomes testable in its own right. This means: I can test it in its own right I'm less likely to waste time tracking down problems caused by an error in the statement I can reduce the risk or regression issuess I'm now able to implement some testing around my xpath statements which usually are something like the following:    The test will use a sample xml file The sample will be validated against the schema The test will execute the xpath statement and then check the results are as expected     Walk-through BizTalk uses the XPathNavigator internally behind the xpath function to implement the queries you will usually use using the navigators select or evaluate functions. In the sample (link at bottom) I have a small solution which contains a schema from which I have generated a sample instance. I will then use this instance as the basis for my tests.     In the below diagram you can see the helper class which I've encapsulated my xpath expressions in, and some helper functions which will format the expression in the case of a repeating node which would want to inject an index into the xpath query.             I have then created a test class which has some functions to execute some queries against my sample xml file. An example of this is below.         In the test class I have a couple of helper functions which will execute the xpath expressions in a similar way to BizTalk. You could have a proper helper class to do this if you wanted.         You can see now in the BizTalk expression editor I can use these functions alongside the xpath function.         Conclusion I hope you can see with very little effort you can make your life much easier by testing xpath statements outside of an orchestration rather than using them directly hard coded into the orchestration.     This can also save you lots of pain longer term because your build should break if your schema changes unexpectedly causing these xpath tests to fail where as your tests around the orchestration will be more difficult to troubleshoot and workout the cause of the problem.     Sample Link The sample is available from the following link: http://code.msdn.microsoft.com/testbtsxpathfunction     Other Tools On the subject of using the xpath function, if you don't already use it the below tool is very useful for creating your xpath statements (thanks BizBert) http://www.bizbert.com/bizbert/2007/11/30/XPath+The+Hidden+Language+Of+BizTalk.aspx

    Read the article

  • Testing Entity Framework applications, pt. 3: NDbUnit

    - by Thomas Weller
    This is the third of a three part series that deals with the issue of faking test data in the context of a legacy app that was built with Microsoft's Entity Framework (EF) on top of an MS SQL Server database – a scenario that can be found very often. Please read the first part for a description of the sample application, a discussion of some general aspects of unit testing in a database context, and of some more specific aspects of the here discussed EF/MSSQL combination. Lately, I wondered how you would ‘mock’ the data layer of a legacy application, when this data layer is made up of an MS Entity Framework (EF) model in combination with a MS SQL Server database. Originally, this question came up in the context of how you could enable higher-level integration tests (automated UI tests, to be exact) for a legacy application that uses this EF/MSSQL combo as its data store mechanism – a not so uncommon scenario. The question sparked my interest, and I decided to dive into it somewhat deeper. What I've found out is, in short, that it's not very easy and straightforward to do it – but it can be done. The two strategies that are best suited to fit the bill involve using either the (commercial) Typemock Isolator tool or the (free) NDbUnit framework. The use of Typemock was discussed in the previous post, this post now will present the NDbUnit approach... NDbUnit is an Apache 2.0-licensed open-source project, and like so many other Nxxx tools and frameworks, it is basically a C#/.NET port of the corresponding Java version (DbUnit namely). In short, it helps you in flexibly managing the state of a database in that it lets you easily perform basic operations (like e.g. Insert, Delete, Refresh, DeleteAll)  against your database and, most notably, lets you feed it with data from external xml files. Let's have a look at how things can be done with the help of this framework. Preparing the test data Compared to Typemock, using NDbUnit implies a totally different approach to meet our testing needs.  So the here described testing scenario requires an instance of an SQL Server database in operation, and it also means that the Entity Framework model that sits on top of this database is completely unaffected. First things first: For its interactions with the database, NDbUnit relies on a .NET Dataset xsd file. See Step 1 of their Quick Start Guide for a description of how to create one. With this prerequisite in place then, the test fixture's setup code could look something like this: [TestFixture, TestsOn(typeof(PersonRepository))] [Metadata("NDbUnit Quickstart URL",           "http://code.google.com/p/ndbunit/wiki/QuickStartGuide")] [Description("Uses the NDbUnit library to provide test data to a local database.")] public class PersonRepositoryFixture {     #region Constants     private const string XmlSchema = @"..\..\TestData\School.xsd";     #endregion // Constants     #region Fields     private SchoolEntities _schoolContext;     private PersonRepository _personRepository;     private INDbUnitTest _database;     #endregion // Fields     #region Setup/TearDown     [FixtureSetUp]     public void FixtureSetUp()     {         var connectionString = ConfigurationManager.ConnectionStrings["School_Test"].ConnectionString;         _database = new SqlDbUnitTest(connectionString);         _database.ReadXmlSchema(XmlSchema);         var entityConnectionStringBuilder = new EntityConnectionStringBuilder         {             Metadata = "res://*/School.csdl|res://*/School.ssdl|res://*/School.msl",             Provider = "System.Data.SqlClient",             ProviderConnectionString = connectionString         };         _schoolContext = new SchoolEntities(entityConnectionStringBuilder.ConnectionString);         _personRepository = new PersonRepository(this._schoolContext);     }     [FixtureTearDown]     public void FixtureTearDown()     {         _database.PerformDbOperation(DbOperationFlag.DeleteAll);         _schoolContext.Dispose();     }     ...  As you can see, there is slightly more fixture setup code involved if your tests are using NDbUnit to provide the test data: Because we're dealing with a physical database instance here, we first need to pick up the test-specific connection string from the test assemblies' App.config, then initialize an NDbUnit helper object with this connection along with the provided xsd file, and also set up the SchoolEntities and the PersonRepository instances accordingly. The _database field (an instance of the INdUnitTest interface) will be our single access point to the underlying database: We use it to perform all the required operations against the data store. To have a flexible mechanism to easily insert data into the database, we can write a helper method like this: private void InsertTestData(params string[] dataFileNames) {     _database.PerformDbOperation(DbOperationFlag.DeleteAll);     if (dataFileNames == null)     {         return;     }     try     {         foreach (string fileName in dataFileNames)         {             if (!File.Exists(fileName))             {                 throw new FileNotFoundException(Path.GetFullPath(fileName));             }             _database.ReadXml(fileName);             _database.PerformDbOperation(DbOperationFlag.InsertIdentity);         }     }     catch     {         _database.PerformDbOperation(DbOperationFlag.DeleteAll);         throw;     } } This lets us easily insert test data from xml files, in any number and in a  controlled order (which is important because we eventually must fulfill referential constraints, or we must account for some other stuff that imposes a specific ordering on data insertion). Again, as with Typemock, I won't go into API details here. - Unfortunately, there isn't too much documentation for NDbUnit anyway, other than the already mentioned Quick Start Guide (and the source code itself, of course) - a not so uncommon problem with smaller Open Source Projects. Last not least, we need to provide the required test data in xml form. A snippet for data from the People table might look like this, for example: <?xml version="1.0" encoding="utf-8" ?> <School xmlns="http://tempuri.org/School.xsd">   <Person>     <PersonID>1</PersonID>     <LastName>Abercrombie</LastName>     <FirstName>Kim</FirstName>     <HireDate>1995-03-11T00:00:00</HireDate>   </Person>   <Person>     <PersonID>2</PersonID>     <LastName>Barzdukas</LastName>     <FirstName>Gytis</FirstName>     <EnrollmentDate>2005-09-01T00:00:00</EnrollmentDate>   </Person>   <Person>     ... You can also have data from various tables in one single xml file, if that's appropriate for you (but beware of the already mentioned ordering issues). It's true that your test assembly may end up with dozens of such xml files, each containing quite a big amount of text data. But because the files are of very low complexity, and with the help of a little bit of Copy/Paste and Excel magic, this appears to be well manageable. Executing some basic tests Here are some of the possible tests that can be written with the above preparations in place: private const string People = @"..\..\TestData\School.People.xml"; ... [Test, MultipleAsserts, TestsOn("PersonRepository.GetNameList")] public void GetNameList_ListOrdering_ReturnsTheExpectedFullNames() {     InsertTestData(People);     List<string> names =         _personRepository.GetNameList(NameOrdering.List);     Assert.Count(34, names);     Assert.AreEqual("Abercrombie, Kim", names.First());     Assert.AreEqual("Zheng, Roger", names.Last()); } [Test, MultipleAsserts, TestsOn("PersonRepository.GetNameList")] [DependsOn("RemovePerson_CalledOnce_DecreasesCountByOne")] public void GetNameList_NormalOrdering_ReturnsTheExpectedFullNames() {     InsertTestData(People);     List<string> names =         _personRepository.GetNameList(NameOrdering.Normal);     Assert.Count(34, names);     Assert.AreEqual("Alexandra Walker", names.First());     Assert.AreEqual("Yan Li", names.Last()); } [Test, TestsOn("PersonRepository.AddPerson")] public void AddPerson_CalledOnce_IncreasesCountByOne() {     InsertTestData(People);     int count = _personRepository.Count;     _personRepository.AddPerson(new Person { FirstName = "Thomas", LastName = "Weller" });     Assert.AreEqual(count + 1, _personRepository.Count); } [Test, TestsOn("PersonRepository.RemovePerson")] public void RemovePerson_CalledOnce_DecreasesCountByOne() {     InsertTestData(People);     int count = _personRepository.Count;     _personRepository.RemovePerson(new Person { PersonID = 33 });     Assert.AreEqual(count - 1, _personRepository.Count); } Not much difference here compared to the corresponding Typemock versions, except that we had to do a bit more preparational work (and also it was harder to get the required knowledge). But this picture changes quite dramatically if we look at some more demanding test cases: Ok, and what if things are becoming somewhat more complex? Tests like the above ones represent the 'easy' scenarios. They may account for the biggest portion of real-world use cases of the application, and they are important to make sure that it is generally sound. But usually, all these nasty little bugs originate from the more complex parts of our code, or they occur when something goes wrong. So, for a testing strategy to be of real practical use, it is especially important to see how easy or difficult it is to mimick a scenario which represents a more complex or exceptional case. The following test, for example, deals with the case that there is some sort of invalid input from the caller: [Test, MultipleAsserts, TestsOn("PersonRepository.GetCourseMembers")] [Row(null, typeof(ArgumentNullException))] [Row("", typeof(ArgumentException))] [Row("NotExistingCourse", typeof(ArgumentException))] public void GetCourseMembers_WithGivenVariousInvalidValues_Throws(string courseTitle, Type expectedInnerExceptionType) {     var exception = Assert.Throws<RepositoryException>(() =>                                 _personRepository.GetCourseMembers(courseTitle));     Assert.IsInstanceOfType(expectedInnerExceptionType, exception.InnerException); } Apparently, this test doesn't need an 'Arrange' part at all (see here for the same test with the Typemock tool). It acts just like any other client code, and all the required business logic comes from the database itself. This doesn't always necessarily mean that there is less complexity, but only that the complexity happens in a different part of your test resources (in the xml files namely, where you sometimes have to spend a lot of effort for carefully preparing the required test data). Another example, which relies on an underlying 1-n relationship, might be this: [Test, MultipleAsserts, TestsOn("PersonRepository.GetCourseMembers")] public void GetCourseMembers_WhenGivenAnExistingCourse_ReturnsListOfStudents() {     InsertTestData(People, Course, Department, StudentGrade);     List<Person> persons = _personRepository.GetCourseMembers("Macroeconomics");     Assert.Count(4, persons);     Assert.ForAll(         persons,         @p => new[] { 10, 11, 12, 14 }.Contains(@p.PersonID),         "Person has none of the expected IDs."); } If you compare this test to its corresponding Typemock version, you immediately see that the test itself is much simpler, easier to read, and thus much more intention-revealing. The complexity here lies hidden behind the call to the InsertTestData() helper method and the content of the used xml files with the test data. And also note that you might have to provide additional data which are not even directly relevant to your test, but are required only to fulfill some integrity needs of the underlying database. Conclusion The first thing to notice when comparing the NDbUnit approach to its Typemock counterpart obviously deals with performance: Of course, NDbUnit is much slower than Typemock. Technically,  it doesn't even make sense to compare the two tools. But practically, it may well play a role and could or could not be an issue, depending on how much tests you have of this kind, how often you run them, and what role they play in your development cycle. Also, because the dataset from the required xsd file must fully match the database schema (even in parts that otherwise wouldn't be relevant to you), it can be quite cumbersome to be in a team where different people are working with the database in parallel. My personal experience is – as already said in the first part – that Typemock gives you a better development experience in a 'dynamic' scenario (when you're working in some kind of TDD-style, you're oftentimes executing the tests from your dev box, and your database schema changes frequently), whereas the NDbUnit approach is a good and solid solution in more 'static' development scenarios (when you need to execute the tests less frequently or only on a separate build server, and/or the underlying database schema can be kept relatively stable), for example some variations of higher-level integration or User-Acceptance tests. But in any case, opening Entity Framework based applications for testing requires a fair amount of resources, planning, and preparational work – it's definitely not the kind of stuff that you would call 'easy to test'. Hopefully, future versions of EF will take testing concerns into account. Otherwise, I don't see too much of a future for the framework in the long run, even though it's quite popular at the moment... The sample solution A sample solution (VS 2010) with the code from this article series is available via my Bitbucket account from here (Bitbucket is a hosting site for Mercurial repositories. The repositories may also be accessed with the Git and Subversion SCMs - consult the documentation for details. In addition, it is possible to download the solution simply as a zipped archive – via the 'get source' button on the very right.). The solution contains some more tests against the PersonRepository class, which are not shown here. Also, it contains database scripts to create and fill the School sample database. To compile and run, the solution expects the Gallio/MbUnit framework to be installed (which is free and can be downloaded from here), the NDbUnit framework (which is also free and can be downloaded from here), and the Typemock Isolator tool (a fully functional 30day-trial is available here). Moreover, you will need an instance of the Microsoft SQL Server DBMS, and you will have to adapt the connection strings in the test projects App.config files accordingly.

    Read the article

  • Oracle Data Integration 12c: Simplified, Future-Ready, High-Performance Solutions

    - by Thanos Terentes Printzios
    In today’s data-driven business environment, organizations need to cost-effectively manage the ever-growing streams of information originating both inside and outside the firewall and address emerging deployment styles like cloud, big data analytics, and real-time replication. Oracle Data Integration delivers pervasive and continuous access to timely and trusted data across heterogeneous systems. Oracle is enhancing its data integration offering announcing the general availability of 12c release for the key data integration products: Oracle Data Integrator 12c and Oracle GoldenGate 12c, delivering Simplified and High-Performance Solutions for Cloud, Big Data Analytics, and Real-Time Replication. The new release delivers extreme performance, increase IT productivity, and simplify deployment, while helping IT organizations to keep pace with new data-oriented technology trends including cloud computing, big data analytics, real-time business intelligence. With the 12c release Oracle becomes the new leader in the data integration and replication technologies as no other vendor offers such a complete set of data integration capabilities for pervasive, continuous access to trusted data across Oracle platforms as well as third-party systems and applications. Oracle Data Integration 12c release addresses data-driven organizations’ critical and evolving data integration requirements under 3 key themes: Future-Ready Solutions : Supporting Current and Emerging Initiatives Extreme Performance : Even higher performance than ever before Fast Time-to-Value : Higher IT Productivity and Simplified Solutions  With the new capabilities in Oracle Data Integrator 12c, customers can benefit from: Superior developer productivity, ease of use, and rapid time-to-market with the new flow-based mapping model, reusable mappings, and step-by-step debugger. Increased performance when executing data integration processes due to improved parallelism. Improved productivity and monitoring via tighter integration with Oracle GoldenGate 12c and Oracle Enterprise Manager 12c. Improved interoperability with Oracle Warehouse Builder which enables faster and easier migration to Oracle Data Integrator’s strategic data integration offering. Faster implementation of business analytics through Oracle Data Integrator pre-integrated with Oracle BI Applications’ latest release. Oracle Data Integrator also integrates simply and easily with Oracle Business Analytics tools, including OBI-EE and Oracle Hyperion. Support for loading and transforming big and fast data, enabled by integration with big data technologies: Hadoop, Hive, HDFS, and Oracle Big Data Appliance. Only Oracle GoldenGate provides the best-of-breed real-time replication of data in heterogeneous data environments. With the new capabilities in Oracle GoldenGate 12c, customers can benefit from: Simplified setup and management of Oracle GoldenGate 12c when using multiple database delivery processes via a new Coordinated Delivery feature for non-Oracle databases. Expanded heterogeneity through added support for the latest versions of major databases such as Sybase ASE v 15.7, MySQL NDB Clusters 7.2, and MySQL 5.6., as well as integration with Oracle Coherence. Enhanced high availability and data protection via integration with Oracle Data Guard and Fast-Start Failover integration. Enhanced security for credentials and encryption keys using Oracle Wallet. Real-time replication for databases hosted on public cloud environments supported by third-party clouds. Tight integration between Oracle Data Integrator 12c and Oracle GoldenGate 12c and other Oracle technologies, such as Oracle Database 12c and Oracle Applications, provides a number of benefits for organizations: Tight integration between Oracle Data Integrator 12c and Oracle GoldenGate 12c enables developers to leverage Oracle GoldenGate’s low overhead, real-time change data capture completely within the Oracle Data Integrator Studio without additional training. Integration with Oracle Database 12c provides a strong foundation for seamless private cloud deployments. Delivers real-time data for reporting, zero downtime migration, and improved performance and availability for Oracle Applications, such as Oracle E-Business Suite and ATG Web Commerce . Oracle’s data integration offering is optimized for Oracle Engineered Systems and is an integral part of Oracle’s fast data, real-time analytics strategy on Oracle Exadata Database Machine and Oracle Exalytics In-Memory Machine. Oracle Data Integrator 12c and Oracle GoldenGate 12c differentiate the new offering on data integration with these many new features. This is just a quick glimpse into Oracle Data Integrator 12c and Oracle GoldenGate 12c. Find out much more about the new release in the video webcast "Introducing 12c for Oracle Data Integration", where customer and partner speakers, including SolarWorld, BT, Rittman Mead will join us in launching the new release. Resource Kits Meet Oracle Data Integration 12c  Discover what's new with Oracle Goldengate 12c  Oracle EMEA DIS (Data Integration Solutions) Partner Community is available for all your questions, while additional partner focused webcasts will be made available through our blog here, so stay connected. For any questions please contact us at partner.imc-AT-beehiveonline.oracle-DOT-com Stay Connected Oracle Newsletters

    Read the article

  • SQL SERVER – What is Page Life Expectancy (PLE) Counter

    - by pinaldave
    During performance tuning consultation there are plenty of counters and values, I often come across. Today we will quickly talk about Page Life Expectancy counter, which is commonly known as PLE as well. You can find the value of the PLE by running following query. SELECT [object_name], [counter_name], [cntr_value] FROM sys.dm_os_performance_counters WHERE [object_name] LIKE '%Manager%' AND [counter_name] = 'Page life expectancy' The recommended value of the PLE counter is 300 seconds. I have seen on busy system this value to be as low as even 45 seconds and on unused system as high as 1250 seconds. Page Life Expectancy is number of seconds a page will stay in the buffer pool without references. In simple words, if your page stays longer in the buffer pool (area of the memory cache) your PLE is higher, leading to higher performance as every time request comes there are chances it may find its data in the cache itself instead of going to hard drive to read the data. Now check your system and post back what is this counter value for you during various time of the day. Is this counter any way relates to performance issues for your system? Note: There are various other counters which are important to discuss during the performance tuning and this counter is not everything. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • EPM 11.1.1 - EPM Infrastructure Tuning Guide v11.1.1.3

    - by Ahmed Awan
    This edition applies to EPM 9.3.1, 11.1.1.1, 11.1.1.2 & 11.1.1.3 only. INTRODUCTION:One of the most challenging aspects of performance tuning is knowing where to begin. To maximize Oracle EPM System performance, all components need to be monitored, analyzed, and tuned. This guide describe the techniques used to monitor performance and the techniques for optimizing the performance of EPM components. Click to Download the EPM 11.1.1.3 Infrastructure Tuning Whitepaper (Right click or option-click the link and choose "Save As..." to download this file)

    Read the article

  • not using partial mocking? do they also mean in web-app?

    - by 01
    Im learning Mockito and in chapter 16 they say you should not use partial mocking in new system. I disagree, for example in one of my actions i use partial mocking for static framework methods, sql calls, etc. I extracted the stuff into methods and then mock it in tests. Most of those methods are specific to this action and wont be call from other actions, so it not worth to extract special components. I agree that you shouldn't using partial mocking in frameworks, but not in hard to mock actions. What are minuses of using partial mocking in web-app?

    Read the article

  • SQL Profiler: Read/Write units

    - by Ian Boyd
    i've picked a query out of SQL Server Profiler that says it took 1,497 reads: EventClass: SQL:BatchCompleted TextData: SELECT Transactions.... CPU: 406 Reads: 1497 Writes: 0 Duration: 406 So i've taken this query into Query Analyzer, so i may try to reduce the number of reads. But when i turn on SET STATISTICS IO ON to see the IO activity for the query, i get nowhere close to one thousand reads: Table Scan Count Logical Reads =================== ========== ============= FintracTransactions 4 20 LCDs 2 4 LCTs 2 4 FintracTransacti... 0 0 Users 1 2 MALs 0 0 Patrons 0 0 Shifts 1 2 Cages 1 1 Windows 1 3 Logins 1 3 Sessions 1 6 Transactions 1 7 Which if i do my math right, there is a total of 51 reads; not 1,497. So i assume Reads in SQL Profiler is an arbitrary metric. Does anyone know the conversion of SQL Server Profiler Reads to IO Reads? See also SQL Profiler CPU / duration unit Query Analyzer VS. Query Profiler Reads, Writes, and Duration Discrepencies

    Read the article

< Previous Page | 64 65 66 67 68 69 70 71 72 73 74 75  | Next Page >