Search Results

Search found 16417 results on 657 pages for 'computer linguist'.

Page 69/657 | < Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • merge sort recursion tree height

    - by Tony
    Hello! I am learning about recursion tree's and trying to figure out how the height of the tree is log b of n where n = 2 and one has 10 elements as input size. I am working with Merge sort. The number of times the split is done is the height of the tree as far as I understood, and the number of levels in the tree is height + 1. But if you take (for merge sort) log2 of 10 you get 1, where if you draw the tree you get at least 2 times that the recursion occurs. Where have I gone wrong? (I hope I am making sense here) NOTE: I am doing a self study, this is not homework!

    Read the article

  • Software Engineering Papers

    - by kunjaan
    Please recommend me software engineering/methodology/practices paper. So far I have enjoyed: 1968 Dijkstra : Go To Statement Considered Harmful Nikalus Wirth : Program Development by Stepwise Refinement 1971 David Parnas : Information Distribution Aspects of Design Methodology 1972 Liskov : Design Methodology for Reliable Software Systems Extensible Language : Schuman and P Jourrand R. Balzer Structured Programming : Dahl - Hierarchical Program StructuresImplementation Patterns 1971 Jim Morris Protection in Programming Languages 1973 Bill Wulf and Mary Shaw Global Variable Considered Harmful 1974 : Lisko and Zilles ADTs

    Read the article

  • How Can I Find Out *HOW* My Site Was Hacked? How Do I Find Site Vulnerabilities?

    - by Imageree
    One of my custom developed ASP.NET sites was hacked today: "Hacked By Swan (Please Stop Wars !.. )" It is using ASP.NET and SQL Server 2005 and IIS 6.0 and Windows 2003 server. I am not using Ajax and I think I am using stored procedures everywhere I am connecting to the database so I dont think it is SQL injection. I have now removed the write permission on the folders. How can I find out what they did to hack the site and what to do to prevent it from happening again? The server is up to date with all Windows updates. What they have done is uploading 6 files (index.asp, index.html, index.htm,...) to the main directory for the website. What log files should I upload? I have log files for IIS from this folder: c:\winnt\system32\LogFiles\W3SVC1. I am willing to show it to some of you but don't think it is good to post on the Internet. Anyone willing to take a look at it? I have already searched on Google but the only thing I find there are other sites that have been hacked - I haven't been able to see any discussion about it. I know this is not strictly related to programming but this is still an important thing for programmers and a lot of programmers have been hacked like this.

    Read the article

  • CS 50- Pset 1 Mario Program

    - by boametaphysica
    the problem set asks us to create a half pyramid using hashes. Here is a link to an image of how it should look- I get the idea and have written the program until printing the spaces (which I have replaced by "_" just so that I can test the first half of it. However, when I try to run my program, it doesn't go beyond the do-while loop. In other words, it keeps asking me for the height of the pyramid and does not seem to run the for loop at all. I've tried multiple approaches but this problem seems to persist. Any help would be appreciated! Below is my code- # include <cs50.h> # include <stdio.h> int main(void) { int height; do { printf("Enter the height of the pyramid: "); height = GetInt(); } while (height > 0 || height < 24); for (int rows = 1; rows <= height, rows++) { for (int spaces = height - rows; spaces > 0; spaces--) { printf("_"); } } return 0; } Running this program yields the following output- Enter the height of the pyramid: 11 Enter the height of the pyramid: 1231 Enter the height of the pyramid: aawfaf Retry: 12 Enter the height of the pyramid:

    Read the article

  • Proving that P <= NP

    - by Gail
    As most people know, P = NP is unproven and seems unlikely to be true. The proof would prove that P <= NP and NP <= P. Only one of those is hard, though. P <= NP is almost by definition true. In fact, that's the only way that I know how to state that P <= NP. It's just intuitive. How would you prove that P <= NP?

    Read the article

  • Power of programming languages

    - by Casebash
    Are there any objective measures for measuring the power of programming languages? Turing-completeness is one, but it is not particularly discriminating. I also remember there being a few others measures of power which are more limited versions (like finite-state-autonoma), but is there any objective measure that is more powerful?

    Read the article

  • Is it possible to use Regex through Hexadecimal to find email addresses

    - by LukeJenx
    Not sure if this is even possible but I have been looking at using Regex to get an email address that is in Hex. Basically this is to build up some of my automated forensic tools but I am having problems on making a suitable Regex algorithm. Regex for email: /^([a-z0-9_.-]+)@([\da-z.-]+).([a-z.]{2,6})$/ Hex values: @ = 40 . = 2E .com = 636f6d _ = 5f A/a = 41/61 [1] Z/z = 5a/7a - = 2d This is what I have got at the moment (it only takes into account lower case and .com). But it doesn't work! Have I messed something simple up? "/^([61-7a]+)40([61-7a]+)23(636f6d)$/" [1] I know email can only be lower case but I need to take uppercase into account too.

    Read the article

  • Complex behavior generated by simple computation

    - by Yuval A
    Stephen Wolfram gave a fascinating talk at TED about his work with Mathematica and Wolfram Alpha. Amongst other things, he pointed out how very simple computations can yield extremely complex behaviors. (He goes on to discuss his ambition for computing the entire physical universe. Say what you will, you gotta give the guy some credit for his wild ideas...) As an example he showed several cellular automata. What other examples of simple computations do you know of that yield fascinating results?

    Read the article

  • Code Golf: Shortest Turing-complete interpreter.

    - by ilya n.
    I've just tried to create the smallest possible language interpreter. Would you like to join and try? Rules of the game: You should specify a programming language you're interpreting. If it's a language you invented, it should come with a list of commands in the comments. Your code should start with example program and data assigned to your code and data variables. Your code should end with output of your result. It's preferable that there are debug statements at every intermediate step. Your code should be runnable as written. You can assume that data are 0 and 1s (int, string or boolean, your choice) and output is a single bit. The language should be Turing-complete in the sense that for any algorithm written on a standard model, such as Turing machine, Markov chains, or similar of your choice, it's reasonably obvious (or explained) how to write a program that after being executred by your interpreter performs the algorithm. The length of the code is defined as the length of the code after removal of input part, output part, debug statements and non-necessary whitespaces. Please add the resulting code and its length to the post. You can't use functions that make compiler execute code for you, such as eval(), exec() or similar. This is a Community Wiki, meaning neither the question nor answers get the reputation points from votes. But vote anyway!

    Read the article

  • Access modifiers in Object-Oriented Programming

    - by Imran
    I don't understand Access Modifiers in OOP. Why do we make for example in Java instance variables private and then use public getter and setter methods to access them? I mean what's the reasoning/logic behind this? You still get to the instance variable but why use setter and getter methods when you can just make your variables public? please excuse my ignorance as I am simply trying to understand why? Thank you in advance. ;-)

    Read the article

  • Can Haskell's Parsec library be used to implement a recursive descent parser with backup?

    - by Thor Thurn
    I've been considering using Haskell's Parsec parsing library to parse a subset of Java as a recursive descent parser as an alternative to more traditional parser-generator solutions like Happy. Parsec seems very easy to use, and parse speed is definitely not a factor for me. I'm wondering, though, if it's possible to implement "backup" with Parsec, a technique which finds the correct production to use by trying each one in turn. For a simple example, consider the very start of the JLS Java grammar: Literal: IntegerLiteral FloatingPointLiteral I'd like a way to not have to figure out how I should order these two rules to get the parse to succeed. As it stands, a naive implementation like this: literal = do { x <- try (do { v <- integer; return (IntLiteral v)}) <|> (do { v <- float; return (FPLiteral v)}); return(Literal x) } Will not work... inputs like "15.2" will cause the integer parser to succeed first, and then the whole thing will choke on the "." symbol. In this case, of course, it's obvious that you can solve the problem by re-ordering the two productions. In the general case, though, finding things like this is going to be a nightmare, and it's very likely that I'll miss some cases. Ideally, I'd like a way to have Parsec figure out stuff like this for me. Is this possible, or am I simply trying to do too much with the library? The Parsec documentation claims that it can "parse context-sensitive, infinite look-ahead grammars", so it seems like something like I should be able to do something here.

    Read the article

  • Stereo Matching - Dynamic Programming

    - by Varun
    Hi, I am supposed to implement Dynamic programming algorithm for Stereo matching problem. I have read 2 research papers but still haven't understood as to how do I write my own c++ program for that ! Is there any book or resource that's available somewhere that I can use to get an idea as to how to start coding actually ? Internet search only gives me journal and conference papers regarding Dynamic Programming but not how to implement the algorithm step by step. Thanks Varun

    Read the article

  • Dynamic programming solution to the subset-sum decision problem

    - by Gail
    How can a dynamic programming solution for the unbounded knapsack decision problem be used to come up with a dynamic programming solution to the subset-sum decision problem? This limitation seems to render the unbounded knapsack problem useless. In the unbounded knapsack, we simply store true or false for if some subset of integers sum up to our target value. However, if we have a limit on the frequency of the use of these integers, the optimal substructure at least appears to fail. How can this be done?

    Read the article

  • Proving that the distance values extracted in Dijkstra's algorithm is non-decreasing?

    - by Gail
    I'm reviewing my old algorithms notes and have come across this proof. It was from an assignment I had and I got it correct, but I feel that the proof certainly lacks. The question is to prove that the distance values taken from the priority queue in Dijkstra's algorithm is a non-decreasing sequence. My proof goes as follows: Proof by contradiction. Fist, assume that we pull a vertex from Q with d-value 'i'. Next time, we pull a vertex with d-value 'j'. When we pulled i, we have finalised our d-value and computed the shortest-path from the start vertex, s, to i. Since we have positive edge weights, it is impossible for our d-values to shrink as we add vertices to our path. If after pulling i from Q, we pull j with a smaller d-value, we may not have a shortest path to i, since we may be able to reach i through j. However, we have already computed the shortest path to i. We did not check a possible path. We no longer have a guaranteed path. Contradiction.

    Read the article

  • Which operating systems book should I go for?

    - by pecker
    Hi, I'm in a confusion. For our course (1 year ago) I used Stallings. I read it. It was fine. But I don't own any operating system's book. I want to buy a book on operating systems. I'm confused!! which one to pick? Modern Operating Systems (3rd Edition) ~ Andrew S. Tanenbaum (Author) Operating System Concepts ~ Abraham Silberschatz , Peter B. Galvin, Greg Gagne Operating Systems: Internals and Design Principles (6th Edition) ~ William Stallings I've plans of getting into development of realworld operating systems : Linux, Unix & Windows Driver Development. I know that for each of these there are specific books available. But I feel one should have a basic book on the shelf. So, which one to go for?

    Read the article

  • Generating All Permutations of Character Combinations when # of arrays and length of each array are

    - by Jay
    Hi everyone, I'm not sure how to ask my question in a succinct way, so I'll start with examples and expand from there. I am working with VBA, but I think this problem is non language specific and would only require a bright mind that can provide a pseudo code framework. Thanks in advance for the help! Example: I have 3 Character Arrays Like So: Arr_1 = [X,Y,Z] Arr_2 = [A,B] Arr_3 = [1,2,3,4] I would like to generate ALL possible permutations of the character arrays like so: XA1 XA2 XA3 XA4 XB1 XB2 XB3 XB4 YA1 YA2 . . . ZB3 ZB4 This can be easily solved using 3 while loops or for loops. My question is how do I solve for this if the # of arrays is unknown and the length of each array is unknown? So as an example with 4 character arrays: Arr_1 = [X,Y,Z] Arr_2 = [A,B] Arr_3 = [1,2,3,4] Arr_4 = [a,b] I would need to generate: XA1a XA1b XA2a XA2b XA3a XA3b XA4a XA4b . . . ZB4a ZB4b So the Generalized Example would be: Arr_1 = [...] Arr_2 = [...] Arr_3 = [...] . . . Arr_x = [...] Is there a way to structure a function that will generate an unknown number of loops and loop through the length of each array to generate the permutations? Or maybe there's a better way to think about the problem? Thanks Everyone!

    Read the article

  • Context-sensitive grammar for specific language

    - by superagio
    How can I construct a grammar that generates this language? Construct a grammar that generates L: L = {a^n b^m c^k|k>n, k>m} I believe my productions should go along this lines: S-> ABCC A-> a|aBC|BC B-> b|bBC C-> c|Cc CB->BC The idea is to start with 2 c and keep always one more c, and then with C-c|Cc ad as much c as i want. How can my production for C remember the numbers of m and n.

    Read the article

  • Finding the nth number of primes

    - by Braxton Smith
    I can not figure out why this won't work. Please help me from math import sqrt pN = 0 numPrimes = 0 num = 1 def checkPrime(x): '''Check\'s whether a number is a prime or not''' prime = True if(x==2): prime = True elif(x%2==0): prime=False else: root=int(sqrt(x)) for i in range(3,root,2): if(x%i==0): prime=False break return prime n = int(input("Find n number of primes. N being:")) while( numPrimes != n ): if( checkPrime( num ) == True ): numPrimes += 1 pN = num print("{0}: {1}".format(numPrimes,pN)) num += 1 print("Prime {0} is: {1}".format(n,pN))

    Read the article

  • Examples of monoids/semigroups in programming

    - by jkff
    It is well-known that monoids are stunningly ubiquitous in programing. They are so ubiquitous and so useful that I, as a 'hobby project', am working on a system that is completely based on their properties (distributed data aggregation). To make the system useful I need useful monoids :) I already know of these: Numeric or matrix sum Numeric or matrix product Minimum or maximum under a total order with a top or bottom element (more generally, join or meet in a bounded lattice, or even more generally, product or coproduct in a category) Set union Map union where conflicting values are joined using a monoid Intersection of subsets of a finite set (or just set intersection if we speak about semigroups) Intersection of maps with a bounded key domain (same here) Merge of sorted sequences, perhaps with joining key-equal values in a different monoid/semigroup Bounded merge of sorted lists (same as above, but we take the top N of the result) Cartesian product of two monoids or semigroups List concatenation Endomorphism composition. Now, let us define a quasi-property of an operation as a property that holds up to an equivalence relation. For example, list concatenation is quasi-commutative if we consider lists of equal length or with identical contents up to permutation to be equivalent. Here are some quasi-monoids and quasi-commutative monoids and semigroups: Any (a+b = a or b, if we consider all elements of the carrier set to be equivalent) Any satisfying predicate (a+b = the one of a and b that is non-null and satisfies some predicate P, if none does then null; if we consider all elements satisfying P equivalent) Bounded mixture of random samples (xs+ys = a random sample of size N from the concatenation of xs and ys; if we consider any two samples with the same distribution as the whole dataset to be equivalent) Bounded mixture of weighted random samples Which others do exist?

    Read the article

< Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >