Search Results

Search found 67262 results on 2691 pages for 'data driven testing'.

Page 7/2691 | < Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >

  • BUILD 2013 Session&ndash;Testing Your C# Base Windows Store Apps

    - by Tim Murphy
    Originally posted on: http://geekswithblogs.net/tmurphy/archive/2013/06/27/build-2013-sessionndashtesting-your-c-base-windows-store-apps.aspx Testing an application is not what most people consider fun and the number of situation that need to be tested seems to grow exponentially when building mobile apps.  That is why I found the topic of this session interesting.  When I found out that the speaker, Francis Cheung, was from the Patterns and Practices group I knew I was in the right place.  I have admired that team since I first met Ron Jacobs around 2001.  So what did Francis have to offer? He started off in a rather confusing who’s on first fashion.  It seems that one of his tester was originally supposed to give the talk, but then it was decided that it would be better to have someone who does development present a testing topic.  This didn’t hinder the content of the talk in the least.  He broke the process down in a logical manner that would be straight forward to understand if not implement. Francis hit the main areas we usually think of such as tombstoning, network connectivity and asynchronous code, but he approached them with tools they we may not have thought of until now.  He relied heavily on Fiddler to intercept and change the behavior of network requests. Then there are the areas you might not normal think to check.  This includes localization, accessibility and updating client code to a new version.  These are important aspects of your app that can severely impact how customers feel about your app.  Take the time to view this session and get a new appreciation for testing and where it fits in your development lifecycle. del.icio.us Tags: BUILD 2013,Testing,C#,Windows Store Apps,Fiddler

    Read the article

  • Term for unit testing that separates test logic from test result data

    - by mario
    So I'm not doing any unit testing. But I've had an idea to make it more appropriate for my field of use. Yet it's not clear if something like this exists, and if, how it would possibly be called. Ordinary unit tests combine the test logic and the expected outcome. In essence the testing framework only checks for booleans (did this match, did the expected result result). To generalize, the test code itself references the audited functions, and also explicites the result values like so: unit::assert( test_me() == 17 ) What I'm looking for is a separation of concerns. The test itself should only contain the tested logic. The outcome and result data should be handled by the unit testing or assertion framework. As example: unit::probe( test_me() ) Here the probe actually doubles as collector in the first run, and afterwards as verification method. The expected 17 is not mentioned in the test code, but stored or managed elsewhere. How is this scheme called? Or how would you call it? I hope I can find some actual implementations with the proper terminology. Obviously such a pattern is unfit for TDD. It's strictly for regression testing. Also obviously, it cannot be used for all cases. Only the simpler test subjects can be analyzed that way, for anything else the ordinary unit test setup and assertion steps are required. And yes, this could be manually accomplished by crafting a ResultWhateverObject, but that would still require hardwiring that to the test logic. Also keep in mind that I'm inquiring for use with scripting languages, and not about Java. I'm aware that the xUnit pattern originates there, and why it's hence as elaborate as it is. Btw, I've discovered one test execution framework which allows for shortening simple test notations to: test_me(); // 17 While thus the result data is no longer coded in (it's a comment), that's still not a complete separation and of course would work only for scalar results.

    Read the article

  • SQL SERVER – Guest Post – Architecting Data Warehouse – Niraj Bhatt

    - by pinaldave
    Niraj Bhatt works as an Enterprise Architect for a Fortune 500 company and has an innate passion for building / studying software systems. He is a top rated speaker at various technical forums including Tech·Ed, MCT Summit, Developer Summit, and Virtual Tech Days, among others. Having run a successful startup for four years Niraj enjoys working on – IT innovations that can impact an enterprise bottom line, streamlining IT budgets through IT consolidation, architecture and integration of systems, performance tuning, and review of enterprise applications. He has received Microsoft MVP award for ASP.NET, Connected Systems and most recently on Windows Azure. When he is away from his laptop, you will find him taking deep dives in automobiles, pottery, rafting, photography, cooking and financial statements though not necessarily in that order. He is also a manager/speaker at BDOTNET, Asia’s largest .NET user group. Here is the guest post by Niraj Bhatt. As data in your applications grows it’s the database that usually becomes a bottleneck. It’s hard to scale a relational DB and the preferred approach for large scale applications is to create separate databases for writes and reads. These databases are referred as transactional database and reporting database. Though there are tools / techniques which can allow you to create snapshot of your transactional database for reporting purpose, sometimes they don’t quite fit the reporting requirements of an enterprise. These requirements typically are data analytics, effective schema (for an Information worker to self-service herself), historical data, better performance (flat data, no joins) etc. This is where a need for data warehouse or an OLAP system arises. A Key point to remember is a data warehouse is mostly a relational database. It’s built on top of same concepts like Tables, Rows, Columns, Primary keys, Foreign Keys, etc. Before we talk about how data warehouses are typically structured let’s understand key components that can create a data flow between OLTP systems and OLAP systems. There are 3 major areas to it: a) OLTP system should be capable of tracking its changes as all these changes should go back to data warehouse for historical recording. For e.g. if an OLTP transaction moves a customer from silver to gold category, OLTP system needs to ensure that this change is tracked and send to data warehouse for reporting purpose. A report in context could be how many customers divided by geographies moved from sliver to gold category. In data warehouse terminology this process is called Change Data Capture. There are quite a few systems that leverage database triggers to move these changes to corresponding tracking tables. There are also out of box features provided by some databases e.g. SQL Server 2008 offers Change Data Capture and Change Tracking for addressing such requirements. b) After we make the OLTP system capable of tracking its changes we need to provision a batch process that can run periodically and takes these changes from OLTP system and dump them into data warehouse. There are many tools out there that can help you fill this gap – SQL Server Integration Services happens to be one of them. c) So we have an OLTP system that knows how to track its changes, we have jobs that run periodically to move these changes to warehouse. The question though remains is how warehouse will record these changes? This structural change in data warehouse arena is often covered under something called Slowly Changing Dimension (SCD). While we will talk about dimensions in a while, SCD can be applied to pure relational tables too. SCD enables a database structure to capture historical data. This would create multiple records for a given entity in relational database and data warehouses prefer having their own primary key, often known as surrogate key. As I mentioned a data warehouse is just a relational database but industry often attributes a specific schema style to data warehouses. These styles are Star Schema or Snowflake Schema. The motivation behind these styles is to create a flat database structure (as opposed to normalized one), which is easy to understand / use, easy to query and easy to slice / dice. Star schema is a database structure made up of dimensions and facts. Facts are generally the numbers (sales, quantity, etc.) that you want to slice and dice. Fact tables have these numbers and have references (foreign keys) to set of tables that provide context around those facts. E.g. if you have recorded 10,000 USD as sales that number would go in a sales fact table and could have foreign keys attached to it that refers to the sales agent responsible for sale and to time table which contains the dates between which that sale was made. These agent and time tables are called dimensions which provide context to the numbers stored in fact tables. This schema structure of fact being at center surrounded by dimensions is called Star schema. A similar structure with difference of dimension tables being normalized is called a Snowflake schema. This relational structure of facts and dimensions serves as an input for another analysis structure called Cube. Though physically Cube is a special structure supported by commercial databases like SQL Server Analysis Services, logically it’s a multidimensional structure where dimensions define the sides of cube and facts define the content. Facts are often called as Measures inside a cube. Dimensions often tend to form a hierarchy. E.g. Product may be broken into categories and categories in turn to individual items. Category and Items are often referred as Levels and their constituents as Members with their overall structure called as Hierarchy. Measures are rolled up as per dimensional hierarchy. These rolled up measures are called Aggregates. Now this may seem like an overwhelming vocabulary to deal with but don’t worry it will sink in as you start working with Cubes and others. Let’s see few other terms that we would run into while talking about data warehouses. ODS or an Operational Data Store is a frequently misused term. There would be few users in your organization that want to report on most current data and can’t afford to miss a single transaction for their report. Then there is another set of users that typically don’t care how current the data is. Mostly senior level executives who are interesting in trending, mining, forecasting, strategizing, etc. don’t care for that one specific transaction. This is where an ODS can come in handy. ODS can use the same star schema and the OLAP cubes we saw earlier. The only difference is that the data inside an ODS would be short lived, i.e. for few months and ODS would sync with OLTP system every few minutes. Data warehouse can periodically sync with ODS either daily or weekly depending on business drivers. Data marts are another frequently talked about topic in data warehousing. They are subject-specific data warehouse. Data warehouses that try to span over an enterprise are normally too big to scope, build, manage, track, etc. Hence they are often scaled down to something called Data mart that supports a specific segment of business like sales, marketing, or support. Data marts too, are often designed using star schema model discussed earlier. Industry is divided when it comes to use of data marts. Some experts prefer having data marts along with a central data warehouse. Data warehouse here acts as information staging and distribution hub with spokes being data marts connected via data feeds serving summarized data. Others eliminate the need for a centralized data warehouse citing that most users want to report on detailed data. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Best Practices, Business Intelligence, Data Warehousing, Database, Pinal Dave, PostADay, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Data Mining Resources

    - by Dejan Sarka
    There are many different types of analyses, each one with its own pros and cons. Relational reports have a predefined structure, and end users cannot change it. They are simple to use for end users. Reports can use real-time data and snapshots of data to show the state of a report at specific points in time. One of the drawbacks is that report authoring is limited to IT pros and advanced users. Any kind of dynamic restructuring is very limited. If real-time data is used for a report, the report has a negative impact on the performance of the source system. Processing of the reports might be slow because the data comes from relational database management systems, which are not optimized for reporting only. If you create a semantic model of your data, your end users can create ad-hoc report structures. However, the development is more complex because a developer is needed to create these semantic models. For OLAP, you typically use specialized database management systems. You get lightning speed of analyses. End users can use rich and thin clients to interactively change the structure of the report. Typically, they do it graphically. However, the development of an OLAP system is many times quite complex. It involves the preparation and maintenance of an enterprise data warehouse and OLAP cubes. In order to exploit the possibility of real-time restructuring of reports, the users must be both active and educated. The data is usually stale, as it is loaded into data warehouses and OLAP cubes with a scheduled process. With data mining, a structure is not selected in advance; it searches for the structure. As a result, data mining can give you the most valuable results because you can discover patterns you did not expect. A data mining model structure is limited only by the attributes that you use to train the model. One of the drawbacks is that a lot of knowledge is needed for a successful data mining project. End users have to understand the results. Subject matter experts and IT professionals need to understand business problem thoroughly. The development might be sometimes even more complex than the development of OLAP cubes. Each type of analysis has its own place in an enterprise system. SQL Server has tools for all kinds of analyses. However, data mining is the most advanced way of analyzing the data; this is the “I” in BI. In order to get the most out of it, you need to learn quite a lot. In this blog post, I am gathering together resources for learning, including forthcoming events. Books Multiple authors: SQL Server MVP Deep Dives – I wrote an introductory data mining chapter there. Erik Veerman, Teo Lachev and Dejan Sarka: MCTS Self-Paced Training Kit (Exam 70-448): Microsoft SQL Server 2008 - Business Intelligence Development and Maintenance – you can find a good overview of a complete BI solution, including data mining, in this book. Jamie MacLennan, ZhaoHui Tang, and Bogdan Crivat: Data Mining with Microsoft SQL Server 2008 – can’t miss this book if you want to mine your data with SQL Server tools. Michael Berry, Gordon Linoff: Mastering Data Mining: The Art and Science of Customer Relationship Management – data mining from both, business and technical perspective. Dorian Pyle: Data Preparation for Data Mining – an in-depth book about data preparation. Thomas and Ronald Wonnacott: Introductory Statistics – if you thought that you could get away without statistics, then you are not serious about data mining. Jiawei Han and Micheline Kamber: Data Mining Concepts and Techniques – in-depth explanation of the most popular data mining algorithms. Michael Berry and Gordon Linoff: Data Mining Techniques – another book that explains data mining algorithms, more fro a business perspective. Paolo Guidici: Applied Data Mining – very mathematical book, only if you enjoy statistics and mathematics in general. Forthcoming presentations I am presenting two data mining related sessions during the PASS Summit in Charlotte, NC: Wednesday, October 16th, 2013 - Fraud Detection: Notes from the Field – I am showing how to use data mining for a specific business problem. The presentation is based on real-life projects. Friday, October 18th: Excel 2013 Advanced Analytics – I am focusing on Excel Data Mining Add-ins, and how to use them together with Power Pivot and other add-ins. This is the most you can get out of Excel. Sinergija 2013, Belgrade, Serbia Tuesday, October 22nd: Excel 2013 Analytics to the Max – another presentation focusing on the most advanced analytics you can get in Excel. SQL Rally Amsterdam, Netherlands Thursday, November 7th: Advanced Analytics in Excel 2013 – and again I am presenting about data mining in Excel. Why three different titles for the same presentation? I don’t know, I guess I forgot the name I proposed every time right after I sent the proposal. Courses Data Mining with SQL Server 2012 – I wrote a 3-day course for SolidQ. If you are interested in this course, which I could also deliver in a shorter seminar way, you can contact your closes SolidQ subsidiary, or, of course, me directly on addresses [email protected] or [email protected]. This course could also complement the existing courseware portfolio of training providers, which are welcome to contact me as well. OK, now you know: no more excuses, start learning data mining, get the most out of your data

    Read the article

  • Master Data Services Employees Sample Model

    - by Davide Mauri
    I’ve been playing with Master Data Services quite a lot in those last days and I’m also monitoring the web for all available resources on it. Today I’ve found this freshly released sample available on MSDN Code Gallery: SQL Server Master Data Services Employee Sample Model http://code.msdn.microsoft.com/SSMDSEmployeeSample This sample shows how Recursive Hierarchies can be modeled in order to represent a typical organizational chart scenario where a self-relationship exists on the Employee entity. Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Looking for Cutting-Edge Data Integration: 2010 Innovation Awards

    - by dain.hansen
    This year's Oracle Fusion Middleware Innovation Awards will honor customers and partners who are creatively using to various products across Oracle Fusion Middleware. Brand new to this year's awards is a category for Data Integration. Think you have something unique and innovative with one of our Oracle Data Integration products? We'd love to hear from you! Please submit today The deadline for the nomination is 5 p.m. PT Friday, August 6th 2010, and winning organizations will be notified by late August 2010. What you win! FREE pass to Oracle OpenWorld 2010 in San Francisco for select winners in each category. Honored by Oracle executives at awards ceremony held during Oracle OpenWorld 2010 in San Francisco. Oracle Middleware Innovation Award Winner Plaque 1-3 meetings with Oracle Executives during Oracle OpenWorld 2010 Feature article placement in Oracle Magazine and placement in Oracle Press Release Customer snapshot and video testimonial opportunity, to be hosted on oracle.com Podcast interview opportunity with Senior Oracle Executive

    Read the article

  • Data Integration 12c Raising the Big Data Roof at Oracle OpenWorld

    - by Tanu Sood
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Times New Roman","serif"; mso-fareast-font-family:"MS Mincho";} Author: Dain Hansen, Director, Oracle It was an exciting OpenWorld 2013 for us in the Data Integration track. Our theme this year was all about ‘being future ready’ - previewing one of our biggest releases this year: Oracle Data Integration 12c. Just this week we followed up with this preview by announcing the general availability of 12c release for Oracle’s key data integration products: Oracle Data Integrator 12c and Oracle GoldenGate 12c. The new release delivers extreme performance, increase IT productivity, and simplify deployment, while helping IT organizations to keep pace with new data-oriented technology trends including cloud computing, big data analytics, real-time business intelligence. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Times New Roman","serif"; mso-fareast-font-family:"MS Mincho";} Mark Hurd's keynote on day one set the tone for the Data Integration sessions. Mark focused on big data analytics and the changing consumer expectations. Especially real-time insight is a key theme for Oracle overall and data integration products. In Mark Hurd's keynote we heard from key customers, such as Airbus and Thomson Reuters, how real-time analysis of operational data including machine data creates value, in some cases even saves lives. Thomas Kurian gave a deeper look into Oracle's big data and fast data solutions. In the initial lead Data Integration track session - Brad Adelberg, VP of Development, presented Oracle’s Data Integration 12c product strategy based on key trends from the initial OpenWorld keynotes. Brad talked about how Oracle's data integration products address the new data integration requirements that evolved with cloud computing, big data, and changing consumer expectations and how they set the key themes in our products’ road map. Brad explained why and how fast-time to value, high-performance and future-ready solutions is the top focus areas for product development. If you were not able to attend OpenWorld or this session I recommend reading the white paper: Five New Data Integration Requirements and How to Meet them with Oracle Data Integration, which provides an in-depth look into how Oracle addresses the new trends in the DI market. Following Brad’s session, Nick Wagner provided in depth review of Oracle GoldenGate’s latest features and roadmap. Nick discussed how Oracle GoldenGate’s tight integration with Oracle Database sets the product apart from the competition. We also heard that heterogeneity of the product is still a major focus for GoldenGate’s development and there will be more news on that front when there is a major release. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Times New Roman","serif"; mso-fareast-font-family:"MS Mincho";} After GoldenGate’s product strategy session, Denis Gray from the PM team presented Oracle Data Integrator’s product strategy session, talking about the latest and greatest on ODI. Another good session was delivered by long-time GoldenGate users, Comcast.  Jason Hurd and Amit Patel of Comcast talked about the various use cases they deploy Oracle GoldenGate throughout their enterprise, from database upgrades, feeding reporting systems, to active-active database synchronization.  The Comcast team shared many good tips on how to use GoldenGate for both zero downtime upgrades and active-active replication with conflict management requirement. One of our other important goals we had this year for the Data Integration track at OpenWorld was hearing from our customers. We ended day 1 on just that, with a wonderful award ceremony for Oracle Excellence Awards for Oracle Fusion Middleware Innovation. The ceremony was held in the Yerba Buena Center for the Arts. Congratulations to Royal Bank of Scotland and Yalumba Wine Company, the winners in the Data Integration category. You can find more information on the award and the winners in our previous blog post: 2013 Oracle Excellence Awards for Fusion Middleware Innovation… Selected for their innovation use of Oracle’s Data Integration products; the winners for the Data Integration Category are Royal Bank of Scotland and The Yalumba Wine Company. Congratulations!!! Royal Bank of Scotland’s Market and International Banking division provides clients across the globe with seamless trading and competitive pricing, underpinned by a deep knowledge of risk management across the full spectrum of financial products. They handle millions of transactions daily to keep the lifeblood of their clients’ businesses flowing – whether through payment management solutions or through bespoke trade finance solutions. Royal Bank of Scotland is leveraging Oracle GoldenGate and Oracle Data Integrator along with Oracle Business Intelligence Enterprise Edition and the Oracle Database for a variety of solutions. Mainly, Oracle GoldenGate and Oracle Data Integrator are used to feed their data warehouse – providing a real-time data integration solution that feeds transactional data to their analytics system in minutes to enable improved decision making with timely, accurate data for their business users. Oracle Data Integrator’s in-database transformation capabilities and its ability to integrate with Oracle GoldenGate for real-time data capture is the foundation of this implementation. This solution makes it such that changes happening in the analytics systems are available the same day they are deployed on the operational system with 100% data quality guaranteed. Additionally, the solution has helped to reduce their operational database size from 150GB to 10GB. Impressive! Now what if I told you this solution was built in 3 months and had a less than 6 month return on investment? That’s outstanding! The Yalumba Wine Company is situated in the Barossa Valley of Australia. It is the oldest family owned winery in Australia with a unique way of aging their wines in specially crafted 100 liter barrels. Did you know that “Yalumba” is Aboriginal for “all the land around”? The Yalumba Wine Company is growing rapidly, and was in need of introducing a more modern standard to the existing manufacturing processes to meet globalization demands, overall time-to-market, and better operational efficiency objectives of product development. The Yalumba Wine Company worked with a partner, Bristlecone to develop a unique solution whereby Oracle Data Integrator is leveraged to pull data from Salesforce.com and JD Edwards, in addition to their other pre-existing source systems, for consumption into their data warehouse. They have emphasized the overall ease of developing integration workflows with Oracle Data Integrator. The solution has brought better visibility for the business users, shorter data loading and transformation performance to their data warehouse with rapid incorporation of new data sources, and a solid future-proof foundation for their organization. Moving forward, they plan on leveraging more from Oracle’s Data Integration portfolio. Terrific! In addition to these two customers on Tuesday we featured many other important Oracle Data Integrator and Oracle GoldenGate customers. On Tuesday the GoldenGate panel included: Land O’Lakes, Smuckers, and Veolia Water. Besides giving us yummy nutrition and healthy water, these companies have another aspect in common. They all use GoldenGate to boost their ERP application. Please read the recap by Irem Radzik. On Wednesday, the ODI Panel included: Barry Ralston and Ryan Weber of Infinity Insurance, Paul Stracke of Paychex Inc., and Ian Wall of Vertex Pharmaceuticals for a session filled with interesting projects, use cases and approaches to leveraging Oracle Data Integrator. Please read the recap by Sandrine Riley for more. Thanks to everyone who joined with us and we hope to stay connected! To hear more about our Data Integration12c products join us in an upcoming webcast to learn more. Follow us www.twitter.com/ORCLGoldenGate or goto our website at www.oracle.com/goto/dataintegration

    Read the article

  • Testing on Device Other Than the Known Brand Question (Local and Imported Phone Question)

    - by David Dimalanta
    I have a question. When testing a device by using Eclipse, it's easy to install and add device software with these specific brands commonly used in game testing like Samsung, Google, T-Mobile, and HTC; according to the Android Developers website. What if I'm using other brands that runs on Android to test the program via Eclipse (i.e. MyPhone, Starmobile), what should I look for to download in order to enable testing phones that those brands are using other than the brands that are known and commonly used: model number or simply brand? Here's some examples of these brands other than the brands we've known that runs on Android: Starmobile Engage 7 (http://www.lazada.com.ph/Starmobile-Engage-7-Android-40-4GB-with-Wi-Fi-Black-Starmobile-Mercury-B201-COMBO-39833.html/) My|Phone A898 Duo (http://www.myphone.com.ph/#!a898-duo/c1yt) Also, take note that I'm a Filipino programmer working at the Philippines to test our local smartphones for the created Android game or app. Hope you can understand me for my help.

    Read the article

  • How do you do ASP.Net performance testing?

    - by John
    Our team is in need of a performance testing process. We use ASP.Net (both web forms and MVC) and performance testing is not currently built into our projects. We occasionally do some ad-hoc analysis, such as checking the load on the server or SQL Server Profiler, but we don't have a true beginning to end, built into the project performance testing methodology. Where is a good place to start? I'm interested in both: Process - General knowledge, including best practices. Essential list of tools. I'm aware of a few tools, such as what's built into the pricier versions of VS 2010 and JetBrains products, though I haven't used them.

    Read the article

  • Looking for a very subtle unit testing example

    - by Stéphane Bruckert
    In the context of Continuous Integration, I need to teach unit testing to a 20-people audience of programmers. Everything will be all right, but I am still trying to find the perfect unit testing example. More than writing tests like a robot, I want to show that unit testing can help prevent very subtle errors. I am thinking of the following scenario to happen when doing a live TDD demo: the test cases would already be written, we would have to write methods together, most of us would naturally have forgotten to handle a specific case for a method, everyone would then be surprised, when seeing that all tests don't pass, the failing test would make us think more and realize that we forgot an important case. My question will probably finish as "too broad" or "not clear what you are asking", but we never know, one of you might have a great idea. Your answer can use Java and JUnit, though any other language will be fine since only the idea will matter.

    Read the article

  • Game testing on Android - emulator or real devices?

    - by n00bfuscator
    I am working at a localization agency and we have been approached by a client about testing their games on iOS as well as Android. Testing on iOS seems fairly easy as we can just buy a couple of devices and we should be covered. For Android it seems to be completely different. From what i found, the emulator can cover all API levels, screen sizes and such, but i hear it's buggy and nothing could replace testing on real devices. With the vast amount of Android devices out there and the rate at which new devices are released it seems impossible to keep up. How can i test games (localization and functional) on Android covering all compatible devices?

    Read the article

  • Azure price through Unit Testing

    - by mrtentje
    For I project I am trying to find a way to measure an estimation of the costs of an Azure application through Unit Testing. Likely I will extend the Visual Studio Unit Testing framework (or another solution is also possible as long as it can run together (same time/side by side, when the Visual Studio Framework will run some tests the Azure solution must also run (if it is an Azure project)) with the Visual Studio Testing framework. A (Visual Studio) extension will be build to reuse it for future projects. Does anyone has any experience or any ideas how this can be achieved? Thanks in advance

    Read the article

  • Introduce unit testing when codebase is already available

    - by McMannus
    I've been working on a project in Flex for three years now without unit testing. The simple reason for that is the fact that I just didn't realize the importance of unit testing when being at the beginning of studies at university. Now my attitude towards testing changed completely and therefore I want to introduce it to the existing project (about 25000LOC). In order to do it, there are two approaches to choose from: 1) Discard the existing codebase and start from scratch with TDD 2) Write the tests and try to make them pass by changing the existing code Well, I would appreciate not having to write everything from scratch but I think by doing this, the design would be much better. What would you advise me to do? Thanks for replies in advance! Jan

    Read the article

  • "Testing Plan Lite" for web project

    - by Emmmmm
    How do you draft a quick & easy "Testing Plan Lite" for a medium-sized web project (70k lines, 2 developers)? I've seen many tutorials/articles on methods of testing, but all seem cumbersome. For us, the goal is to be able to be able to divide up and delegate testing instructions to our friends for different project segments, browsers, etc. What's the quick & easy way to write test plans for web apps? (the 20 of the 20/80 rule) Thanks!

    Read the article

  • Fast Data - Big Data's achilles heel

    - by thegreeneman
    At OOW 2013 in Mark Hurd and Thomas Kurian's keynote, they discussed Oracle's Fast Data software solution stack and discussed a number of customers deploying Oracle's Big Data / Fast Data solutions and in particular Oracle's NoSQL Database.  Since that time, there have been a large number of request seeking clarification on how the Fast Data software stack works together to deliver on the promise of real-time Big Data solutions.   Fast Data is a software solution stack that deals with one aspect of Big Data, high velocity.   The software in the Fast Data solution stack involves 3 key pieces and their integration:  Oracle Event Processing, Oracle Coherence, Oracle NoSQL Database.   All three of these technologies address a high throughput, low latency data management requirement.   Oracle Event Processing enables continuous query to filter the Big Data fire hose, enable intelligent chained events to real-time service invocation and augments the data stream to provide Big Data enrichment. Extended SQL syntax allows the definition of sliding windows of time to allow SQL statements to look for triggers on events like breach of weighted moving average on a real-time data stream.    Oracle Coherence is a distributed, grid caching solution which is used to provide very low latency access to cached data when the data is too big to fit into a single process, so it is spread around in a grid architecture to provide memory latency speed access.  It also has some special capabilities to deploy remote behavioral execution for "near data" processing.   The Oracle NoSQL Database is designed to ingest simple key-value data at a controlled throughput rate while providing data redundancy in a cluster to facilitate highly concurrent low latency reads.  For example, when large sensor networks are generating data that need to be captured while analysts are simultaneously extracting the data using range based queries for upstream analytics.  Another example might be storing cookies from user web sessions for ultra low latency user profile management, also leveraging that data using holistic MapReduce operations with your Hadoop cluster to do segmented site analysis.  Understand how NoSQL plays a critical role in Big Data capture and enrichment while simultaneously providing a low latency and scalable data management infrastructure thru clustered, always on, parallel processing in a shared nothing architecture. Learn how easily a NoSQL cluster can be deployed to provide essential services in industry specific Fast Data solutions. See these technologies work together in a demonstration highlighting the salient features of these Fast Data enabling technologies in a location based personalization service. The question then becomes how do these things work together to deliver an end to end Fast Data solution.  The answer is that while different applications will exhibit unique requirements that may drive the need for one or the other of these technologies, often when it comes to Big Data you may need to use them together.   You may have the need for the memory latencies of the Coherence cache, but just have too much data to cache, so you use a combination of Coherence and Oracle NoSQL to handle extreme speed cache overflow and retrieval.   Here is a great reference to how these two technologies are integrated and work together.  Coherence & Oracle NoSQL Database.   On the stream processing side, it is similar as with the Coherence case.  As your sliding windows get larger, holding all the data in the stream can become difficult and out of band data may need to be offloaded into persistent storage.  OEP needs an extreme speed database like Oracle NoSQL Database to help it continue to perform for the real time loop while dealing with persistent spill in the data stream.  Here is a great resource to learn more about how OEP and Oracle NoSQL Database are integrated and work together.  OEP & Oracle NoSQL Database.

    Read the article

  • Oracle Announces Oracle Big Data Appliance X3-2 and Enhanced Oracle Big Data Connectors

    - by jgelhaus
    Enables Customers to Easily Harness the Business Value of Big Data at Lower Cost Engineered System Simplifies Big Data for the Enterprise Oracle Big Data Appliance X3-2 hardware features the latest 8-core Intel® Xeon E5-2600 series of processors, and compared with previous generation, the 18 compute and storage servers with 648 TB raw storage now offer: 33 percent more processing power with 288 CPU cores; 33 percent more memory per node with 1.1 TB of main memory; and up to a 30 percent reduction in power and cooling Oracle Big Data Appliance X3-2 further simplifies implementation and management of big data by integrating all the hardware and software required to acquire, organize and analyze big data. It includes: Support for CDH4.1 including software upgrades developed collaboratively with Cloudera to simplify NameNode High Availability in Hadoop, eliminating the single point of failure in a Hadoop cluster; Oracle NoSQL Database Community Edition 2.0, the latest version that brings better Hadoop integration, elastic scaling and new APIs, including JSON and C support; The Oracle Enterprise Manager plug-in for Big Data Appliance that complements Cloudera Manager to enable users to more easily manage a Hadoop cluster; Updated distributions of Oracle Linux and Oracle Java Development Kit; An updated distribution of open source R, optimized to work with high performance multi-threaded math libraries Read More   Data sheet: Oracle Big Data Appliance X3-2 Oracle Big Data Appliance: Datacenter Network Integration Big Data and Natural Language: Extracting Insight From Text Thomson Reuters Discusses Oracle's Big Data Platform Connectors Integrate Hadoop with Oracle Big Data Ecosystem Oracle Big Data Connectors is a suite of software built by Oracle to integrate Apache Hadoop with Oracle Database, Oracle Data Integrator, and Oracle R Distribution. Enhancements to Oracle Big Data Connectors extend these data integration capabilities. With updates to every connector, this release includes: Oracle SQL Connector for Hadoop Distributed File System, for high performance SQL queries on Hadoop data from Oracle Database, enhanced with increased automation and querying of Hive tables and now supported within the Oracle Data Integrator Application Adapter for Hadoop; Transparent access to the Hive Query language from R and introduction of new analytic techniques executing natively in Hadoop, enabling R developers to be more productive by increasing access to Hadoop in the R environment. Read More Data sheet: Oracle Big Data Connectors High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database

    Read the article

  • Best approach to accessing multiple data source in a web application

    - by ced
    I've a base web application developed with .net technologies (asp.net) used into our LAN by 30 users simultanousley. From this web application I've developed two verticalization used from online users. In future i expect hundreds users simultanousley. Our company has different locations. Each site use its own database. The web application needs to retrieve information from all existing databases. Currently there are 3 database, but it's not excluded in the future expansion of new offices. My question then is: What is the best strategy for a web application to retrieve information from different databases (which have the same schema) whereas the main objective performance data access and high fault tolerance? There are case studies in the literature that I can take as an example? Do you know some good documents to study? Do you have any tips to implement this task so efficient? Intuitively I would say that two possible strategy are: perform queries from different sources in real time and aggregate data on the fly; create a repository that contains the union of the entities of interest and perform queries directly on repository;

    Read the article

  • Testing system where App-level and Request-level IoC containers exist

    - by Bobby
    My team is in the process of developing a system where we're using Unity as our IoC container; and to provide NHibernate ISessions (Units of work) over each HTTP Request, we're using Unity's ChildContainer feature to create a child container for each request, and sticking the ISession in there. We arrived at this approach after trying others (including defining per-request lifetimes in the container, but there are issues there) and are now trying to decide on a unit testing strategy. Right now, the application-level container itself is living in the HttpApplication, and the Request container lives in the HttpContext.Current. Obviously, neither exist during testing. The pain increases when we decided to use Service Location from our Domain layer, to "lazily" resolve dependencies from the container. So now we have more components wanting to talk to the container. We are also using MSTest, which presents some concurrency dilemmas during testing as well. So we're wondering, what do the bright folks out there in the SO community do to tackle this predicament? How does one setup an application that, during "real" runtime, relies on HTTP objects to hold the containers, but during test has the flexibility to build-up and tear-down the containers consistently, and have the ServiceLocation bits get to those precise containers. I hope the question is clear, thanks!

    Read the article

  • Is Test Driven Development viable in game development?

    - by Will Marcouiller
    As being Scrum certified, I tend to prone for Agile methodologies while developping a system, and even use some canvas from the Scrum framework to manage my day-to-day work. Besides, I am wondering whether TDD is an option in game development, if it is viable? If I believe this GD question, TDD is not much of a use in game development. Why are MVC & TDD not employed more in game architecture? I come from industrial programming where big projects with big budgets need to work flawlessly, as it could result to catastrophic scenarios if the code wasn't throroughly tested inside and out. Plus, following Scrum rules encourages meeting the due dates of your work while every single action in Scrum is time-boxed! So, I agree when in the question linked above they say to stop trying to build a system, and start writing the game. It is quite what Scrum says, try not to build the perfect system, first: make it work by the Sprint end. Then, refactor the code while working in the second Sprint if needed! I understand that if not all departments responsible for the game development use Scrum, Scrum becomes useless. But let's consider for a moment that all the departments do use Scrum... I think that TDD would be good to write bug-free code, though you do not want to write the "perfect" system/game. So my question is the following: Is TDD viable in game development anyhow?

    Read the article

  • web application load / stress testing services

    - by Booji Boy
    Can you recommend reputable companies that offer help (consulting services, etc) in load testing (ASP.NET) web applications? We have a client looking to load test an ASP.NET application and we don't have any expertise in load testing web applications. The client is located in central Massachusetts. My employer http://www.goADNET.com was looking for an option besides, “I can figure out how to do it”.

    Read the article

  • What should come first: testing or code review?

    - by Silver Light
    Hello! I'm quite new to programming design patterns and life cycles and I was wondering, what should come first, code review or testing, regarding that those are done by separate people? From the one side, why bother reviewing code if nobody checked if it even works? From the other, some errors can be found early, if you do the review before testing. Which approach is recommended and why? Thank you!

    Read the article

  • Testing Workflows &ndash; Test-First

    - by Timothy Klenke
    Originally posted on: http://geekswithblogs.net/TimothyK/archive/2014/05/30/testing-workflows-ndash-test-first.aspxThis is the second of two posts on some common strategies for approaching the job of writing tests.  The previous post covered test-after workflows where as this will focus on test-first.  Each workflow presented is a method of attack for adding tests to a project.  The more tools in your tool belt the better.  So here is a partial list of some test-first methodologies. Ping Pong Ping Pong is a methodology commonly used in pair programing.  One developer will write a new failing test.  Then they hand the keyboard to their partner.  The partner writes the production code to get the test passing.  The partner then writes the next test before passing the keyboard back to the original developer. The reasoning behind this testing methodology is to facilitate pair programming.  That is to say that this testing methodology shares all the benefits of pair programming, including ensuring multiple team members are familiar with the code base (i.e. low bus number). Test Blazer Test Blazing, in some respects, is also a pairing strategy.  The developers don’t work side by side on the same task at the same time.  Instead one developer is dedicated to writing tests at their own desk.  They write failing test after failing test, never touching the production code.  With these tests they are defining the specification for the system.  The developer most familiar with the specifications would be assigned this task. The next day or later in the same day another developer fetches the latest test suite.  Their job is to write the production code to get those tests passing.  Once all the tests pass they fetch from source control the latest version of the test project to get the newer tests. This methodology has some of the benefits of pair programming, namely lowering the bus number.  This can be good way adding an extra developer to a project without slowing it down too much.  The production coder isn’t slowed down writing tests.  The tests are in another project from the production code, so there shouldn’t be any merge conflicts despite two developers working on the same solution. This methodology is also a good test for the tests.  Can another developer figure out what system should do just by reading the tests?  This question will be answered as the production coder works there way through the test blazer’s tests. Test Driven Development (TDD) TDD is a highly disciplined practice that calls for a new test and an new production code to be written every few minutes.  There are strict rules for when you should be writing test or production code.  You start by writing a failing (red) test, then write the simplest production code possible to get the code working (green), then you clean up the code (refactor).  This is known as the red-green-refactor cycle. The goal of TDD isn’t the creation of a suite of tests, however that is an advantageous side effect.  The real goal of TDD is to follow a practice that yields a better design.  The practice is meant to push the design toward small, decoupled, modularized components.  This is generally considered a better design that large, highly coupled ball of mud. TDD accomplishes this through the refactoring cycle.  Refactoring is only possible to do safely when tests are in place.  In order to use TDD developers must be trained in how to look for and repair code smells in the system.  Through repairing these sections of smelly code (i.e. a refactoring) the design of the system emerges. For further information on TDD, I highly recommend the series “Is TDD Dead?”.  It discusses its pros and cons and when it is best used. Acceptance Test Driven Development (ATDD) Whereas TDD focuses on small unit tests that concentrate on a small piece of the system, Acceptance Tests focuses on the larger integrated environment.  Acceptance Tests usually correspond to user stories, which come directly from the customer. The unit tests focus on the inputs and outputs of smaller parts of the system, which are too low level to be of interest to the customer. ATDD generally uses the same tools as TDD.  However, ATDD uses fewer mocks and test doubles than TDD. ATDD often complements TDD; they aren’t competing methods.  A full test suite will usually consist of a large number of unit (created via TDD) tests and a smaller number of acceptance tests. Behaviour Driven Development (BDD) BDD is more about audience than workflow.  BDD pushes the testing realm out towards the client.  Developers, managers and the client all work together to define the tests. Typically different tooling is used for BDD than acceptance and unit testing.  This is done because the audience is not just developers.  Tools using the Gherkin family of languages allow for test scenarios to be described in an English format.  Other tools such as MSpec or FitNesse also strive for highly readable behaviour driven test suites. Because these tests are public facing (viewable by people outside the development team), the terminology usually changes.  You can’t get away with the same technobabble you can with unit tests written in a programming language that only developers understand.  For starters, they usually aren’t called tests.  Usually they’re called “examples”, “behaviours”, “scenarios”, or “specifications”. This may seem like a very subtle difference, but I’ve seen this small terminology change have a huge impact on the acceptance of the process.  Many people have a bias that testing is something that comes at the end of a project.  When you say we need to define the tests at the start of the project many people will immediately give that a lower priority on the project schedule.  But if you say we need to define the specification or behaviour of the system before we can start, you’ll get more cooperation.   Keep these test-first and test-after workflows in your tool belt.  With them you’ll be able to find new opportunities to apply them.

    Read the article

  • Unit testing and Test Driven Development questions

    - by Theomax
    I'm working on an ASP.NET MVC website which performs relatively complex calculations as one of its functions. This functionality was developed some time ago (before I started working on the website) and defects have occurred whereby the calculations are not being calculated properly (basically these calculations are applied to each user which has certain flags on their record etc). Note; these defects have only been observed by users thus far, and not yet investigated in code while debugging. My questions are: Because the existing unit tests all pass and therefore do not indicate that the defects that have been reported exist; does this suggest the original code that was implemented is incorrect? i.e either the requirements were incorrect and were coded accordingly or just not coded as they were supposed to be coded? If I use the TDD approach, would I disgregard the existing unit tests as they don't show there are any problems with the calculations functionality - and I start by making some failing unit tests which test/prove there are these problems occuring, and then add code to make them pass? Note; if it's simply a bug that is occurring that can be found while debugging the code, do the unit tests need to be updated since they are already passing?

    Read the article

  • SQL SERVER – Introduction to Big Data – Guest Post

    - by pinaldave
    BIG Data – such a big word – everybody talks about this now a days. It is the word in the database world. In one of the conversation I asked my friend Jasjeet Sigh the same question – what is Big Data? He instantly came up with a very effective write-up.  Jasjeet is working as a Technical Manager with Koenig Solutions. He leads the SQL domain, and holds rich IT industry experience. Talking about Koenig, it is a 19 year old IT training company that offers several certification choices. Some of its courses include SharePoint Training, Project Management certifications, Microsoft Trainings, Business Intelligence programs, Web Design and Development courses etc. Big Data, as the name suggests, is about data that is BIG in nature. The data is BIG in terms of size, and it is difficult to manage such enormous data with relational database management systems that are quite popular these days. Big Data is not just about being large in size, it is also about the variety of the data that differs in form or type. Some examples of Big Data are given below : Scientific data related to weather and atmosphere, Genetics etc Data collected by various medical procedures, such as Radiology, CT scan, MRI etc Data related to Global Positioning System Pictures and Videos Radio Frequency Data Data that may vary very rapidly like stock exchange information Apart from difficulties in managing and storing such data, it is difficult to query, analyze and visualize it. The characteristics of Big Data can be defined by four Vs: Volume: It simply means a large volume of data that may span Petabyte, Exabyte and so on. However it also depends organization to organization that what volume of data they consider as Big Data. Variety: As discussed above, Big Data is not limited to relational information or structured Data. It can also include unstructured data like pictures, videos, text, audio etc. Velocity:  Velocity means the speed by which data changes. The higher is the velocity, the more efficient should be the system to capture and analyze the data. Missing any important point may lead to wrong analysis or may even result in loss. Veracity: It has been recently added as the fourth V, and generally means truthfulness or adherence to the truth. In terms of Big Data, it is more of a challenge than a characteristic. It is difficult to ascertain the truth out of the enormous amount of data and the one that has high velocity. There are always chances of having un-precise and uncertain data. It is a challenging task to clean such data before it is analyzed. Big Data can be considered as the next big thing in the IT sector in terms of innovation and development. If appropriate technologies are developed to analyze and use the information, it can be the driving force for almost all industrial segments. These include Retail, Manufacturing, Service, Finance, Healthcare etc. This will help them to automate business decisions, increase productivity, and innovate and develop new products. Thanks Jasjeet Singh for an excellent write up.  Jasjeet Sign is working as a Technical Manager with Koenig Solutions. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Database, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Big Data

    Read the article

< Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >