Search Results

Search found 10547 results on 422 pages for 'extending classes'.

Page 7/422 | < Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >

  • Azure Blob and Entity Table Integration, extending the Thumbnail sample

    This article describes the concepts for doing CRUD (Create, Read, Update, Delete) operations on Windows Azure Tables and how table data can interact with the Blobs....Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Chaining CSS classes in IE6 - Trying to find a jQuery solution?

    - by Mike Baxter
    Right, perhaps I ask the impossible? I consider myself fairly new to Javscript and jQuery, but that being said, I have written some fairly complex code recently so I am definitely getting there... however I am now possed with a rather interesting issue at my current freelance contract. The previous web coder has taken a Grid-960 approach to the HTML and as a result has used chained classes to style many of the elements. The example below is typical of what can be found in the code: <div class='blocks four-col-1 orange highlight'>Some content</div> And in the css there will be different declarations for: (not actual css... but close enough) .blocks {margin-right:10px;} .orange {background-image:url(someimage.jpg);} .highlight {font-weight:bold;} .four-col-1 {width:300px;} and to make matters worse... this is in the CSS: .blocks.orange.highlight {background-colour:#dd00ff;} Anyone not familiar with this particular bug can read more on it here: http://www.ryanbrill.com/archives/multiple-classes-in-ie/ it is very real and very annoying. Without wanting to go into the merrits of not chaining classes (I told them this, but it is no longer feasible to change their approach... 100 hand coded pages into a 150 page website, no CMS... sigh) and without the luxury of being able to change the way these blocks are styled... can anyone advise me on the complexity and benefits between any of my below proposed approaches or possible other options that would adequately solve this problem. Potential Solution 1 Using conditional comments I am considering loading a jquery script only for IE6 that: Reads the class of all divs in a certain section of the page and pushes to an array creates empty boxes off screen with only one of the classes applied at a time Reads the applied CSS values for each box Re-applies these styles to the individual box, somehow bearing in mind the order in which they are called and overwriting conflicting instructions as required Potential Solution 2 read the class of all divs in a certain section of the page and push to an array Scan the document for links to style sheets Ajax grab the stylesheets and traverse looking for matching names to those in class array Apply styles as needed Potential Solution 3 Create an IE6 only stylesheet containing the exact style to be applied as a unique name (ie: class='blocks orange highlight' becomes class='blocks-orange-highlight') Traverse the document in IE6 and convert all spaces in class declarations to hyphens and reapply classes based on new style name Summary: Solution 1 allows the people at this company to apply any styles in the future and the script will adjust as needed. However it does not allow for the chained style to be added, only the individual style... it is also processor intensive and time consuming, but also the most likely to be converted into a plugin that could be used the world over Solution 2 is a potential nightmare to code. But again will allow for an endless number of updates without breaking Solution 3 will require someone at the companty to hardcode the new styles every time they make a change, and if they don't, IE6 will break. Ironically the site, whilst needing to conform to IE6 in a limited manner, does not need to run wihtout javascript (they've made the call... have JS or go away), so consider all jQuery and JS solutions to be 'game on'. Did I mention how much i hate IE6? Anyway... any thoughts or comments would be appreciated. I will continue to develop my own solution and if I discover one that can be turned into a jQuery plugin I will post it here in the comments. Regards, Mike.

    Read the article

  • Why are static classes considered “classes” and “reference types”?

    - by Timwi
    I’ve been pondering about the C# and CIL type system today and I’ve started to wonder why static classes are considered classes. There are many ways in which they are not really classes: A “normal” class can contain non-static members, a static class can’t. In this respect, a class is more similar to a struct than it is to a static class, and yet structs have a separate name. You can have a reference to an instance of a “normal” class, but not a static class (despite it being considered a “reference type”). In this respect, a class is more similar to an interface than it is to a static class, and yet interfaces have a separate name. The name of a static class can never be used in any place where a type name would normally fit: you can’t declare a variable of this type, you can’t use it as a base type, and you can’t use it as a generic type parameter. In this respect, static classes are somewhat more like namespaces. A “normal” class can implement interfaces. Once again, that makes classes more similar to structs than to static classes. A “normal” class can inherit from another class. It is also bizarre that static classes are considered to derive from System.Object. Although this allows them to “inherit” the static methods Equals and ReferenceEquals, the purpose of that inheritance is questionable as you would call those methods on object anyway. C# even allows you to specify that useless inheritance explicitly on static classes, but not on interfaces or structs, where the implicit derivation from object and System.ValueType, respectively, actually has a purpose. Regarding the subset-of-features argument: Static classes have a subset of the features of classes, but they also have a subset of the features of structs. All of the things that make a class distinct from the other kinds of type, do not seem to apply to static classes. Regarding the typeof argument: Making a static class into a new and different kind of type does not preclude it from being used in typeof. Given the sheer oddity of static classes, and the scarcity of similarities between them and “normal” classes, shouldn’t they have been made into a separate kind of type instead of a special kind of class?

    Read the article

  • Classes. Whats the point?

    - by Ben Shelock
    I'm fairly new to OOP in PHP, I've made a couple of basic scripts but nothing impressive. All I've really taken from it is that it would probably be easier just make a collection of functions and include them. The structure of classes seems to just confuse what was otherwise a simple process. And in collating everything into a class it doesn't really add any functionality. So I'm clearly missing something. Could someone explain what functionality is added by creating classes

    Read the article

  • What should I put into classes and what stuff I shouldnt?

    - by jpjp
    I am learning about classes right now in PHP and their examples are like.. class table { //makes a table private $tag ; function Begin($border=0, $align="center", $width='100%', $cellpadding=2, $cellspacing=2, $class='', $id='', $bgcolor='', $style='') { $this->tag = '<table ' ; if ($align) $this->tag .= 'align="' . $align . '" ' ; if ($width) $this->tag .= 'width="' . $width . '" ' ; if ($border > 0) $this->tag .= 'border="' . $border . '" ' ; if ($cellpadding > 0) $this->tag .= 'cellpadding="' . $cellpadding . '" ' ; if ($cellspacing > 0) $this->tag .= 'cellspacing="' . $cellspacing . '" ' ; if ($class) $this->tag .= 'class="' . $class . '" ' ; if ($id) $this->tag .= 'id="' . $id . '" ' ; if ($bgcolor) $this->tag .= 'bgcolor="' . $bgcolor . '" ' ; if ($style) $this->tag .= 'style="' . $style . '" ' ; $this->tag .= ">" ; return $this->tag ; } Then you just instantiate it and make a table by $table =new table; $table->$table($border=2, $align='center', etc); Should I be coding like this where html, css are in classes? i feel making tables and forms this way is more confusing then actually just typing . Should I only put like validation, getting data from db, and the logic stuff in classes? What should I use classes for and not?

    Read the article

  • How to avoid general names for abstract classes?

    - by djechlin
    In general it's good to avoid words like "handle" or "process" as part of routine names and class names, unless you are dealing with (e.g.) file handles or (e.g.) unix processes. However abstract classes often don't really know what they're going to do with something besides, say, process it. In my current situation I have an "EmailProcessor" that logs into a user's inbox and processes messages from it. It's not really clear to me how to give this a more precise name, although I've noticed the following style matter arises: better to treat derived classes as clients and named the base class by the part of the functionality it implements? Gives it more meaning but will violate is-a. E.g. EmailAcquirer would be a reasonable name since it's acquiring for the derived class, but the derived class won't be acquiring for anyone. Or just really vague name since who knows what the derived classes will do. However "Processor" is still too general since it's doing many relevant operations, like logging in and using IMAP. Any way out of this dilemma? Problem is more evident for abstract methods, in which you can't really answer the question "what does this do?" because the answer is simply "whatever the client wants."

    Read the article

  • Html 5 clock, part ii - CSS marker classes and getElementsByClassName

    - by Norgean
    The clock I made in part i displays the time in "long" - "It's a quarter to ten" (but in Norwegian). To save space, some letters are shared, "sevenineight" is four letters shorter than "seven nine eight". We only want to highlight the "correct" parts of this, for example "sevenineight". When I started programming the clock, each letter had its own unique ID, and my script would "get" each element individually, and highlight / hide each element according to some obscure logic. I quickly realized, despite being in a post surgery haze, …this is a stupid way to do it. And, to paraphrase NPH, if you find yourself doing something stupid, stop, and be awesome instead. We want an easy way to get all the items we want to highlight. Perhaps we can use the new getElementsByClassName function? Try to mark each element with a classname or two. So in "sevenineight": 's' is marked as 'h7', and the first 'n' is marked with both 'h7' and 'h9' (h for hour). <div class='h7 h9'>N</div><div class='h9'>I</div> getElementsByClassName('h9') will return the four letters of "nine". Notice that these classes are not backed by any CSS, they only appear directly in html (and are used in javascript). I have not seen classes used this way elsewhere, and have chosen to call them "marker classes" - similar to marker interfaces - until somebody comes up with a better name.

    Read the article

  • Should conditional expressions go inside or outside of classes?

    - by Rupert
    It seems that often I will want to execute some methods from a Class when I call it and choosing which function will depend on some condition. This leads me to write classes like in Case 1 because it allows me to rapidly include their functionality. The alternative would be Case 2 which can take a lot of time if there is a lot of code and also means more code being written twice when I drop the Class into different pages. Having said that, Case 1 feels very wrong for some reason that I can't quite put my finger on. I haven't really seen any classes written like this, I suppose. Is there anything wrong with writing classes like in Case 1 or is Case 2 superior? Or is there a better way? What the advantages and disadvantages of each? Case 1 class Foo { public function __construct($bar) { if($bar = 'action1') $this->method1(); else if($bar = 'action2') $this->method2(); else $this->method1(); } public function method1() { } public function method2() { } } $bar = 'action1' $foo = new Foo($bar); Case 2 class Foo { public function __construct() { } public function method1() { } public function method2() { } } $foo = new Foo; $bar = 'action1'; if($bar == 'action1') $foo->method1(); else if($bar == 'action2') $foo->method2(); else $foo->method1();

    Read the article

  • Can You Have "Empty" Abstract/Classes?

    - by ShrimpCrackers
    Of course you can, I'm just wondering if it's rational to design in such a way. I'm making a breakout clone and was doing some class design. I wanted to use inheritance, even though I don't have to, to apply what I've learned in C++. I was thinking about class design and came up with something like this: GameObject - base class (consists of data members like x and y offsets, and a vector of SDL_Surface* MovableObject : GameObject - abstract class + derived class of GameObject (one method void move() = 0; ) NonMovableObject : GameObject - empty class...no methods or data members other than constructor and destructor(at least for now?). Later I was planning to derive a class from NonMovableObject, like Tileset : NonMovableObject. I was just wondering if "empty" abstract classes or just empty classes are often used...I notice that the way I'm doing this, I'm just creating the class NonMovableObject just for sake of categorization. I know I'm overthinking things just to make a breakout clone, but my focus is less on the game and more on using inheritance and designing some sort of game framework.

    Read the article

  • Getting Started with TypeScript – Classes, Static Types and Interfaces

    - by dwahlin
    I had the opportunity to speak on different JavaScript topics at DevConnections in Las Vegas this fall and heard a lot of interesting comments about JavaScript as I talked with people. The most frequent comment I heard from people was, “I guess it’s time to start learning JavaScript”. Yep – if you don’t already know JavaScript then it’s time to learn it. As HTML5 becomes more and more popular the amount of JavaScript code written will definitely increase. After all, many of the HTML5 features available in browsers have little to do with “tags” and more to do with JavaScript (web workers, web sockets, canvas, local storage, etc.). As the amount of JavaScript code being used in applications increases, it’s more important than ever to structure the code in a way that’s maintainable and easy to debug. While JavaScript patterns can certainly be used (check out my previous posts on the subject or my course on Pluralsight.com), several alternatives have come onto the scene such as CoffeeScript, Dart and TypeScript. In this post I’ll describe some of the features TypeScript offers and the benefits that they can potentially offer enterprise-scale JavaScript applications. It’s important to note that while TypeScript has several great features, it’s definitely not for everyone or every project especially given how new it is. The goal of this post isn’t to convince you to use TypeScript instead of standard JavaScript….I’m a big fan of JavaScript. Instead, I’ll present several TypeScript features and let you make the decision as to whether TypeScript is a good fit for your applications. TypeScript Overview Here’s the official definition of TypeScript from the http://typescriptlang.org site: “TypeScript is a language for application-scale JavaScript development. TypeScript is a typed superset of JavaScript that compiles to plain JavaScript. Any browser. Any host. Any OS. Open Source.” TypeScript was created by Anders Hejlsberg (the creator of the C# language) and his team at Microsoft. To sum it up, TypeScript is a new language that can be compiled to JavaScript much like alternatives such as CoffeeScript or Dart. It isn’t a stand-alone language that’s completely separate from JavaScript’s roots though. It’s a superset of JavaScript which means that standard JavaScript code can be placed in a TypeScript file (a file with a .ts extension) and used directly. That’s a very important point/feature of the language since it means you can use existing code and frameworks with TypeScript without having to do major code conversions to make it all work. Once a TypeScript file is saved it can be compiled to JavaScript using TypeScript’s tsc.exe compiler tool or by using a variety of editors/tools. TypeScript offers several key features. First, it provides built-in type support meaning that you define variables and function parameters as being “string”, “number”, “bool”, and more to avoid incorrect types being assigned to variables or passed to functions. Second, TypeScript provides a way to write modular code by directly supporting class and module definitions and it even provides support for custom interfaces that can be used to drive consistency. Finally, TypeScript integrates with several different tools such as Visual Studio, Sublime Text, Emacs, and Vi to provide syntax highlighting, code help, build support, and more depending on the editor. Find out more about editor support at http://www.typescriptlang.org/#Download. TypeScript can also be used with existing JavaScript frameworks such as Node.js, jQuery, and others and even catch type issues and provide enhanced code help. Special “declaration” files that have a d.ts extension are available for Node.js, jQuery, and other libraries out-of-the-box. Visit http://typescript.codeplex.com/SourceControl/changeset/view/fe3bc0bfce1f#samples%2fjquery%2fjquery.d.ts for an example of a jQuery TypeScript declaration file that can be used with tools such as Visual Studio 2012 to provide additional code help and ensure that a string isn’t passed to a parameter that expects a number. Although declaration files certainly aren’t required, TypeScript’s support for declaration files makes it easier to catch issues upfront while working with existing libraries such as jQuery. In the future I expect TypeScript declaration files will be released for different HTML5 APIs such as canvas, local storage, and others as well as some of the more popular JavaScript libraries and frameworks. Getting Started with TypeScript To get started learning TypeScript visit the TypeScript Playground available at http://www.typescriptlang.org. Using the playground editor you can experiment with TypeScript code, get code help as you type, and see the JavaScript that TypeScript generates once it’s compiled. Here’s an example of the TypeScript playground in action:   One of the first things that may stand out to you about the code shown above is that classes can be defined in TypeScript. This makes it easy to group related variables and functions into a container which helps tremendously with re-use and maintainability especially in enterprise-scale JavaScript applications. While you can certainly simulate classes using JavaScript patterns (note that ECMAScript 6 will support classes directly), TypeScript makes it quite easy especially if you come from an object-oriented programming background. An example of the Greeter class shown in the TypeScript Playground is shown next: class Greeter { greeting: string; constructor (message: string) { this.greeting = message; } greet() { return "Hello, " + this.greeting; } } Looking through the code you’ll notice that static types can be defined on variables and parameters such as greeting: string, that constructors can be defined, and that functions can be defined such as greet(). The ability to define static types is a key feature of TypeScript (and where its name comes from) that can help identify bugs upfront before even running the code. Many types are supported including primitive types like string, number, bool, undefined, and null as well as object literals and more complex types such as HTMLInputElement (for an <input> tag). Custom types can be defined as well. The JavaScript output by compiling the TypeScript Greeter class (using an editor like Visual Studio, Sublime Text, or the tsc.exe compiler) is shown next: var Greeter = (function () { function Greeter(message) { this.greeting = message; } Greeter.prototype.greet = function () { return "Hello, " + this.greeting; }; return Greeter; })(); Notice that the code is using JavaScript prototyping and closures to simulate a Greeter class in JavaScript. The body of the code is wrapped with a self-invoking function to take the variables and functions out of the global JavaScript scope. This is important feature that helps avoid naming collisions between variables and functions. In cases where you’d like to wrap a class in a naming container (similar to a namespace in C# or a package in Java) you can use TypeScript’s module keyword. The following code shows an example of wrapping an AcmeCorp module around the Greeter class. In order to create a new instance of Greeter the module name must now be used. This can help avoid naming collisions that may occur with the Greeter class.   module AcmeCorp { export class Greeter { greeting: string; constructor (message: string) { this.greeting = message; } greet() { return "Hello, " + this.greeting; } } } var greeter = new AcmeCorp.Greeter("world"); In addition to being able to define custom classes and modules in TypeScript, you can also take advantage of inheritance by using TypeScript’s extends keyword. The following code shows an example of using inheritance to define two report objects:   class Report { name: string; constructor (name: string) { this.name = name; } print() { alert("Report: " + this.name); } } class FinanceReport extends Report { constructor (name: string) { super(name); } print() { alert("Finance Report: " + this.name); } getLineItems() { alert("5 line items"); } } var report = new FinanceReport("Month's Sales"); report.print(); report.getLineItems();   In this example a base Report class is defined that has a variable (name), a constructor that accepts a name parameter of type string, and a function named print(). The FinanceReport class inherits from Report by using TypeScript’s extends keyword. As a result, it automatically has access to the print() function in the base class. In this example the FinanceReport overrides the base class’s print() method and adds its own. The FinanceReport class also forwards the name value it receives in the constructor to the base class using the super() call. TypeScript also supports the creation of custom interfaces when you need to provide consistency across a set of objects. The following code shows an example of an interface named Thing (from the TypeScript samples) and a class named Plane that implements the interface to drive consistency across the app. Notice that the Plane class includes intersect and normal as a result of implementing the interface.   interface Thing { intersect: (ray: Ray) => Intersection; normal: (pos: Vector) => Vector; surface: Surface; } class Plane implements Thing { normal: (pos: Vector) =>Vector; intersect: (ray: Ray) =>Intersection; constructor (norm: Vector, offset: number, public surface: Surface) { this.normal = function (pos: Vector) { return norm; } this.intersect = function (ray: Ray): Intersection { var denom = Vector.dot(norm, ray.dir); if (denom > 0) { return null; } else { var dist = (Vector.dot(norm, ray.start) + offset) / (-denom); return { thing: this, ray: ray, dist: dist }; } } } }   At first glance it doesn’t appear that the surface member is implemented in Plane but it’s actually included automatically due to the public surface: Surface parameter in the constructor. Adding public varName: Type to a constructor automatically adds a typed variable into the class without having to explicitly write the code as with normal and intersect. TypeScript has additional language features but defining static types and creating classes, modules, and interfaces are some of the key features it offers. So is TypeScript right for you and your applications? That’s a not a question that I or anyone else can answer for you. You’ll need to give it a spin to see what you think. In future posts I’ll discuss additional details about TypeScript and how it can be used with enterprise-scale JavaScript applications. In the meantime, I’m in the process of working with John Papa on a new Typescript course for Pluralsight that we hope to have out in December of 2012.

    Read the article

  • Is there any reason to use "container" classes?

    - by Michael
    I realize the term "container" is misleading in this context - if anyone can think of a better term please edit it in. In legacy code I occasionally see classes that are nothing but wrappers for data. something like: class Bottle { int height; int diameter; Cap capType; getters/setters, maybe a constructor } My understanding of OO is that classes are structures for data and the methods of operating on that data. This seems to preclude objects of this type. To me they are nothing more than structs and kind of defeat the purpose of OO. I don't think it's necessarily evil, though it may be a code smell. Is there a case where such objects would be necessary? If this is used often, does it make the design suspect?

    Read the article

  • managing information/functionality on shared common project classes

    - by ilansch
    In my company, we have a common solution the contains common projects (2 projects so far, one for .net 3.5 and one for .net 4.5). My main problem is that during time, a lot of code is added, for example hosting a process as windows service is a class called ServiceManagement, But no one but the developer knows it, and if someone wants to use this shared class, he does not know it exist. So i am looking for a way to document and manage all the classes with tags, a 3rd party util/web util, that i can search for tags and maybe find common classes that i can use (if we keep all our code well-documented). Does anyone familiar with sort of tools ?

    Read the article

  • CSS naming guildlines with elements with multiple classes

    - by ryanzec
    Its seems like there are 2 ways someone can handle naming classes for elements that are designed to have multiple classes. One way would be: <span class="btn btn-success"></span> This is something that twitter bootstrap uses. Another possibility I would think would be: <span class="btn success"></span> It seems like the zurb foundation uses this method. Now the benefits of the first that I can see is that there less chance of outside css interfering with styling as the class name btn-success would not be as common as the class name success. The benefit of the second as I can see is that there is less typing and potential better style reuse. Are there any other benefits/disadvantages of either option and is one of them more popular than the other?

    Read the article

  • Use adapter pattern for coupled classes

    - by kaiseroskilo
    I need (for unit testing purposes) to create adapters for external library classes.ExchangeService and ContactsFolder are Microsoft's implementations in its' EWS library. So I created my adapters that implement my interfaces, but it seems that contactsFolder has a dependency for ExchangeService in its' constructor. The problem is that I cannot instantiate ContactsFolderAdapter without somehow accessing the actual ExchangeService instance (I see only ExchangeServiceAdapter in scope). Is there a better pattern for this that retains the adapter classes? Or should I "infect" ExchangeServiceAdapter with some kind of GetActualObject method?

    Read the article

  • OOD: All classes at bottom of hierarchy contain the same field

    - by My Head Hurts
    I am creating a class diagram for what I thought was a fairly simple problem. However, when I get to the bottom of the hierarchy, all of the classes only contain one field and it is the same one. This to me looks very wrong, but this field does not belong in any of the parent classes. I was wondering if there are any suggested design patterns in a situation like this? A simplified version of the class diagram can be found below. Note, fields named differently cannot belong to any other class +------------------+ | ObjectA | |------------------| | String one | | String two | | | +---------+--------+ | +---------------+----------------+ | | +--------|--------+ +--------|--------+ | ObjectAA | | ObjectAB | |-----------------| |-----------------| | String three | | String four | | | | | +--------+--------+ +--------+--------+ | | | | +--------|--------+ +--------|--------+ | ObjectAAA | | ObjectABA | |-----------------| |-----------------| | String five | | String five | | | | | +-----------------+ +-----------------+ ASCII tables drawn using http://www.asciiflow.com/

    Read the article

  • Using Query Classes With NHibernate

    - by Liam McLennan
    Even when using an ORM, such as NHibernate, the developer still has to decide how to perform queries. The simplest strategy is to get access to an ISession and directly perform a query whenever you need data. The problem is that doing so spreads query logic throughout the entire application – a clear violation of the Single Responsibility Principle. A more advanced strategy is to use Eric Evan’s Repository pattern, thus isolating all query logic within the repository classes. I prefer to use Query Classes. Every query needed by the application is represented by a query class, aka a specification. To perform a query I: Instantiate a new instance of the required query class, providing any data that it needs Pass the instantiated query class to an extension method on NHibernate’s ISession type. To query my database for all people over the age of sixteen looks like this: [Test] public void QueryBySpecification() { var canDriveSpecification = new PeopleOverAgeSpecification(16); var allPeopleOfDrivingAge = session.QueryBySpecification(canDriveSpecification); } To be able to query for people over a certain age I had to create a suitable query class: public class PeopleOverAgeSpecification : Specification<Person> { private readonly int age; public PeopleOverAgeSpecification(int age) { this.age = age; } public override IQueryable<Person> Reduce(IQueryable<Person> collection) { return collection.Where(person => person.Age > age); } public override IQueryable<Person> Sort(IQueryable<Person> collection) { return collection.OrderBy(person => person.Name); } } Finally, the extension method to add QueryBySpecification to ISession: public static class SessionExtensions { public static IEnumerable<T> QueryBySpecification<T>(this ISession session, Specification<T> specification) { return specification.Fetch( specification.Sort( specification.Reduce(session.Query<T>()) ) ); } } The inspiration for this style of data access came from Ayende’s post Do You Need a Framework?. I am sick of working through multiple layers of abstraction that don’t do anything. Have you ever seen code that required a service layer to call a method on a repository, that delegated to a common repository base class that wrapped and ORMs unit of work? I can achieve the same thing with NHibernate’s ISession and a single extension method. If you’re interested you can get the full Query Classes example source from Github.

    Read the article

  • Problem creating levels using inherited classes/polymorphism

    - by Adam
    I'm trying to write my level classes by having a base class that each level class inherits from...The base class uses pure virtual functions. My base class is only going to be used as a vector that'll have the inherited level classes pushed onto it...This is what my code looks like at the moment, I've tried various things and get the same result (segmentation fault). //level.h class Level { protected: Mix_Music *music; SDL_Surface *background; SDL_Surface *background2; vector<Enemy> enemy; bool loaded; int time; public: Level(); virtual ~Level(); int bgX, bgY; int bg2X, bg2Y; int width, height; virtual void load(); virtual void unload(); virtual void update(); virtual void draw(); }; //level.cpp Level::Level() { bgX = 0; bgY = 0; bg2X = 0; bg2Y = 0; width = 2048; height = 480; loaded = false; time = 0; } Level::~Level() { } //virtual functions are empty... I'm not sure exactly what I'm supposed to include in the inherited class structure, but this is what I have at the moment... //level1.h class Level1: public Level { public: Level1(); ~Level1(); void load(); void unload(); void update(); void draw(); }; //level1.cpp Level1::Level1() { } Level1::~Level1() { enemy.clear(); Mix_FreeMusic(music); SDL_FreeSurface(background); SDL_FreeSurface(background2); music = NULL; background = NULL; background2 = NULL; Mix_CloseAudio(); } void Level1::load() { music = Mix_LoadMUS("music/song1.xm"); background = loadImage("image/background.png"); background2 = loadImage("image/background2.png"); Mix_OpenAudio(48000, MIX_DEFAULT_FORMAT, 2, 4096); Mix_PlayMusic(music, -1); } void Level1::unload() { } //functions have level-specific code in them... Right now for testing purposes, I just have the main loop call Level1 level1; and use the functions, but when I run the game I get a segmentation fault. This is the first time I've tried writing inherited classes, so I know I'm doing something wrong, but I can't seem to figure out what exactly.

    Read the article

  • Create many similar classes, or just one

    - by soandos
    The goal is to create an application that has objects that can represent some operations (add, subtract, etc). All of those objects will have common functions and members, and thus will either implement an interface or inherit from an abstract class (Which would be better practice, this will be in C# if that matters?). As far as I can see, there are two different ways of organizing all of these classes. I could create an addition class, a subtraction class, etc. This has the upside of being highly modular but the difference between classes is so minimal. I could create one class, and have a member that will say what type of operation is being represented. This means lots of switch statements, and losing some modularity, in addition to being harder to maintain. Which is is better practice? Is there a better way of doing that is not listed above? If it matters, the list of functions that should be supported is long.

    Read the article

  • Are nested classes under-rated?

    - by Aaron Anodide
    I'm not trying to say I know something everyone else doesn't but I've been solving more and more designs with the use of nested classes, so I'm curious to get a feeling for the acceptablilty of using this seemingly rarely used design mechanism. This leads me to the question: am I going down an inherintly bad path for reasons I'll discover when they come back to bite me, or are nested classes maybe something that are underrated? Here are two examples I just used them for: https://gist.github.com/3975581 - the first helped me keep tightly releated heirarchical things together, the second let me give access to protected members to workers...

    Read the article

< Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >