Search Results

Search found 7222 results on 289 pages for 'storage cells'.

Page 68/289 | < Previous Page | 64 65 66 67 68 69 70 71 72 73 74 75  | Next Page >

  • Do not get 'Safely remove' option in Tray for USB storage devices.

    - by blitzkriegz
    I had done some tweaks in service settings (Disabled some as I thought it is not needed). Now, I am not getting the option to safely remove mass storage device when I click the icon on the system tray. I tried enabling some of the services, but it didn't help. Moreover I'm not very sure if this anomaly is because of my changes in services. Any idea how to make those 'safely remove' options appear when I click the USB icon on the tray. Right now nothing is happening when I click.

    Read the article

  • transform file/directory structure into 'tree' in javascript

    - by dave
    I have an array of objects that looks like this: [{ name: 'test', size: 0, type: 'directory', path: '/storage/test' }, { name: 'asdf', size: 170, type: 'directory', path: '/storage/test/asdf' }, { name: '2.txt', size: 0, type: 'file', path: '/storage/test/asdf/2.txt' }] There could be any number of arbitrary path's, this is the result of iterating through files and folders within a directory. What I'm trying to do is determine the 'root' node of these. Ultimately, this will be stored in mongodb and use materialized path to determine it's relationships. In this example, /storage/test is a root with no parent. /storage/test/asdf has the parent of /storage/test which is the parent to /storage/test/asdf/2.txt. My question is, how would you go about iterating through this array, to determine the parent's and associated children? Any help in the right direction would be great! Thank you

    Read the article

  • PyGTK: Doubleclick on CellRenderer

    - by rami
    Hello! In my PyGTK application I currently use 'editable' to make cells editable. But since my cell contents sometimes are really really large I want to ask the user for changes in a new window when he doubleclicks on a cell. But I could not find out how to hook on double-clicks on specific cellrenderers - I don't want to edit the whole row and I also don't want to set this callback for the whole row, only for columns where too long content can occur. How can I do this with CellRendererText() or something similar. My currently cell-generating code is: cols[i] = gtk.TreeViewColumn(coltitle) cells[i] = gtk.CellRendererText() cols[i].pack_start(cells[i]) cols[i].add_attribute(cells[i], 'text', i) cols[i].set_sizing(gtk.TREE_VIEW_COLUMN_FIXED) cols[i].set_fixed_width(100) cells[i].set_property('editable', True) cells[i].connect('edited', self.edited, (i, ls)) cols[i].set_resizable(True) mytreeview.append_column(cols[i]) Thanks!

    Read the article

  • how to detect grid view empty cell

    - by nCdy
    how to detect grid view empty cell ? I need it for highlighting. So I made a css .RedColored { background: FF0000; } and trying to appear it to empty GV cells this way : protected virtual GridView1_RowDataBound (_sender : object, e : System.Web.UI.WebControls.GridViewRowEventArgs) : void { e.Row.Cells[0].CssClass = "wide"; foreach(i : int in [0..e.Row.Cells.Count-1]) { when(e.Row.Cells[i].Text==null) { e.Row.Cells[i].CssClass="RedColored"; } } } but my it doesn't appears to empty cells , even I've tried Text=="" , Cell[i]==null, Cell[i].ToString()=="" and nothing helped.

    Read the article

  • VBA Excel - Workbook_SheetChange

    - by user2947014
    Hopefully this question hasn't already been asked, I tried searching for an answer and couldn't find anything. This is probably a simple question, but I am writing my first macro in excel and am having a problem that I can't find out a solution to. I wrote a couple of macros that basically sum up columns dynamically (so that the number of rows can change and the formula moves down automatically) based on a value in another column of the same row, and I call those macros from the event Workbook_SheetChange. The problem I'm having is, I change a cell's value from my macro to display the result of the sum, and this then calls Workbook_SheetChange again, which I do not want. Right now it works, but I can trace it and see that Workbook_SheetChange is being called multiple times. This is preventing me from adding other cell changes to the macros, because then it results in an infinite loop. I want the macros to run every time a change is made to the sheet, but I don't see any way around allowing the macros to change a cell's value, so I don't know what to do. I will paste my code below, in case it is helpful. Private Sub Workbook_SheetChange(ByVal Sh As Object, ByVal Target As Range) Dim Row As Long Dim Col As Long Row = Target.Row Col = Target.Column If Col <> 7 Then Range("G" & Row).Select Selection.Formula = "=IF(F" & Row & "=""Win"",E" & Row & ",IF(F" & Row & "=""Loss"",-D" & Row & ",0))" Target.Select End If Call SumRiskColumn End Sub Private Sub Workbook_SheetCalculate(ByVal Sh As Object) Call SumOutcomeColumn End Sub Sub SumOutcomeColumn() Dim N As Long N = Cells(Rows.Count, "A").End(xlUp).Row Cells(N + 1, "G").Formula = "=SUM(G2:G" & N & ")" End Sub Sub SumRiskColumn() Dim N As Long N = Cells(Rows.Count, "A").End(xlUp).Row Dim CurrTotalRisk As Long CurrTotalRisk = 0 For i = 2 To N If IsEmpty(ActiveSheet.Cells(i, 6)) And Not IsEmpty(ActiveSheet.Cells(i, 1)) And Not IsEmpty(ActiveSheet.Cells(i, 2)) And Not IsEmpty(ActiveSheet.Cells(i, 3)) Then CurrTotalRisk = CurrTotalRisk + ActiveSheet.Cells(i, 4).Value End If Next i Cells(N + 1, "D").Value = CurrTotalRisk End Sub Thank you for any help you can give me! I really appreciate it.

    Read the article

  • Simplifying a four-dimensional rule table in Matlab: addressing rows and columns of each dimension

    - by Cate
    Hi all. I'm currently trying to automatically generate a set of fuzzy rules for a set of observations which contain four values for each observation, where each observation will correspond to a state (a good example is with Fisher's Iris Data). In Matlab I am creating a four dimensional rule table where a single cell (a,b,c,d) will contain the corresponding state. To reduce the table I am following the Hong and Lee method of row and column similarity checking but I am having difficulty understanding how to address the third and fourth dimensions' rows and columns. From the method it is my understanding that each dimension is addressed individually and if the rule is true, the table is simplified. The rules for merging are as follows: If all cells in adjacent columns or rows are the same. If two cells are the same or if either of them is empty in adjacent columns or rows and at least one cell in both is not empty. If all cells in a column or row are empty and if cells in its two adjacent columns or rows are the same, merge the three. If all cells in a column or row are empty and if cells in its two adjacent columns or rows are the same or either of them is empty, merge the three. If all cells in a column or row are empty and if all the non-empty cells in the column or row to its left have the same region, and all the non-empty cells in the column or row to its right have the same region, but one different from the previously mentioned region, merge these three columns into two parts. Now for the confusing bit. Simply checking if the entire row/column is the same as the adjacent (rule 1) seems simple enough: if (a,:,:,:) == (a+1,:,:,:) (:,b,:,:) == (:,b+1,:,:) (:,:,c,:) == (:,:,c+1,:) (:,:,:,d) == (:,:,:,d+1) is this correct? but to check if the elements in the row/column match, or either is zero (rules 2 and 4), I am a bit lost. Would it be something along these lines: for a = 1:20 for i = 1:length(b) if (a+1,i,:,:) == (a,i,:,:) ... else if (a+1,i,:,:) == 0 ... else if (a,i,:,:) == 0 etc. and for the third and fourth dimensions: for c = 1:20 for i = 1:length(a) if (i,:,c,:) == (i,:,c+1,:) ... else if (i,:,c+1,:) == 0 ... else if (i,:,c,:) == 0 etc. for d = 1:20 for i = 1:length(a) if (i,:,:,d) == (i,:,:,d+1) ... else if (i,:,:,d+1) == 0 ... else if (i,:,:,d) == 0 etc. even any help with four dimensional arrays would be useful as I'm so confused by the thought of more than three! I would advise you look at the paper to understand my meaning - they themselves have used the Iris data but only given an example with a 2D table. Thanks in advance, hopefully!

    Read the article

  • iPhone: Setup static content of UITableView

    - by Martin
    This guide from apple https://developer.apple.com/iphone/prerelease/library/documentation/UserExperience/Conceptual/TableView_iPhone/TableViewCells/TableViewCells.html (you need login) explains how to use "The Technique for Static Row Content" to use Interface Builder to setup the cells in a tableview. I have some cells with different heights in my tableview. Without using the heightForRowAtIndexPath method everything get messed up. Do I still need to use this method or can I in some way setup the height of the cells inside the IB as I created them there? Also when using the "The Technique for Static Row Content" from the guide you still need to use the cellForRowAtIndexPath to setup the cells even if they are created in IB. I would like to setup the full layout of the tableview with all cells in IB (drag the cells right into the tableview), is that possible in some way? Thanks!

    Read the article

  • Excel VBA: can delete validation but not add new one

    - by user1882965
    My code is as follows If Cells(Target.Row, 2) = "" And (Cells(Target.Row, 3) = "" Or Cells(Target.Row, 3) = "") Then Sheets("MySheet").Activate Cells(Target.Row, 3).Activate ActiveCell.Validation.Delete If (Cells(Target.Row, 2) = "Type A") Then ActiveCell.Validation.Add Type:=xlValidateList, AlertStyle:=xlValidAlertStop, Operator:=xlBetween, Formula1:="=AvailableVersions" ElseIf (Cells(Target.Row, 2) = "Type B") Then ActiveCell.Validation.Delete Else ActiveCell.Validation.Add Type:=xlValidateWholeNumber, AlertStyle:=xlValidAlertInformation, Formula1:="0", Formula2:="9999999" End If End If So the issue I am having comes whenever I reach ActiveCell.Validation.Add Run Time Error '1004': Application-defined or object-defined error Not a very helpful error, and also this occurs with both number and list validation type, so I am sure it is not an issue with the list itself which has workbook level scope anyway. It never occurs on ActiveCell.Validation.Delete which I find weird? I have been all over google trying to find a solution, and most suggest that it is caused by running dynamic validation code from a button which hogs focus despite the Activate call, but I am running on sheet change event rather than on button press so I don't think this is my issue - any ideas? I've wasted basically a whole day on this! :(

    Read the article

  • Windows Azure Evolution &ndash; Preview Developer Portal

    - by Shaun
    With the MEET Windows Azure event on 7th June, there are many new features and updates in windows azure platform. In the coming several posts I will try to cover some of them. And in the first post here I would like to just have a quick walkthrough of the new preview developer portal.   History of the Developer Portal If you have been working with windows azure since 2009 or 2010, you should remember the first version of the developer portal. It was built in HTML with very limited features. I have the impression when I was using is old one. The layout is not that attractive and you have very limited features. On November, 2010 alone with the SDK 1.3 release, the developer portal was getting a big jump. In order to give more usability and features this it turned to be built on Silverlight. Hence it runs like a desktop application with many windows, lists, commands and context menus. From 2010 till now many features were involved into this portal, such as the remote desktop, co-admin, virtual connect, VM role, etc.. And the portal itself became more and more complicated. But it brought some problems by using the Silverlight. The first one is the browser capability. As you know in most mobile and tablet device the browser doesn’t allow the rich content plugin, such as Flash and Silverlight. This means people cannot open and configure their azure services from their iPad, iPhone and Windows Phone, etc., even though what they need may just be restart a hosted service, or view the status of their databases. Another problem is the performance. Silverlight provides rich experience to the users, but also needs more bandwidth. So in this upgrade the preview developer portal will be back to use HTML, with JavaScript, as a mobile friendly, cross browser, interactively web site.   Preview Portal vs. Silverlight Portal Before I started to talk about the new preview portal I’d better highlight that, this preview portal is a PREVIEW version, which means even though you can do almost all features that already in the old one, as long as some cool new features I will mention in the coming several posts, there are something still under developed and migrated. So sometimes you need to switch back to the old one. For example, in preview portal there is no co-admin manage function, no remote desktop function and the SQL database manage function will take you back to the old SQL Azure Manage Portal. But as Microsoft said these missing features will be moved in the preview portal in the couple of next few months. Since the public URL of the developer portal, https://windows.azure.com/, had been changed to point to this preview one, you need to click to preview button on top of the page and click the “Take me to the previous portal” link.   Overview There are four parts in the preview portal. On the top is the header which shows the account you are currently logging in. If you click on the header it will show the top menu of windows azure, where you can navigate to the windows azure home page, the price information page, community and account, etc.. The navigation bar is on the left hand side, with the categories listed below. ALL ITEMS All items in your windows azure account, includes the web sites, services, databases, etc.. WEB SITES The web sites in your windows azure account. It will only show the web sites you have. The linked resources will be shown if you drill down into a web site. VIRTUAL MACHINES The virtual machines that you had been deployed to azure. CLOUD SERVICES All windows azure hosted services in your account. SQL DATABASES All SQL databases (SQL Azure) in your account. STORAGE All windows azure storage services in your account. NETWORKS The virtual network (Windows Azure Connect) you had been created. The available items will be listed in the main part of the page based on which category your currently selected. If there’s no item it will show the link to you to quick create. At the bottom of the page there will be the command and information bar. Based on what is selected and what is performed by the user, it will show the related information and commands. For example, in the image below when I was creating a new web site, the information bar told me that my web site is being provisioned; and there are two commands in the command bar. And once it ready the command bar will show some commands that I can do to my new web site. The “Web Sites” is a new feature introduced alone with this upgrade. It gives us an easier and quicker way to establish a website from the scratch or from some existing library. I will introduce it more details in the coming next post. Also in the command bar you can create a service by clicking the NEW button. It will slide the creation panel up to you.   Where’s My Hosted Services The Windows Azure Hosted Services had been renamed to the Cloud Services. Create a new service would be very easy. Just click the NEW button at the bottom of the page, and select the CLOUD SERVICE and QIUICK CREATE. This will create a blank hosted service without deployment and certificate. It just needs you to specify the service URL and the affinity/region. Then the service will be shown in the list. If you clicked the item all information will be shown in the main part. Since there’s no package deployed to this service so currently we cannot see any information about it. But we can upload the package by using the command at the bottom. And as you can see, we could manage the configuration, instances, certificates and we can scale up and down (change the VM size), in and out (increase and decrease the instance count) to our service. Assuming I had created an ASP.NET MVC 3 web role project in Visual Studio and completed the package. Then I can click the UPLOAD button in this page to deploy my package. In the popping up window I just specify my deployment name, package file and configure file. Also I can check the box below so that it will NOT warn me if only one instance of this deployment. Once we clicked the OK button our package will be uploaded and provisioned by the platform. After a while we can see the service was ready from the information bar. We can have the basic information about this service and deployment if we to the dashboard page. For example the usage overview diagram, status, URL, public IP address, etc.. In the configure page we can view and change the CSCFG content such as the monitor setting, connection strings, OS family. In scale page we can increase and decrease the count of the instances. And in the instances page we can view all instances status. And, if your services is using some SQL databases and storages they will be shown as the linked resources under the linked resources page. And you can manage the certificates of this service as well under the certificates page.   How About My Storage Services The storage service can be managed by clicking into the STORAGES link in the navigation bar. And we can create a new storage service from the NEW button. After specify the storage name and region it will be previsioned by the platform. If you want to copy or manage the storage key you can just click the Manage Keys button at the bottom, which is very easy. What I want to highlight here is that, you can monitor your storage service by enabling the monitor configuration. Click the storage item in the list and navigate to the configure page. As you can see in the page you can enable the monitoring for blob, table and queue. And you can also enable the logging when any requests come to the storage. But as the tooltip shown in the page, enabling the monitoring and logging will increase the usage of the storage, which means increase the bill of them. So make sure you enable them properly.   And My SQL Databases (SQL Azure) The last thing I want to quick introduce is the SQL databases, which was formally named SQL Azure. You can create a new SQL Database Server and a new database by clicking the ADD button under the SQL Database navigation item. In the popping up windows just specify the database name, the edition, size, collation and the server. You can select an existing SQL Database Server if you have, or cerate a new one. If you selected to create a new server, there will be another step you need to do, which is specify the server login, password and the region. Once it ready you can mange your databases as well as the servers in the portal. In a particular server you can update the firewall settings in its Configure page. So, What Else There are some other area on the preview portal I didn’t cover, such as the virtual machines, virtual network and web sites. Regarding the virtual machines and web sites I will talk about them in the future separated post. Regarding the virtual network, it the Windows Azure Connect we are familiar with. But as I mention in the beginning of this post, the preview portal is still under developed. Some features are not available here. For example, you cannot manage the co-admin of your subscriptions, you cannot open the remote desktop on your hosted services, and you cannot navigate to the Windows Azure Service Bus, Access Control and Caching, which formally named Windows Azure AppFabric directly. In these cases you need to navigate back to the old portal. So in the coming several months we might need to use both these two sites.   Summary In this post I quick introduced the new windows azure developer portal. Since it had been rearranged and renamed I demonstrated some features that existing in the old portal, such as how to create and deploy a hosted service, how to provision a storage service and SQL database. All features in the old portal had been, is being and will be migrated into this new portal, but some of them were in a different category and page we need to figure out.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • DON'T MISS: Live Webcast - Nimble SmartStack for Oracle with Cisco UCS (Nov 12)

    - by Zeynep Koch
    You are invited to the live webcast with Nimble Storage, Oracle and Cisco where we will talk about the new SmartStack solution from Nimble Storage that features Oracle Linux, Oracle VM and Cisco UCS products. In this webinar, you will learn how Nimble Storage SmartStack with Oracle and Cisco provides a converged infrastructure for Oracle Database environments with Oracle Linux and Oracle VM. SmartStack, built on best-of-breed components, delivers the performance and reliability needed for deploying Oracle on a single symmetric multiprocessing (SMP) server or Oracle Real Application Clusters (RAC) on multiple nodes.  When : Tuesday, November 12, 2013, 11:00 AM Pacific Time Panelists: Michele Resta, Director of Linux and Virtualization Alliances, Oracle John McAbel, Senior Product Manager, Cisco Ibby Rahmani, Solutions Marketing, Nimble Storage SmartStack™solutions provide pre-validated reference architectures that speed deployments and minimize risk.      The pre-validated converged infrastructure is based on an Oracle Validated Configuration that includes Oracle Database and Oracle Linux with the Unbreakable Enterprise Kernel.     The solution components include a Nimble Storage CS-Series array, two Cisco UCS B200 M3 blade servers, Oracle Linux 6 Update 4 with the Unbreakable Enterprise Kernel, and Oracle Database 11g Release 2 or Oracle Database 12c Release 1.     The Nimble Storage CS-Series is certified with Oracle VM 3.2 providing an even more flexible solution leveraging virtualization for functions such as test and development by delivering excellent random I/O performance in Oracle VM environments. Register today 

    Read the article

  • Feature Updates to the Windows Azure Portal

    - by Clint Edmonson
    Lots of activity over at the Windows Azure portal this weekend, including some exciting new features and major improvements to existing features. Here are the highlights: Support for Managing Co-administrators Set up account co-administrators to allow others to share service management duties for each Azure subscription Import/Export support for SQL Databases Export existing SQL Azure databases to blob storage using SQL Server 2012’s BACPAC format. Create a new SQL Azure database from an existing BACPAC stored in blob storage Storage Container Management and Access Control Create blob storage containers directly within the portal Edit their public/private access settings Drill into storage containers and see the blobs contained within them Improved Cloud Service Status Notifications Detailed health status information about cloud services and roles as they transition between states Virtual Machine Experience Enhancements Option to automatically delete corresponding VHD files from blob storage when deleting VM disks Service Bus Management and Monitoring Ability to create and manage service bus Namespaces, Queues, Topics, Relays and Subscriptions Rich monitoring of Topics, Queues, and Subscriptions with detailed and customizable dashboard metrics Entity status (Topic, Queue, or Subscription) can be changed interactively via dashboard Direct links to the Access Control Services (ACS) namespaces when working with service bus access keys Media Services Monitoring Support Monitor encoding jobs that are queued for processing as well as active, failed and queued tasks for encoding jobs The above features are all now live in production and available to use immediately.  If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using them today. Stay tuned to my twitter feed for Windows Azure announcements, updates, and links: @clinted Reference ID: P7VVJCM38V8R

    Read the article

  • How to get data out of a Maxtor Shared Storage II that fails to boot?

    - by Jonik
    I've got a Maxtor Shared Storage II (RAID1 mode) which has developed some hardware failure, apparently: it fails to boot properly and is unreachable via network. When powering it on, it keeps making clunking/chirping disk noise and then sort of resets itself (with a flash of orange light in the usually-green LEDs); it then repeats this as if stuck in a loop. In fact, even the power button does nothing now – the only way I can affect the device at all is to plug in or pull out the power cord! (To be clear, I've come to regard this piece of garbage (which cost about 460 €) as my worst tech purchase ever. Even before this failure I had encountered many annoyances about the drive: 1) the software to manage it is rather crappy; 2) it is way noisier that what this type of device should be; 3) when your Mac comes out of sleep, Maxtor's "EasyManage" cannot re-mount the drive automatically.) Anyway, the question at hand is how to get my data out of it? As a very concrete first step, is there a way to open this thing without breaking the plastic casing into pieces? It is far from obvious to me how to get beyond this stage; it opens a little from one end but not from the other. If I somehow got the disks out, I could try mounting the disk(s) on one of the Macs or Linux boxes I have available (although I don't know yet if I'd need some adapters for that). (NB: for the purposes of this question, never mind any warranty or replacement issues – that's secondary to recovering the data.)

    Read the article

  • Why does my simple Raid 1 backup storage perform really slow sometimes?

    - by randomguy
    I bought 2x Samsung F3 EcoGreen 2TB hard disks to make a backup storage. I put them in Raid 1 (mirror) mode. Made a single partition and formatted it to NTFS, running Windows 7. For some reason, accessing the drive's contents (simply by navigating folders) is sometimes really slow. Like opening D:/photos/ can sometimes take several seconds before it starts showing any of the folder's contents. Same applies for other folders. What could be causing this and what could I do to improve the performance? I remember that there was an option somewhere inside Windows to choose fast access but less reliable persistence operations (read/write). It was a tick inside some dialog. At the time, it felt like a good idea to take the tick away from the option and get more reliable persistence but slower access, but now I'm regretting. I'm unable to find this dialog.. I've looked hard. I don't know, if it would make any difference. Oh, and I've ran scan disk and defrag on the drive. No errors and speed isn't improved.

    Read the article

  • What kind of storage with two-way replication for multi site C# application?

    - by twk
    Hi I have a web-based system written using asp.net backed by mssql. A synchronized replica of this system is to be run on mobile locations and must be available regardless of the state of the connection to the main system (few hours long interruptions happens). For now I am using a copy of the main web application and a copy of the mssql server with merge replication to the main system. This works unreliably, and setting the replication is a pain. The amount of data the system contains is not huge, so I can migrate to different storage type. For the new version of this system I would like to implement a new replication system. I am considering migration to db4o for storage with it's replication support. I am thinking about other possible solutions like couchdb which had native replication support. I would like to stay with C#. Could you recommend a way to go for such a distributed environment? PS. Master-Slave replication is not an option: any side must be allowed to add/update data.

    Read the article

  • How to design data storage for partitioned tagging system?

    - by Morgan Cheng
    How to design data storage for huge tagging system (like digg or delicious)? There is already discussion about it, but it is about centralized database. Since the data is supposed to grow, we'll need to partition the data into multiple shards soon or later. So, the question turns to be: How to design data storage for partitioned tagging system? The tagging system basically has 3 tables: Item (item_id, item_content) Tag (tag_id, tag_title) TagMapping(map_id, tag_id, item_id) That works fine for finding all items for given tag and finding all tags for given item, if the table is stored in one database instance. If we need to partition the data into multiple database instances, it is not that easy. For table Item, we can partition its content with its key item_id. For table Tag, we can partition its content with its key tag_id. For example, we want to partition table Tag into K databases. We can simply choose number (tag_id % K) database to store given tag. But, how to partition table TagMapping? The TagMapping table represents the many-to-many relationship. I can only image to have duplication. That is, same content of TagMappping has two copies. One is partitioned with tag_id and the other is partitioned with item_id. In scenario to find tags for given item, we use partition with tag_id. If scenario to find items for given tag, we use partition with item_id. As a result, there is data redundancy. And, the application level should keep the consistency of all tables. It looks hard. Is there any better solution to solve this many-to-many partition problem?

    Read the article

  • Are C++ exceptions sufficient to implement thread-local storage?

    - by Potatoswatter
    I was commenting on an answer that thread-local storage is nice and recalled another informative discussion about exceptions where I supposed The only special thing about the execution environment within the throw block is that the exception object is referenced by rethrow. Putting two and two together, wouldn't executing an entire thread inside a function-catch-block of its main function imbue it with thread-local storage? It seems to work fine: #include <iostream> #include <pthread.h> using namespace std; struct thlocal { string name; thlocal( string const &n ) : name(n) {} }; thlocal &get_thread() { try { throw; } catch( thlocal &local ) { return local; } } void print_thread() { cerr << get_thread().name << endl; } void *kid( void *local_v ) try { thlocal &local = * static_cast< thlocal * >( local_v ); throw local; } catch( thlocal & ) { print_thread(); return NULL; } int main() try { thlocal local( "main" ); throw local; } catch( thlocal & ) { print_thread(); pthread_t th; thlocal kid_local( "kid" ); pthread_create( &th, NULL, &kid, &kid_local ); pthread_join( th, NULL ); print_thread(); return 0; } Is this novel or well-characterized? Was my initial premise correct? What kind of overhead does get_thread incur in, say, GCC and VC++? It would require throwing only exceptions derived from struct thlocal, but altogether this doesn't feel like an unproductive insomnia-ridden Sunday morning…

    Read the article

  • write a batch file to copy files from one folder to another folder

    - by user73628
    I am having a storage folder on network in which all users will store their active data on a server now that server is going to be replaced by new one due to place problem so I need to copy sub folders files from the old server storage folder to new server storage folder. I have below ex: from \Oldeserver\storage\data & files to \New server\storage\data & files.

    Read the article

  • Oracle Systems and Solutions at OpenWorld Tokyo 2012

    - by ferhat
    Oracle OpenWorld Tokyo and JavaOne Tokyo will start next week April 4th. We will cover Oracle systems and Oracle Optimized Solutions in several keynote talks and general sessions. Full schedule can be found here. Come by the DemoGrounds to learn more about mission critical integration and optimization of complete Oracle stack. Our Oracle Optimized Solutions experts will be at hand to discuss 1-1 several of Oracle's systems solutions and technologies. Oracle Optimized Solutions are proven blueprints that eliminate integration guesswork by combing best in class hardware and software components to deliver complete system architectures that are fully tested, and include documented best practices that reduce integration risks and deliver better application performance. And because they are highly flexible by design, Oracle Optimized Solutions can be implemented as an end-to-end solution or easily adapted into existing environments. Oracle Optimized Solutions, Servers,  Storage, and Oracle Solaris  Sessions, Keynotes, and General Session Talks DAY TIME TITLE Notes Session Wednesday  April 4 9:00 - 11:15 Keynote: ENGINEERED FOR INNOVATION - Engineered Systems Mark Hurd,  President, Oracle Takao Endo, President & CEO, Oracle Corporation Japan John Fowler, EVP of Systems, Oracle Ed Screven, Chief Corporate Architect, Oracle English Session K1-01 11:50 - 12:35 Simplifying IT: Transforming the Data Center with Oracle's Engineered Systems Robert Shimp, Group VP, Product Marketing, Oracle English Session S1-01 15:20 - 16:05 Introducing Tiered Storage Solution for low cost Big Data Archiving S1-33 16:30 - 17:15 Simplifying IT - IT System Consolidation that also Accelerates Business Agility S1-42 Thursday  April 5 9:30 - 11:15 Keynote: Extreme Innovation Larry Ellison, Chief Executive Officer, Oracle English Session K2-01 11:50 - 13:20 General Session: Server and Storage Systems Strategy John Fowler, EVP of Systems, Oracle English Session G2-01 16:30 - 17:15 Top 5 Reasons why ZFS Storage appliance is "The cloud storage" by SAKURA Internet Inc L2-04 16:30 - 17:15 The UNIX based Exa* Performance IT Integration Platform - SPARC SuperCluster S2-42 17:40 - 18:25 Full stack solutions of hardware and software with SPARC SuperCluster and Oracle E-Business Suite  to minimize the business cost while maximizing the agility, performance, and availability S2-53 Friday April 6 9:30 - 11:15 Keynote: Oracle Fusion Applications & Cloud Robert Shimp, Group VP, Product Marketing Anthony Lye, Senior VP English Session K3-01 11:50 - 12:35 IT at Oracle: The Art of IT Transformation to Enable Business Growth English Session S3-02 13:00-13:45 ZFS Storagge Appliance: Architecture of high efficient and high performance S3-13 14:10 - 14:55 Why "Niko Niko doga" chose ZFS Storage Appliance to support their growing requirements and storage infrastructure By DWANGO Co, Ltd. S3-21 15:20 - 16:05 Osaka University: Lower TCO and higher flexibility for student study by Virtual Desktop By Osaka University S3-33 Oracle Developer Sessions with Oracle Systems and Oracle Solaris DAY TIME TITLE Notes LOCATION Friday April 6 13:00 - 13:45 Oracle Solaris 11 Developers D3-03 13:00 - 14:30 Oracle Solaris Tuning Contest Hands-On Lab D3-04 14:00 - 14:35 How to build high performance and high security Oracle Database environment with Oracle SPARC/Solaris English Session D3-13 15:00 - 15:45 IT Assets preservation and constructive migration with Oracle Solaris virtualization D3-24 16:00 - 17:30 The best packaging system for cloud environment - Creating an IPS package D3-34 Follow Oracle Infrared at Twitter, Facebook, Google+, and LinkedIn  to catch the latest news, developments, announcements, and inside views from  Oracle Optimized Solutions.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Moving items from one tableView to another tableView with extra's

    - by Totumus Maximus
    Let's say I have 2 UITableViews next to eachother on an ipad in landscape-mode. Now I want to move multiple items from one tableView to the other. They are allowed to be inserted on the bottom of the other tableView. Both have multiSelection activated. Now the movement itself is no problem with normal cells. But in my program each cell has an object which contains the consolidationState of the cell. There are 4 states a cell can have: Basic, Holding, Parent, Child. Basic = an ordinary cell. Holding = a cell which contains multiple childs but which wont be shown in this state. Parent = a cell which contains multiple childs and are shown directly below this cell. Child = a cell created by the Parent cell. The object in each cell also has some array which contains its children. The object also holds a quantityValue, which is displayed on the cell itself. Now the movement gets tricky. Holding and Parent cells can't move at all. Basic cells can move freely. Child cells can move freely but based on how many Child cells are left in the Parent. The parent will change or be deleted all together. If a Parent cell has more then 1 Child cell left it will stay a Parent cell. Else the Parent has no or 1 Child cell left and is useless. It will then be deleted. The items that are moved will always be of the same state. They will all be Basic cells. This is how I programmed the movement: *First I determine which of the tableViews is the sender and which is the receiver. *Second I ask all indexPathsForSelectedRows and sort them from highest row to lowest. *Then I build the data to be transferred. This I do by looping through the selectedRows and ask their object from the sender's listOfItems. *When I saved all the data I need I delete all the items from the sender TableView. This is why I sorted the selectedRows so I can start at the highest indexPath.row and delete without screwing up the other indexPaths. *When I loop through the selectedRows I check whether I found a cell with state Basic or Child. *If its a Basic cell I do nothing and just delete the cell. (this works fine with all Basic Cells) *If its a Child cell I go and check it's Parent cell immidiately. Since all Child cells are directly below the Parent cell and no other the the Parent's Childs are below that Parent I can safely get the path of the selected Childcell and move upwards and find it's Parent cell. When this Parent cell is found (this will always happen, no exceptions) it has to change accordingly. *The Parent cell will either be deleted or the object inside will have its quantity and children reduced. *After the Parent cell has changed accordingly the Child cell is deleted similarly like the Basic cells *After the deletion of the cells the receiver tableView will build new indexPaths so the movedObjects will have a place to go. *I then insert the objects into the listOfItems of the receiver TableView. The code works in the following ways: Only Basic cells are moved. Basic cells and just 1 child for each parent is moved. A single Basic/Child cell is moved. The code doesn't work when: I select more then 1 or all childs of some parent cell. The problem happens somewhere into updating the parent cells. I'm staring blindly at the code now so maybe a fresh look will help fix things. Any help will be appreciated. Here is the method that should do the movement: -(void)moveSelectedItems { UITableView *senderTableView = //retrieves the table with the data here. UITableView *receiverTableView = //retrieves the table which gets the data here. NSArray *selectedRows = senderTableView.indexPathsForSelectedRows; //sort selected rows from lowest indexPath.row to highest selectedRows = [selectedRows sortedArrayUsingSelector:@selector(compare:)]; //build up target rows (all objects to be moved) NSMutableArray *targetRows = [[NSMutableArray alloc] init]; for (int i = 0; i<selectedRows.count; i++) { NSIndexPath *path = [selectedRows objectAtIndex:i]; [targetRows addObject:[senderTableView.listOfItems objectAtIndex:path.row]]; } //delete rows at active for (int i = selectedRows.count-1; i >= 0; i--) { NSIndexPath *path = [selectedRows objectAtIndex:i]; //check what item you are deleting. act upon the status. Parent- and HoldingCells cant be selected so only check for basic and childs MyCellObject *item = [senderTableView.listOfItems objectAtIndex:path.row]; if (item.consolidatedState == ConsolidationTypeChild) { for (int j = path.row; j >= 0; j--) { MyCellObject *consolidatedItem = [senderTableView.listOfItems objectAtIndex:j]; if (consolidatedItem.consolidatedState == ConsolidationTypeParent) { //copy the consolidated item but with 1 less quantity MyCellObject *newItem = [consolidatedItem copyWithOneLessQuantity]; //creates a copy of the object with 1 less quantity. if (newItem.quantity > 1) { newItem.consolidatedState = ConsolidationTypeParent; [senderTableView.listOfItems replaceObjectAtIndex:j withObject:newItem]; } else if (newItem.quantity == 1) { newItem.consolidatedState = ConsolidationTypeBasic; [senderTableView.listOfItems removeObjectAtIndex:j]; MyCellObject *child = [senderTableView.listOfItems objectAtIndex:j+1]; child.consolidatedState = ConsolidationTypeBasic; [senderTableView.listOfItems replaceObjectAtIndex:j+1 withObject:child]; } else { [senderTableView.listOfItems removeObject:consolidatedItem]; } [senderTableView reloadData]; } } } [senderTableView.listOfItems removeObjectAtIndex:path.row]; } [senderTableView deleteRowsAtIndexPaths:selectedRows withRowAnimation:UITableViewRowAnimationTop]; //make new indexpaths for row animation NSMutableArray *newRows = [[NSMutableArray alloc] init]; for (int i = 0; i < targetRows.count; i++) { NSIndexPath *newPath = [NSIndexPath indexPathForRow:i+receiverTableView.listOfItems.count inSection:0]; [newRows addObject:newPath]; DLog(@"%i", i); //scroll to newest items [receiverTableView setContentOffset:CGPointMake(0, fmaxf(receiverTableView.contentSize.height - recieverTableView.frame.size.height, 0.0)) animated:YES]; } //add rows at target for (int i = 0; i < targetRows.count; i++) { MyCellObject *insertedItem = [targetRows objectAtIndex:i]; //all moved items will be brought into the standard (basic) consolidationType insertedItem.consolidatedState = ConsolidationTypeBasic; [receiverTableView.ListOfItems insertObject:insertedItem atIndex:receiverTableView.ListOfItems.count]; } [receiverTableView insertRowsAtIndexPaths:newRows withRowAnimation:UITableViewRowAnimationNone]; } If anyone has some fresh ideas of why the movement is bugging out let me know. If you feel like you need some extra information I'll be happy to add it. Again the problem is in the movement of ChildCells and updating the ParentCells properly. I could use some fresh looks and outsider ideas on this. Thanks in advance. *updated based on comments

    Read the article

  • Highlight Row in GridView with Colored Columns

    - by Vincent Maverick Durano
    I wrote a blog post a while back before here that demonstrate how to highlight a GridView row on mouseover and as you can see its very easy to highlight rows in GridView. One of my colleague uses the same technique for implemeting gridview row highlighting but the problem is that if a Column has background color on it that cell will not be highlighted anymore. To make it more clear then let's build up a sample application. ASPX:   1: <asp:GridView runat="server" id="GridView1" onrowcreated="GridView1_RowCreated" 2: onrowdatabound="GridView1_RowDataBound"> 3: </asp:GridView>   CODE BEHIND:   1: private DataTable FillData() { 2:   3: DataTable dt = new DataTable(); 4: DataRow dr = null; 5:   6: //Create DataTable columns 7: dt.Columns.Add(new DataColumn("RowNumber", typeof(string))); 8: dt.Columns.Add(new DataColumn("Col1", typeof(string))); 9: dt.Columns.Add(new DataColumn("Col2", typeof(string))); 10: dt.Columns.Add(new DataColumn("Col3", typeof(string))); 11:   12: //Create Row for each columns 13: dr = dt.NewRow(); 14: dr["RowNumber"] = 1; 15: dr["Col1"] = "A"; 16: dr["Col2"] = "B"; 17: dr["Col3"] = "C"; 18: dt.Rows.Add(dr); 19:   20: dr = dt.NewRow(); 21: dr["RowNumber"] = 2; 22: dr["Col1"] = "AA"; 23: dr["Col2"] = "BB"; 24: dr["Col3"] = "CC"; 25: dt.Rows.Add(dr); 26:   27: dr = dt.NewRow(); 28: dr["RowNumber"] = 3; 29: dr["Col1"] = "A"; 30: dr["Col2"] = "B"; 31: dr["Col3"] = "CC"; 32: dt.Rows.Add(dr); 33:   34: dr = dt.NewRow(); 35: dr["RowNumber"] = 4; 36: dr["Col1"] = "A"; 37: dr["Col2"] = "B"; 38: dr["Col3"] = "CC"; 39: dt.Rows.Add(dr); 40:   41: dr = dt.NewRow(); 42: dr["RowNumber"] = 5; 43: dr["Col1"] = "A"; 44: dr["Col2"] = "B"; 45: dr["Col3"] = "CC"; 46: dt.Rows.Add(dr); 47:   48: return dt; 49: } 50:   51: protected void Page_Load(object sender, EventArgs e) { 52: if (!IsPostBack) { 53: GridView1.DataSource = FillData(); 54: GridView1.DataBind(); 55: } 56: }   As you can see there's nothing fancy in the code above. It just contain a method that fills a DataTable with a dummy data on it. Now here's the code for row highlighting:   1: protected void GridView1_RowCreated(object sender, GridViewRowEventArgs e) { 2: //Set Background Color for Columns 1 and 3 3: e.Row.Cells[1].BackColor = System.Drawing.Color.Beige; 4: e.Row.Cells[3].BackColor = System.Drawing.Color.Red; 5:   6: //Attach onmouseover and onmouseout for row highlighting 7: e.Row.Attributes.Add("onmouseover", "this.style.backgroundColor='Blue'"); 8: e.Row.Attributes.Add("onmouseout", "this.style.backgroundColor=''"); 9: }   Running the code above will show something like this in the browser: On initial load: On mouseover of GridView row:   Noticed that Col1 and Col3 are not highlighted. Why? the reason is that Col1 and Col3 cells has background color set on it and we only highlight the rows (TR) and not the columns (TD) that's why on mouseover only the rows will be highlighted. To fix the issue we will create a javascript method that would remove the background color of the columns when highlighting a row and on mouseout set back the original color that is set on Col1 and Col3. Here are the codes below: JavaScript   1: <script type="text/javascript"> 2: function HighLightRow(rowIndex, colIndex,colIndex2, flag) { 3: var gv = document.getElementById("<%= GridView1.ClientID %>"); 4: var selRow = gv.rows[rowIndex]; 5: if (rowIndex > 0) { 6: if (flag == "sel") { 7: gv.rows[rowIndex].style.backgroundColor = 'Blue'; 8: gv.rows[rowIndex].style.color = "White"; 9: gv.rows[rowIndex].cells[colIndex].style.backgroundColor = ''; 10: gv.rows[rowIndex].cells[colIndex2].style.backgroundColor = ''; 11: } 12: else { 13: gv.rows[rowIndex].style.backgroundColor = ''; 14: gv.rows[rowIndex].style.color = "Black"; 15: gv.rows[rowIndex].cells[colIndex].style.backgroundColor = 'Beige'; 16: gv.rows[rowIndex].cells[colIndex2].style.backgroundColor = 'Red'; 17: } 18: } 19: } 20: </script>   The HighLightRow method is a javascript function that accepts four (4) parameters which are the rowIndex,colIndex,colIndex2 and the flag. The rowIndex is the current row index of the selected row in GridView. The colIndex is the index of Col1 and colIndex2 is the index of col3. We are passing these index because these columns has background color on it and we need to toggle its backgroundcolor when highlighting the row in GridView. Finally the flag is something that would determine if its selected or not. Now here's the code for calling the JavaScript function above.     1: protected void GridView1_RowCreated(object sender, GridViewRowEventArgs e) { 2:   3: //Set Background Color for Columns 1 and 3 4: e.Row.Cells[1].BackColor = System.Drawing.Color.Beige; 5: e.Row.Cells[3].BackColor = System.Drawing.Color.Red; 6:   7: //Attach onmouseover and onmouseout for row highlighting 8: //and call the HighLightRow method with the required parameters 9: int index = e.Row.RowIndex + 1; 10: e.Row.Attributes.Add("onmouseover", "HighLightRow(" + index + "," + 1 + "," + 3 + ",'sel')"); 11: e.Row.Attributes.Add("onmouseout", "HighLightRow(" + index + "," + 1 + "," + 3 + ",'dsel')"); 12: 13: }   Running the code above will display something like this: On initial load:   On mouseover of GridView row:   That's it! I hope someone find this post useful!

    Read the article

  • How to make an excel formula which totals several agecent rows based on cell values

    - by Yishai
    I have an excel sheet with three columns: date, person and percentage. I would like to put in a data validation that flags cells if the total for a given data/person combination do not equal 100%. Is that possible? In other words, in the custom formula of a data validation, I would like to make the following type of formula. =if(sum( cells with a (date = the date on this row, person = person on this row))=1) Is there a function which will return the cells in a range conditioned on certain values, or will sum the cells. Note that if it is not possible to do two cells, I have no issue adding a cell which combines both values for the purpose of effecting the lookup.

    Read the article

  • Collision detection on a 2D hexagonal grid

    - by SundayMonday
    I'm making a casual grid-based 2D iPhone game using Cocos2D. The grid is a "staggered" hex-like grid consisting of uniformly sized and spaced discs. It looks something like this. I've stored the grid in a 2D array. Also I have a concept of "surrounding" grid cells. Namely the six grid cells surrounding a particular cell (except those on the boundries which can have less than six). Anyways I'm testing some collision detection and it's not working out as well as I had planned. Here's how I currently do collision detection for a moving disc that's approaching the stationary group of discs: Calculate ij-coordinates of grid cell closest to moving cell using moving cell's xy-position Get list of surrounding grid cells using ij-coordinates Examine the surrounding cells. If they're all empty then no collision If we have some non-empty surrounding cells then compare the distance between the disc centers to some minimum distance required for a collision If there's a collision then place the moving disc in grid cell ij So this works but not too well. I've considered a potentially simpler brute force approach where I just compare the moving disc to all stationary discs at each step of the game loop. This is probably feasible in terms of performance since the stationary disc count is 300 max. If not then some space-partitioning data structure could be used however that feels too complex. What are some common approaches and best practices to collision detection in a game like this?

    Read the article

  • How to rebuild a Li Ion laptop battery?

    - by spoulson
    I have an aging Gateway NX560XL laptop. The battery is toast and a new one, even aftermarket, starts at $130. So, to experiment, I began tearing apart the old battery to see what can be done. I found it used 8 standard size 18650 Li Ion cells arranged two cells parallel then in series (like: ====). Some online shopping revealed ~$7-13/ea replacements depending on mAh output. My plan is to load test to determine the bad cells and replace only those, as I read that typically only 1 or 2 may be bad. I'm proficient with soldering, however these cells are attached with welded tabs. Some of them broke during disassembly and I'm not sure how to reattach them. What I found online are cells like these that have solder tabs pre-welded to the ends so I can solder wires onto. Is there any guide available that provides the instructions and parts to do this kind of rebuild?

    Read the article

< Previous Page | 64 65 66 67 68 69 70 71 72 73 74 75  | Next Page >