Search Results

Search found 17437 results on 698 pages for 'nick long'.

Page 69/698 | < Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • How do I search the MediaStore for a specific directory instead of entire external storage?

    - by Nick Lopez
    In my app I have an option that allows users to browse for audio files on their phone to add to the app. I am having trouble however with creating a faster way of processing the query code. Currently it searches the entire external storage and causes the phone to prompt a force close/wait warning. I would like to take the code I have posted below and make it more efficient by either searching in a specific folder on the phone or by streamlining the process to make the file search quicker. I am not sure how to do this however. Thanks! public class BrowseActivity extends DashboardActivity implements OnClickListener, OnItemClickListener { private List<Sound> soundsInDevice = new ArrayList<Sound>(); private List<Sound> checkedList; private ListView browsedList; private BrowserSoundAdapter adapter; private long categoryId; private Category category; private String currentCategoryName; private String description; // private Category newCategory ; private Button doneButton; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); requestWindowFeature(Window.FEATURE_NO_TITLE); setContentView(R.layout.activity_browse); checkedList = new ArrayList<Sound>(); browsedList = (ListView) findViewById(android.R.id.list); doneButton = (Button) findViewById(R.id.doneButton); soundsInDevice = getMediaSounds(); if (soundsInDevice.size() > 0) { adapter = new BrowserSoundAdapter(this, R.id.browseSoundName, soundsInDevice); } else { Toast.makeText(getApplicationContext(), getString(R.string.no_sounds_available), Toast.LENGTH_SHORT) .show(); } browsedList.setAdapter(adapter); browsedList.setOnItemClickListener(this); doneButton.setOnClickListener(this); } private List<Sound> getMediaSounds() { List<Sound> mediaSoundList = new ArrayList<Sound>(); ContentResolver cr = getContentResolver(); String[] projection = {MediaStore.Audio.Media._ID, MediaStore.Audio.Media.DISPLAY_NAME, MediaStore.Audio.Media.TITLE, MediaStore.Audio.Media.DATA, MediaStore.Audio.Media.DURATION}; final Uri uri = MediaStore.Audio.Media.EXTERNAL_CONTENT_URI; Log.v("MediaStore.Audio.Media.EXTERNAL_CONTENT_URI", "" + uri); final Cursor cursor = cr.query(uri, projection, null, null, null); int n = cursor.getCount(); Log.v("count", "" + n); if (cursor.moveToFirst()) { do { String soundName = cursor .getString(cursor .getColumnIndexOrThrow(MediaStore.Audio.Media.DISPLAY_NAME)); Log.v("soundName", "" + soundName); String title = cursor .getString(cursor .getColumnIndexOrThrow(MediaStore.Audio.Media.TITLE)); Log.v("title", "" + title); String path = cursor.getString(cursor .getColumnIndexOrThrow(MediaStore.Audio.Media.DATA)); Log.v("path", "" + path); Sound browsedSound = new Sound(title, path, false, false, false, false, 0); Log.v("browsedSound", "" + browsedSound); mediaSoundList.add(browsedSound); Log.v("mediaSoundList", "" + mediaSoundList.toString()); } while (cursor.moveToNext()); } return mediaSoundList; } public class BrowserSoundAdapter extends ArrayAdapter<Sound> { public BrowserSoundAdapter(Context context, int textViewResourceId, List<Sound> objects) { super(context, textViewResourceId, objects); } @Override public View getView(final int position, View convertView, ViewGroup parent) { ViewHolder viewHolder; View view = convertView; LayoutInflater inflater = getLayoutInflater(); if (view == null) { view = inflater.inflate(R.layout.list_item_browse, null); viewHolder = new ViewHolder(); viewHolder.soundNameTextView = (TextView) view .findViewById(R.id.browseSoundName); viewHolder.pathTextView = (TextView) view .findViewById(R.id.browseSoundPath); viewHolder.checkToAddSound = (CheckBox) view .findViewById(R.id.browse_checkbox); view.setTag(viewHolder); } else { viewHolder = (ViewHolder) view.getTag(); } final Sound sound = soundsInDevice.get(position); if (sound.isCheckedState()) { viewHolder.checkToAddSound.setChecked(true); } else { viewHolder.checkToAddSound.setChecked(false); } viewHolder.soundNameTextView.setText(sound.getName()); viewHolder.pathTextView.setText(sound.getUri()); viewHolder.checkToAddSound .setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { CheckBox cb = (CheckBox) v .findViewById(R.id.browse_checkbox); boolean checked = cb.isChecked(); boolean newValue = checked; updateView(position, newValue); doneButtonStatus(checkedList.size()); } }); return view; } } // Adapter view holder class private class ViewHolder { private TextView soundNameTextView; private TextView pathTextView; private CheckBox checkToAddSound; } // done button On Click @Override public void onClick(View view) { boolean status = getIntent().getBooleanExtra("FromAddCat", false); Log.v("for add category","enters in if"); if(status){ Log.v("for add category","enters in if1"); currentCategoryName = getIntent().getStringExtra("categoryName"); description = getIntent().getStringExtra("description"); boolean existCategory = SQLiteHelper.getCategoryStatus(currentCategoryName); if (!existCategory) { category = new Category(currentCategoryName, description, false); category.insert(); category.update(); Log.v("for add category","enters in if2"); } }else{ categoryId = getIntent().getLongExtra("categoryId",-1); category = SQLiteHelper.getCategory(categoryId); } for (Sound checkedsound : checkedList) { checkedsound.setCheckedState(false); checkedsound.insert(); category.getSounds().add(checkedsound); final Intent intent = new Intent(this, CategoriesActivity.class); finish(); startActivity(intent); } } @Override public void onItemClick(AdapterView<?> arg0, View view, int position, long arg3) { boolean checked = true; boolean newValue = false; CheckBox cb = (CheckBox) view.findViewById(R.id.browse_checkbox); if (cb.isChecked()) { cb.setChecked(!checked); newValue = !checked; } else { cb.setChecked(checked); newValue = checked; } updateView(position, newValue); doneButtonStatus(checkedList.size()); } private void doneButtonStatus(int size) { if (size > 0) { doneButton.setEnabled(true); doneButton.setBackgroundResource(R.drawable.done_button_drawable); } else { doneButton.setEnabled(false); doneButton.setBackgroundResource(R.drawable.done_btn_disabled); } } private void updateView(int index, boolean newValue) { System.out.println(newValue); Sound sound = soundsInDevice.get(index); if (newValue == true) { checkedList.add(sound); sound.setCheckedState(newValue); } else { checkedList.remove(sound); sound.setCheckedState(newValue); } } }

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • Problem with sizes of EditText and Button in Android

    - by DixieFlatline
    I want to make the edittext width the same size as button. My EditText is currently very small. I use relative layout. <TextView android:id="@+id/aha4" android:layout_width="wrap_content" android:layout_height="wrap_content" android:textSize="17dip" android:text="Vzdevek:" android:layout_below="@id/aha3" /> <EditText android:id="@+id/nick" android:layout_height="wrap_content" android:layout_width="wrap_content" android:layout_below="@id/nivo" android:layout_toRightOf="@id/aha4"/> <Button android:id="@+id/poslji" android:text="Pošlji" android:layout_height="wrap_content" android:layout_width="20dip" android:typeface="serif" android:textStyle="bold" android:layout_alignParentRight="true" android:layout_below="@id/nivo" android:layout_toRightOf="@id/nick"/> What i currently get is this: What is the appropriate layout_width for edittext and button?

    Read the article

  • Cakephp doesn't write a cookie

    - by radious
    Hello! I have a problem with writing cookies in cakephp and even don't know how to debug it or where too look for a clue. I've inherited a project where cookie were only created using the Session component, of course i added 'Cookie' to $components array in app_controller and put this in beforeFilter: $this->Cookie->name = 'foo'; $this->Cookie->path = '/home/~nick'; $this->Cookie->domain = 'hostname'; $this->Cookie->secure = false; //i.e. only sent if using secure HTTPS $this->Cookie->key = 'some key'; and in some action i use: $this->Cookie->write('key', 'value'); I access page by http://hostname/home/~nick/foo and actually try to put even something so silly. I doesn't work. I would be really gratefully for any clue where to search problem. Thanks!

    Read the article

  • Memory not being freed, causing giant memory leak

    - by Delan Azabani
    In my Unicode library for C++, the ustring class has operator= functions set for char* values and other ustring values. When doing the simple memory leak test: #include <cstdio> #include "ucpp" main() { ustring a; for(;;)a="MEMORY"; } the memory used by the program grows uncontrollably (characteristic of a program with a big memory leak) even though I've added free() calls to both of the functions. I am unsure why this is ineffective (am I missing free() calls in other places?) This is the current library code: #include <cstdlib> #include <cstring> class ustring { int * values; long len; public: long length() { return len; } ustring() { len = 0; values = (int *) malloc(0); } ustring(const ustring &input) { len = input.len; values = (int *) malloc(sizeof(int) * len); for (long i = 0; i < len; i++) values[i] = input.values[i]; } ustring operator=(ustring input) { ustring result(input); free(values); len = input.len; values = input.values; return * this; } ustring(const char * input) { values = (int *) malloc(0); long s = 0; // s = number of parsed chars int a, b, c, d, contNeed = 0, cont = 0; for (long i = 0; input[i]; i++) if (input[i] < 0x80) { // ASCII, direct copy (00-7f) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = input[i]; } else if (input[i] < 0xc0) { // this is a continuation (80-bf) if (cont == contNeed) { // no need for continuation, use U+fffd values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } cont = cont + 1; values[s - 1] = values[s - 1] | ((input[i] & 0x3f) << ((contNeed - cont) * 6)); if (cont == contNeed) cont = contNeed = 0; } else if (input[i] < 0xc2) { // invalid byte, use U+fffd (c0-c1) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } else if (input[i] < 0xe0) { // start of 2-byte sequence (c2-df) contNeed = 1; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x1f) << 6; } else if (input[i] < 0xf0) { // start of 3-byte sequence (e0-ef) contNeed = 2; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x0f) << 12; } else if (input[i] < 0xf5) { // start of 4-byte sequence (f0-f4) contNeed = 3; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x07) << 18; } else { // restricted or invalid (f5-ff) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } len = s; } ustring operator=(const char * input) { ustring result(input); free(values); len = result.len; values = result.values; return * this; } ustring operator+(ustring input) { ustring result; result.len = len + input.len; result.values = (int *) malloc(sizeof(int) * result.len); for (long i = 0; i < len; i++) result.values[i] = values[i]; for (long i = 0; i < input.len; i++) result.values[i + len] = input.values[i]; return result; } ustring operator[](long index) { ustring result; result.len = 1; result.values = (int *) malloc(sizeof(int)); result.values[0] = values[index]; return result; } operator char * () { return this -> encode(); } char * encode() { char * r = (char *) malloc(0); long s = 0; for (long i = 0; i < len; i++) { if (values[i] < 0x80) r = (char *) realloc(r, s + 1), r[s + 0] = char(values[i]), s += 1; else if (values[i] < 0x800) r = (char *) realloc(r, s + 2), r[s + 0] = char(values[i] >> 6 | 0x60), r[s + 1] = char(values[i] & 0x3f | 0x80), s += 2; else if (values[i] < 0x10000) r = (char *) realloc(r, s + 3), r[s + 0] = char(values[i] >> 12 | 0xe0), r[s + 1] = char(values[i] >> 6 & 0x3f | 0x80), r[s + 2] = char(values[i] & 0x3f | 0x80), s += 3; else r = (char *) realloc(r, s + 4), r[s + 0] = char(values[i] >> 18 | 0xf0), r[s + 1] = char(values[i] >> 12 & 0x3f | 0x80), r[s + 2] = char(values[i] >> 6 & 0x3f | 0x80), r[s + 3] = char(values[i] & 0x3f | 0x80), s += 4; } return r; } };

    Read the article

  • Why can't I assign a scalar value to a class using shorthand, but instead declare it first, then set

    - by ~delan-azabani
    I am writing a UTF-8 library for C++ as an exercise as this is my first real-world C++ code. So far, I've implemented concatenation, character indexing, parsing and encoding UTF-8 in a class called "ustring". It looks like it's working, but two (seemingly equivalent) ways of declaring a new ustring behave differently. The first way: ustring a; a = "test"; works, and the overloaded "=" operator parses the string into the class (which stores the Unicode strings as an dynamically allocated int pointer). However, the following does not work: ustring a = "test"; because I get the following error: test.cpp:4: error: conversion from ‘const char [5]’ to non-scalar type ‘ustring’ requested Is there a way to workaround this error? It probably is a problem with my code, though. The following is what I've written so far for the library: #include <cstdlib> #include <cstring> class ustring { int * values; long len; public: long length() { return len; } ustring * operator=(ustring input) { len = input.len; values = (int *) malloc(sizeof(int) * len); for (long i = 0; i < len; i++) values[i] = input.values[i]; return this; } ustring * operator=(char input[]) { len = sizeof(input); values = (int *) malloc(0); long s = 0; // s = number of parsed chars int a, b, c, d, contNeed = 0, cont = 0; for (long i = 0; i < sizeof(input); i++) if (input[i] < 0x80) { // ASCII, direct copy (00-7f) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = input[i]; } else if (input[i] < 0xc0) { // this is a continuation (80-bf) if (cont == contNeed) { // no need for continuation, use U+fffd values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } cont = cont + 1; values[s - 1] = values[s - 1] | ((input[i] & 0x3f) << ((contNeed - cont) * 6)); if (cont == contNeed) cont = contNeed = 0; } else if (input[i] < 0xc2) { // invalid byte, use U+fffd (c0-c1) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } else if (input[i] < 0xe0) { // start of 2-byte sequence (c2-df) contNeed = 1; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x1f) << 6; } else if (input[i] < 0xf0) { // start of 3-byte sequence (e0-ef) contNeed = 2; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x0f) << 12; } else if (input[i] < 0xf5) { // start of 4-byte sequence (f0-f4) contNeed = 3; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x07) << 18; } else { // restricted or invalid (f5-ff) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } return this; } ustring operator+(ustring input) { ustring result; result.len = len + input.len; result.values = (int *) malloc(sizeof(int) * result.len); for (long i = 0; i < len; i++) result.values[i] = values[i]; for (long i = 0; i < input.len; i++) result.values[i + len] = input.values[i]; return result; } ustring operator[](long index) { ustring result; result.len = 1; result.values = (int *) malloc(sizeof(int)); result.values[0] = values[index]; return result; } char * encode() { char * r = (char *) malloc(0); long s = 0; for (long i = 0; i < len; i++) { if (values[i] < 0x80) r = (char *) realloc(r, s + 1), r[s + 0] = char(values[i]), s += 1; else if (values[i] < 0x800) r = (char *) realloc(r, s + 2), r[s + 0] = char(values[i] >> 6 | 0x60), r[s + 1] = char(values[i] & 0x3f | 0x80), s += 2; else if (values[i] < 0x10000) r = (char *) realloc(r, s + 3), r[s + 0] = char(values[i] >> 12 | 0xe0), r[s + 1] = char(values[i] >> 6 & 0x3f | 0x80), r[s + 2] = char(values[i] & 0x3f | 0x80), s += 3; else r = (char *) realloc(r, s + 4), r[s + 0] = char(values[i] >> 18 | 0xf0), r[s + 1] = char(values[i] >> 12 & 0x3f | 0x80), r[s + 2] = char(values[i] >> 6 & 0x3f | 0x80), r[s + 3] = char(values[i] & 0x3f | 0x80), s += 4; } return r; } };

    Read the article

  • Calculate rotation between two Vector2s around a pivot

    - by Nick
    Hello all. After a good long Sunday google I am going to have to hang my head in shame and ask the question... What I have is a pivot vector2, a "Previous" vector2 and a "Current" vector2. I would like to be able to calculate the rotation in radians between them. A slight complication is the fact that the pivot may moved between previous and current but ill deal with the offsetting as a separate issue if you don't have the time to bring that into the fold. To clarify, an object which has two vectors, a pivot and a base ... the pivot sitting in the centre and the base at the bottom is rotated around an external pivot. I need to work out the rotation of the object itself around its centre using the two mentioned vectors. Very big thanks to anyone that can help. Background to problem I have a game where an object is rotated around an external pivot. By using using two points (one in the centre, one at the base of the object) I am wanting to to work out the rotation that needs to be applied to the objects sprite around its centre to conform to the larger rotation that has been applied.

    Read the article

  • Assignment operator that calls a constructor is broken

    - by Delan Azabani
    I've implemented some of the changes suggested in this question, and (thanks very much) it works quite well, however... in the process I've seemed to break the post-declaration assignment operator. With the following code: #include <cstdio> #include "ucpp" main() { ustring a = "test"; ustring b = "ing"; ustring c = "- -"; ustring d = "cafe\xcc\x81"; printf("%s\n", (a + b + c[1] + d).encode()); } I get a nice "testing cafe´" message. However, if I modify the code slightly so that the const char * conversion is done separately, post-declaration: #include <cstdio> #include "ucpp" main() { ustring a = "test"; ustring b = "ing"; ustring c = "- -"; ustring d; d = "cafe\xcc\x81"; printf("%s\n", (a + b + c[1] + d).encode()); } the ustring named d becomes blank, and all that is output is "testing ". My new code has three constructors, one void (which is probably the one being incorrectly used, and is used in the operator+ function), one that takes a const ustring &, and one that takes a const char *. The following is my new library code: #include <cstdlib> #include <cstring> class ustring { int * values; long len; public: long length() { return len; } ustring() { len = 0; values = (int *) malloc(0); } ustring(const ustring &input) { len = input.len; values = (int *) malloc(sizeof(int) * len); for (long i = 0; i < len; i++) values[i] = input.values[i]; } ustring operator=(ustring input) { ustring result(input); return result; } ustring(const char * input) { values = (int *) malloc(0); long s = 0; // s = number of parsed chars int a, b, c, d, contNeed = 0, cont = 0; for (long i = 0; input[i]; i++) if (input[i] < 0x80) { // ASCII, direct copy (00-7f) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = input[i]; } else if (input[i] < 0xc0) { // this is a continuation (80-bf) if (cont == contNeed) { // no need for continuation, use U+fffd values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } cont = cont + 1; values[s - 1] = values[s - 1] | ((input[i] & 0x3f) << ((contNeed - cont) * 6)); if (cont == contNeed) cont = contNeed = 0; } else if (input[i] < 0xc2) { // invalid byte, use U+fffd (c0-c1) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } else if (input[i] < 0xe0) { // start of 2-byte sequence (c2-df) contNeed = 1; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x1f) << 6; } else if (input[i] < 0xf0) { // start of 3-byte sequence (e0-ef) contNeed = 2; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x0f) << 12; } else if (input[i] < 0xf5) { // start of 4-byte sequence (f0-f4) contNeed = 3; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x07) << 18; } else { // restricted or invalid (f5-ff) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } len = s; } ustring operator=(const char * input) { ustring result(input); return result; } ustring operator+(ustring input) { ustring result; result.len = len + input.len; result.values = (int *) malloc(sizeof(int) * result.len); for (long i = 0; i < len; i++) result.values[i] = values[i]; for (long i = 0; i < input.len; i++) result.values[i + len] = input.values[i]; return result; } ustring operator[](long index) { ustring result; result.len = 1; result.values = (int *) malloc(sizeof(int)); result.values[0] = values[index]; return result; } char * encode() { char * r = (char *) malloc(0); long s = 0; for (long i = 0; i < len; i++) { if (values[i] < 0x80) r = (char *) realloc(r, s + 1), r[s + 0] = char(values[i]), s += 1; else if (values[i] < 0x800) r = (char *) realloc(r, s + 2), r[s + 0] = char(values[i] >> 6 | 0x60), r[s + 1] = char(values[i] & 0x3f | 0x80), s += 2; else if (values[i] < 0x10000) r = (char *) realloc(r, s + 3), r[s + 0] = char(values[i] >> 12 | 0xe0), r[s + 1] = char(values[i] >> 6 & 0x3f | 0x80), r[s + 2] = char(values[i] & 0x3f | 0x80), s += 3; else r = (char *) realloc(r, s + 4), r[s + 0] = char(values[i] >> 18 | 0xf0), r[s + 1] = char(values[i] >> 12 & 0x3f | 0x80), r[s + 2] = char(values[i] >> 6 & 0x3f | 0x80), r[s + 3] = char(values[i] & 0x3f | 0x80), s += 4; } return r; } };

    Read the article

  • Downloading attachments to directory with IMAP in PHP, randomly works

    - by Nick
    I found PHP code online to download attachments to a directory using IMAP from here. http://www.nerdydork.com/download-pop3imap-email-attachments-with-php.html I modified it slightly changing $structure = imap_fetchstructure($mbox, $jk); $parts = ($structure->parts); to $structure = imap_fetchstructure($mbox, $jk); $parts = ($structure); to get it to run properly, as otherwise I got an error about how stdClass doesn't define a property called $parts. Doing that, I was able to download all the attachments. I tested it again recently though, and it didn't work. Well, it didn't work 6 times, worked the 7th, and then hasn't worked since. I'm thinking it has something to do with me screwing up the parts handling, since count($parts) keeps returning 1 for each message, so it's not finding any attachments I think. Since it downloaded the attachments at one point with no issues, I feel confident that the area things are getting screwed up is right here. Before this block of code is a for loop that goes through each message in the box, and after it is loop that just goes through $parts for each imap structure. Thanks for any help you can provide. I looked at the imap_fetchstructure page on php.net and can't figure out what I'm doing wrong. Edit: I just double-checked the folder after typing up my question and it all popped up. I feel like I'm going nuts. I hadn't run the code since a few minutes before I started typing this, and it doesn't make sense to me that it would take this long to trigger. I have some 800 messages in the mailbox, but I figured since it printed my statement at the very end of the PHP that all of the file creation work was done.

    Read the article

  • SQLAlchemy: who is in charge of the "session"? ( and how to unit-test with sessions )

    - by Nick Perkins
    I need some guidance on how to use session objects with SQLAlchemy, and how to organize Unit Tests of my mapped objects. What I would like to able to do is something like this: thing = BigThing() # mapped object child = thing.new_child() # create and return a related object thing.save() # will also save the child object In order to achieve this, I was thinking of having the BigThing actually add itself ( and it's children ) to the database -- but maybe this not a good idea? One reason to add objects as soon as possible is Automatic id values that are assigned by the database -- the sooner they are available, the fewer problems there are ( right? ) What is the best way to manage session objects? Who is in charge of the session? Should it be created only when required? or saved for a long time? What about Unit Tests for my mapped objects?...how should the session be handled? Is it ever OK to have mapped objects just automatically add themselves to a database? or is that going to lead to trouble?

    Read the article

  • Printing to different printers using mozilla.

    - by Nick-ACNB
    I am currently creating a web application that will be deployed in an intranet environment. I chose firefox to be the browser that will run it. However, in the application I am building, I need to be able to print to different printers quickly since they use different paper size depending on what client is coming. To avoid many time-wasting mistakes that could occur, for instance someone choosing the wrong printer and wasting paper. Also, the time used to find the right printer for the job and then pressing print is considered too long in the current context. Is there any solution to this problem? I understand the potential security flaw behind this, but please be aware that this is solely an intranet project and that I can reduce the browser's security to the lowest since they don't access internet. I know there could be something doable behind IE (ActiveX or VBScript) but I am using firefox. Also, I guess there could also be something rather tricky that when you press print on the browser, it saves what needs to be printed to a DB and then there is an exe app that runs and fetch that DB every set ammount of time and print to the right printer. Any suggestion would be greatly appreciated. I doubt I am the only one to ever face this issue! :) Thank you very much.

    Read the article

  • Java threads, wait time always 00:00:00-Producer/Consumer

    - by user3742254
    I am currently doing a producer consumer problem with a number of threads and have had to set priorities and waits to them to ensure that one thread, the security thread, runs last. I have managed to do this and I have managed to get the buffer working. The last thing that I am required to do is to show the wait time of threads that are too large for the buffer and to calculate the average wait time. I have included code to do so, but everything I run the program, the wait time is always returned as 00:00:00, and by extension, the average is returned as the same. I was speaking to one of my colleagues who said that it is not a matter of the code but rather a matter of the computer needing to work off of one processor, which can be adjusted in the task manager settings. He has an HP like myself but his program prints the wait time 180 times, whereas mine prints usually about 3-7 times and is only 00:00:01 on one instance before finishing when I have made the processor adjustments. My other colleague has an iMac and hers puts out an average of 42:00:34(42 minutes??) I am very confused about this because I can see no difference between our codes and like my colleague said, I was wondering is it a computer issue. I am obviously concerned as I wanted to make sure that my code correctly calculated an average wait time, but that is impossible to tell when the wait times always show as 00:00:00. To calculate the thread duration, including the time it entered and exited the buffer was done by using a timestamp import, and then subtracting start time from end time. Is my code correct for this issue or is there something which is missing? I would be very grateful for any solutions. Below is my code: My buffer class package com.Com813cw; import java.text.DateFormat; import java.text.SimpleDateFormat; /** * Created by Rory on 10/08/2014. */ class Buffer { private int contents, count = 0, process = 200; private int totalRam = 1000; private boolean available = false; private long start, end, wait, request = 0; private DateFormat time = new SimpleDateFormat("ss:SSS"); public int avWaitTime =0; public void average(){ System.out.println("Average Application Request wait time: "+ time.format(request/count)); } public synchronized int get() { while (process <= 500) { try { wait(); } catch (InterruptedException e) { } } process -= 200; System.out.println("CPU After Process " + process); notifyAll(); return contents; } public synchronized void put(int value) { if (process <= 500) { process += value; } else { start = System.currentTimeMillis(); try { wait(); } catch (InterruptedException e) { } end = System.currentTimeMillis(); wait = end - start; count++; request += wait; System.out.println("Application Request Wait Time: " + time.format(wait)); process += value; contents = value; calcWait(wait, count); } notifyAll(); } public void calcWait(long wait, int count){ this.avWaitTime = (int) (wait/count); } public void printWait(){ System.out.println("Wait time is " + time.format(this.avWaitTime)); } } My spotify class package com.Com813cw; import java.sql.Timestamp; /** * Created by Rory on 11/08/2014. */ class Spotify extends Thread { private Buffer buffer; private int number; private int bytes = 250; public Spotify(Buffer c, int number) { buffer = c; this.number = number; } long startTime = System.currentTimeMillis(); public void run() { for (int i = 0; i < 20; i++) { buffer.put(bytes); System.out.println(getName() + this.number + " put: " + bytes + " bytes "); try { sleep(1000); } catch (InterruptedException e) { } } long endTime = System.currentTimeMillis(); long timeTaken = endTime - startTime; java.util.Date date = new java.util.Date(); System.out.println("-----------------------------"); System.out.println("Spotify has finished executing."); System.out.println("Time taken to execute was " + timeTaken + " milliseconds"); System.out.println("Time that Spotify thread exited Buffer was " + new Timestamp(date.getTime())); System.out.println("-----------------------------"); } } My BubbleWitch class package com.Com813cw; import java.lang.*; import java.lang.System; import java.sql.Timestamp; /** * Created by Rory on 10/08/2014. */ class BubbleWitch2 extends Thread { private Buffer buffer; private int number; private int bytes = 100; public BubbleWitch2(Buffer c, int number) { buffer = c; this.number=number ; } long startTime = System.currentTimeMillis(); public void run() { for (int i = 0; i < 10; i++) { buffer.put(bytes); System.out.println(getName() + this.number + " put: " + bytes + " bytes "); try { sleep(1000); } catch (InterruptedException e) { } } long endTime = System.currentTimeMillis(); long timeTaken = endTime - startTime; java.util.Date date = new java.util.Date(); System.out.println("-----------------------------"); System.out.println("BubbleWitch2 has finished executing."); System.out.println("Time taken to execute was " +timeTaken+ " milliseconds"); System.out.println("Time Bubblewitch2 thread exited Buffer was " + new Timestamp(date.getTime())); System.out.println("-----------------------------"); } } My Test class package com.Com813cw; /** * Created by Rory on 10/08/2014. */ public class ProducerConsumerTest { public static void main(String[] args) throws InterruptedException { Buffer c = new Buffer(); BubbleWitch2 p1 = new BubbleWitch2(c,1); Processor c1 = new Processor(c, 1); Spotify p2 = new Spotify(c, 2); SystemManagement p3 = new SystemManagement(c, 3); SecurityUpdate p4 = new SecurityUpdate(c, 4, p1, p2, p3); p1.setName("BubbleWitch2 "); p2.setName("Spotify "); p3.setName("System Management "); p4.setName("Security Update "); p1.setPriority(10); p2.setPriority(10); p3.setPriority(10); p4.setPriority(5); c1.start(); p1.start(); p2.start(); p3.start(); p4.start(); p2.join(); p3.join(); p4.join(); c.average(); System.exit(0); } } My security update package com.Com813cw; import java.lang.*; import java.lang.System; import java.sql.Timestamp; /** * Created by Rory on 11/08/2014. */ class SecurityUpdate extends Thread { private Buffer buffer; private int number; private int bytes = 150; private int process = 0; public SecurityUpdate(Buffer c, int number, BubbleWitch2 bubbleWitch2, Spotify spotify, SystemManagement systemManagement) throws InterruptedException { buffer = c; this.number = number; bubbleWitch2.join(); spotify.join(); systemManagement.join(); } long startTime = System.currentTimeMillis(); public void run() { for (int i = 0; i < 15; i++) { buffer.put(bytes); System.out.println(getName() + this.number + " put: " + bytes + " bytes"); try { sleep(1500); } catch (InterruptedException e) { } } long endTime = System.currentTimeMillis(); long timeTaken = endTime - startTime; java.util.Date date = new java.util.Date(); System.out.println("-----------------------------"); System.out.println("Security Update has finished executing."); System.out.println("Time taken to execute was " + timeTaken + " milliseconds"); System.out.println("Time that SecurityUpdate thread exited Buffer was " + new Timestamp(date.getTime())); System.out.println("------------------------------"); } } I'd be grateful as I said for any help as this is the last and most frustrating obstacle.

    Read the article

  • Programming Environment for a Motorola 68000 in Linux

    - by Nick Presta
    Greetings all, I am taking a Structure and Application of Microcomputers course this semester and we're programming with the Motorola 68000 series CPU/board. The course syllabus suggests running something like Easy68K or Teesside Motorola 68000 Assembler/Emulator at home to test our programs. I told my prof I run x64 Linux and asked what sort of environment I would need to complete my coursework. He said that the easiest environment to use is a Windows XP 32bit VM with one of the two suggested applications installed, however, he doesn't really care what I use as long as I can test what I write at home. So I'm asking if there exists some sort of emulator or environment for Linux so I can test my code, and what sort of caveats I will run into by writing and testing my code in Linux. Also, I plan to do my editing in Vim, which probably isn't a problem, but I would like any insight into editors for 68000 assembly, if you have any. Thanks! EDIT: Just to clarify - I don't want to install Linux on the board at all - I want to program on my home machine, test the code locally, and then bring it onto the board for grading/running.

    Read the article

  • Enforce SSIS naming conventions using BI-xPress

    - by jamiet
    A long long long time ago (in 2006 in fact) I published a blog post entitled Suggested Best Practises and naming conventions in which I suggested a bunch of acronyms that folks could use to prefix object names in their SSIS packages, thus allowing easier identification of those objects in log records, here is a sample of some of those suggestions: If you have adopted these naming conventions (and I am led to believe that a bunch of people have) then you might like to know that you can now check for adherence to these conventions using a tool called BI-xPress from Pragmatic Works. BI-xPress includes a feature called the Best Practices Analyzer that scans your packages and assess them according to some rules that you specify. In addition Pragmatic Works have made available a collection of these rules that adhere to the naming conventions I specified in 2006 You can download this collection however I recommend you first read the accompanying article that demonstrates the capabilities of the Best Practices Analyzer. Pretty cool stuff. @Jamiet

    Read the article

  • LINQ for SQL Developers and DBA’s

    - by AtulThakor
    Firstly I’d just like to thank the guys who organise the SQL Server User Group (Martin/Tony/Chris) and for giving me the opportunity to speak at the recent event. Sorry about the slides taking so long but here they are along with some extra information. Firstly the demo’s were all done using LINQPad 4.0 which can be downloaded here: http://www.linqpad.net/ There are 2 versions 3.5/4.0 With 3.5 you should be able to replicate the problem I showed where a query using a parameter which is X characters long would create a different execution plan to a query which uses a parameter which is Y characters long, otherwise I would just use 4.0 The sample database used is AdventureWorksLT2008 which can be downloaded from here: http://msftdbprodsamples.codeplex.com/releases/view/37109 The scripts have been named so that you can select the appropriate way to run them i.e.: C# expression / C#statement, each script can be run individually be highlighting the query and clicking the play symbol or hitting F5. Scripts and Slides: http://sqlblogcasts.com/blogs/atulthakor/An%20Introduction%20to%20LINQ.zip Please don't hesitate in sending any questions via email/twitter, I’ll try my best to answer your questions! Thanks, Atul

    Read the article

  • Simultaneously calling multiple methods on a WCF service from silverlight

    - by ola karlsson
    A while back I had to debug some performance issues in an existing Silverlight app, as the problem / solution was a bit obscure and finding info about it was quite tricky, I thought I’d share, maybe it can help the next person with this problem. The App On start, the app would do a number of calls to different methods on a WCF service, this to populate the UI with the necessary data. Recently one of those services had been changed and was now taking quite a bit longer than it used to. This was resulting in quite a long loading time for the whole UI, which was set up so it wouldn’t let the user interact with anything, until all the service calls had finished. First I broke out the longer running service call from the others, then removed the constraint that it had to be loaded for the UI in general to become responsive. I also added a loading indicator just on that area of the UI, thinking that the main UI would load while this particular section could keep loading independently. The Problem However this is where things started to get a bit strange. I found that even after these changes, the main UI wouldn’t activate until the long running call returned. So now, I did what I should have done to start with, I got Fiddler out and had a look at what was really happening. What I found was that, once the call to the long running service method was placed, all subsequent call were waiting for that one to return before executing. Not having really worked with WCF previously or knowing much about it in general, I was stumped… I knew of the issues where Silverlight is restricted by the browsers networking features in regards to number of simultaneous connections etc. However that just didn’t seem to be the issue here, you can clearly see in Fiddler that there’s numerous calls, but they’re just not returning. I thought of the problem maybe being in the WCF service, but the calls were really not that complicated and surely the service should be able to handle a lot more than what I was throwing at it! So I did what every developer does in this type of scenario, I hit the search engines. I did a whole bunch of searching on things like “multiple simultaneous WCF calls from Silverlight” and “Calling long running WCF services from Silverlight” etc. etc. This however, pretty much got me nowhere, I found a whole heap of resources on how to do WCF calls from Silverlight but most of them were very basic and of no use what so ever. The fog is clearing It wasn’t until I came across the term “ WCF blocking calls” and started incorporating that in my searches I started to get somewhere. Those searches quite quickly brought me to the following thread in the Silverlight forum “Long-running WCF call blocking subsequent calls” which discussed the exact problem I was facing and the best part, one of the guys there had the solution! The short answer is in the forum post and the guys answering, has also done a more extensive blog post about it called “Silverlight, WCF, and ASP.Net Configuration Gotchas” which covers it very well.  So come on what’s the solution?! I heard you ask, unless you’ve already gone to the links and looked it up ;) The Solution Well, it turns out that the issue is founded in a mix of Silverlight, Asp.Net and WCF, basically if you’re doing multiple calls to a single WCF web-service and you have Asp.Net session state enabled, the calls will be executed sequentially by the service, hence any long running calls will block subsequent ones. So why is Asp.Net session state effecting us, we’re working in Silverlight, right? We'll as mentioned earlier, by default Silverlight uses the browsers networking stack when doing service calls, hence to the WCF service, the call looks like it might as well be coming from a normal Asp.Net. To get around this, we look to a feature introduced in Silverlight 3, namely the Client HTTP Stack. The Client HTTP Stack to the rescue By using the following syntax (for example in our App.xaml.cs, Application_Startup method) WebRequest.RegisterPrefix("http://", WebRequestCreator.ClientHttp); we can set our Silverlight application to use the Client HTTP Stack, which incidentally solves our problem! By using Silverlights own networking stack, rather than that of the browser, we get around the Asp.Net - WCF session state issue. The above code specifies that all calls to addresses starting with “http://” should go through the client stack, this can actually be set more granular and you can specify it to be used only for certain domains etc. Summary The actual solution is well covered in the forum and blog posts I link to above. This post is more about sharing my experience, hopefully helping to spread the word about this and maybe make it a bit easier for the next poor guy with this issue to find the solution. Until next time, Ola

    Read the article

  • SSAS Maestro Training in July 2012 #ssasmaestro #ssas

    - by Marco Russo (SQLBI)
    A few hours ago Chris Webb blogged about SSAS Maestro and I’d like to propagate the news, adding also some background info. SSAS Maestro is the premier certification on Analysis Services that selects the best experts in Analysis Services around the world. In 2011 Microsoft organized two rounds of training/exams for SSAS Maestros and up to now only 11 people from the first wave have been announced – around 10% of attendees of the course! In the next few days the new Maestros from the second round should be announced and this long process is caused by many factors that I’m going to explain. First, the course is just a step in the process. Before the course you receive a list of topics to study, including the slides of the course. During the course, students receive a lot of information that might not have been included in the slides and the best part of the course is class interaction. Students are expected to bring their experience to the table and comparing case studies, experiences and having long debates is an important part of the learning process. And it is also a part of the evaluation: good questions might be also more important than good answers! Finally, after the course, students have their homework and this may require one or two months to be completed. After that, a long (very long) evaluation process begins, taking into account homework, labs, participation… And for this reason the final evaluation may arrive months later after the course. We are going to improve and shorten this process with the next courses. The first wave of SSAS Maestro had been made by invitation only and now the program is opening, requiring a fee to participate in order to cover the cost of preparation, training and exam. The number of attendees will be limited and candidates will have to send their CV in order to be admitted to the course. Only experienced Analysis Services developers will be able to participate to this challenging program. So why you should do that? Well, only 10% of students passed the exam until now. So if you need 100% guarantee to pass the exam, you need to study a lot, before, during and after the course. But the course by itself is a precious opportunity to share experience, create networking and learn mission-critical enterprise-level best practices that it’s hard to find written on books. Oh, well, many existing white papers are a required reading *before* the course! The course is now 5 days long, and every day can be *very* long. We’ll have lectures and discussions in the morning and labs in the afternoon/evening. Plus some more lectures in one or two afternoons. A heavy part of the course is about performance optimization, capacity planning, monitoring. This edition will introduce also Tabular models, and don’t expect something you might find in the SSAS Tabular Workshop – only performance, scalability monitoring and optimization will be covered, knowing Analysis Services is a requirement just to be accepted! I and Chris Webb will be the teachers for this edition. The course is expensive. Applying for SSAS Maestro will cost around 7000€ plus taxes (reduced to 5000€ for students of a previous SSAS Maestro edition). And you will be locked in a training room for the large part of the week. So why you should do that? Well, as I said, this is a challenging course. You will not find the time to check your email – the content is just too much interesting to think you can be distracted by something else. Another good reason is that this course will take place in Italy. Well, the course will take place in the brand new Microsoft Innovation Campus, but in general we’ll be able to provide you hints to get great food and, if you are willing to attach one week-end to your trip, there are plenty of places to visit (and I’m not talking about the classic Rome-Florence-Venice) – you might really need to relax after such a week! Finally, the marking process after the course will be faster – we’d like to complete the evaluation within three months after the course, considering that 1-2 months might be required to complete the homework. If at this point you are not scared: registration will open in mid-April, but you can already write to [email protected] sending your CV/resume and a short description of your level of SSAS knowledge and experience. The selection process will start early and you may want to put your admission form on top of the FIFO queue!

    Read the article

  • How do I cancel a time-delayed screenshot?

    - by coversnail
    I'm using the default screenshot application that comes with Ubuntu gnome-screenshot When I was using it earlier to take screenshots of the lock screen I had set a long time delay, but forgot to change it back after I'd finished. When I next took a timed screenshot I had to wait a long time for it to take because the delay was still set so long. Clicking the icon to relaunch the screenshot application has no effect whilst the timer is in effect, I imagine there is probably a simple terminal command to shut down an application, but I don't know it! Is there a way to do this?

    Read the article

  • Which programming career path fits my terms? [closed]

    - by Goward Gerald
    I am sick and tired of my enterprise development job, I need some programming direction like this: Demanded in jobs-market Demanded in freelance market Can use Ubuntu as development environment Not enterprise. Standalone, mobile, web-development, anything, just not enterprise. Basically, I need a programming direction which doesn't need 20 developers, terribly big databases systems and long going projects with intense long-term support, I don't want enterprise job where a lot of people are working on one terribly big project and do modules to it all day long. Instead, I need something where: Projects change pretty often Projects are little, or medium-sized (in terms of code, modules and people working on it) but still not enterprise-sized Possible for freelance, solo-development, or at least requires a team of 3-4 programmers. Not like in enterprise where you feel like a drop in the sea with your 50 classes while system itself has hundreds of classes. Suggestions please?

    Read the article

  • Do threads delete themselves?

    - by Prog
    Let's say I was working on a Swing application. Most of it is run on the EDT using SwingUtilities.invokeLater() inside the main method, because I heard (please correct me if I'm wrong) that that's what you need to do with Swing. However, some parts of it shouldn't run on the EDT. These parts are parts that take long to complete (I assume that this is because long tasks on the EDT will interfere with GUI stuff the EDT should be doing, and thus these kinds of tasks should be run on parallel, on a different thread. Is this assumption correct?) To do this, when I need to perform a task that takes long to complete and thus can't be run on the EDT like the rest of the program, I create a new thread and run that task inside it. My question is: When the run() method of that new thread finishes, aka the thread finished it's job. Does it delete itself? Or does it keep existing in the memory?

    Read the article

  • Handling large integers in python [migrated]

    - by Sushma Palimar
    I had written a program in python to find b such that a prime number p divides b^2-8. The range for b is [1, (p+1)/2]. For small integers it works, say only up to 7 digits. But not for large integers, say for p = 140737471578113. I get the error message for i in range (2,p1,1): MemoryError I wrote the program as #!/usr/bin/python3 p=long(raw_input('enter the prime number:')) p1=long((p+1)/2) for i in range (2,p1,1): s = long((i*i)-8) if (s%p==0): print i

    Read the article

  • Google Chrome Extensions: Launch Event (part 6)

    Google Chrome Extensions: Launch Event (part 6) Video Footage from the Google Chrome Extensions launch event on 12/09/09. Nick Baum, product manager for Google Chrome's extension system presents the gallery approval process, gives tips to extensions developers on how to make their extension successful and discusses the team's short term plans. From: GoogleDevelopers Views: 5659 17 ratings Time: 08:42 More in Science & Technology

    Read the article

  • Daily tech links for .net and related technologies - Mar 29-31, 2010

    - by SanjeevAgarwal
    Daily tech links for .net and related technologies - Mar 29-31, 2010 Web Development Querying the Future With Reactive Extensions - Phil Haack Creating an OData API for StackOverflow including XML and JSON in 30 minutes - Scott Hanselman MVC Automatic Menu - Nuri Halperin jqGrid for ASP.NET MVC - TriRand Team Foolproof Provides Contingent Data Annotation Validation for ASP.NET MVC 2 -Nick Riggs Using FubuMVC.UI in asp.net MVC : Getting started - Cannibal Coder Building A Custom ActionResult in MVC...(read more)

    Read the article

  • links for 2010-04-27

    - by Bob Rhubart
    @oracletechnet: Oracle Technology Network Newsletters Revisited "You may find this hard to believe, but some analysts contend that email newsletters are still among the most preferred methods of "information awareness" by developers today. And in our experience, the numbers back it up: subscriptions to Oracle Technology Network newsletters grow organically by 15% every year, even after you take continual list cleanup into account. " -- Justin Kestelyn (tags: oracle otn newsletters developers architects) Sylvain Duloutre: Directory Services as a Web Service Sylvain Duloutre shares a WSDL file he created to deal with issues involved in XML binding generation. (tags: oracle sun wsdl webservices DSEE netbeans jdeveloper) Nick Wooler: Iron-Clad Cloud: Secure Cloud Computing "One solution to the security problem with cloud services can be overcome using Service Oriented Security. The Oracle approach to using Service Oriented Security allows developers to pull from a centralized, authoritative source of identity services. This allows developers to build security into every application from the inside-out. This is critical to ensuring this is done in a standardized manner and most importantly it allows developers to develop without being security experts." -- Nick Wooler (tags: oracle sun security cloud saas) Andy Mulholland: A week of visits; Cisco, HP, Oracle, SAP and VMware (in alphabetical order!) "I now am considering that we should be thinking about ‘clouds’ in virtual way, by which I mean that a succession of virtual ‘clouds’ will need to exist, each possessing specific characteristics that suit certain types of services. Really it’s no different to what we see with servers today. Adding a hypervisor to a server adds new flexibility, but creating a virtualised environment means much more. What I suspect will happen is that we will start to use vendor specific approaches to building what I will term a physical cloud solution using their technology and approach to supporting a specific objective, but with time we will find these physical clouds will interoperate as a fully virtualised cloud environment." -- Andy Mulholland (tags: entarch enterprisearchitecture cloudcomputing virtualization) @fteter: Highlights From The Bright Lights - Tuesday #c10 Oracle Ace Director Floyd Teter of JPL with one last wrap-up of Collaborate 10. (tags: oracle otn collaborate2010 las vegas) Rittman Mead India – Call for very good Oracle BI Developers/Architects "Now that we have an office in India and if you are interested in joining us, do drop us a line at [email protected], and we will be glad to have technical discussions with you. If you are also an Oracle BI, DW or EPM customer looking for help on projects in the Asia-Pacific region, again we’ll be pleased to hear from you and to let you know how we can help." -- Venkatakrishnan J (tags: otn oracle jobs india developers architects software)

    Read the article

  • My Speaking Engagements in the Last Two Months

    - by gsusx
    I’ve been so busy lately with the activities around Moesion that I haven’t had time to blog about a couple of great conferences I had the opportunity to speak at in the last two months. Software Architect Conference, UK ( http://www.software-architect.co.uk/ ) This conference is becoming one of my favorite events of the year. As always Nick Payne and his team did a remarkable job lining up an all-star group of speakers that covered some of the hottest topics in today’s software industry. The first...(read more)

    Read the article

< Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >