Search Results

Search found 187 results on 8 pages for 'containskey'.

Page 7/8 | < Previous Page | 3 4 5 6 7 8  | Next Page >

  • How to discover classes with [Authorize] attributes using Reflection in C#? (or How to build Dynamic

    - by Pretzel
    Maybe I should back-up and widen the scope before diving into the title question... I'm currently writing a web app in ASP.NET MVC 1.0 (although I do have MVC 2.0 installed on my PC, so I'm not exactly restricted to 1.0) -- I've started with the standard MVC project which has your basic "Welcome to ASP.NET MVC" and shows both the [Home] tab and [About] tab in the upper-right corner. Pretty standard, right? I've added 4 new Controller classes, let's call them "Astronomer", "Biologist", "Chemist", and "Physicist". Attached to each new controller class is the [Authorize] attribute. For example, for the BiologistController.cs [Authorize(Roles = "Biologist,Admin")] public class BiologistController : Controller { public ActionResult Index() { return View(); } } These [Authorize] tags naturally limit which user can access different controllers depending on Roles, but I want to dynamically build a Menu at the top of my website in the Site.Master Page based on the Roles the user is a part of. So for example, if JoeUser was a member of Roles "Astronomer" and "Physicist", the navigation menu would say: [Home] [Astronomer] [Physicist] [About] And naturally, it would not list links to "Biologist" or "Chemist" controller Index page. Or if "JohnAdmin" was a member of Role "Admin", links to all 4 controllers would show up in the navigation bar. Ok, you prolly get the idea... Starting with the answer from this StackOverflow topic about Dynamic Menu building in ASP.NET, I'm trying to understand how I would fully implement this. (I'm a newbie and need a little more guidance, so please bare with me.) The answer proposes Extending the Controller class (call it "ExtController") and then have each new WhateverController inherit from ExtController. My conclusion is that I would need to use Reflection in this ExtController Constructor to determine which Classes and Methods have [Authorize] attributes attached to them to determine the Roles. Then using a Static Dictionary, store the Roles and Controllers/Methods in key-value pairs. I imagine it something like this: public class ExtController : Controller { protected static Dictionary<Type,List<string>> ControllerRolesDictionary; protected override void OnActionExecuted(ActionExecutedContext filterContext) { // build list of menu items based on user's permissions, and add it to ViewData IEnumerable<MenuItem> menu = BuildMenu(); ViewData["Menu"] = menu; } private IEnumerable<MenuItem> BuildMenu() { // Code to build a menu SomeRoleProvider rp = new SomeRoleProvider(); foreach (var role in rp.GetRolesForUser(HttpContext.User.Identity.Name)) { } } public ExtController() { // Use this.GetType() to determine if this Controller is already in the Dictionary if (!ControllerRolesDictionary.ContainsKey(this.GetType())) { // If not, use Reflection to add List of Roles to Dictionary // associating with Controller } } } Is this doable? If so, how do I perform Reflection in the ExtController constructor to discover the [Authorize] attribute and related Roles (if any) ALSO! Feel free to go out-of-scope on this question and suggest an alternate way of solving this "Dynamic Site.Master Menu based on Roles" problem. I'm the first to admit that this may not be the best approach.

    Read the article

  • JComobox is not showing in the JDialog

    - by Pujan Srivastava
    I have 2 classes. when I put bold 3 lines in the method addCourses() the dialog does not show combobox in the Panel but when I remove from addCourses and put those bold lines in the constructor, JComboBox are shown in the Panel. But data will not show because data items updates to ComboBox will happen after Constructor is created. How can I solve this problem. this.mainPanel.add(courseCombo, BorderLayout.NORTH); this.mainPanel.add(sessionCombo, BorderLayout.CENTER); this.mainPanel.add(courseButton, BorderLayout.SOUTH); public class Updator { CourseListFrame clf = new CourseListFrame(); for(...){ clf.addContentsToBox(displayName, className); } clf.addCourses(); } and second class is public class CourseListFrame extends JDialog implements ActionListener { public JPanel mainPanel = new JPanel(new BorderLayout(2, 2)); public JButton courseButton = new JButton(("Submit")); public JComboBox courseCombo; public JComboBox sessionCombo; public Multimap<String, String> map; // = HashMultimap.create(); public static CourseListFrame courseListDialog; public CourseListFrame() { super(this.getMainFrame()); this.getContentPane().add(mainPanel); map = HashMultimap.create(); courseCombo = new JComboBox(); courseCombo.addItem("Select Courses"); courseCombo.addActionListener(this); sessionCombo = new JComboBox(); } public void addContentsToBox(String course, String session) { map.put(course, session); courseCombo.addItem(course); } public void actionPerformed(ActionEvent e) { JComboBox cb = (JComboBox) e.getSource(); String str = (String) cb.getSelectedItem(); setSessionCombo(str); } public void setSessionCombo(String course) { if (map.containsKey(course)) { sessionCombo.removeAllItems(); Iterator it = map.get(course).iterator(); while (it.hasNext()) { sessionCombo.addItem(it.next()); } } } public void addCourses() { this.mainPanel.add(courseCombo, BorderLayout.NORTH); this.mainPanel.add(sessionCombo, BorderLayout.CENTER); this.mainPanel.add(courseButton, BorderLayout.SOUTH); } public static void showCourseListDialog() { if (courseListDialog == null) { courseListDialog = new CourseListFrame(); } courseListDialog.pack(); courseListDialog.setVisible(true); courseListDialog.setSize(260, 180); } }

    Read the article

  • Parsing string logic issue c#

    - by N0xus
    This is a follow on from this question My program is taking in a string that is comprised of two parts: a distance value and an id number respectively. I've split these up and stored them in local variables inside my program. All of the id numbers are stored in a dictionary and are used check the incoming distance value. Though I should note that each string that gets sent into my program from the device is passed along on a single string. The next time my program receives that a signal from a device, it overrides the previous data that was there before. Should the id key coming into my program match one inside my dictionary, then a variable held next to my dictionaries key, should be updated. However, when I run my program, I don't get 6 different values, I only get the same value and they all update at the same time. This is all the code I have written trying to do this: Dictionary<string, string> myDictonary = new Dictionary<string, string>(); string Value1 = ""; string Value2 = ""; string Value3 = ""; string Value4 = ""; string Value5 = ""; string Value6 = ""; void Start() { myDictonary.Add("11111111", Value1); myDictonary.Add("22222222", Value2); myDictonary.Add("33333333", Value3); myDictonary.Add("44444444", Value4); myDictonary.Add("55555555", Value5); myDictonary.Add("66666666", Value6); } private void AppendString(string message) { testMessage = message; string[] messages = message.Split(','); foreach(string w in messages) { if(!message.StartsWith(" ")) outputContent.text += w + "\n"; } messageCount = "RSSI number " + messages[0]; uuidString = "UUID number " + messages[1]; if(myDictonary.ContainsKey(messages[1])) { Value1 = messageCount; Value2 = messageCount; Value3 = messageCount; Value4 = messageCount; Value5 = messageCount; Value6 = messageCount; } } How can I get it so that when programs recives the first key, for example 1111111, it only updates Value1? The information that comes through can be dynamic, so I'd like to avoid harding as much information as I possibly can.

    Read the article

  • KeyNotFound Exception in Dictionary(of T)

    - by C Patton
    I'm about ready to bang my head against the wall I have a class called Map which has a dictionary called tiles. class Map { public Dictionary<Location, Tile> tiles = new Dictionary<Location, Tile>(); public Size mapSize; public Map(Size size) { this.mapSize = size; } //etc... I fill this dictionary temporarily to test some things.. public void FillTemp(Dictionary<int, Item> itemInfo) { Random r = new Random(); for(int i =0; i < mapSize.Width; i++) { for(int j=0; j<mapSize.Height; j++) { Location temp = new Location(i, j, 0); int rint = r.Next(0, (itemInfo.Count - 1)); Tile t = new Tile(new Item(rint, rint)); tiles[temp] = t; } } } and in my main program code Map m = new Map(10, 10); m.FillTemp(iInfo); Tile t = m.GetTile(new Location(2, 2, 0)); //The problem line now, if I add a breakpoint in my code, I can clearly see that my instance (m) of the map class is filled with pairs via the function above, but when I try to access a value with the GetTile function: public Tile GetTile(Location location) { if(this.tiles.ContainsKey(location)) { return this.tiles[location]; } else { return null; } } it ALWAYS returns null. Again, if I view inside the Map object and find the Location key where x=2,y=2,z=0 , I clearly see the value being a Tile that FillTemp generated.. Why is it doing this? I've had no problems with a Dictionary such as this so far. I have no idea why it's returning null. and again, when debugging, I can CLEARLY see that the Map instance contains the Location key it says it does not... very frustrating. Any clues? Need any more info? Help would be greatly appreciated :)

    Read the article

  • NHibernate does not update entity when repository is passed by constructor

    - by Alex
    Hi everybody, I am developing with NHibernate for the first time in conjunction with ASP.NET MVC and StructureMap. The CodeCampServer serves as a great example for me. I really like the different concepts which were implemented there and I can learn a lot from it. In my controllers I use Constructur Dependency Injection to get an instance of the specific repository needed. My problem is: If I change an attribute of the customer the customer's data is not updated in the database, although Commit() is called on the transaction object (by a HttpModule). public class AccountsController : Controller { private readonly ICustomerRepository repository; public AccountsController(ICustomerRepository repository) { this.repository = repository; } public ActionResult Save(Customer customer) { Customer customerToUpdate = repository .GetById(customer.Id); customerToUpdate.GivenName = "test"; //<-- customer does not get updated in database return View(); } } On the other hand this is working: public class AccountsController : Controller { [LoadCurrentCustomer] public ActionResult Save(Customer customer) { customer.GivenName = "test"; //<-- Customer gets updated return View(); } } public class LoadCurrentCustomer : ActionFilterAttribute { public override void OnActionExecuting(ActionExecutingContext filterContext) { const string parameterName = "Customer"; if (filterContext.ActionParameters.ContainsKey(parameterName)) { if (filterContext.HttpContext.User.Identity.IsAuthenticated) { Customer CurrentCustomer = DependencyResolverFactory .GetDefault() .Resolve<IUserSession>() .GetCurrentUser(); filterContext.ActionParameters[parameterName] = CurrentCustomer; } } base.OnActionExecuting(filterContext); } } public class UserSession : IUserSession { private readonly ICustomerRepository repository; public UserSession(ICustomerRepository customerRepository) { repository = customerRepository; } public Customer GetCurrentUser() { var identity = HttpContext.Current.User.Identity; if (!identity.IsAuthenticated) { return null; } Customer customer = repository.GetByEmailAddress(identity.Name); return customer; } } I also tried to call update on the repository like the following code shows. But this leads to an NHibernateException which says "Illegal attempt to associate a collection with two open sessions". Actually there is only one. public ActionResult Save(Customer customer) { Customer customerToUpdate = repository .GetById(customer.Id); customer.GivenName = "test"; repository.Update(customerToUpdate); return View(); } Does somebody have an idea why the customer is not updated in the first example but is updated in the second example? Why does NHibernate say that there are two open sessions?

    Read the article

  • KeyNotFound Exception in CSsharp

    - by C Patton
    I'm about ready to bang my head against the wall I have a class called Map which has a dictionary called tiles. class Map { public Dictionary<Location, Tile> tiles = new Dictionary<Location, Tile>(); public Size mapSize; public Map(Size size) { this.mapSize = size; } //etc... I fill this dictionary temporarily to test some things.. public void FillTemp(Dictionary<int, Item> itemInfo) { Random r = new Random(); for(int i =0; i < mapSize.Width; i++) { for(int j=0; j<mapSize.Height; j++) { Location temp = new Location(i, j, 0); int rint = r.Next(0, (itemInfo.Count - 1)); Tile t = new Tile(new Item(rint, rint)); tiles[temp] = t; } } } and in my main program code Map m = new Map(10, 10); m.FillTemp(iInfo); Tile t = m.GetTile(new Location(2, 2, 0)); //The problem line now, if I add a breakpoint in my code, I can clearly see that my instance (m) of the map class is filled with pairs via the function above, but when I try to access a value with the GetTile function: public Tile GetTile(Location location) { if(this.tiles.ContainsKey(location)) { return this.tiles[location]; } else { return null; } } it ALWAYS returns null. Again, if I view inside the Map object and find the Location key where x=2,y=2,z=0 , I clearly see the value being a Tile that FillTemp generated.. Why is it doing this? I've had no problems with a Dictionary such as this so far. I have no idea why it's returning null. and again, when debugging, I can CLEARLY see that the Map instance contains the Location key it says it does not... very frustrating. Any clues? Need any more info? Help would be greatly appreciated :)

    Read the article

  • C++: Why does gcc prefer non-const over const when accessing operator[]?

    - by JonasW
    This question might be more appropriately asked regarding C++ in general, but as I am using gcc on linux that's the context. Consider the following program: #include <iostream> #include <map> #include <string> using namespace std; template <typename TKey, typename TValue> class Dictionary{ public: map<TKey, TValue> internal; TValue & operator[](TKey const & key) { cout << "operator[] with key " << key << " called " << endl; return internal[key]; } TValue const & operator[](TKey const & key) const { cout << "operator[] const with key " << key << " called " << endl; return internal.at(key); } }; int main(int argc, char* argv[]) { Dictionary<string, string> dict; dict["1"] = "one"; cout << "first one: " << dict["1"] << endl; return 0; } When executing the program, the output is: operator[] with key 1 called operator[] with key 1 called first one: one What I would like is to have the compiler choose the operator[]const method instead in the second call. The reason is that without having used dict["1"] before, the call to operator[] causes the internal map to create the data that does not exist, even if the only thing I wanted was to do some debugging output, which of course is a fatal application error. The behaviour I am looking for would be something like the C# index operator which has a get and a set operation and where you could throw an exception if the getter tries to access something that doesn't exist: class MyDictionary<TKey, TVal> { private Dictionary<TKey, TVal> dict = new Dictionary<TKey, TVal>(); public TVal this[TKey idx] { get { if(!dict.ContainsKey(idx)) throw KeyNotFoundException("..."); return dict[idx]; } set { dict[idx] = value; } } } Thus, I wonder why the gcc prefers the non-const call over the const call when non-const access is not required.

    Read the article

  • Dictionary w/ null key?

    - by Ralph
    Firstly, why doesn't Dictionary<TKey, TValue> support a single null key? Secondly, is there an existing dictionary-like collection that does? I want to store an "empty" or "missing" or "default" System.Type, thought null would work well for this. More specifically, I've written this class: class Switch { private Dictionary<Type, Action<object>> _dict; public Switch(params KeyValuePair<Type, Action<object>>[] cases) { _dict = new Dictionary<Type, Action<object>>(cases.Length); foreach (var entry in cases) _dict.Add(entry.Key, entry.Value); } public void Execute(object obj) { var type = obj.GetType(); if (_dict.ContainsKey(type)) _dict[type](obj); } public static void Execute(object obj, params KeyValuePair<Type, Action<object>>[] cases) { var type = obj.GetType(); foreach (var entry in cases) { if (entry.Key == null || type.IsAssignableFrom(entry.Key)) { entry.Value(obj); break; } } } public static KeyValuePair<Type, Action<object>> Case<T>(Action action) { return new KeyValuePair<Type, Action<object>>(typeof(T), x => action()); } public static KeyValuePair<Type, Action<object>> Case<T>(Action<T> action) { return new KeyValuePair<Type, Action<object>>(typeof(T), x => action((T)x)); } public static KeyValuePair<Type, Action<object>> Default(Action action) { return new KeyValuePair<Type, Action<object>>(null, x => action()); } } For switching on types. There are two ways to use it: Statically. Just call Switch.Execute(yourObject, Switch.Case<YourType>(x => x.Action())) Precompiled. Create a switch, and then use it later with switchInstance.Execute(yourObject) Works great except when you try to add a default case to the "precompiled" version (null argument exception).

    Read the article

  • Is it thread safe to read a form controls value (but not change it) without using Invoke/BeginInvoke from another thread

    - by goku_da_master
    I know you can read a gui control from a worker thread without using Invoke/BeginInvoke because my app is doing it now. The cross thread exception error is not being thrown and my System.Timers.Timer thread is able to read gui control values just fine (unlike this guy: can a worker thread read a control in the GUI?) Question 1: Given the cardinal rule of threads, should I be using Invoke/BeginInvoke to read form control values? And does this make it more thread-safe? The background to this question stems from a problem my app is having. It seems to randomly corrupt form controls another thread is referencing. (see question 2) Question 2: I have a second thread that needs to update form control values so I Invoke/BeginInvoke to update those values. Well this same thread needs a reference to those controls so it can update them. It holds a list of these controls (say DataGridViewRow objects). Sometimes (not always), the DataGridViewRow reference gets "corrupt". What I mean by corrupt, is the reference is still valid, but some of the DataGridViewRow properties are null (ex: row.Cells). Is this caused by question 1 or can you give me any tips on why this might be happening? Here's some code (the last line has the problem): public partial class MyForm : Form { void Timer_Elapsed(object sender) { // we're on a new thread (this function gets called every few seconds) UpdateUiHelper updateUiHelper = new UpdateUiHelper(this); foreach (DataGridViewRow row in dataGridView1.Rows) { object[] values = GetValuesFromDb(); updateUiHelper.UpdateRowValues(row, values[0]); } // .. do other work here updateUiHelper.UpdateUi(); } } public class UpdateUiHelper { private readonly Form _form; private Dictionary<DataGridViewRow, object> _rows; private delegate void RowDelegate(DataGridViewRow row); private readonly object _lockObject = new object(); public UpdateUiHelper(Form form) { _form = form; _rows = new Dictionary<DataGridViewRow, object>(); } public void UpdateRowValues(DataGridViewRow row, object value) { if (_rows.ContainsKey(row)) _rows[row] = value; else { lock (_lockObject) { _rows.Add(row, value); } } } public void UpdateUi() { foreach (DataGridViewRow row in _rows.Keys) { SetRowValueThreadSafe(row); } } private void SetRowValueThreadSafe(DataGridViewRow row) { if (_form.InvokeRequired) { _form.Invoke(new RowDelegate(SetRowValueThreadSafe), new object[] { row }); return; } // now we're on the UI thread object newValue = _rows[row]; row.Cells[0].Value = newValue; // randomly errors here with NullReferenceException, but row is never null! }

    Read the article

  • Securing an ASP.NET MVC 2 Application

    - by rajbk
    This post attempts to look at some of the methods that can be used to secure an ASP.NET MVC 2 Application called Northwind Traders Human Resources.  The sample code for the project is attached at the bottom of this post. We are going to use a slightly modified Northwind database. The screen capture from SQL server management studio shows the change. I added a new column called Salary, inserted some random salaries for the employees and then turned off AllowNulls.   The reporting relationship for Northwind Employees is shown below.   The requirements for our application are as follows: Employees can see their LastName, FirstName, Title, Address and Salary Employees are allowed to edit only their Address information Employees can see the LastName, FirstName, Title, Address and Salary of their immediate reports Employees cannot see records of non immediate reports.  Employees are allowed to edit only the Salary and Title information of their immediate reports. Employees are not allowed to edit the Address of an immediate report Employees should be authenticated into the system. Employees by default get the “Employee” role. If a user has direct reports, they will also get assigned a “Manager” role. We use a very basic empId/pwd scheme of EmployeeID (1-9) and password test$1. You should never do this in an actual application. The application should protect from Cross Site Request Forgery (CSRF). For example, Michael could trick Steven, who is already logged on to the HR website, to load a page which contains a malicious request. where without Steven’s knowledge, a form on the site posts information back to the Northwind HR website using Steven’s credentials. Michael could use this technique to give himself a raise :-) UI Notes The layout of our app looks like so: When Nancy (EmpID 1) signs on, she sees the default page with her details and is allowed to edit her address. If Nancy attempts to view the record of employee Andrew who has an employeeID of 2 (Employees/Edit/2), she will get a “Not Authorized” error page. When Andrew (EmpID 2) signs on, he can edit the address field of his record and change the title and salary of employees that directly report to him. Implementation Notes All controllers inherit from a BaseController. The BaseController currently only has error handling code. When a user signs on, we check to see if they are in a Manager role. We then create a FormsAuthenticationTicket, encrypt it (including the roles that the employee belongs to) and add it to a cookie. private void SetAuthenticationCookie(int employeeID, List<string> roles) { HttpCookiesSection cookieSection = (HttpCookiesSection) ConfigurationManager.GetSection("system.web/httpCookies"); AuthenticationSection authenticationSection = (AuthenticationSection) ConfigurationManager.GetSection("system.web/authentication"); FormsAuthenticationTicket authTicket = new FormsAuthenticationTicket( 1, employeeID.ToString(), DateTime.Now, DateTime.Now.AddMinutes(authenticationSection.Forms.Timeout.TotalMinutes), false, string.Join("|", roles.ToArray())); String encryptedTicket = FormsAuthentication.Encrypt(authTicket); HttpCookie authCookie = new HttpCookie(FormsAuthentication.FormsCookieName, encryptedTicket); if (cookieSection.RequireSSL || authenticationSection.Forms.RequireSSL) { authCookie.Secure = true; } HttpContext.Current.Response.Cookies.Add(authCookie); } We read this cookie back in Global.asax and set the Context.User to be a new GenericPrincipal with the roles we assigned earlier. protected void Application_AuthenticateRequest(Object sender, EventArgs e){ if (Context.User != null) { string cookieName = FormsAuthentication.FormsCookieName; HttpCookie authCookie = Context.Request.Cookies[cookieName]; if (authCookie == null) return; FormsAuthenticationTicket authTicket = FormsAuthentication.Decrypt(authCookie.Value); string[] roles = authTicket.UserData.Split(new char[] { '|' }); FormsIdentity fi = (FormsIdentity)(Context.User.Identity); Context.User = new System.Security.Principal.GenericPrincipal(fi, roles); }} We ensure that a user has permissions to view a record by creating a custom attribute AuthorizeToViewID that inherits from ActionFilterAttribute. public class AuthorizeToViewIDAttribute : ActionFilterAttribute{ IEmployeeRepository employeeRepository = new EmployeeRepository(); public override void OnActionExecuting(ActionExecutingContext filterContext) { if (filterContext.ActionParameters.ContainsKey("id") && filterContext.ActionParameters["id"] != null) { if (employeeRepository.IsAuthorizedToView((int)filterContext.ActionParameters["id"])) { return; } } throw new UnauthorizedAccessException("The record does not exist or you do not have permission to access it"); }} We add the AuthorizeToView attribute to any Action method that requires authorization. [HttpPost][Authorize(Order = 1)]//To prevent CSRF[ValidateAntiForgeryToken(Salt = Globals.EditSalt, Order = 2)]//See AuthorizeToViewIDAttribute class[AuthorizeToViewID(Order = 3)] [ActionName("Edit")]public ActionResult Update(int id){ var employeeToEdit = employeeRepository.GetEmployee(id); if (employeeToEdit != null) { //Employees can edit only their address //A manager can edit the title and salary of their subordinate string[] whiteList = (employeeToEdit.IsSubordinate) ? new string[] { "Title", "Salary" } : new string[] { "Address" }; if (TryUpdateModel(employeeToEdit, whiteList)) { employeeRepository.Save(employeeToEdit); return RedirectToAction("Details", new { id = id }); } else { ModelState.AddModelError("", "Please correct the following errors."); } } return View(employeeToEdit);} The Authorize attribute is added to ensure that only authorized users can execute that Action. We use the TryUpdateModel with a white list to ensure that (a) an employee is able to edit only their Address and (b) that a manager is able to edit only the Title and Salary of a subordinate. This works in conjunction with the AuthorizeToViewIDAttribute. The ValidateAntiForgeryToken attribute is added (with a salt) to avoid CSRF. The Order on the attributes specify the order in which the attributes are executed. The Edit View uses the AntiForgeryToken helper to render the hidden token: ......<% using (Html.BeginForm()) {%><%=Html.AntiForgeryToken(NorthwindHR.Models.Globals.EditSalt)%><%= Html.ValidationSummary(true, "Please correct the errors and try again.") %><div class="editor-label"> <%= Html.LabelFor(model => model.LastName) %></div><div class="editor-field">...... The application uses View specific models for ease of model binding. public class EmployeeViewModel{ public int EmployeeID; [Required] [DisplayName("Last Name")] public string LastName { get; set; } [Required] [DisplayName("First Name")] public string FirstName { get; set; } [Required] [DisplayName("Title")] public string Title { get; set; } [Required] [DisplayName("Address")] public string Address { get; set; } [Required] [DisplayName("Salary")] [Range(500, double.MaxValue)] public decimal Salary { get; set; } public bool IsSubordinate { get; set; }} To help with displaying readonly/editable fields, we use a helper method. //Simple extension method to display a TextboxFor or DisplayFor based on the isEditable variablepublic static MvcHtmlString TextBoxOrLabelFor<TModel, TProperty>(this HtmlHelper<TModel> htmlHelper, Expression<Func<TModel, TProperty>> expression, bool isEditable){ if (isEditable) { return htmlHelper.TextBoxFor(expression); } else { return htmlHelper.DisplayFor(expression); }} The helper method is used in the view like so: <%=Html.TextBoxOrLabelFor(model => model.Title, Model.IsSubordinate)%> As mentioned in this post, there is a much easier way to update properties on an object. Download Demo Project VS 2008, ASP.NET MVC 2 RTM Remember to change the connectionString to point to your Northwind DB NorthwindHR.zip Feedback and bugs are always welcome :-)

    Read the article

  • Enterprise Library Logging / Exception handling and Postsharp

    - by subodhnpushpak
    One of my colleagues came-up with a unique situation where it was required to create log files based on the input file which is uploaded. For example if A.xml is uploaded, the corresponding log file should be A_log.txt. I am a strong believer that Logging / EH / caching are cross-cutting architecture aspects and should be least invasive to the business-logic written in enterprise application. I have been using Enterprise Library for logging / EH (i use to work with Avanade, so i have affection towards the library!! :D ). I have been also using excellent library called PostSharp for cross cutting aspect. Here i present a solution with and without PostSharp all in a unit test. Please see full source code at end of the this blog post. But first, we need to tweak the enterprise library so that the log files are created at runtime based on input given. Below is Custom trace listner which writes log into a given file extracted out of Logentry extendedProperties property. using Microsoft.Practices.EnterpriseLibrary.Common.Configuration; using Microsoft.Practices.EnterpriseLibrary.Logging.Configuration; using Microsoft.Practices.EnterpriseLibrary.Logging.TraceListeners; using Microsoft.Practices.EnterpriseLibrary.Logging; using System.IO; using System.Text; using System; using System.Diagnostics;   namespace Subodh.Framework.Logging { [ConfigurationElementType(typeof(CustomTraceListenerData))] public class LogToFileTraceListener : CustomTraceListener {   private static object syncRoot = new object();   public override void TraceData(TraceEventCache eventCache, string source, TraceEventType eventType, int id, object data) {   if ((data is LogEntry) & this.Formatter != null) { WriteOutToLog(this.Formatter.Format((LogEntry)data), (LogEntry)data); } else { WriteOutToLog(data.ToString(), (LogEntry)data); } }   public override void Write(string message) { Debug.Print(message.ToString()); }   public override void WriteLine(string message) { Debug.Print(message.ToString()); }   private void WriteOutToLog(string BodyText, LogEntry logentry) { try { //Get the filelocation from the extended properties if (logentry.ExtendedProperties.ContainsKey("filelocation")) { string fullPath = Path.GetFullPath(logentry.ExtendedProperties["filelocation"].ToString());   //Create the directory where the log file is written to if it does not exist. DirectoryInfo directoryInfo = new DirectoryInfo(Path.GetDirectoryName(fullPath));   if (directoryInfo.Exists == false) { directoryInfo.Create(); }   //Lock the file to prevent another process from using this file //as data is being written to it.   lock (syncRoot) { using (FileStream fs = new FileStream(fullPath, FileMode.Append, FileAccess.Write, FileShare.Write, 4096, true)) { using (StreamWriter sw = new StreamWriter(fs, Encoding.UTF8)) { Log(BodyText, sw); sw.Close(); } fs.Close(); } } } } catch (Exception ex) { throw new LoggingException(ex.Message, ex); } }   /// <summary> /// Write message to named file /// </summary> public static void Log(string logMessage, TextWriter w) { w.WriteLine("{0}", logMessage); } } }   The above can be “plugged into” the code using below configuration <loggingConfiguration name="Logging Application Block" tracingEnabled="true" defaultCategory="Trace" logWarningsWhenNoCategoriesMatch="true"> <listeners> <add listenerDataType="Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.CustomTraceListenerData, Microsoft.Practices.EnterpriseLibrary.Logging, Version=4.1.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" traceOutputOptions="None" filter="All" type="Subodh.Framework.Logging.LogToFileTraceListener, Subodh.Framework.Logging, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" name="Subodh Custom Trace Listener" initializeData="" formatter="Text Formatter" /> </listeners> Similarly we can use PostSharp to expose the above as cross cutting aspects as below using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Reflection; using PostSharp.Laos; using System.Diagnostics; using GC.FrameworkServices.ExceptionHandler; using Subodh.Framework.Logging;   namespace Subodh.Framework.ExceptionHandling { [Serializable] public sealed class LogExceptionAttribute : OnExceptionAspect { private string prefix; private MethodFormatStrings formatStrings;   // This field is not serialized. It is used only at compile time. [NonSerialized] private readonly Type exceptionType; private string fileName;   /// <summary> /// Declares a <see cref="XTraceExceptionAttribute"/> custom attribute /// that logs every exception flowing out of the methods to which /// the custom attribute is applied. /// </summary> public LogExceptionAttribute() { }   /// <summary> /// Declares a <see cref="XTraceExceptionAttribute"/> custom attribute /// that logs every exception derived from a given <see cref="Type"/> /// flowing out of the methods to which /// the custom attribute is applied. /// </summary> /// <param name="exceptionType"></param> public LogExceptionAttribute( Type exceptionType ) { this.exceptionType = exceptionType; }   public LogExceptionAttribute(Type exceptionType, string fileName) { this.exceptionType = exceptionType; this.fileName = fileName; }   /// <summary> /// Gets or sets the prefix string, printed before every trace message. /// </summary> /// <value> /// For instance <c>[Exception]</c>. /// </value> public string Prefix { get { return this.prefix; } set { this.prefix = value; } }   /// <summary> /// Initializes the current object. Called at compile time by PostSharp. /// </summary> /// <param name="method">Method to which the current instance is /// associated.</param> public override void CompileTimeInitialize( MethodBase method ) { // We just initialize our fields. They will be serialized at compile-time // and deserialized at runtime. this.formatStrings = Formatter.GetMethodFormatStrings( method ); this.prefix = Formatter.NormalizePrefix( this.prefix ); }   public override Type GetExceptionType( MethodBase method ) { return this.exceptionType; }   /// <summary> /// Method executed when an exception occurs in the methods to which the current /// custom attribute has been applied. We just write a record to the tracing /// subsystem. /// </summary> /// <param name="context">Event arguments specifying which method /// is being called and with which parameters.</param> public override void OnException( MethodExecutionEventArgs context ) { string message = String.Format("{0}Exception {1} {{{2}}} in {{{3}}}. \r\n\r\nStack Trace {4}", this.prefix, context.Exception.GetType().Name, context.Exception.Message, this.formatStrings.Format(context.Instance, context.Method, context.GetReadOnlyArgumentArray()), context.Exception.StackTrace); if(!string.IsNullOrEmpty(fileName)) { ApplicationLogger.LogException(message, fileName); } else { ApplicationLogger.LogException(message, Source.UtilityService); } } } } To use the above below is the unit test [TestMethod] [ExpectedException(typeof(NotImplementedException))] public void TestMethod1() { MethodThrowingExceptionForLog(); try { MethodThrowingExceptionForLogWithPostSharp(); } catch (NotImplementedException ex) { throw ex; } }   private void MethodThrowingExceptionForLog() { try { throw new NotImplementedException(); } catch (NotImplementedException ex) { // create file and then write log ApplicationLogger.TraceMessage("this is a trace message which will be logged in Test1MyFile", @"D:\EL\Test1Myfile.txt"); ApplicationLogger.TraceMessage("this is a trace message which will be logged in YetAnotherTest1Myfile", @"D:\EL\YetAnotherTest1Myfile.txt"); } }   // Automatically log details using attributes // Log exception using attributes .... A La WCF [FaultContract(typeof(FaultMessage))] style] [Log(@"D:\EL\Test1MyfileLogPostsharp.txt")] [LogException(typeof(NotImplementedException), @"D:\EL\Test1MyfileExceptionPostsharp.txt")] private void MethodThrowingExceptionForLogWithPostSharp() { throw new NotImplementedException(); } The good thing about the approach is that all the logging and EH is done at centralized location controlled by PostSharp. Of Course, if some other library has to be used instead of EL, it can easily be plugged in. Also, the coder ARE ONLY involved in writing business code in methods, which makes code cleaner. Here is the full source code. The third party assemblies provided are from EL and PostSharp and i presume you will find these useful. Do let me know your thoughts / ideas on the same. Technorati Tags: PostSharp,Enterprize library,C#,Logging,Exception handling

    Read the article

  • Dynamic Types and DynamicObject References in C#

    - by Rick Strahl
    I've been working a bit with C# custom dynamic types for several customers recently and I've seen some confusion in understanding how dynamic types are referenced. This discussion specifically centers around types that implement IDynamicMetaObjectProvider or subclass from DynamicObject as opposed to arbitrary type casts of standard .NET types. IDynamicMetaObjectProvider types  are treated special when they are cast to the dynamic type. Assume for a second that I've created my own implementation of a custom dynamic type called DynamicFoo which is about as simple of a dynamic class that I can think of:public class DynamicFoo : DynamicObject { Dictionary<string, object> properties = new Dictionary<string, object>(); public string Bar { get; set; } public DateTime Entered { get; set; } public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; if (!properties.ContainsKey(binder.Name)) return false; result = properties[binder.Name]; return true; } public override bool TrySetMember(SetMemberBinder binder, object value) { properties[binder.Name] = value; return true; } } This class has an internal dictionary member and I'm exposing this dictionary member through a dynamic by implementing DynamicObject. This implementation exposes the properties dictionary so the dictionary keys can be referenced like properties (foo.NewProperty = "Cool!"). I override TryGetMember() and TrySetMember() which are fired at runtime every time you access a 'property' on a dynamic instance of this DynamicFoo type. Strong Typing and Dynamic Casting I now can instantiate and use DynamicFoo in a couple of different ways: Strong TypingDynamicFoo fooExplicit = new DynamicFoo(); var fooVar = new DynamicFoo(); These two commands are essentially identical and use strong typing. The compiler generates identical code for both of them. The var statement is merely a compiler directive to infer the type of fooVar at compile time and so the type of fooExplicit is DynamicFoo, just like fooExplicit. This is very static - nothing dynamic about it - and it completely ignores the IDynamicMetaObjectProvider implementation of my class above as it's never used. Using either of these I can access the native properties:DynamicFoo fooExplicit = new DynamicFoo();// static typing assignmentsfooVar.Bar = "Barred!"; fooExplicit.Entered = DateTime.Now; // echo back static values Console.WriteLine(fooVar.Bar); Console.WriteLine(fooExplicit.Entered); but I have no access whatsoever to the properties dictionary. Basically this creates a strongly typed instance of the type with access only to the strongly typed interface. You get no dynamic behavior at all. The IDynamicMetaObjectProvider features don't kick in until you cast the type to dynamic. If I try to access a non-existing property on fooExplicit I get a compilation error that tells me that the property doesn't exist. Again, it's clearly and utterly non-dynamic. Dynamicdynamic fooDynamic = new DynamicFoo(); fooDynamic on the other hand is created as a dynamic type and it's a completely different beast. I can also create a dynamic by simply casting any type to dynamic like this:DynamicFoo fooExplicit = new DynamicFoo(); dynamic fooDynamic = fooExplicit; Note that dynamic typically doesn't require an explicit cast as the compiler automatically performs the cast so there's no need to use as dynamic. Dynamic functionality works at runtime and allows for the dynamic wrapper to look up and call members dynamically. A dynamic type will look for members to access or call in two places: Using the strongly typed members of the object Using theIDynamicMetaObjectProvider Interface methods to access members So rather than statically linking and calling a method or retrieving a property, the dynamic type looks up - at runtime  - where the value actually comes from. It's essentially late-binding which allows runtime determination what action to take when a member is accessed at runtime *if* the member you are accessing does not exist on the object. Class members are checked first before IDynamicMetaObjectProvider interface methods are kick in. All of the following works with the dynamic type:dynamic fooDynamic = new DynamicFoo(); // dynamic typing assignments fooDynamic.NewProperty = "Something new!"; fooDynamic.LastAccess = DateTime.Now; // dynamic assigning static properties fooDynamic.Bar = "dynamic barred"; fooDynamic.Entered = DateTime.Now; // echo back dynamic values Console.WriteLine(fooDynamic.NewProperty); Console.WriteLine(fooDynamic.LastAccess); Console.WriteLine(fooDynamic.Bar); Console.WriteLine(fooDynamic.Entered); The dynamic type can access the native class properties (Bar and Entered) and create and read new ones (NewProperty,LastAccess) all using a single type instance which is pretty cool. As you can see it's pretty easy to create an extensible type this way that can dynamically add members at runtime dynamically. The Alter Ego of IDynamicObject The key point here is that all three statements - explicit, var and dynamic - declare a new DynamicFoo(), but the dynamic declaration results in completely different behavior than the first two simply because the type has been cast to dynamic. Dynamic binding means that the type loses its typical strong typing, compile time features. You can see this easily in the Visual Studio code editor. As soon as you assign a value to a dynamic you lose Intellisense and you see which means there's no Intellisense and no compiler type checking on any members you apply to this instance. If you're new to the dynamic type it might seem really confusing that a single type can behave differently depending on how it is cast, but that's exactly what happens when you use a type that implements IDynamicMetaObjectProvider. Declare the type as its strong type name and you only get to access the native instance members of the type. Declare or cast it to dynamic and you get dynamic behavior which accesses native members plus it uses IDynamicMetaObjectProvider implementation to handle any missing member definitions by running custom code. You can easily cast objects back and forth between dynamic and the original type:dynamic fooDynamic = new DynamicFoo(); fooDynamic.NewProperty = "New Property Value"; DynamicFoo foo = fooDynamic; foo.Bar = "Barred"; Here the code starts out with a dynamic cast and a dynamic assignment. The code then casts back the value to the DynamicFoo. Notice that when casting from dynamic to DynamicFoo and back we typically do not have to specify the cast explicitly - the compiler can induce the type so I don't need to specify as dynamic or as DynamicFoo. Moral of the Story This easy interchange between dynamic and the underlying type is actually super useful, because it allows you to create extensible objects that can expose non-member data stores and expose them as an object interface. You can create an object that hosts a number of strongly typed properties and then cast the object to dynamic and add additional dynamic properties to the same type at runtime. You can easily switch back and forth between the strongly typed instance to access the well-known strongly typed properties and to dynamic for the dynamic properties added at runtime. Keep in mind that dynamic object access has quite a bit of overhead and is definitely slower than strongly typed binding, so if you're accessing the strongly typed parts of your objects you definitely want to use a strongly typed reference. Reserve dynamic for the dynamic members to optimize your code. The real beauty of dynamic is that with very little effort you can build expandable objects or objects that expose different data stores to an object interface. I'll have more on this in my next post when I create a customized and extensible Expando object based on DynamicObject.© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • MapRedux - PowerShell and Big Data

    - by Dittenhafer Solutions
    MapRedux – #PowerShell and #Big Data Have you been hearing about “big data”, “map reduce” and other large scale computing terms over the past couple of years and been curious to dig into more detail? Have you read some of the Apache Hadoop online documentation and unfortunately concluded that it wasn't feasible to setup a “test” hadoop environment on your machine? More recently, I have read about some of Microsoft’s work to enable Hadoop on the Azure cloud. Being a "Microsoft"-leaning technologist, I am more inclinded to be successful with experimentation when on the Windows platform. Of course, it is not that I am "religious" about one set of technologies other another, but rather more experienced. Anyway, within the past couple of weeks I have been thinking about PowerShell a bit more as the 2012 PowerShell Scripting Games approach and it occured to me that PowerShell's support for Windows Remote Management (WinRM), and some other inherent features of PowerShell might lend themselves particularly well to a simple implementation of the MapReduce framework. I fired up my PowerShell ISE and started writing just to see where it would take me. Quite simply, the ScriptBlock feature combined with the ability of Invoke-Command to create remote jobs on networked servers provides much of the plumbing of a distributed computing environment. There are some limiting factors of course. Microsoft provided some default settings which prevent PowerShell from taking over a network without administrative approval first. But even with just one adjustment, a given Windows-based machine can become a node in a MapReduce-style distributed computing environment. Ok, so enough introduction. Let's talk about the code. First, any machine that will participate as a remote "node" will need WinRM enabled for remote access, as shown below. This is not exactly practical for hundreds of intended nodes, but for one (or five) machines in a test environment it does just fine. C:> winrm quickconfig WinRM is not set up to receive requests on this machine. The following changes must be made: Set the WinRM service type to auto start. Start the WinRM service. Make these changes [y/n]? y Alternatively, you could take the approach described in the Remotely enable PSRemoting post from the TechNet forum and use PowerShell to create remote scheduled tasks that will call Enable-PSRemoting on each intended node. Invoke-MapRedux Moving on, now that you have one or more remote "nodes" enabled, you can consider the actual Map and Reduce algorithms. Consider the following snippet: $MyMrResults = Invoke-MapRedux -MapReduceItem $Mr -ComputerName $MyNodes -DataSet $dataset -Verbose Invoke-MapRedux takes an instance of a MapReduceItem which references the Map and Reduce scriptblocks, an array of computer names which are the remote nodes, and the initial data set to be processed. As simple as that, you can start working with concepts of big data and the MapReduce paradigm. Now, how did we get there? I have published the initial version of my PsMapRedux PowerShell Module on GitHub. The PsMapRedux module provides the Invoke-MapRedux function described above. Feel free to browse the underlying code and even contribute to the project! In a later post, I plan to show some of the inner workings of the module, but for now let's move on to how the Map and Reduce functions are defined. Map Both the Map and Reduce functions need to follow a prescribed prototype. The prototype for a Map function in the MapRedux module is as follows. A simple scriptblock that takes one PsObject parameter and returns a hashtable. It is important to note that the PsObject $dataset parameter is a MapRedux custom object that has a "Data" property which offers an array of data to be processed by the Map function. $aMap = { Param ( [PsObject] $dataset ) # Indicate the job is running on the remote node. Write-Host ($env:computername + "::Map"); # The hashtable to return $list = @{}; # ... Perform the mapping work and prepare the $list hashtable result with your custom PSObject... # ... The $dataset has a single 'Data' property which contains an array of data rows # which is a subset of the originally submitted data set. # Return the hashtable (Key, PSObject) Write-Output $list; } Reduce Likewise, with the Reduce function a simple prototype must be followed which takes a $key and a result $dataset from the MapRedux's partitioning function (which joins the Map results by key). Again, the $dataset is a MapRedux custom object that has a "Data" property as described in the Map section. $aReduce = { Param ( [object] $key, [PSObject] $dataset ) Write-Host ($env:computername + "::Reduce - Count: " + $dataset.Data.Count) # The hashtable to return $redux = @{}; # Return Write-Output $redux; } All Together Now When everything is put together in a short example script, you implement your Map and Reduce functions, query for some starting data, build the MapReduxItem via New-MapReduxItem and call Invoke-MapRedux to get the process started: # Import the MapRedux and SQL Server providers Import-Module "MapRedux" Import-Module “sqlps” -DisableNameChecking # Query the database for a dataset Set-Location SQLSERVER:\sql\dbserver1\default\databases\myDb $query = "SELECT MyKey, Date, Value1 FROM BigData ORDER BY MyKey"; Write-Host "Query: $query" $dataset = Invoke-SqlCmd -query $query # Build the Map function $MyMap = { Param ( [PsObject] $dataset ) Write-Host ($env:computername + "::Map"); $list = @{}; foreach($row in $dataset.Data) { # Write-Host ("Key: " + $row.MyKey.ToString()); if($list.ContainsKey($row.MyKey) -eq $true) { $s = $list.Item($row.MyKey); $s.Sum += $row.Value1; $s.Count++; } else { $s = New-Object PSObject; $s | Add-Member -Type NoteProperty -Name MyKey -Value $row.MyKey; $s | Add-Member -type NoteProperty -Name Sum -Value $row.Value1; $list.Add($row.MyKey, $s); } } Write-Output $list; } $MyReduce = { Param ( [object] $key, [PSObject] $dataset ) Write-Host ($env:computername + "::Reduce - Count: " + $dataset.Data.Count) $redux = @{}; $count = 0; foreach($s in $dataset.Data) { $sum += $s.Sum; $count += 1; } # Reduce $redux.Add($s.MyKey, $sum / $count); # Return Write-Output $redux; } # Create the item data $Mr = New-MapReduxItem "My Test MapReduce Job" $MyMap $MyReduce # Array of processing nodes... $MyNodes = ("node1", "node2", "node3", "node4", "localhost") # Run the Map Reduce routine... $MyMrResults = Invoke-MapRedux -MapReduceItem $Mr -ComputerName $MyNodes -DataSet $dataset -Verbose # Show the results Set-Location C:\ $MyMrResults | Out-GridView Conclusion I hope you have seen through this article that PowerShell has a significant infrastructure available for distributed computing. While it does take some code to expose a MapReduce-style framework, much of the work is already done and PowerShell could prove to be the the easiest platform to develop and run big data jobs in your corporate data center, potentially in the Azure cloud, or certainly as an academic excerise at home or school. Follow me on Twitter to stay up to date on the continuing progress of my Powershell MapRedux module, and thanks for reading! Daniel

    Read the article

  • Using LINQ to Twitter OAuth with Windows 8

    - by Joe Mayo
    In previous posts, I explained how to use LINQ to Twitter with Windows 8, but the example was a Twitter Search, which didn’t require authentication. Much of the Twitter API requires authentication, so this post will explain how you can perform OAuth authentication with LINQ to Twitter in a Windows 8 Metro-style application. Getting Started I have earlier posts on how to create a Windows 8 app and add pages, so I’ll assume it isn’t necessary to repeat here. One difference is that I’m using Visual Studio 2012 RC and some of the terminology and/or library code might be slightly different.  Here are steps to get started: Create a new Windows metro style app, selecting the Blank App project template. Create a new Basic Page and name it OAuth.xaml.  Note: You’ll receive a prompt window for adding files and you should click Yes because those files are necessary for this demo. Add a new Basic Page named TweetPage.xaml. Open App.xaml.cs and change !rootFrame.Navigate(typeof(MainPage)) to !rootFrame.Navigate(typeof(TweetPage)). Now that the project is set up you’ll see the reason why authentication is required by setting up the TweetPage. Setting Up to Tweet a Status In this section, I’ll show you how to set up the XAML and code-behind for a tweet.  The tweet logic will check to see if the user is authenticated before performing the tweet. To tweet, I put a TextBox and Button on the XAML page. The following code omits most of the page, concentrating primarily on the elements of interest in this post: <StackPanel Grid.Row="1"> <TextBox Name="TweetTextBox" Margin="15" /> <Button Name="TweetButton" Content="Tweet" Click="TweetButton_Click" Margin="15,0" /> </StackPanel> Given the UI above, the user types the message they want to tweet, and taps Tweet. This invokes TweetButton_Click, which checks to see if the user is authenticated.  If the user is not authenticated, the app navigates to the OAuth page.  If they are authenticated, LINQ to Twitter does an UpdateStatus to post the user’s tweet.  Here’s the TweetButton_Click implementation: void TweetButton_Click(object sender, RoutedEventArgs e) { PinAuthorizer auth = null; if (SuspensionManager.SessionState.ContainsKey("Authorizer")) { auth = SuspensionManager.SessionState["Authorizer"] as PinAuthorizer; } if (auth == null || !auth.IsAuthorized) { Frame.Navigate(typeof(OAuthPage)); return; } var twitterCtx = new TwitterContext(auth); Status tweet = twitterCtx.UpdateStatus(TweetTextBox.Text); new MessageDialog(tweet.Text, "Successful Tweet").ShowAsync(); } For authentication, this app uses PinAuthorizer, one of several authorizers available in the LINQ to Twitter library. I’ll explain how PinAuthorizer works in the next section. What’s important here is that LINQ to Twitter needs an authorizer to post a Tweet. The code above checks to see if a valid authorizer is available. To do this, it uses the SuspensionManager class, which is part of the code generated earlier when creating OAuthPage.xaml. The SessionState property is a Dictionary<string, object> and I’m using the Authorizer key to store the PinAuthorizer.  If the user previously authorized during this session, the code reads the PinAuthorizer instance from SessionState and assigns it to the auth variable. If the user is authorized, auth would not be null and IsAuthorized would be true. Otherwise, the app navigates the user to OAuthPage.xaml, which I’ll discuss in more depth in the next section. When the user is authorized, the code passes the authorizer, auth, to the TwitterContext constructor. LINQ to Twitter uses the auth instance to build OAuth signatures for each interaction with Twitter.  You no longer need to write any more code to make this happen. The code above accepts the tweet just posted in the Status instance, tweet, and displays a message with the text to confirm success to the user. You can pull the PinAuthorizer instance from SessionState, instantiate your TwitterContext, and use it as you need. Just remember to make sure you have a valid authorizer, like the code above. As shown earlier, the code navigates to OAuthPage.xaml when a valid authorizer isn’t available. The next section shows how to perform the authorization upon arrival at OAuthPage.xaml. Doing the OAuth Dance This section shows how to authenticate with LINQ to Twitter’s built-in OAuth support. From the user perspective, they must be navigated to the Twitter authentication page, add credentials, be navigated to a Pin number page, and then enter that Pin in the Windows 8 application. The following XAML shows the relevant elements that the user will interact with during this process. <StackPanel Grid.Row="2"> <WebView x:Name="OAuthWebBrowser" HorizontalAlignment="Left" Height="400" Margin="15" VerticalAlignment="Top" Width="700" /> <TextBlock Text="Please perform OAuth process (above), enter Pin (below) when ready, and tap Authenticate:" Margin="15,15,15,5" /> <TextBox Name="PinTextBox" Margin="15,0,15,15" Width="432" HorizontalAlignment="Left" IsEnabled="False" /> <Button Name="AuthenticatePinButton" Content="Authenticate" Margin="15" IsEnabled="False" Click="AuthenticatePinButton_Click" /> </StackPanel> The WebView in the code above is what allows the user to see the Twitter authentication page. The TextBox is for entering the Pin, and the Button invokes code that will take the Pin and allow LINQ to Twitter to complete the authentication process. As you can see, there are several steps to OAuth authentication, but LINQ to Twitter tries to minimize the amount of code you have to write. The two important parts of the code to make this happen are the part that starts the authentication process and the part that completes the authentication process. The following code, from OAuthPage.xaml.cs, shows a couple events that are instrumental in making this process happen: public OAuthPage() { this.InitializeComponent(); this.Loaded += OAuthPage_Loaded; OAuthWebBrowser.LoadCompleted += OAuthWebBrowser_LoadCompleted; } The OAuthWebBrowser_LoadCompleted event handler enables UI controls when the browser is done loading – notice that the TextBox and Button in the previous XAML have their IsEnabled attributes set to False. When the Page.Loaded event is invoked, the OAuthPage_Loaded handler starts the OAuth process, shown here: void OAuthPage_Loaded(object sender, RoutedEventArgs e) { auth = new PinAuthorizer { Credentials = new InMemoryCredentials { ConsumerKey = "", ConsumerSecret = "" }, UseCompression = true, GoToTwitterAuthorization = pageLink => Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () => OAuthWebBrowser.Navigate(new Uri(pageLink, UriKind.Absolute))) }; auth.BeginAuthorize(resp => Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () => { switch (resp.Status) { case TwitterErrorStatus.Success: break; case TwitterErrorStatus.RequestProcessingException: case TwitterErrorStatus.TwitterApiError: new MessageDialog(resp.Error.ToString(), resp.Message).ShowAsync(); break; } })); } The PinAuthorizer, auth, a field of this class instantiated in the code above, assigns keys to the Credentials property. These are credentials that come from registering an application with Twitter, explained in the LINQ to Twitter documentation, Securing Your Applications. Notice how I use Dispatcher.RunAsync to marshal the web browser navigation back onto the UI thread. Internally, LINQ to Twitter invokes the lambda expression assigned to GoToTwitterAuthorization when starting the OAuth process.  In this case, we want the WebView control to navigate to the Twitter authentication page, which is defined with a default URL in LINQ to Twitter and passed to the GoToTwitterAuthorization lambda as pageLink. Then you need to start the authorization process by calling BeginAuthorize. This starts the OAuth dance, running asynchronously.  LINQ to Twitter invokes the callback assigned to the BeginAuthorize parameter, allowing you to take whatever action you need, based on the Status of the response, resp. As mentioned earlier, this is where the user performs the authentication process, enters the Pin, and clicks authenticate. The handler for authenticate completes the process and saves the authorizer for subsequent use by the application, as shown below: void AuthenticatePinButton_Click(object sender, RoutedEventArgs e) { auth.CompleteAuthorize( PinTextBox.Text, completeResp => Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () => { switch (completeResp.Status) { case TwitterErrorStatus.Success: SuspensionManager.SessionState["Authorizer"] = auth; Frame.Navigate(typeof(TweetPage)); break; case TwitterErrorStatus.RequestProcessingException: case TwitterErrorStatus.TwitterApiError: new MessageDialog(completeResp.Error.ToString(), completeResp.Message).ShowAsync(); break; } })); } The PinAuthorizer CompleteAuthorize method takes two parameters: Pin and callback. The Pin is from what the user entered in the TextBox prior to clicking the Authenticate button that invoked this method. The callback handles the response from completing the OAuth process. The completeResp holds information about the results of the operation, indicated by a Status property of type TwitterErrorStatus. On success, the code assigns auth to SessionState. You might remember SessionState from the previous description of TweetPage – this is where the valid authorizer comes from. After saving the authorizer, the code navigates the user back to TweetPage, where they can type in a message, click the Tweet button, and observe that they have successfully tweeted. Summary You’ve seen how to get started with using LINQ to Twitter in a Metro-style application. The generated code contained a SuspensionManager class with way to manage information across multiple pages via its SessionState property. You also saw how LINQ to Twitter performs authorization in two steps of starting the process and completing the process when the user provides a Pin number. Remember to marshal callback thread back onto the UI – you saw earlier how to use Dispatcher.RunAsync to accomplish this. There were a few steps in the process, but LINQ to Twitter did minimize the amount of code you needed to write to make it happen. You can download the MetroOAuthDemo.zip sample on the LINQ to Twitter Samples Page.   @JoeMayo

    Read the article

  • design suggestion for a message decoder in delphi

    - by stanleyxu2005
    Hi All, I want to implement a RPC module. Different requests are encoded as JSON objects. They will be decoded and then be handled by a request handler. At last a corresponding response will be returned. The demo code looks as follows: type IRequestHandler = interface function Handle(const Request: TAaaRequest): TResponse; function Handle(const Request: TBbbRequest): TResponse; end; TDecoder = class class function Decode(const Json: TJsonObject; const RequestHandler: IRequestHandler): TResponse; end; class function TDecoder.Decode(const Json: TJsonObject; const RequestHandler: IRequestHandler): TResponse; var Method: string; Request: TObject; begin Method := Json['method'].AsString; if (Method = TAaaRequest.ClassName) then begin Request := TAaaRequest.FromJSON(Json); // Casted as TObject if Request <> nil then begin Result := RequestHandler.Handle(TAaaRequest(Request)); Request.Free; end; end else if (Method = TBbbRequest.ClassName) then begin Request := TBbbRequest.FromJSON(Json); // Casted as TObject if Request <> nil then begin Result := RequestHandler.Handle(TBbbRequest(Request)); Request.Free; end; end else Result := CreateErrorResponse('Unknown method: ' + Json.ToString); end; According to the code, the handling of different request types are very similar. If I have 100 different request types, I have to copy and paste the above code block 100 times. This is not clever. I am looking for a better way to do the same logic. My imagination is as follows: TDecoder = class private FRequestTypes: TDictionary<string, TClassInfo>; // Does this work? public constructor Create; destructor Destroy; override; function Decode(const Json: TJsonObject; const RequestHandler: IRequestHandler): TResponse; end; constructor TDecoder.Create; begin FRequestTypes := TDictionary<string, TClassInfo>.Create; FRequestTypes.Add(TAaaRequest.ClassName, TAaaRequest); // Does this work? FRequestTypes.Add(TBbbRequest.ClassName, TBbbRequest); end; destructor TDecoder.Destroy; begin FRequestTypes.Free; inherited; end; function TDecoder.Decode(const Json: TJsonObject; const RequestHandler: IRequestHandler): TResponse; var Method: string; Info: TClassInfo; Request: TObject; begin Method := Json['method'].AsString; if FRequestTypes.ContainsKey(Method) then begin // An universal way Info := FRequestTypes[Method]; Request := Info.FromJSON(Json); // Casted as TObject if Request <> nil then begin Result := RequestHandler.Handle(Info(Request)); // Casted to corresponding class type (e.g. TAaaRequest or TBbbRequest) Request.Free; end; end else Result := CreateErrorResponse('Unknown method: ' + Json.ToString); end; I do not know, if I can write an universal way to handle a great number of different request types. Development environment Delphi 2010. Any hint is appreciated.

    Read the article

  • Merging .net object graph

    - by Tiju John
    Hi guys, has anyone come across any scenario wherein you needed to merge one object with another object of same type, merging the complete object graph. for e.g. If i have a person object and one person object is having first name and other the last name, some way to merge both the objects into a single object. public class Person { public Int32 Id { get; set; } public string FirstName { get; set; } public string LastName { get; set; } } public class MyClass { //both instances refer to the same person, probably coming from different sources Person obj1 = new Person(); obj1.Id=1; obj1.FirstName = "Tiju"; Person obj2 = new Person(); ojb2.Id=1; obj2.LastName = "John"; //some way of merging both the object obj1.MergeObject(obj2); //?? //obj1.Id // = 1 //obj1.FirstName // = "Tiju" //obj1.LastName // = "John" } I had come across such type of requirement and I wrote an extension method to do the same. public static class ExtensionMethods { private const string Key = "Id"; public static IList MergeList(this IList source, IList target) { Dictionary itemData = new Dictionary(); //fill the dictionary for existing list string temp = null; foreach (object item in source) { temp = GetKeyOfRecord(item); if (!String.IsNullOrEmpty(temp)) itemData[temp] = item; } //if the same id exists, merge the object, otherwise add to the existing list. foreach (object item in target) { temp = GetKeyOfRecord(item); if (!String.IsNullOrEmpty(temp) && itemData.ContainsKey(temp)) itemData[temp].MergeObject(item); else source.Add(item); } return source; } private static string GetKeyOfRecord(object o) { string keyValue = null; Type pointType = o.GetType(); if (pointType != null) foreach (PropertyInfo propertyItem in pointType.GetProperties()) { if (propertyItem.Name == Key) { keyValue = (string)propertyItem.GetValue(o, null); } } return keyValue; } public static object MergeObject(this object source, object target) { if (source != null && target != null) { Type typeSource = source.GetType(); Type typeTarget = target.GetType(); //if both types are same, try to merge if (typeSource != null && typeTarget != null && typeSource.FullName == typeTarget.FullName) if (typeSource.IsClass && !typeSource.Namespace.Equals("System", StringComparison.InvariantCulture)) { PropertyInfo[] propertyList = typeSource.GetProperties(); for (int index = 0; index < propertyList.Length; index++) { Type tempPropertySourceValueType = null; object tempPropertySourceValue = null; Type tempPropertyTargetValueType = null; object tempPropertyTargetValue = null; //get rid of indexers if (propertyList[index].GetIndexParameters().Length == 0) { tempPropertySourceValue = propertyList[index].GetValue(source, null); tempPropertyTargetValue = propertyList[index].GetValue(target, null); } if (tempPropertySourceValue != null) tempPropertySourceValueType = tempPropertySourceValue.GetType(); if (tempPropertyTargetValue != null) tempPropertyTargetValueType = tempPropertyTargetValue.GetType(); //if the property is a list IList ilistSource = tempPropertySourceValue as IList; IList ilistTarget = tempPropertyTargetValue as IList; if (ilistSource != null || ilistTarget != null) { if (ilistSource != null) ilistSource.MergeList(ilistTarget); else propertyList[index].SetValue(source, ilistTarget, null); } //if the property is a Dto else if (tempPropertySourceValue != null || tempPropertyTargetValue != null) { if (tempPropertySourceValue != null) tempPropertySourceValue.MergeObject(tempPropertyTargetValue); else propertyList[index].SetValue(source, tempPropertyTargetValue, null); } } } } return source; } } However, this works when the source property is null, if target has it, it will copy that to source. IT can still be improved to merge when inconsistencies are there e.g. if FirstName="Tiju" and FirstName="John" Any commments appreciated. Thanks TJ

    Read the article

  • Concurrency and Calendar classes

    - by fbielejec
    I have a thread (class implementing runnable, called AnalyzeTree) organised around a hash map (ConcurrentMap slicesMap). The class goes through the data (called trees here) in the large text file and parses the geographical coordinates from it to the HashMap. The idea is to process one tree at a time and add or grow the values according to the key (which is just a Double value representing time). The relevant part of code looks like this: // grow map entry if key exists if (slicesMap.containsKey(sliceTime)) { double[] imputedLocation = imputeValue( location, parentLocation, sliceHeight, nodeHeight, parentHeight, rate, useTrueNoise, currentTreeNormalization, precisionArray); slicesMap.get(sliceTime).add( new Coordinates(imputedLocation[1], imputedLocation[0], 0.0)); // start new entry if no such key in the map } else { List<Coordinates> coords = new ArrayList<Coordinates>(); double[] imputedLocation = imputeValue( location, parentLocation, sliceHeight, nodeHeight, parentHeight, rate, useTrueNoise, currentTreeNormalization, precisionArray); coords.add(new Coordinates(imputedLocation[1], imputedLocation[0], 0.0)); slicesMap.putIfAbsent(sliceTime, coords); // slicesMap.put(sliceTime, coords); }// END: key check And the class is called like this (executor is ExecutorService executor = Executors.newFixedThreadPool(NTHREDS) ): mrsd = new SpreadDate(mrsdString); int readTrees = 1; while (treesImporter.hasTree()) { currentTree = (RootedTree) treesImporter.importNextTree(); executor.submit(new AnalyzeTree(currentTree, precisionString, coordinatesName, rateString, numberOfIntervals, treeRootHeight, timescaler, mrsd, slicesMap, useTrueNoise)); // new AnalyzeTree(currentTree, precisionString, // coordinatesName, rateString, numberOfIntervals, // treeRootHeight, timescaler, mrsd, slicesMap, // useTrueNoise).run(); readTrees++; }// END: while has trees Now this is running into troubles when executed in parallel (the commented part running sequentially is fine), I thought it might throw a ConcurrentModificationException, but apparently the problem is in mrsd (instance of SpreadDate object, which is simply a class for date related calculations). The SpreadDate class looks like this: public class SpreadDate { private Calendar cal; private SimpleDateFormat formatter; private Date stringdate; public SpreadDate(String date) throws ParseException { // if no era specified assume current era String line[] = date.split(" "); if (line.length == 1) { StringBuilder properDateStringBuilder = new StringBuilder(); date = properDateStringBuilder.append(date).append(" AD") .toString(); } formatter = new SimpleDateFormat("yyyy-MM-dd G", Locale.US); stringdate = formatter.parse(date); cal = Calendar.getInstance(); } public long plus(int days) { cal.setTime(stringdate); cal.add(Calendar.DATE, days); return cal.getTimeInMillis(); }// END: plus public long minus(int days) { cal.setTime(stringdate); cal.add(Calendar.DATE, -days); //line 39 return cal.getTimeInMillis(); }// END: minus public long getTime() { cal.setTime(stringdate); return cal.getTimeInMillis(); }// END: getDate } And the stack trace from when exception is thrown: java.lang.ArrayIndexOutOfBoundsException: 58 at sun.util.calendar.BaseCalendar.getCalendarDateFromFixedDate(BaseCalendar.java:454) at java.util.GregorianCalendar.computeFields(GregorianCalendar.java:2098) at java.util.GregorianCalendar.computeFields(GregorianCalendar.java:2013) at java.util.Calendar.setTimeInMillis(Calendar.java:1126) at java.util.GregorianCalendar.add(GregorianCalendar.java:1020) at utils.SpreadDate.minus(SpreadDate.java:39) at templates.AnalyzeTree.run(AnalyzeTree.java:88) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471) at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334) at java.util.concurrent.FutureTask.run(FutureTask.java:166) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603) at java.lang.Thread.run(Thread.java:636) If a move the part initializing mrsd to the AnalyzeTree class it runs without any problems - however it is not very memory efficient to initialize class each time this thread is running, hence my concerns. How can it be remedied?

    Read the article

  • How can i optimize this recursive method

    - by Tirdyr
    Hi there. I'm trying to make a word puzzle game, and for that i'm using a recursive method to find all possible words in the given letters. The letters is in a 4x4 board. Like this: ABCD EFGH HIJK LMNO The recursive method is called inside this loop: for (int y = 0; y < width; y++) { for (int x = 0; x < height; x++) { myScabble.Search(letters, y, x, width, height, "", covered, t); } } letters is a 2D array of chars. y & x is ints that shows where in the board width & height is also int, that tells the dimensions of the board "" is the string we are trying to make (the word) covered is an array of bools, to check if we allready used that square. t is a List (wich contains all the words to check against). The recursive method that need optimizing: public void Search(char[,] letters, int y, int x, int width, int height, string build, bool[,] covered, List<aWord> tt) { // Dont get outside the bounds if (y >= width || y < 0 || x >= height || x < 0) { return; } // Dont deal with allrady covered squares if (covered[x, y]) { return; } // Get Letter char letter = letters[x, y]; // Append string pass = build + letter; // check if its a possibel word //List<aWord> t = myWords.aWord.Where(w => w.word.StartsWith(pass)).ToList(); List<aWord> t = tt.Where(w => w.word.StartsWith(pass)).ToList(); // check if the list is emphty if (t.Count < 10 && t.Count != 0) { //stop point } if (t.Count == 0) { return; } // Check if its a complete word. if (t[0].word == pass) { //check if its allrdy present in the _found dictinary if (!_found.ContainsKey(pass)) { //if not add the word to the dictionary _found.Add(pass, true); } } // Check to see if there is more than 1 more that matches string pass // ie. are there more words to find. if (t.Count > 1) { // make a copy of the covered array bool[,] cov = new bool[height, width]; for (int i = 0; i < width; i++) { for (int a = 0; a < height; a++) { cov[a, i] = covered[a, i]; } } // Set the current square as covered. cov[x, y] = true; // Continue in all 8 directions. Search(letters, y + 1, x, width, height, pass, cov, t); Search(letters, y, x + 1, width, height, pass, cov, t); Search(letters, y + 1, x + 1, width, height, pass, cov, t); Search(letters, y - 1, x, width, height, pass, cov, t); Search(letters, y, x - 1, width, height, pass, cov, t); Search(letters, y - 1, x - 1, width, height, pass, cov, t); Search(letters, y - 1, x + 1, width, height, pass, cov, t); Search(letters, y + 1, x - 1, width, height, pass, cov, t); } } The code works as i expected it to do, however it is very slow.. it takes about 2 mins to find the words. EDIT: i clarified that the letters array is 2D

    Read the article

  • antlr line after line processing

    - by pawloch
    I'm writing simple language in ANTLR, and I'd like to write shell where I can put line of code, hit ENTER and have it executed, enter another line, and have it executed. I have already written grammar which execute all alines of input at one. Example input: int a,b,c; string d; string e; d=\"dziala\"; a=4+7; b=a+33; c=(b/11)*2; grammar Kalkulator; options { language = Java; output=AST; ASTLabelType=CommonTree; } tokens { NEG; } @header { package lab4; } @lexer::header { package lab4; } line : (assignment | declaration)* EOF ; declaration : type^ IDENT (','! IDENT)* ';'! ; type : 'int' | 'string' ; assignment : IDENT '='^ expression ';'! ; term : IDENT | INTEGER | STRING_LITERAL | '('! expression ')'! ; unary : (( negation^ | '+'! ))* term ; negation : '-' -> NEG ; mult : unary ( ('*'^ | '/'^) unary )* ; exp2 :mult ( ('-'^ | '+'^) mult)* ; expression : exp2 ('&'^ exp2)* ; fragment LETTER : ('a'..'z'|'A'..'Z'); fragment DIGIT : '0'..'9'; INTEGER : DIGIT+; IDENT : LETTER (LETTER | DIGIT)* ; WS : (' ' | '\t' | '\n' | '\r' | '\f')+ {$channel=HIDDEN;}; STRING_LITERAL : '\"' .* '\"'; and: tree grammar Evaluator; options { language = Java; tokenVocab = Kalkulator; ASTLabelType = CommonTree; } @header { package lab4; import java.util.Map; import java.util.HashMap; } @members { private Map<String, Object> zmienne = new HashMap<String, Object>(); } line returns [Object result] : (declaration | assignment { result = $assignment.result; })* EOF ; declaration : ^(type ( IDENT { if("string".equals($type.result)){ zmienne.put($IDENT.text,""); //add definition } else{ zmienne.put($IDENT.text,0); //add definition } System.out.println($type.result + " " + $IDENT.text);//write output } )* ) ; assignment returns [Object result] : ^('=' IDENT e=expression) { if(zmienne.containsKey($IDENT.text)) {zmienne.put($IDENT.text, e); result = e; System.out.println(e); } else{ System.out.println("Blad: Niezadeklarowana zmienna"); } } ; type returns [Object result] : 'int' {result="int";}| 'string' {result="string";} ; expression returns [Object result] : ^('+' op1=expression op2=expression) { result = (Integer)op1 + (Integer)op2; } | ^('-' op1=expression op2=expression) { result = (Integer)op1 - (Integer)op2; } | ^('*' op1=expression op2=expression) { result = (Integer)op1 * (Integer)op2; } | ^('/' op1=expression op2=expression) { result = (Integer)op1 / (Integer)op2; } | ^('%' op1=expression op2=expression) { result = (Integer)op1 \% (Integer)op2; } | ^('&' op1=expression op2=expression) { result = (String)op1 + (String)op2; } | ^(NEG e=expression) { result = -(Integer)e; } | IDENT { result = zmienne.get($IDENT.text); } | INTEGER { result = Integer.parseInt($INTEGER.text); } | STRING_LITERAL { String t=$STRING_LITERAL.text; result = t.substring(1,t.length()-1); } ; Can I make it process line-by-line or is that easier to make it all again?

    Read the article

  • Inside the Concurrent Collections: ConcurrentDictionary

    - by Simon Cooper
    Using locks to implement a thread-safe collection is rather like using a sledgehammer - unsubtle, easy to understand, and tends to make any other tool redundant. Unlike the previous two collections I looked at, ConcurrentStack and ConcurrentQueue, ConcurrentDictionary uses locks quite heavily. However, it is careful to wield locks only where necessary to ensure that concurrency is maximised. This will, by necessity, be a higher-level look than my other posts in this series, as there is quite a lot of code and logic in ConcurrentDictionary. Therefore, I do recommend that you have ConcurrentDictionary open in a decompiler to have a look at all the details that I skip over. The problem with locks There's several things to bear in mind when using locks, as encapsulated by the lock keyword in C# and the System.Threading.Monitor class in .NET (if you're unsure as to what lock does in C#, I briefly covered it in my first post in the series): Locks block threads The most obvious problem is that threads waiting on a lock can't do any work at all. No preparatory work, no 'optimistic' work like in ConcurrentQueue and ConcurrentStack, nothing. It sits there, waiting to be unblocked. This is bad if you're trying to maximise concurrency. Locks are slow Whereas most of the methods on the Interlocked class can be compiled down to a single CPU instruction, ensuring atomicity at the hardware level, taking out a lock requires some heavy lifting by the CLR and the operating system. There's quite a bit of work required to take out a lock, block other threads, and wake them up again. If locks are used heavily, this impacts performance. Deadlocks When using locks there's always the possibility of a deadlock - two threads, each holding a lock, each trying to aquire the other's lock. Fortunately, this can be avoided with careful programming and structured lock-taking, as we'll see. So, it's important to minimise where locks are used to maximise the concurrency and performance of the collection. Implementation As you might expect, ConcurrentDictionary is similar in basic implementation to the non-concurrent Dictionary, which I studied in a previous post. I'll be using some concepts introduced there, so I recommend you have a quick read of it. So, if you were implementing a thread-safe dictionary, what would you do? The naive implementation is to simply have a single lock around all methods accessing the dictionary. This would work, but doesn't allow much concurrency. Fortunately, the bucketing used by Dictionary allows a simple but effective improvement to this - one lock per bucket. This allows different threads modifying different buckets to do so in parallel. Any thread making changes to the contents of a bucket takes the lock for that bucket, ensuring those changes are thread-safe. The method that maps each bucket to a lock is the GetBucketAndLockNo method: private void GetBucketAndLockNo( int hashcode, out int bucketNo, out int lockNo, int bucketCount) { // the bucket number is the hashcode (without the initial sign bit) // modulo the number of buckets bucketNo = (hashcode & 0x7fffffff) % bucketCount; // and the lock number is the bucket number modulo the number of locks lockNo = bucketNo % m_locks.Length; } However, this does require some changes to how the buckets are implemented. The 'implicit' linked list within a single backing array used by the non-concurrent Dictionary adds a dependency between separate buckets, as every bucket uses the same backing array. Instead, ConcurrentDictionary uses a strict linked list on each bucket: This ensures that each bucket is entirely separate from all other buckets; adding or removing an item from a bucket is independent to any changes to other buckets. Modifying the dictionary All the operations on the dictionary follow the same basic pattern: void AlterBucket(TKey key, ...) { int bucketNo, lockNo; 1: GetBucketAndLockNo( key.GetHashCode(), out bucketNo, out lockNo, m_buckets.Length); 2: lock (m_locks[lockNo]) { 3: Node headNode = m_buckets[bucketNo]; 4: Mutate the node linked list as appropriate } } For example, when adding another entry to the dictionary, you would iterate through the linked list to check whether the key exists already, and add the new entry as the head node. When removing items, you would find the entry to remove (if it exists), and remove the node from the linked list. Adding, updating, and removing items all follow this pattern. Performance issues There is a problem we have to address at this point. If the number of buckets in the dictionary is fixed in the constructor, then the performance will degrade from O(1) to O(n) when a large number of items are added to the dictionary. As more and more items get added to the linked lists in each bucket, the lookup operations will spend most of their time traversing a linear linked list. To fix this, the buckets array has to be resized once the number of items in each bucket has gone over a certain limit. (In ConcurrentDictionary this limit is when the size of the largest bucket is greater than the number of buckets for each lock. This check is done at the end of the TryAddInternal method.) Resizing the bucket array and re-hashing everything affects every bucket in the collection. Therefore, this operation needs to take out every lock in the collection. Taking out mutiple locks at once inevitably summons the spectre of the deadlock; two threads each hold a lock, and each trying to acquire the other lock. How can we eliminate this? Simple - ensure that threads never try to 'swap' locks in this fashion. When taking out multiple locks, always take them out in the same order, and always take out all the locks you need before starting to release them. In ConcurrentDictionary, this is controlled by the AcquireLocks, AcquireAllLocks and ReleaseLocks methods. Locks are always taken out and released in the order they are in the m_locks array, and locks are all released right at the end of the method in a finally block. At this point, it's worth pointing out that the locks array is never re-assigned, even when the buckets array is increased in size. The number of locks is fixed in the constructor by the concurrencyLevel parameter. This simplifies programming the locks; you don't have to check if the locks array has changed or been re-assigned before taking out a lock object. And you can be sure that when a thread takes out a lock, another thread isn't going to re-assign the lock array. This would create a new series of lock objects, thus allowing another thread to ignore the existing locks (and any threads controlling them), breaking thread-safety. Consequences of growing the array Just because we're using locks doesn't mean that race conditions aren't a problem. We can see this by looking at the GrowTable method. The operation of this method can be boiled down to: private void GrowTable(Node[] buckets) { try { 1: Acquire first lock in the locks array // this causes any other thread trying to take out // all the locks to block because the first lock in the array // is always the one taken out first // check if another thread has already resized the buckets array // while we were waiting to acquire the first lock 2: if (buckets != m_buckets) return; 3: Calculate the new size of the backing array 4: Node[] array = new array[size]; 5: Acquire all the remaining locks 6: Re-hash the contents of the existing buckets into array 7: m_buckets = array; } finally { 8: Release all locks } } As you can see, there's already a check for a race condition at step 2, for the case when the GrowTable method is called twice in quick succession on two separate threads. One will successfully resize the buckets array (blocking the second in the meantime), when the second thread is unblocked it'll see that the array has already been resized & exit without doing anything. There is another case we need to consider; looking back at the AlterBucket method above, consider the following situation: Thread 1 calls AlterBucket; step 1 is executed to get the bucket and lock numbers. Thread 2 calls GrowTable and executes steps 1-5; thread 1 is blocked when it tries to take out the lock in step 2. Thread 2 re-hashes everything, re-assigns the buckets array, and releases all the locks (steps 6-8). Thread 1 is unblocked and continues executing, but the calculated bucket and lock numbers are no longer valid. Between calculating the correct bucket and lock number and taking out the lock, another thread has changed where everything is. Not exactly thread-safe. Well, a similar problem was solved in ConcurrentStack and ConcurrentQueue by storing a local copy of the state, doing the necessary calculations, then checking if that state is still valid. We can use a similar idea here: void AlterBucket(TKey key, ...) { while (true) { Node[] buckets = m_buckets; int bucketNo, lockNo; GetBucketAndLockNo( key.GetHashCode(), out bucketNo, out lockNo, buckets.Length); lock (m_locks[lockNo]) { // if the state has changed, go back to the start if (buckets != m_buckets) continue; Node headNode = m_buckets[bucketNo]; Mutate the node linked list as appropriate } break; } } TryGetValue and GetEnumerator And so, finally, we get onto TryGetValue and GetEnumerator. I've left these to the end because, well, they don't actually use any locks. How can this be? Whenever you change a bucket, you need to take out the corresponding lock, yes? Indeed you do. However, it is important to note that TryGetValue and GetEnumerator don't actually change anything. Just as immutable objects are, by definition, thread-safe, read-only operations don't need to take out a lock because they don't change anything. All lockless methods can happily iterate through the buckets and linked lists without worrying about locking anything. However, this does put restrictions on how the other methods operate. Because there could be another thread in the middle of reading the dictionary at any time (even if a lock is taken out), the dictionary has to be in a valid state at all times. Every change to state has to be made visible to other threads in a single atomic operation (all relevant variables are marked volatile to help with this). This restriction ensures that whatever the reading threads are doing, they never read the dictionary in an invalid state (eg items that should be in the collection temporarily removed from the linked list, or reading a node that has had it's key & value removed before the node itself has been removed from the linked list). Fortunately, all the operations needed to change the dictionary can be done in that way. Bucket resizes are made visible when the new array is assigned back to the m_buckets variable. Any additions or modifications to a node are done by creating a new node, then splicing it into the existing list using a single variable assignment. Node removals are simply done by re-assigning the node's m_next pointer. Because the dictionary can be changed by another thread during execution of the lockless methods, the GetEnumerator method is liable to return dirty reads - changes made to the dictionary after GetEnumerator was called, but before the enumeration got to that point in the dictionary. It's worth listing at this point which methods are lockless, and which take out all the locks in the dictionary to ensure they get a consistent view of the dictionary: Lockless: TryGetValue GetEnumerator The indexer getter ContainsKey Takes out every lock (lockfull?): Count IsEmpty Keys Values CopyTo ToArray Concurrent principles That covers the overall implementation of ConcurrentDictionary. I haven't even begun to scratch the surface of this sophisticated collection. That I leave to you. However, we've looked at enough to be able to extract some useful principles for concurrent programming: Partitioning When using locks, the work is partitioned into independant chunks, each with its own lock. Each partition can then be modified concurrently to other partitions. Ordered lock-taking When a method does need to control the entire collection, locks are taken and released in a fixed order to prevent deadlocks. Lockless reads Read operations that don't care about dirty reads don't take out any lock; the rest of the collection is implemented so that any reading thread always has a consistent view of the collection. That leads us to the final collection in this little series - ConcurrentBag. Lacking a non-concurrent analogy, it is quite different to any other collection in the class libraries. Prepare your thinking hats!

    Read the article

  • C# WPF application is using too much memory while GC.GetTotalMemory() is low

    - by Dmitry
    I wrote little WPF application with 2 threads - main thread is GUI thread and another thread is worker. App has one WPF form with some controls. There is a button, allowing to select directory. After selecting directory, application scans for .jpg files in that directory and checks if their thumbnails are in hashtable. if they are, it does nothing. else it's adding their full filenames to queue for worker. Worker is taking filenames from this queue, loading JPEG images (using WPF's JpegBitmapDecoder and BitmapFrame), making thumbnails of them (using WPF's TransformedBitmap) and adding them to hashtable. Everything works fine, except memory consumption by this application when making thumbnails for big images (like 5000x5000 pixels). I've added textboxes on my form to show memory consumption (GC.GetTotalMemory() and Process.GetCurrentProcess().PrivateMemorySize64) and was very surprised, cuz GC.GetTotalMemory() stays close to 1-2 Mbytes, while private memory size constantly grows, especially when loading new image (~ +100Mb per image). Even after loading all images, making thumbnails of them and freeing original images, private memory size stays at ~700-800Mbytes. My VirtualBox is limited to 512Mb of physical memory and Windows in VirtualBox starts to swap alot to handle this huge memory consumption. I guess I'm doing something wrong, but I don't know how to investigate this problem, cuz according to GC, allocated memory size is very low. Attaching code of thumbnail loader class: class ThumbnailLoader { Hashtable thumbnails; Queue<string> taskqueue; EventWaitHandle wh; Thread[] workers; bool stop; object locker; int width, height, processed, added; public ThumbnailLoader() { int workercount,i; wh = new AutoResetEvent(false); thumbnails = new Hashtable(); taskqueue = new Queue<string>(); stop = false; locker = new object(); width = height = 64; processed = added = 0; workercount = Environment.ProcessorCount; workers=new Thread[workercount]; for (i = 0; i < workercount; i++) { workers[i] = new Thread(Worker); workers[i].IsBackground = true; workers[i].Priority = ThreadPriority.Highest; workers[i].Start(); } } public void SetThumbnailSize(int twidth, int theight) { width = twidth; height = theight; if (thumbnails.Count!=0) AddTask("#resethash"); } public void GetProgress(out int Added, out int Processed) { Added = added; Processed = processed; } private void AddTask(string filename) { lock(locker) { taskqueue.Enqueue(filename); wh.Set(); added++; } } private string NextTask() { lock(locker) { if (taskqueue.Count == 0) return null; else { processed++; return taskqueue.Dequeue(); } } } public static string FileNameToHash(string s) { return FormsAuthentication.HashPasswordForStoringInConfigFile(s, "MD5"); } public bool GetThumbnail(string filename,out BitmapFrame thumbnail) { string hash; hash = FileNameToHash(filename); if (thumbnails.ContainsKey(hash)) { thumbnail=(BitmapFrame)thumbnails[hash]; return true; } AddTask(filename); thumbnail = null; return false; } private BitmapFrame LoadThumbnail(string filename) { FileStream fs; JpegBitmapDecoder bd; BitmapFrame oldbf, bf; TransformedBitmap tb; double scale, dx, dy; fs = new FileStream(filename, FileMode.Open); bd = new JpegBitmapDecoder(fs, BitmapCreateOptions.None, BitmapCacheOption.OnLoad); oldbf = bd.Frames[0]; dx = (double)oldbf.Width / width; dy = (double)oldbf.Height / height; if (dx > dy) scale = 1 / dx; else scale = 1 / dy; tb = new TransformedBitmap(oldbf, new ScaleTransform(scale, scale)); bf = BitmapFrame.Create(tb); fs.Close(); oldbf = null; bd = null; GC.Collect(); return bf; } public void Dispose() { lock(locker) { stop = true; } AddTask(null); foreach (Thread worker in workers) { worker.Join(); } wh.Close(); } private void Worker() { string curtask,hash; while (!stop) { curtask = NextTask(); if (curtask == null) wh.WaitOne(); else { if (curtask == "#resethash") thumbnails.Clear(); else { hash = FileNameToHash(curtask); try { thumbnails[hash] = LoadThumbnail(curtask); } catch { thumbnails[hash] = null; } } } } } }

    Read the article

  • C# Memoization of functions with arbitrary number of arguments

    - by Lirik
    I'm trying to create a memoization interface for functions with arbitrary number of arguments, but I'm failing miserably. The first thing I tried is to define an interface for a function which gets memoized automatically upon execution: class EMAFunction:IFunction { Dictionary<List<object>, List<object>> map; class EMAComparer : IEqualityComparer<List<object>> { private int _multiplier = 97; public bool Equals(List<object> a, List<object> b) { List<object> aVals = (List<object>)a[0]; int aPeriod = (int)a[1]; List<object> bVals = (List<object>)b[0]; int bPeriod = (int)b[1]; return (aVals.Count == bVals.Count) && (aPeriod == bPeriod); } public int GetHashCode(List<object> obj) { // Don't compute hash code on null object. if (obj == null) { return 0; } // Get length. int length = obj.Count; List<object> vals = (List<object>) obj[0]; int period = (int) obj[1]; return (_multiplier * vals.GetHashCode() * period.GetHashCode()) + length;; } } public EMAFunction() { NumParams = 2; Name = "EMA"; map = new Dictionary<List<object>, List<object>>(new EMAComparer()); } #region IFunction Members public int NumParams { get; set; } public string Name { get; set; } public object Execute(List<object> parameters) { if (parameters.Count != NumParams) throw new ArgumentException("The num params doesn't match!"); if (!map.ContainsKey(parameters)) { //map.Add(parameters, List<double> values = new List<double>(); List<object> asObj = (List<object>)parameters[0]; foreach (object val in asObj) { values.Add((double)val); } int period = (int)parameters[1]; asObj.Clear(); List<double> ema = TechFunctions.ExponentialMovingAverage(values, period); foreach (double val in ema) { asObj.Add(val); } map.Add(parameters, asObj); } return map[parameters]; } public void ClearMap() { map.Clear(); } #endregion } Here are my tests of the function: private void MemoizeTest() { DataSet dataSet = DataLoader.LoadData(DataLoader.DataSource.FROM_WEB, 1024); List<String> labels = dataSet.DataLabels; Stopwatch sw = new Stopwatch(); IFunction emaFunc = new EMAFunction(); List<object> parameters = new List<object>(); int numRuns = 1000; long sumTicks = 0; parameters.Add(dataSet.GetValues("open")); parameters.Add(12); // First call for(int i = 0; i < numRuns; ++i) { emaFunc.ClearMap();// remove any memoization mappings sw.Start(); emaFunc.Execute(parameters); sw.Stop(); sumTicks += sw.ElapsedTicks; } Console.WriteLine("Average ticks not-memoized " + (sumTicks/numRuns)); sumTicks = 0; // Repeat call for (int i = 0; i < numRuns; ++i) { sw.Start(); emaFunc.Execute(parameters); sw.Stop(); sumTicks += sw.ElapsedTicks; } Console.WriteLine("Average ticks memoized " + (sumTicks/numRuns)); } The performance is confusing me... I expected the memoized function to be faster, but it didn't work out that way: Average ticks not-memoized 106,182 Average ticks memoized 198,854 I tried doubling the data instances to 2048, but the results were about the same: Average ticks not-memoized 232,579 Average ticks memoized 446,280 I did notice that it was correctly finding the parameters in the map and it going directly to the map, but the performance was still slow... I'm either open for troubleshooting help with this example, or if you have a better solution to the problem then please let me know what it is.

    Read the article

  • Dynamic object property populator (without reflection)

    - by grenade
    I want to populate an object's properties without using reflection in a manner similar to the DynamicBuilder on CodeProject. The CodeProject example is tailored for populating entities using a DataReader or DataRecord. I use this in several DALs to good effect. Now I want to modify it to use a dictionary or other data agnostic object so that I can use it in non DAL code --places I currently use reflection. I know almost nothing about OpCodes and IL. I just know that it works well and is faster than reflection. I have tried to modify the CodeProject example and because of my ignorance with IL, I have gotten stuck on two lines. One of them deals with dbnulls and I'm pretty sure I can just lose it, but I don't know if the lines preceding and following it are related and which of them will also need to go. The other, I think, is the one that pulled the value out of the datarecord before and now needs to pull it out of the dictionary. I think I can replace the "getValueMethod" with my "property.Value" but I'm not sure. I'm open to alternative/better ways of skinning this cat too. Here's the code so far (the commented out lines are the ones I'm stuck on): using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; public class Populator<T> { private delegate T Load(Dictionary<string, object> properties); private Load _handler; private Populator() { } public T Build(Dictionary<string, object> properties) { return _handler(properties); } public static Populator<T> CreateBuilder(Dictionary<string, object> properties) { //private static readonly MethodInfo getValueMethod = typeof(IDataRecord).GetMethod("get_Item", new [] { typeof(int) }); //private static readonly MethodInfo isDBNullMethod = typeof(IDataRecord).GetMethod("IsDBNull", new [] { typeof(int) }); Populator<T> dynamicBuilder = new Populator<T>(); DynamicMethod method = new DynamicMethod("Create", typeof(T), new[] { typeof(Dictionary<string, object>) }, typeof(T), true); ILGenerator generator = method.GetILGenerator(); LocalBuilder result = generator.DeclareLocal(typeof(T)); generator.Emit(OpCodes.Newobj, typeof(T).GetConstructor(Type.EmptyTypes)); generator.Emit(OpCodes.Stloc, result); int i = 0; foreach (var property in properties) { PropertyInfo propertyInfo = typeof(T).GetProperty(property.Key, BindingFlags.Public | BindingFlags.Instance | BindingFlags.IgnoreCase | BindingFlags.FlattenHierarchy | BindingFlags.Default); Label endIfLabel = generator.DefineLabel(); if (propertyInfo != null && propertyInfo.GetSetMethod() != null) { generator.Emit(OpCodes.Ldarg_0); generator.Emit(OpCodes.Ldc_I4, i); //generator.Emit(OpCodes.Callvirt, isDBNullMethod); generator.Emit(OpCodes.Brtrue, endIfLabel); generator.Emit(OpCodes.Ldloc, result); generator.Emit(OpCodes.Ldarg_0); generator.Emit(OpCodes.Ldc_I4, i); //generator.Emit(OpCodes.Callvirt, getValueMethod); generator.Emit(OpCodes.Unbox_Any, property.Value.GetType()); generator.Emit(OpCodes.Callvirt, propertyInfo.GetSetMethod()); generator.MarkLabel(endIfLabel); } i++; } generator.Emit(OpCodes.Ldloc, result); generator.Emit(OpCodes.Ret); dynamicBuilder._handler = (Load)method.CreateDelegate(typeof(Load)); return dynamicBuilder; } } EDIT: Using Marc Gravell's PropertyDescriptor implementation (with HyperDescriptor) the code is simplified a hundred-fold. I now have the following test: using System; using System.Collections.Generic; using System.ComponentModel; using Hyper.ComponentModel; namespace Test { class Person { public int Id { get; set; } public string Name { get; set; } } class Program { static void Main() { HyperTypeDescriptionProvider.Add(typeof(Person)); var properties = new Dictionary<string, object> { { "Id", 10 }, { "Name", "Fred Flintstone" } }; Person person = new Person(); DynamicUpdate(person, properties); Console.WriteLine("Id: {0}; Name: {1}", person.Id, person.Name); Console.ReadKey(); } public static void DynamicUpdate<T>(T entity, Dictionary<string, object> properties) { foreach (PropertyDescriptor propertyDescriptor in TypeDescriptor.GetProperties(typeof(T))) if (properties.ContainsKey(propertyDescriptor.Name)) propertyDescriptor.SetValue(entity, properties[propertyDescriptor.Name]); } } } Any comments on performance considerations for both TypeDescriptor.GetProperties() & PropertyDescriptor.SetValue() are welcome...

    Read the article

  • SortList duplicated key, but it shouldn't

    - by Luca
    I have a class which implements IList interface. I requires a "sorted view" of this list, but without modifying it (I cannot sort directly the IList class). These view shall be updated when the original list is modified, keeping items sorted. So, I've introduced a SortList creation method which create a SortList which has a comparer for the specific object contained in the original list. Here is the snippet of code: public class MyList<T> : ICollection, IList<T> { ... public SortedList CreateSortView(string property) { try { Lock(); SortListView sortView; if (mSortListViews.ContainsKey(property) == false) { // Create sorted view sortView = new SortListView(property, Count); mSortListViews.Add(property, sortView); foreach (T item in Items) sortView.Add(item); } else sortView = mSortListViews[property]; sortView.ReferenceCount++; return (sortView); } finally { Unlock(); } } public void DeleteSortView(string property) { try { Lock(); // Unreference sorted view mSortListViews[property].ReferenceCount--; // Remove sorted view if (mSortListViews[property].ReferenceCount == 0) mSortListViews.Remove(property); } finally { Unlock(); } } protected class SortListView : SortedList { /// <summary> /// /// </summary> /// <param name="property"></param> /// <param name="capacity"></param> public SortListView(string property, int capacity) : base(new GenericPropertyComparer(typeof(T).GetProperty(property, BindingFlags.Instance | BindingFlags.Public)), capacity) { } /// <summary> /// Reference count. /// </summary> public int ReferenceCount = 0; /// <summary> /// /// </summary> /// <param name="item"></param> public void Add(T item) { Add(item, item); } /// <summary> /// /// </summary> /// <param name="item"></param> public void Remove(T item) { // Base implementation base.Remove(item); } /// <summary> /// Compare object on a generic property. /// </summary> class GenericPropertyComparer : IComparer { #region Constructors /// <summary> /// Construct a GenericPropertyComparer specifying the property to compare. /// </summary> /// <param name="property"> /// A <see cref="PropertyInfo"/> which specify the property to be compared. /// </param> /// <remarks> /// The <paramref name="property"/> parameter imply that the compared objects have the specified property. The property /// must be readable, and its type must implement the IComparable interface. /// </remarks> public GenericPropertyComparer(PropertyInfo property) { if (property == null) throw new ArgumentException("property doesn't specify a valid property"); if (property.CanRead == false) throw new ArgumentException("property specify a write-only property"); if (property.PropertyType.GetInterface("IComparable") == null) throw new ArgumentException("property type doesn't IComparable"); mSortingProperty = property; } #endregion #region IComparer Implementation public int Compare(object x, object y) { IComparable propX = (IComparable)mSortingProperty.GetValue(x, null); IComparable propY = (IComparable)mSortingProperty.GetValue(y, null); return (propX.CompareTo(propY)); } /// <summary> /// Sorting property. /// </summary> private PropertyInfo mSortingProperty = null; #endregion } } /// <summary> /// Sorted views of this ReactList. /// </summary> private Dictionary<string, SortListView> mSortListViews = new Dictionary<string, SortListView>(); } Practically, class users request to create a SortListView specifying the name of property which determine the sorting, and using the reflection each SortListView defined a IComparer which keep sorted the items. Whenever an item is added or removed from the original list, every created SortListView will be updated with the same operation. This seems good at first chance, but it creates me problems since it give me the following exception when adding items to the SortList: System.ArgumentException: Item has already been added. Key in dictionary: 'PowerShell_ISE [C:\Windows\sysWOW64\WindowsPowerShell\v1.0\PowerShell_ISE.exe]' Key being added: 'PowerShell_ISE [C:\Windows\system32\WindowsPowerShell\v1.0\PowerShell_ISE.exe]' As you can see from the exception message, thrown by SortedListView.Add(object), the string representation of the key (the list item object) is different (note the path of the executable). Why SortList give me that exception? To solve this I tried to implement a GetHashCode implementation for the underlying object, but without success: public override int GetHashCode() { return ( base.GetHashCode() ^ mApplicationName.GetHashCode() ^ mApplicationPath.GetHashCode() ^ mCommandLine.GetHashCode() ^ mWorkingDirectory.GetHashCode() ); }

    Read the article

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

< Previous Page | 3 4 5 6 7 8  | Next Page >