Search Results

Search found 29628 results on 1186 pages for 'project planning'.

Page 7/1186 | < Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >

  • Resources for using TFS for Agile Project Development?

    - by Amy P
    Our company just installed TFS for us to start using for project development processes and source control. They want us to start using it to manage our projects as well. We have a small team, no current bug or task tracking software, and 2 developers of the 3 have experience with any actual methodologies. What books, websites, and/or other information can you recommend for us to use to get started?

    Read the article

  • Value Chain Planning in Las Vegas

    - by Paul Homchick
    Several Oracle Value Chain Planning experts will be presenting at the Mandalay Bay Convention Center in Las Vegas, for Collaborate 2010- April 18th- 22nd, 2010. We have five sessions as follows: Monday, April 19, 1:15 pm - 2:15 pm, Breakers H, Roger Goossens VCP Vice President Leveraging Oracle Value Chain Planning for Your Planning Business Transformation Monday, April 19th, 2010- 1.15 pm-2.15 pm, Breakers D, Rich Caballero, CRM Vice President Delivering Superior Customer Service with Oracle's Siebel Service Applications Wednesday, April 21, 2:15 pm - 3:15 pm, Mandalay Bay Ballroom A, Roger Goossens VCP Vice President Value Chain Planning for JD Edwards EnterpriseOne We will also be in the demogrounds, so stop by to see the latest VCP innovations from Oracle and talk to our experts.

    Read the article

  • New Whitepaper: Planning Your E-Business Suite Upgrade from Release 11i to 12.1

    - by Steven Chan
    [Editor:  This guest article has been contributed by Anne Carlson]Premier Support for Oracle E-Business Suite Release 11i ends in November 2010.  At Oracle OpenWorld last fall, it was standing room only at several EBS upgrade sessions.  Responding to the increased interest in upgrades, I set to work on a new Release 12.1 version of our popular whitepaper, Best Practices for Adopting E-Business Suite, Release 12 (Note 580299.1). Here is that new whitepaper, which features the latest Release 12.1 upgrade planning advice from Oracle's Support, Consulting, Development and IT organizations:Planning Your E-Business Suite Upgrade from 11i to Release 12.1 (Note 987516.1)The paper is directed at IT professionals who are planning, managing, or running a Release 12.1 upgrade project.  After briefly reviewing the Release 12.1 value proposition, the paper launches into specific upgrade planning tips to help you:

    Read the article

  • ArvinMeritor Sees Business Improvement: Uses Oracle Demand Management, Supply Chain Planning and Tra

    - by [email protected]
    As manufacturers begin repositioning for the economic recovery, they are reevaluating their supply chain networks, extending lean into their supply chains and making logistics visibility a priority. ArvinMeritor leveraged Oracle's Demantra, ASCP and Transportation Management applications to: Optimize operations execution by building consensus-driven demand, sales and operations plans Slash transportation costs by rationalizing shippers, optimizing routes and improving delivery performance Demantra for demand management, forecasting, sales and operations planning and global trade management Advanced Supply Chain Planning for material and capacity planning across global distribution and manufacturing facilities based on consensus forecasts, sales orders, production status, purchase orders, and inventory policy recommendations Transportation Management for transportation planning, execution, freight payment, and business process automation on a single application across all modes of transportation, from full truckload to complex multileg air, ocean, and rail shipments Oracle hosted an 'open-house/showcase" on March 30th, 2010 atArvinMeritor Global Headquarters 2135 West Maple RoadTroy, MI 48084 

    Read the article

  • Oracle Number One in Supply Chain Planning

    - by Stephen Slade
    Something nice to write home about!  Saw this accomplishment and worth promoting, with special Congrats to the VCP team. Read on: Summary: Oracle is the #1 player in  Supply Chain Planning  according to research firm ARC Advisory Group Details: The report (Source: ARC Advisory Group, “Supply Chain Planning Worldwide Outlook, Market Analysis and Forecast through 2016,” Clint Reiser, Steve Banker), gives Oracle 21.1% of revenue share, compared to SAP, who was second at 18.6%. JDA Software, Aspen, Logility, and Infor were the next players in the market. The total market was valued at $1.506B. ARC counts Software (new license and upgrades), Implementation Services, Maintenance and Support, and SaaS, in its definition. ARC defines supply chain planning to include four key application areas: Extended SCP, Manufacturing Planning, Inventory/Distribution Planning, and Demand Management. Extended SCP consists of Network Design, Capable to Promise, SCP Composites, and Extended Supply Chain BI software. In the report, ARC further gives Oracle the number one spot in both Software Revenues and Services Revenues subsegments, as well as in many vertical areas such as Government, Electronics and Electrical, Medical Products, Pharmaceutical, and Wholesale/Distribution. ARC also issued a forecast, that predicts SCP revenue to grow from $1.506B in 2011 to $2.172B in 2016, with a CAGR of 7.6%. The report has several positive quotes about Oracle, including calling Oracle a “visionary,” and states that “Oracle has leveraged a broad set of home-grown and acquired offerings to create a comprehensive, integrated, yet modular suite with applicability to a wide range of industries,” Blog Link: http://blog.us.oracle.com/marketdata/?97119896  (shawn willett@oracle com)

    Read the article

  • Enterprise Planning - Part 1

    Today's networked and fast-changing economy challenges traditional spreadsheets and department-oriented planning mechanisms. To be competitive, effective planning needs to connect the organizational value chain in an integrated manner. In this podcast hear about how Oracle's Enterprise Business Planning solutions are enabling organizations to link their strategic, financial, and operational plans to achieve both vertical and horizontal alignment.

    Read the article

  • PBCS Hyperion Planning in the Cloud Implementation Workshop

    - by Mike.Hallett(at)Oracle-BI&EPM
    Normal 0 false false false EN-GB X-NONE X-NONE MicrosoftInternetExplorer4 Oracle Planning and Budgeting Cloud Service (PBCS) opens up opportunities for organizations of all sizes to streamline planning and forecasting, accelerate deployment, and reduce costs. This one-day in-person workshop is delivered by Oracle Development (free to OPN member partners), and will cover the handoff from selling-to-implementing of PBCS. Although the basic building blocks are the same as with on-premises Planning, there is a paradigm shift when it comes to selling and implementing a Cloud Service solution. The value proposition behind Oracle Planning and Budgeting Cloud Service is all about the deployment model, how it’s sold and how it gets implemented – simplicity, fast adoption and flexible deployment, without sacrificing first-class functionality. To be successful, the entire cycle from sales to implementation should consistently support this value proposition to your clients. This training event is for OPN member partners whose business roles involve presales, implementation consulting, and support. This workshop briefly reviews the sales approach, as background, with emphasis on partner sales support. The main objective is to learn what is needed to successfully implement Oracle Planning and Budgeting Cloud Service once the sales hand off is made – how to leverage your current Hyperion Planning knowledge and use the features designed specifically to build out a Cloud Service solution. This Workshop is being offered at three locations for partners from all countries in EMEA: June 24, 2014: Kista, Sweden June 26, 2014: Reading, United Kingdom June 29-30, 2014 (split days): Dubaï, United Arab Emirates To get more information, to check pre-requisites, and to register, click here. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Enterprise Planning - Part 2

    Today's networked and fast-changing economy challenges traditional spreadsheets and department-oriented planning mechanisms. To be competitive, effective planning needs to connect the organizational value chain in an integrated manner. In this podcast hear about how Oracle's Enterprise Business Planning solutions are enabling organizations to link their strategic, financial, and operational plans to achieve both vertical and horizontal alignment.

    Read the article

  • Open source project home page

    - by Oskar Kjellin
    I've created a software that I want to be able to market. I'd like to be able to post it on forums etc and for that I need a home page. Is there any open source C# project home pages that you can use? The functionality I'm looking for is like adding new versions (perhaps a version control from the software), downloading and user guides. So what I want is pretty basic: I want to be able to upload and let the users download. I've written this on my own as well but I guess that if there are open source projects that have done this they're probably better. This can't be such a rare problem so please lead me to some resources so that I can create my page and publish my software! :)

    Read the article

  • Project Euler 10: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 10.  As always, any feedback is welcome. # Euler 10 # http://projecteuler.net/index.php?section=problems&id=10 # The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. # Find the sum of all the primes below two million. import time start = time.time() def primes_to_max(max): primes, number = [2], 3 while number < max: isPrime = True for prime in primes: if number % prime == 0: isPrime = False break if (prime * prime > number): break if isPrime: primes.append(number) number += 2 return primes primes = primes_to_max(2000000) print sum(primes) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 15: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 15.  As always, any feedback is welcome. # Euler 15 # http://projecteuler.net/index.php?section=problems&id=15 # Starting in the top left corner of a 2x2 grid, there # are 6 routes (without backtracking) to the bottom right # corner. How many routes are their in a 20x20 grid? import time start = time.time() def factorial(n): if n == 0: return 1 else: return n * factorial(n-1) rows, cols = 20, 20 print factorial(rows+cols) / (factorial(rows) * factorial(cols)) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 9: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 9.  As always, any feedback is welcome. # Euler 9 # http://projecteuler.net/index.php?section=problems&id=9 # A Pythagorean triplet is a set of three natural numbers, # a b c, for which, # a2 + b2 = c2 # For example, 32 + 42 = 9 + 16 = 25 = 52. # There exists exactly one Pythagorean triplet for which # a + b + c = 1000. Find the product abc. import time start = time.time() product = 0 def pythagorean_triplet(): for a in range(1,501): for b in xrange(a+1,501): c = 1000 - a - b if (a*a + b*b == c*c): return a*b*c print pythagorean_triplet() print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 5: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 5.  As always, any feedback is welcome. # Euler 5 # http://projecteuler.net/index.php?section=problems&id=5 # 2520 is the smallest number that can be divided by each # of the numbers from 1 to 10 without any remainder. # What is the smallest positive number that is evenly # divisible by all of the numbers from 1 to 20? import time start = time.time() def gcd(a, b): while b: a, b = b, a % b return a def lcm(a, b): return a * b // gcd(a, b) print reduce(lcm, range(1, 20)) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Management - Asana / activeCollab / basecamp / alternative / none

    - by rickyduck
    I don't know whether this should be on programmers - I've been looking at the above three apps over the past few weeks just for myself and I'm in two minds. All three look good, are easy to use, and I came to this conclusion; Asana is the easiest to use ActiveCollab is the feature rich and easiest flow BaseCamp is the best UX / design But I didn't really find my workflow was any more quicker / efficient, in fact it was a bit slower and organized. Is there a realistic place for them in workflow - should programmers use them for themselves, or only when a project manager can take control of it?

    Read the article

  • Project Euler 8: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 8.  As always, any feedback is welcome. # Euler 8 # http://projecteuler.net/index.php?section=problems&id=8 # Find the greatest product of five consecutive digits # in the following 1000-digit number import time start = time.time() number = '\ 73167176531330624919225119674426574742355349194934\ 96983520312774506326239578318016984801869478851843\ 85861560789112949495459501737958331952853208805511\ 12540698747158523863050715693290963295227443043557\ 66896648950445244523161731856403098711121722383113\ 62229893423380308135336276614282806444486645238749\ 30358907296290491560440772390713810515859307960866\ 70172427121883998797908792274921901699720888093776\ 65727333001053367881220235421809751254540594752243\ 52584907711670556013604839586446706324415722155397\ 53697817977846174064955149290862569321978468622482\ 83972241375657056057490261407972968652414535100474\ 82166370484403199890008895243450658541227588666881\ 16427171479924442928230863465674813919123162824586\ 17866458359124566529476545682848912883142607690042\ 24219022671055626321111109370544217506941658960408\ 07198403850962455444362981230987879927244284909188\ 84580156166097919133875499200524063689912560717606\ 05886116467109405077541002256983155200055935729725\ 71636269561882670428252483600823257530420752963450' max = 0 for i in xrange(0, len(number) - 5): nums = [int(x) for x in number[i:i+5]] val = reduce(lambda agg, x: agg*x, nums) if val > max: max = val print max print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Kapros: A Custom-Built Workstation Featuring an In-Desk Computer

    - by Jason Fitzpatrick
    While we’ve seen our fair share of case mods, it’s infrequent we see one as polished and built-in as this custom built work station. What started as an IKEA Galant desk, ended as a stunningly executed desk-as-computer build. High gloss paint, sand-blasted plexiglass windows, custom lighting, and some quality hardware all come together in this build to yield a gorgeous setup with plenty of power and style to go around. Hit up the link below for a massive photo album build guide detailing the process from start to finish. Project Kapros: IKEA Galant PC Desk Mod [via Kotaku] How to Stress Test the Hard Drives in Your PC or Server How To Customize Your Android Lock Screen with WidgetLocker The Best Free Portable Apps for Your Flash Drive Toolkit

    Read the article

  • Project Euler 52: Ruby

    - by Ben Griswold
    In my attempt to learn Ruby out in the open, here’s my solution for Project Euler Problem 52.  Compared to Problem 51, this problem was a snap. Brute force and pretty quick… As always, any feedback is welcome. # Euler 52 # http://projecteuler.net/index.php?section=problems&id=52 # It can be seen that the number, 125874, and its double, # 251748, contain exactly the same digits, but in a # different order. # # Find the smallest positive integer, x, such that 2x, 3x, # 4x, 5x, and 6x, contain the same digits. timer_start = Time.now def contains_same_digits?(n) value = (n*2).to_s.split(//).uniq.sort.join 3.upto(6) do |i| return false if (n*i).to_s.split(//).uniq.sort.join != value end true end i = 100_000 answer = 0 while answer == 0 answer = i if contains_same_digits?(i) i+=1 end puts answer puts "Elapsed Time: #{(Time.now - timer_start)*1000} milliseconds"

    Read the article

  • How to determine number of resources to be allocated in a software project

    - by aditi
    Last day I have been interviewed and the interviwer asked me as given the outline of a project, how can we determine the number of resources to be needed for the same? I donot know to do do so? Is there any standard way of doing so? or is it based on the experience? or how.... I am pretty new in this activity and my knowledge is zero at present .... so any clear explanation with some example(simple) will help me(and people like me) to understand this. Thanks

    Read the article

  • Project Euler 2: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 2.  As always, any feedback is welcome. # Euler 2 # http://projecteuler.net/index.php?section=problems&id=2 # Find the sum of all the even-valued terms in the # Fibonacci sequence which do not exceed four million. # Each new term in the Fibonacci sequence is generated # by adding the previous two terms. By starting with 1 # and 2, the first 10 terms will be: # 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... # Find the sum of all the even-valued terms in the # sequence which do not exceed four million. import time start = time.time() total = 0 previous = 0 i = 1 while i <= 4000000: if i % 2 == 0: total +=i # variable swapping removes the need for a temp variable i, previous = previous, previous + i print total print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 16: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 16.  As always, any feedback is welcome. # Euler 16 # http://projecteuler.net/index.php?section=problems&id=16 # 2^15 = 32768 and the sum of its digits is # 3 + 2 + 7 + 6 + 8 = 26. # What is the sum of the digits of the number 2^1000? import time start = time.time() print sum([int(i) for i in str(2**1000)]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Why do large IT projects tend to fail or have big cost/schedule overruns?

    - by Pratik
    I always read about large scale transformation or integration project that are total or almost total disaster. Even if they somehow manage to succeed the cost and schedule blow out is enormous. What is the real reason behind large projects being more prone to failure. Can agile be used in these sort of projects or traditional approach is still the best. One example from Australia is the Queensland Payroll project where they changed test success criteria to deliver the project. See some more failed projects in this SO question Have you got any personal experience to share?

    Read the article

  • Project Euler 4: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 4.  As always, any feedback is welcome. # Euler 4 # http://projecteuler.net/index.php?section=problems&id=4 # Find the largest palindrome made from the product of # two 3-digit numbers. A palindromic number reads the # same both ways. The largest palindrome made from the # product of two 2-digit numbers is 9009 = 91 x 99. # Find the largest palindrome made from the product of # two 3-digit numbers. import time start = time.time() def isPalindrome(s): return s == s[::-1] max = 0 for i in xrange(100, 999): for j in xrange(i, 999): n = i * j; if (isPalindrome(str(n))): if (n > max): max = n print max print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 7: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 7.  As always, any feedback is welcome. # Euler 7 # http://projecteuler.net/index.php?section=problems&id=7 # By listing the first six prime numbers: 2, 3, 5, 7, # 11, and 13, we can see that the 6th prime is 13. What # is the 10001st prime number? import time start = time.time() def nthPrime(nth): primes = [2] number = 3 while len(primes) < nth: isPrime = True for prime in primes: if number % prime == 0: isPrime = False break if (prime * prime > number): break if isPrime: primes.append(number) number += 2 return primes[nth - 1] print nthPrime(10001) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 13: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 13.  As always, any feedback is welcome. # Euler 13 # http://projecteuler.net/index.php?section=problems&id=13 # Work out the first ten digits of the sum of the # following one-hundred 50-digit numbers. import time start = time.time() number_string = '\ 37107287533902102798797998220837590246510135740250\ 46376937677490009712648124896970078050417018260538\ 74324986199524741059474233309513058123726617309629\ 91942213363574161572522430563301811072406154908250\ 23067588207539346171171980310421047513778063246676\ 89261670696623633820136378418383684178734361726757\ 28112879812849979408065481931592621691275889832738\ 44274228917432520321923589422876796487670272189318\ 47451445736001306439091167216856844588711603153276\ 70386486105843025439939619828917593665686757934951\ 62176457141856560629502157223196586755079324193331\ 64906352462741904929101432445813822663347944758178\ 92575867718337217661963751590579239728245598838407\ 58203565325359399008402633568948830189458628227828\ 80181199384826282014278194139940567587151170094390\ 35398664372827112653829987240784473053190104293586\ 86515506006295864861532075273371959191420517255829\ 71693888707715466499115593487603532921714970056938\ 54370070576826684624621495650076471787294438377604\ 53282654108756828443191190634694037855217779295145\ 36123272525000296071075082563815656710885258350721\ 45876576172410976447339110607218265236877223636045\ 17423706905851860660448207621209813287860733969412\ 81142660418086830619328460811191061556940512689692\ 51934325451728388641918047049293215058642563049483\ 62467221648435076201727918039944693004732956340691\ 15732444386908125794514089057706229429197107928209\ 55037687525678773091862540744969844508330393682126\ 18336384825330154686196124348767681297534375946515\ 80386287592878490201521685554828717201219257766954\ 78182833757993103614740356856449095527097864797581\ 16726320100436897842553539920931837441497806860984\ 48403098129077791799088218795327364475675590848030\ 87086987551392711854517078544161852424320693150332\ 59959406895756536782107074926966537676326235447210\ 69793950679652694742597709739166693763042633987085\ 41052684708299085211399427365734116182760315001271\ 65378607361501080857009149939512557028198746004375\ 35829035317434717326932123578154982629742552737307\ 94953759765105305946966067683156574377167401875275\ 88902802571733229619176668713819931811048770190271\ 25267680276078003013678680992525463401061632866526\ 36270218540497705585629946580636237993140746255962\ 24074486908231174977792365466257246923322810917141\ 91430288197103288597806669760892938638285025333403\ 34413065578016127815921815005561868836468420090470\ 23053081172816430487623791969842487255036638784583\ 11487696932154902810424020138335124462181441773470\ 63783299490636259666498587618221225225512486764533\ 67720186971698544312419572409913959008952310058822\ 95548255300263520781532296796249481641953868218774\ 76085327132285723110424803456124867697064507995236\ 37774242535411291684276865538926205024910326572967\ 23701913275725675285653248258265463092207058596522\ 29798860272258331913126375147341994889534765745501\ 18495701454879288984856827726077713721403798879715\ 38298203783031473527721580348144513491373226651381\ 34829543829199918180278916522431027392251122869539\ 40957953066405232632538044100059654939159879593635\ 29746152185502371307642255121183693803580388584903\ 41698116222072977186158236678424689157993532961922\ 62467957194401269043877107275048102390895523597457\ 23189706772547915061505504953922979530901129967519\ 86188088225875314529584099251203829009407770775672\ 11306739708304724483816533873502340845647058077308\ 82959174767140363198008187129011875491310547126581\ 97623331044818386269515456334926366572897563400500\ 42846280183517070527831839425882145521227251250327\ 55121603546981200581762165212827652751691296897789\ 32238195734329339946437501907836945765883352399886\ 75506164965184775180738168837861091527357929701337\ 62177842752192623401942399639168044983993173312731\ 32924185707147349566916674687634660915035914677504\ 99518671430235219628894890102423325116913619626622\ 73267460800591547471830798392868535206946944540724\ 76841822524674417161514036427982273348055556214818\ 97142617910342598647204516893989422179826088076852\ 87783646182799346313767754307809363333018982642090\ 10848802521674670883215120185883543223812876952786\ 71329612474782464538636993009049310363619763878039\ 62184073572399794223406235393808339651327408011116\ 66627891981488087797941876876144230030984490851411\ 60661826293682836764744779239180335110989069790714\ 85786944089552990653640447425576083659976645795096\ 66024396409905389607120198219976047599490197230297\ 64913982680032973156037120041377903785566085089252\ 16730939319872750275468906903707539413042652315011\ 94809377245048795150954100921645863754710598436791\ 78639167021187492431995700641917969777599028300699\ 15368713711936614952811305876380278410754449733078\ 40789923115535562561142322423255033685442488917353\ 44889911501440648020369068063960672322193204149535\ 41503128880339536053299340368006977710650566631954\ 81234880673210146739058568557934581403627822703280\ 82616570773948327592232845941706525094512325230608\ 22918802058777319719839450180888072429661980811197\ 77158542502016545090413245809786882778948721859617\ 72107838435069186155435662884062257473692284509516\ 20849603980134001723930671666823555245252804609722\ 53503534226472524250874054075591789781264330331690' total = 0 for i in xrange(0, 100 * 50 - 1, 50): total += int(number_string[i:i+49]) print str(total)[:10] print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 6: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 6.  As always, any feedback is welcome. # Euler 6 # http://projecteuler.net/index.php?section=problems&id=6 # Find the difference between the sum of the squares of # the first one hundred natural numbers and the square # of the sum. import time start = time.time() square_of_sums = sum(range(1,101)) ** 2 sum_of_squares = reduce(lambda agg, i: agg+i**2, range(1,101)) print square_of_sums - sum_of_squares print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

< Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >