Search Results

Search found 1352 results on 55 pages for 'contract labor'.

Page 7/55 | < Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >

  • Long-term Freelance contract: should it have a salary-day or not?

    - by otto
    I don't like to speak about money. I just like to work. I still believe in a relationship between good work and good compensation. Hence I don't want ask my employer about my compensations, actually they are asking me. So I created a liberal contract with unspecified salary-day -- I did not want to lose my rights to my own projects and I did not pay any attention to the salary-day. Now the firm said that they would have paid me 1 month earlier if I had provided a tax -paper. I provided it before the next payment -day (unspecified). During the next month, the co-employer pretty much blocks my working -- does not allow me to access working repository and the co-employer goes to cruise when we should finalize a project so I cannot do anything. Now the project is not finalized, the co-employer has apparently provided some false statements to the boss about my doings (not getting anything for one month's work and 1 month when the co-employer pretty much wasted just my time) -- I was only allowed to debug the code of my co-employer and not to do anything. I feel that co-employer did not allow me to work by purpose so that they have an excuse not to pay any salary. The co-employer says that I cannot speak to the boss. The boss say that I need to speak directly to co-employer, not to him. I haven't said anything about the situation. I did not get things done because I was not allowed and now I am not even allowed to speak. Boss is the person who pays salaries. But both boss and co-employer have stages in the firm -- I think co-employer and boss are the same person pretty much, they created a theatre so that they get almost 2 month's work for free. Now I have multiple ideas how to avoid this kind of situations in the future: specify the salary day make sure you can speak directly to the manager and the boss, not through middle-hand other?

    Read the article

  • Why isn't JML implemented as Annotations in Java?

    - by devoured elysium
    Contrary to Code Contracts in C#, in JML Code Contracts are just text that's used in the form of comments in the header of a method. Wouldn't it be better to have them exposed as Annotations, then? That way even when compiling the information would persist on the .class's metadata, contrary to comments, that get erased. Am I missing something? Thanks

    Read the article

  • Code Contracts Vs. Object Initializers (.net 4.0)

    - by Mystagogue
    At face value, it would seem that object initializers present a problem for .net 4.0 "code contracts", where normally the invariant should be established by the time the object constructor is finished. Presumably, however, object-initializers require properties to be set after construction is complete. My question is if the invariants of "code contracts" are able to handle object initializers, "as if" the properties were set before the constructor completes? That would be very nice indeed!!

    Read the article

  • interface as a method parameter in Java

    - by PeterYu
    Hi all, I had an interview days ago and was thrown a question like this. Q: Reverse a linked list. Following code is given: public class ReverseList { interface NodeList { int getItem(); NodeList nextNode(); } void reverse(NodeList node) { } public static void main(String[] args) { } } I was confused because I did not know an interface object could be used as a method parameter. The interviewer explained a little bit but I am still not sure about this. Could somebody enlighten me?

    Read the article

  • Can a table be both Fact and Dimension

    - by PatFromCanada
    Ok, I am a newbie and don't really think "dimensionally" yet, I have most of my initial schema roughed out but I keep flipping back and forth on one table. I have a Contract table and it has a quantity column (tonnes), and a net price column, which need to be summed up a bunch of different ways, and the contract has lots of foreign keys (producer, commodity, futures month etc.) and dates so it appears to be a fact table. Also the contract is never updated, if that makes a difference. However, we create cash tickets which we use to pay out part or all of the contract and they have a contract ID on them so then the contract looks like a dimension in the cash ticket's star schema. Is this a problem? Any ideas on the process to resolve this, because people don't seem to like the idea of joining two fact tables. Should I put producerId and commodityId on the cash ticket? It would seem really weird not to have a contractID on it.

    Read the article

  • How to detect a WCF session crash before calling a contract method?

    - by brain_pusher
    I am using a session mode for my WCF service. The problem is the following: if session is broken and no longer exists, client can't know it before calling a contract. For example, if the service has been restarted, the client's session id is invalid, because that session has been closed on the server side. I check the channel state before calling the contract and its value is CommunicationState.Opened even if session is already broken. So, when I call the contract after this check I get a CommunicationException with this message: The remote endpoint no longer recognizes this sequence. This is most likely due to an abort on the remote endpoint. The value of wsrm:Identifier is not a known Sequence identifier. The reliable session was faulted. Is there any workaround? I need a way to get an appropriate session state before calling a contract so that I can restore it without getting an exception. P.S. The CommunicationException type is general, so I can't detect a session crash by catching this exception. P.P.S. I have asked the similar question here, but in that case I didn't know the reason, now I don't know how to evade it.

    Read the article

  • First Tap on customcell of uitableview should expand it and second should contract it.

    - by neha
    Hi all, In my application I have this requirement that first tap on custom cell of uitableview with a label in it should expand it and second should contract it. I'm able to expand and contract cell and expand label inside cell, but not able to contract the label on second tap. I'm using this function - (void)setSelected:(BOOL)selected animated:(BOOL)animated { [super setSelected:selected animated:animated]; if( selected == YES ) { [self expandRow]; } else { [self contractRow]; } height = [lblFeed frame].size.height + 75; } expandRow expands the label and contractRow contracts it. I'm perplexed as for how many rows this function gets called. It doesn't get called only for the cell tapped, it gets called more number of times for single tap on single cell may be for other cells but I'm not getting which rows. This' really urgent. Can anybody please help?

    Read the article

  • How to support both DataContractSerializer and XMLSerializer for the same contract on the same host?

    - by Sly
    In our production environment, our WCF services are serialized with the XMLSerializer. To do so our service interfaces have the [XMLSerializerFormat] attribute. Now, we need to change to DataContractSerializer but we must stay compatible with our existing clients. Therefore, we have to expose each service with both serializers. We have one constraint: we don't want to redefine each contract interface twice, we have 50 services contract interfaces and we don't want to have IIncidentServiceXml IIncidentServiceDCS IEmployeeServiceXml IEmployeeServiceDCS IContractServiceXml IContractServiceDCS How can we do that? This is a description of what we have tried so far but I'm willing to try completely different approaches: We tried to create all the endpoints by code in our own ServiceHostFactory class. Basically we create each endpoint twice. The problem is that at runtime, WCF complains that the service has two endpoints with the same contact name but with different ContractDescription instances. The message says we should use different contract names or reuse the same ContractDescription instance.

    Read the article

  • How can I compose a WCF contract out of multiple interfaces?

    - by mafutrct
    I've got multiple interfaces. All of them should be inherited and exposed by a single contract interface. interface A { void X(); } interface B { void Y(); } interface C: A, B {} // this is the public contract How is this possible? I can't add ServiceContract to A and B because that would lead to multiple endpoints. And I don't want to new-override every method in C.

    Read the article

  • How to display values from another website to an new html page?

    - by user3098728
    How to display the value in a new html file from different website? This an example field of values that need to display into new html file and I want to display the said values in the input box (Contract ID) of this page JSFiddle. I have 2 JS code that would display that values, but unfortunately its not working and I dont know how to display that value in html input box. Please help me. Thank you I want to display the said value in this input box: Here the JS file to read the values: function scanLapVerification() { try { var page_title = "Title"; var el = getElement(document, "class", "view-operator-verification-title", ""); if (!el || el.length == 0) return; if (el[0].innerText != page_title) return; var page_title = ''; var el = getElement(document, "class", "workflowActivityDetailPanel", ""); if (el && el.length > 0) { var eltr = getElement(el[0], "tag", "tr", ""); if (eltr && eltr.length > 0) { //Read Contract ID var contractId = { CI: { id: null } }; var con_id = null; for (var i = 0; i < eltr.length; i++) { tr_text = eltr[i].innerText; if (tr_text.substr(0, "Contract ID".length) == "Contract ID") con_id = "CI"; if (con_id && tr_text.substr(0, "Contract ID".length) == "Contract ID") { contractId[con_id].id = tr_text.substr("Contract ID".length + 1, tr_text.length - "Contract ID".length - 1); } } var contract_id = contractId.CI.id; return { content: "cid_check", con_id: con_id }; } return { status: "KO" }; } catch (e) { alert("Exception: scanLapVerification\n" + e.Description); return { status: "KO", message: e }; } }; And here's the 2nd JS that display to a new html page: function scanLapVerification() { chrome.tabs.sendRequest(tabLapVerification, { method: "scanLapVerification" }, function (response) { msgbox("receiveResponse: scanLapVerification " + jsonToString(response, "JSON")); //maintaining state in the background if (response.data.content == "cid_check") { //Popup window features var popupWindow = null; var name; var width = 550; var height = 200; var left = parseInt((screen.availWidth / 2) - (width / 2)); var top = parseInt((screen.availHeight / 2) - (height / 2)); var windowFeatures = "width=" + width + ",height=" + height + ",left=" + left + ",top=" + top + "screenX=" + left + ",screenY=" + top; //Input new address with popup window if (confirm("Does the client has new address?") == true) { popupWindow = window.open('/htmlname.htm', "title", windowFeatures + encodeURIComponent(response.data.contract_id)); popupWindow.focus(); } else { name = ""; } }); }

    Read the article

  • Interface (contract), Generics (universality), and extension methods (ease of use). Is it a right design?

    - by Saeed Neamati
    I'm trying to design a simple conversion framework based on these requirements: All developers should follow a predefined set of rules to convert from the source entity to the target entity Some overall policies should be able to be applied in a central place, without interference with developers' code Both the creation of converters and usage of converter classes should be easy To solve these problems in C# language, A thought came to my mind. I'm writing it here, though it doesn't compile at all. But let's assume that C# compiles this code: I'll create a generic interface called IConverter public interface IConverter<TSource, TTarget> where TSource : class, new() where TTarget : class, new() { TTarget Convert(TSource source); List<TTarget> Convert(List<TSource> sourceItems); } Developers would implement this interface to create converters. For example: public class PhoneToCommunicationChannelConverter : IConverter<Phone, CommunicationChannle> { public CommunicationChannel Convert(Phone phone) { // conversion logic } public List<CommunicationChannel> Convert(List<Phone> phones) { // conversion logic } } And to make the usage of this conversion class easier, imagine that we add static and this keywords to methods to turn them into Extension Methods, and use them this way: List<Phone> phones = GetPhones(); List<CommunicationChannel> channels = phones.Convert(); However, this doesn't even compile. With those requirements, I can think of some other designs, but they each lack an aspect. Either the implementation would become more difficult or chaotic and out of control, or the usage would become truly hard. Is this design right at all? What alternatives I might have to achieve those requirements?

    Read the article

  • Code Contracts: validating arrays and collections

    - by DigiMortal
    Validating collections before using them is very common task when we use built-in generic types for our collections. In this posting I will show you how to validate collections using code contracts. It is cool how much awful looking code you can avoid using code contracts. Failing code Let’s suppose we have method that calculates sum of all invoices in collection. We have class Invoice and one of properties it has is Sum. I don’t introduce here any complex calculations on invoices because we have another problem to solve in this topic. Here is our code. public static decimal CalculateTotal(IList<Invoice> invoices) {     var sum = invoices.Sum(p => p.Sum);     return sum; } This method is very simple but it fails when invoices list contains at least one null. Of course, we can test if invoice is null but having nulls in lists like this is not good idea – it opens green way for different coding bugs in system. Our goal is to react to bugs ASAP at the nearest place they occur. There is one more way how to make our method fail. It happens when invoices is null. I thing it is also one common bugs during development and it even happens in production environments under some conditions that are usually hardly met. Now let’s protect our little calculation method with code contracts. We need two contracts: invoices cannot be null invoices cannot contain any nulls Our first contract is easy but how to write the second one? Solution: Contract.ForAll Preconditions in code are checked using Contract.Ensures method. This method takes boolean value as argument that sais if contract holds or not. There is also method Contract.ForAll that takes collection and predicate that must hold for that collection. Nice thing is ForAll returns boolean. So, we have very simple solution. public static decimal CalculateTotal(IList<Invoice> invoices) {     Contract.Requires(invoices != null);     Contract.Requires(Contract.ForAll<Invoice>(invoices, p => p != null));       var sum = invoices.Sum(p => p.Sum);     return sum; } And here are some lines of code you can use to test the contracts quickly. var invoices = new List<Invoice>(); invoices.Add(new Invoice()); invoices.Add(null); invoices.Add(new Invoice()); //CalculateTotal(null); CalculateTotal(invoices); If your code is covered with unit tests then I suggest you to write tests to check that these contracts hold for every code run. Conclusion Although it seemed at first place that checking all elements in collection may end up with for-loops that does not look so nice we were able to solve our problem nicely. ForAll method of contract class offered us simple mechanism to check collections and it does it smoothly the code-contracts-way. P.S. I suggest you also read devlicio.us blog posting Validating Collections with Code Contracts by Derik Whittaker.

    Read the article

  • Experienced developer trying to get outsourcing contract with current client.

    - by Mike
    I work for a major bank as a contract software developer. I've been there a few months, and without exception this place has the worst software practices I've ever seen. The software my team makes has no formal testing, terrible code (not reusable, hard to read, etc), minimal documentation, no defined development process and an absolutely sickening amount of waste due to bureaucratic overhead. Part of my contract is to maintain a group of thousands of very poorly written batch jobs. When one of the jobs fails (read: crashes), it's a developers job to look at the source, figure out what's wrong, fix it, and check it in. There is no quality assurance process or auditing of the results whatsoever. Once the developer says "it works" a manager signs off and it goes into production. What's disturbing is that these jobs essentially grab market data and put it into a third-party risk management system, which provides the bank with critical intelligence. I've discovered the disturbing truth that this has been happening since the 90s and nobody really has evidence the system is getting the correct data! Without going into details, an issue arose on Friday that was so horrible I actually stormed out of the place. I was ready to quit, but I decided to just get out to calm my nerves and possibly go back Monday. I've been reflecting today on how to handle this. I have realized that, in probably less than 6 months, I could (with 2 other developers) remake a large component of this system. The new system would provide them with, as primary benefits, a maintainable codebase less prone to error and a solid QA framework. To do it properly I would have to be outside the bank, the internal bureaucracy is just too much. And moreover, I think a bank is fundamentally not a place that can make good software. This is my plan. Write a report explaining in depth all the problems with their current system Explain why their software practices fail and generate a tremendous amount of error and waste. Use this as the basis for claiming the project must be developed externally. Write a high level development plan, including what resources I will require Hand 1,2,3 to my manager, hopefully he passes it up the chain. Worst case he fires me, but this isn't so bad. Convinced Executive decides to award my company a contract for the new system I have 8 years experience as a software contractor and have delivered my share of successful software products, but all working in-house for small/medium sized companies. When I read this over, I think I have a dynamite plan. But since this is the first time doing something this bold so I have my doubts. My question is, is this a good idea? If you think not, please spare no detail.

    Read the article

  • Can I compose a WCF callback contract out of multiple interfaces?

    - by mafutrct
    Followup question to http://stackoverflow.com/questions/2502930/how-can-i-compose-a-wcf-contract-out-of-multiple-interfaces. I tried to merge multiple callback interfaces in a single interface. This yields an InvalidOperationException claiming that the final interface contains no operations. Technically, this is true, however, the inherited interfaces do contain operations. How can I fix this? Or is this a limitation of WCF? Edit: interface A { [OperationContract]void X(); } interface B { [OperationContract]void Y(); } interface C: A, B {} // this is the public callback contract

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • WCF Service w/ SharePoint Error: Could not find default endpoint element that references contract...

    - by Brian Clark
    Full error message: Could not find default endpoint element that references contract 'PublicationServices.IPublicationService' in the ServiceModel client configuration section. This might be because no configuration file was found for your application, or because no endpoint element matching this contract could be found in the client element. I have a SharePoint site that I have already opened a project for in Visual Studio 2010. I also created a project that contains a WCF Service Application and added it to the same solution that contains the project for my SharePoint site. I have created a visual web part in my SharePoint project that I am trying to use to consume the WCF Service. I am doing so like this, from within the user control for my web part: PublicationServiceClient proxy = new PublicationServiceClient(); Just having this line alone in OnPreRender, Page_Load, etc. will generate the above error. I've read previous posts about having to have items in the config file of the WCF service also in the config file of the consuming application. I have done this, I copied this section the Web.config file in my WCF service and have placed it in the system.serviceModel tags of my SharePoint project's app.config file: In other words, this is in both of my config files. When I add this web part to the front page of my SharePoint site though, I get the above error every time. I should also note that I have created a console app that I was able to use with no problems to consume data from this very same WCF service. Any help would be appreciated!

    Read the article

  • What are some non-obvious items that should be included in a good employment contract for a programm

    - by hamlin11
    My first employee's sub-contracting trial phase has gone extremely well. They become a full employee (programmer) next week. What are some non-obvious elements that should be included in the employment contract? I want the agreement to be as fair as possible to both the company and the new employee. Specific details: 40 hrs per week, except one 50 hour week per month Employee is Local Telecommuting allowed under certain circumstances already (as security allows) Benefits: 2 weeks paid vacation, full medical, year-end bonus Thanks

    Read the article

  • Code contracts and inheritance

    - by DigiMortal
    In my last posting about code contracts I introduced you how to force code contracts to classes through interfaces. In this posting I will go step further and I will show you how code contracts work in the case of inherited classes. As a first thing let’s take a look at my interface and code contracts. [ContractClass(typeof(ProductContracts))] public interface IProduct {     int Id { get; set; }     string Name { get; set; }     decimal Weight { get; set; }     decimal Price { get; set; } }   [ContractClassFor(typeof(IProduct))] internal sealed class ProductContracts : IProduct {     private ProductContracts() { }       int IProduct.Id     {         get         {             return default(int);         }         set         {             Contract.Requires(value > 0);         }     }       string IProduct.Name     {         get         {             return default(string);         }         set         {             Contract.Requires(!string.IsNullOrWhiteSpace(value));             Contract.Requires(value.Length <= 25);         }     }       decimal IProduct.Weight     {         get         {             return default(decimal);         }         set         {             Contract.Requires(value > 3);             Contract.Requires(value < 100);         }     }       decimal IProduct.Price     {         get         {             return default(decimal);         }         set         {             Contract.Requires(value > 0);             Contract.Requires(value < 100);         }     } } And here is the product class that inherits IProduct interface. public class Product : IProduct {     public int Id { get; set; }     public string Name { get; set; }     public virtual decimal Weight { get; set; }     public decimal Price { get; set; } } if we run this code and violate the code contract set to Id we will get ContractException. public class Program {     static void Main(string[] args)     {         var product = new Product();         product.Id = -100;     } }   Now let’s make Product to be abstract class and let’s define new class called Food that adds one more contract to Weight property. public class Food : Product {     public override decimal Weight     {         get         {             return base.Weight;         }         set         {             Contract.Requires(value > 1);             Contract.Requires(value < 10);               base.Weight = value;         }     } } Now we should have the following rules at place for Food: weight must be greater than 1, weight must be greater than 3, weight must be less than 100, weight must be less than 10. Interesting part is what happens when we try to violate the lower and upper limits of Food weight. To see what happens let’s try to violate rules #2 and #4. Just comment one of the last lines out in the following method to test another assignment. public class Program {     static void Main(string[] args)     {         var food = new Food();         food.Weight = 12;         food.Weight = 2;     } } And here are the results as pictures to see where exceptions are thrown. Click on images to see them at original size. Violation of lower limit. Violation of upper limit. As you can see for both violations we get ContractException like expected. Code contracts inheritance is powerful and at same time dangerous feature. Although you can always narrow down the conditions that come from more general classes it is possible to define impossible or conflicting contracts at different points in inheritance hierarchy.

    Read the article

< Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >