Search Results

Search found 1190 results on 48 pages for 'sinister clock'.

Page 7/48 | < Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >

  • What could be causing Windows to randomly reset the system time to a random time?

    - by Jonathan Dumaine
    My Windows 7 machine infuriates me. It cannot hold a date. At one point it all worked fine, but now it will decide that it needs to change the system time to a random time and date, either in the future or past. There seems to be no correlation or set interval of when it happens. In attempt to remedy this, I have: Correctly set the time in BIOS. Replaced the motherboard battery with a new CR2032 (even checked it with a multimeter). Tried disabling automatic internet synchronizing via "Date and Time" dialog. Stopped, restarted, left disabled the Windows Time service. Yet with all of these actions, the time will continue to change. Any ideas?

    Read the article

  • Does adding 1066Mhz DDR3 SODIMM to a 1600Mhz FSB laptop make sense?

    - by Alain Pannetier
    My previous laptop had 4x4GB 1066 Mhz DDR3. My new laptop instead has only 2x4GB 1600 Mhz DDR3. Using dmidecode I gather my FSB is set to 2300Mhz. Max Speed: 3800 MHz Current Speed: 2300 MHz 2 questions: Can somebody confirm I can safely add two "old" 1066Mhz modules to my new laptop before I treat myself to faster DDR3 modules? I understand this should not slow down the faster 2 1600 Mhz DDR3 modules. Correct? If this is of any relevance, I'm running Linux Mint Maya.

    Read the article

  • Monitoring the wall time of a process on windows?

    - by Sean Madden
    Windows Task Manager has the ability to show the current CPU time of any given running process on windows, is there any way (not necessarily through Task Manager) to get the current wall time of a process? An example, let's say I have a script that reliably runs for about 45 minutes. Without adding a progress bar to the script, is there any way to figure out for how long it has been running? The math behind this seems pretty straight forward; WallTime = CurrentWallTime - WallTimeProcessStarted. Likewise, since the math is so simple, is there anyway to get the time that a process was started at?

    Read the article

  • Why is only one domU giving me the "time went backwards"?

    - by Paul Tomblin
    I'm setting up a replacement server for one that was working ok but is having hardware issues. The original server is i686 (Pentium III), but the new one is amd64 (Xeon). Everything is working fine, except one of the three domUs is giving me the "clocksource/0: Time went backwards" error. The Debian Wiki says what to do if all your domUs are getting this error, but not what to do if only one of them has. The "tenants" on my domUs have done some messing about with the systems I configured for them. I don't know what the user of that particular domU might have done.

    Read the article

  • Implementing a Clock Drift random number generator in PHP

    - by Excl
    Hi, I wrote the following code: function create_rand($time) { $counter = 0; $stop = microtime(true) + $time; while(microtime(true) < $stop) $counter++; return $counter; } function create_rand_max($time, $a, $b = false) { $rand_a = create_rand($time); $rand_b = create_rand($time); $rand_c = create_rand($time); $max = max($rand_a, $rand_b, $rand_c); $min = min($rand_a, $rand_b, $rand_c); if($max === $min) return create_rand_max($time, $a, $b); $middle = $rand_a + $rand_b + $rand_c - $max - $min; if($b !== false) return min($a, $b) + ($middle - $min) * (max($a, $b) - min($a, $b)) / ($max - $min); return ($middle - $min) * $a / ($max - $min); } $stop = 1000; $sum = 0; for($i = 0; $i < $stop; $i++) { $sum += create_rand_max(0.001, 100, 200); } echo $sum / $stop; The average is usually between 157 to 161, instead of ~150. Any ideas?

    Read the article

  • ESXi VM NTP Server

    - by jstorch
    Hello all. We need to setup an internal NTP server. Because this server will pretty much ONLY be a time server I was thinking of just creating a VM for it. However, Googling around it appears that there there might be serious clock drifting issues with VM servers. So, is running our NTP server in a VM a completely dumb idea? Thanks, John

    Read the article

  • How do i mount my SD Card? I am using ubuntu 10.04

    - by shobhit
    root@shobhit:/media# lsusb Bus 002 Device 017: ID 14cd:125c Super Top Bus 002 Device 003: ID 0c45:6421 Microdia Bus 002 Device 002: ID 8087:0020 Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 001 Device 011: ID 413c:8160 Dell Computer Corp. Bus 001 Device 006: ID 413c:8162 Dell Computer Corp. Bus 001 Device 005: ID 413c:8161 Dell Computer Corp. Bus 001 Device 004: ID 138a:0008 DigitalPersona, Inc Bus 001 Device 003: ID 0a5c:4500 Broadcom Corp. BCM2046B1 USB 2.0 Hub (part of BCM2046 Bluetooth) Bus 001 Device 002: ID 8087:0020 Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub root@shobhit:/home/shobhit/scripts/internalUtilities# sudo lspci -v -nn 00:1a.0 USB Controller [0c03]: Intel Corporation 5 Series/3400 Series Chipset USB2 Enhanced Host Controller [8086:3b3c] (rev 06) (prog-if 20) Subsystem: Dell Device [1028:0441] Flags: bus master, medium devsel, latency 0, IRQ 16 Memory at fbc08000 (32-bit, non-prefetchable) [size=1K] Capabilities: [50] Power Management version 2 Capabilities: [58] Debug port: BAR=1 offset=00a0 Capabilities: [98] PCIe advanced features <?> Kernel driver in use: ehci_hcd 00:1d.0 USB Controller [0c03]: Intel Corporation 5 Series/3400 Series Chipset USB2 Enhanced Host Controller [8086:3b34] (rev 06) (prog-if 20) Subsystem: Dell Device [1028:0441] Flags: bus master, medium devsel, latency 0, IRQ 23 Memory at fbc07000 (32-bit, non-prefetchable) [size=1K] Capabilities: [50] Power Management version 2 Capabilities: [58] Debug port: BAR=1 offset=00a0 Capabilities: [98] PCIe advanced features <?> Kernel driver in use: ehci_hcd 00:1e.0 PCI bridge [0604]: Intel Corporation 82801 Mobile PCI Bridge [8086:2448] (rev a6) (prog-if 01) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=20, subordinate=20, sec-latency=32 Capabilities: [50] Subsystem: Dell Device [1028:0441] 00:1f.0 ISA bridge [0601]: Intel Corporation Mobile 5 Series Chipset LPC Interface Controller [8086:3b0b] (rev 06) Subsystem: Dell Device [1028:0441] Flags: bus master, medium devsel, latency 0 Capabilities: [e0] Vendor Specific Information <?> Kernel modules: iTCO_wdt 00:1f.2 SATA controller [0106]: Intel Corporation 5 Series/3400 Series Chipset 6 port SATA AHCI Controller [8086:3b2f] (rev 06) (prog-if 01) Subsystem: Dell Device [1028:0441] Flags: bus master, 66MHz, medium devsel, latency 0, IRQ 29 I/O ports at f070 [size=8] I/O ports at f060 [size=4] I/O ports at f050 [size=8] I/O ports at f040 [size=4] I/O ports at f020 [size=32] Memory at fbc06000 (32-bit, non-prefetchable) [size=2K] Capabilities: [80] Message Signalled Interrupts: Mask- 64bit- Queue=0/0 Enable+ Capabilities: [70] Power Management version 3 Capabilities: [a8] SATA HBA <?> Capabilities: [b0] PCIe advanced features <?> Kernel driver in use: ahci Kernel modules: ahci 00:1f.3 SMBus [0c05]: Intel Corporation 5 Series/3400 Series Chipset SMBus Controller [8086:3b30] (rev 06) Subsystem: Dell Device [1028:0441] Flags: medium devsel, IRQ 3 Memory at fbc05000 (64-bit, non-prefetchable) [size=256] I/O ports at f000 [size=32] Kernel modules: i2c-i801 00:1f.6 Signal processing controller [1180]: Intel Corporation 5 Series/3400 Series Chipset Thermal Subsystem [8086:3b32] (rev 06) Subsystem: Dell Device [1028:0441] Flags: bus master, fast devsel, latency 0, IRQ 3 Memory at fbc04000 (64-bit, non-prefetchable) [size=4K] Capabilities: [50] Power Management version 3 Capabilities: [80] Message Signalled Interrupts: Mask- 64bit- Queue=0/0 Enable- 12:00.0 Network controller [0280]: Broadcom Corporation Device [14e4:4727] (rev 01) Subsystem: Dell Device [1028:0010] Flags: bus master, fast devsel, latency 0, IRQ 17 Memory at fbb00000 (64-bit, non-prefetchable) [size=16K] Capabilities: [40] Power Management version 3 Capabilities: [58] Vendor Specific Information <?> Capabilities: [48] Message Signalled Interrupts: Mask- 64bit+ Queue=0/0 Enable- Capabilities: [d0] Express Endpoint, MSI 00 Capabilities: [100] Advanced Error Reporting <?> Capabilities: [13c] Virtual Channel <?> Capabilities: [160] Device Serial Number cb-c0-8b-ff-ff-38-00-00 Capabilities: [16c] Power Budgeting <?> Kernel driver in use: wl Kernel modules: wl 13:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168] (rev 03) Subsystem: Dell Device [1028:0441] Flags: bus master, fast devsel, latency 0, IRQ 28 I/O ports at e000 [size=256] Memory at d0b04000 (64-bit, prefetchable) [size=4K] Memory at d0b00000 (64-bit, prefetchable) [size=16K] Expansion ROM at fba00000 [disabled] [size=128K] Capabilities: [40] Power Management version 3 Capabilities: [50] Message Signalled Interrupts: Mask- 64bit+ Queue=0/0 Enable+ Capabilities: [70] Express Endpoint, MSI 01 Capabilities: [ac] MSI-X: Enable- Mask- TabSize=4 Capabilities: [cc] Vital Product Data <?> Capabilities: [100] Advanced Error Reporting <?> Capabilities: [140] Virtual Channel <?> Capabilities: [160] Device Serial Number 00-e0-4c-68-00-00-00-03 Kernel driver in use: r8169 Kernel modules: r8169 root@shobhit:/home/shobhit/scripts/internalUtilities# sudo lshw shobhit description: Portable Computer product: Vostro 3500 vendor: Dell Inc. version: A10 serial: FV1L3N1 width: 32 bits capabilities: smbios-2.6 dmi-2.6 smp-1.4 smp configuration: boot=normal chassis=portable cpus=2 uuid=44454C4C-5600-1031-804C-C6C04F334E31 *-core description: Motherboard product: 0G2R51 vendor: Dell Inc. physical id: 0 version: A10 serial: .FV1L3N1.CN7016612H00PW. slot: To Be Filled By O.E.M. *-cpu:0 description: CPU product: Intel(R) Core(TM) i5 CPU M 480 @ 2.67GHz vendor: Intel Corp. physical id: 4 bus info: cpu@0 version: 6.5.5 serial: 0002-0655-0000-0000-0000-0000 slot: CPU 1 size: 1197MHz capacity: 2926MHz width: 64 bits clock: 533MHz capabilities: boot fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx rdtscp x86-64 constant_tsc arch_perfmon pebs bts xtopology nonstop_tsc aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm sse4_1 sse4_2 popcnt lahf_lm ida arat tpr_shadow vnmi flexpriority ept vpid cpufreq configuration: id=4 *-cache:0 description: L1 cache physical id: 5 slot: L1-Cache size: 64KiB capacity: 64KiB capabilities: internal write-back unified *-cache:1 description: L2 cache physical id: 6 slot: L2-Cache size: 512KiB capacity: 512KiB capabilities: internal varies unified *-cache:2 description: L3 cache physical id: 7 slot: L3-Cache size: 3MiB capacity: 3MiB capabilities: internal varies unified *-logicalcpu:0 description: Logical CPU physical id: 4.1 width: 64 bits capabilities: logical *-logicalcpu:1 description: Logical CPU physical id: 4.2 width: 64 bits capabilities: logical *-logicalcpu:2 description: Logical CPU physical id: 4.3 width: 64 bits capabilities: logical *-logicalcpu:3 description: Logical CPU physical id: 4.4 width: 64 bits capabilities: logical *-logicalcpu:4 description: Logical CPU physical id: 4.5 width: 64 bits capabilities: logical *-logicalcpu:5 description: Logical CPU physical id: 4.6 width: 64 bits capabilities: logical *-logicalcpu:6 description: Logical CPU physical id: 4.7 width: 64 bits capabilities: logical *-logicalcpu:7 description: Logical CPU physical id: 4.8 width: 64 bits capabilities: logical *-logicalcpu:8 description: Logical CPU physical id: 4.9 width: 64 bits capabilities: logical *-logicalcpu:9 description: Logical CPU physical id: 4.a width: 64 bits capabilities: logical *-logicalcpu:10 description: Logical CPU physical id: 4.b width: 64 bits capabilities: logical *-logicalcpu:11 description: Logical CPU physical id: 4.c width: 64 bits capabilities: logical *-logicalcpu:12 description: Logical CPU physical id: 4.d width: 64 bits capabilities: logical *-logicalcpu:13 description: Logical CPU physical id: 4.e width: 64 bits capabilities: logical *-logicalcpu:14 description: Logical CPU physical id: 4.f width: 64 bits capabilities: logical *-logicalcpu:15 description: Logical CPU physical id: 4.10 width: 64 bits capabilities: logical *-memory description: System Memory physical id: 1d slot: System board or motherboard size: 3GiB *-bank:0 description: DIMM Synchronous 1333 MHz (0.8 ns) product: HMT112S6TFR8C-H9 vendor: AD80 physical id: 0 serial: 5525C935 slot: DIMM_A size: 1GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:1 description: DIMM Synchronous 1333 MHz (0.8 ns) product: HMT125S6TFR8C-H9 vendor: AD80 physical id: 1 serial: 3441D6CA slot: DIMM_B size: 2GiB width: 64 bits clock: 1333MHz (0.8ns) *-firmware description: BIOS vendor: Dell Inc. physical id: 0 version: A10 (10/25/2010) size: 64KiB capacity: 1984KiB capabilities: mca pci upgrade shadowing escd cdboot bootselect socketedrom edd int13floppy1200 int13floppy720 int13floppy2880 int5printscreen int9keyboard int14serial int17printer int10video acpi usb zipboot biosbootspecification *-cpu:1 physical id: 1 bus info: cpu@1 version: 6.5.5 serial: 0002-0655-0000-0000-0000-0000 size: 1197MHz capacity: 1197MHz capabilities: vmx ht cpufreq configuration: id=4 *-logicalcpu:0 description: Logical CPU physical id: 4.1 capabilities: logical *-logicalcpu:1 description: Logical CPU physical id: 4.2 capabilities: logical *-logicalcpu:2 description: Logical CPU physical id: 4.3 capabilities: logical *-logicalcpu:3 description: Logical CPU physical id: 4.4 capabilities: logical *-logicalcpu:4 description: Logical CPU physical id: 4.5 capabilities: logical *-logicalcpu:5 description: Logical CPU physical id: 4.6 capabilities: logical *-logicalcpu:6 description: Logical CPU physical id: 4.7 capabilities: logical *-logicalcpu:7 description: Logical CPU physical id: 4.8 capabilities: logical *-logicalcpu:8 description: Logical CPU physical id: 4.9 capabilities: logical *-logicalcpu:9 description: Logical CPU physical id: 4.a capabilities: logical *-logicalcpu:10 description: Logical CPU physical id: 4.b capabilities: logical *-logicalcpu:11 description: Logical CPU physical id: 4.c capabilities: logical *-logicalcpu:12 description: Logical CPU physical id: 4.d capabilities: logical *-logicalcpu:13 description: Logical CPU physical id: 4.e capabilities: logical *-logicalcpu:14 description: Logical CPU physical id: 4.f capabilities: logical *-logicalcpu:15 description: Logical CPU physical id: 4.10 capabilities: logical *-pci description: Host bridge product: Core Processor DRAM Controller vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 18 width: 32 bits clock: 33MHz configuration: driver=agpgart-intel resources: irq:0 *-display description: VGA compatible controller product: Core Processor Integrated Graphics Controller vendor: Intel Corporation physical id: 2 bus info: pci@0000:00:02.0 version: 18 width: 64 bits clock: 33MHz capabilities: msi pm bus_master cap_list rom configuration: driver=i915 latency=0 resources: irq:30 memory:fac00000-faffffff memory:c0000000-cfffffff(prefetchable) ioport:f080(size=8) *-communication UNCLAIMED description: Communication controller product: 5 Series/3400 Series Chipset HECI Controller vendor: Intel Corporation physical id: 16 bus info: pci@0000:00:16.0 version: 06 width: 64 bits clock: 33MHz capabilities: pm msi bus_master cap_list configuration: latency=0 resources: memory:fbc09000-fbc0900f *-usb:0 description: USB Controller product: 5 Series/3400 Series Chipset USB2 Enhanced Host Controller vendor: Intel Corporation physical id: 1a bus info: pci@0000:00:1a.0 version: 06 width: 32 bits clock: 33MHz capabilities: pm debug bus_master cap_list configuration: driver=ehci_hcd latency=0 resources: irq:16 memory:fbc08000-fbc083ff *-multimedia description: Audio device product: 5 Series/3400 Series Chipset High Definition Audio vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 06 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=HDA Intel latency=0 resources: irq:22 memory:fbc00000-fbc03fff *-pci:0 description: PCI bridge product: 5 Series/3400 Series Chipset PCI Express Root Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: 06 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm bus_master cap_list configuration: driver=pcieport resources: irq:24 ioport:2000(size=4096) memory:bc000000-bc1fffff memory:bc200000-bc3fffff(prefetchable) *-pci:1 description: PCI bridge product: 5 Series/3400 Series Chipset PCI Express Root Port 2 vendor: Intel Corporation physical id: 1c.1 bus info: pci@0000:00:1c.1 version: 06 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm bus_master cap_list configuration: driver=pcieport resources: irq:25 ioport:3000(size=4096) memory:fbb00000-fbbfffff memory:bc400000-bc5fffff(prefetchable) *-network description: Wireless interface product: Broadcom Corporation vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:12:00.0 logical name: eth1 version: 01 serial: c0:cb:38:8b:aa:d8 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=wl0 driverversion=5.60.48.36 ip=10.0.1.50 latency=0 multicast=yes wireless=IEEE 802.11 resources: irq:17 memory:fbb00000-fbb03fff *-pci:2 description: PCI bridge product: 5 Series/3400 Series Chipset PCI Express Root Port 3 vendor: Intel Corporation physical id: 1c.2 bus info: pci@0000:00:1c.2 version: 06 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm bus_master cap_list configuration: driver=pcieport resources: irq:26 ioport:e000(size=4096) memory:fba00000-fbafffff ioport:d0b00000(size=1048576) *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:13:00.0 logical name: eth0 version: 03 serial: 78:2b:cb:cc:0e:2a size: 10MB/s capacity: 1GB/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list rom ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=half latency=0 link=no multicast=yes port=MII speed=10MB/s resources: irq:28 ioport:e000(size=256) memory:d0b04000-d0b04fff(prefetchable) memory:d0b00000-d0b03fff(prefetchable) memory:fba00000-fba1ffff(prefetchable) *-pci:3 description: PCI bridge product: 5 Series/3400 Series Chipset PCI Express Root Port 5 vendor: Intel Corporation physical id: 1c.4 bus info: pci@0000:00:1c.4 version: 06 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm bus_master cap_list configuration: driver=pcieport resources: irq:27 ioport:d000(size=4096) memory:fb000000-fb9fffff ioport:d0000000(size=10485760) *-usb:1 description: USB Controller product: 5 Series/3400 Series Chipset USB2 Enhanced Host Controller vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 06 width: 32 bits clock: 33MHz capabilities: pm debug bus_master cap_list configuration: driver=ehci_hcd latency=0 resources: irq:23 memory:fbc07000-fbc073ff *-pci:4 description: PCI bridge product: 82801 Mobile PCI Bridge vendor: Intel Corporation physical id: 1e bus info: pci@0000:00:1e.0 version: a6 width: 32 bits clock: 33MHz capabilities: pci bus_master cap_list *-isa description: ISA bridge product: Mobile 5 Series Chipset LPC Interface Controller vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 06 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: latency=0 *-storage description: SATA controller product: 5 Series/3400 Series Chipset 6 port SATA AHCI Controller vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 logical name: scsi0 logical name: scsi1 version: 06 width: 32 bits clock: 66MHz capabilities: storage msi pm bus_master cap_list emulated configuration: driver=ahci latency=0 resources: irq:29 ioport:f070(size=8) ioport:f060(size=4) ioport:f050(size=8) ioport:f040(size=4) ioport:f020(size=32) memory:fbc06000-fbc067ff *-disk description: ATA Disk product: WDC WD3200BEKT-7 vendor: Western Digital physical id: 0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: 01.0 serial: WD-WX21AC0W1945 size: 298GiB (320GB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=77e3ed41 *-volume:0 description: Windows NTFS volume physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 version: 3.1 serial: aa69-51c0 size: 98MiB capacity: 100MiB capabilities: primary bootable ntfs initialized configuration: clustersize=4096 created=2012-04-03 02:00:15 filesystem=ntfs label=System Reserved state=clean *-volume:1 description: Windows NTFS volume physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 version: 3.1 serial: 9854ff5c-1dea-a147-84a6-624e758f44b8 size: 48GiB capacity: 48GiB capabilities: primary ntfs initialized configuration: clustersize=4096 created=2012-04-10 13:55:31 filesystem=ntfs modified_by_chkdsk=true mounted_on_nt4=true resize_log_file=true state=dirty upgrade_on_mount=true *-volume:2 description: Extended partition physical id: 3 bus info: scsi@0:0.0.0,3 logical name: /dev/sda3 size: 48GiB capacity: 48GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume:0 description: Linux swap / Solaris partition physical id: 5 logical name: /dev/sda5 capacity: 1952MiB capabilities: nofs *-logicalvolume:1 description: Linux filesystem partition physical id: 6 logical name: /dev/sda6 logical name: / capacity: 46GiB configuration: mount.fstype=ext4 mount.options=rw,relatime,errors=remount-ro,barrier=1,data=ordered state=mounted *-volume:3 description: Windows NTFS volume physical id: 4 bus info: scsi@0:0.0.0,4 logical name: /dev/sda4 logical name: /media/56AA8094AA807273 version: 3.1 serial: 22a29e8d-56c7-9a4a-adea-528103948f6d size: 200GiB capacity: 200GiB capabilities: primary ntfs initialized configuration: clustersize=4096 created=2012-04-02 20:17:15 filesystem=ntfs modified_by_chkdsk=true mount.fstype=fuseblk mount.options=rw,nosuid,nodev,relatime,user_id=0,group_id=0,default_permissions,allow_other,blksize=4096 mounted_on_nt4=true resize_log_file=true state=mounted upgrade_on_mount=true *-cdrom description: DVD-RAM writer product: DVD+-RW TS-L633J vendor: TSSTcorp physical id: 1 bus info: scsi@1:0.0.0 logical name: /dev/cdrom logical name: /dev/cdrw logical name: /dev/dvd logical name: /dev/dvdrw logical name: /dev/scd0 logical name: /dev/sr0 version: D200 capabilities: removable audio cd-r cd-rw dvd dvd-r dvd-ram configuration: ansiversion=5 status=nodisc *-serial UNCLAIMED description: SMBus product: 5 Series/3400 Series Chipset SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 06 width: 64 bits clock: 33MHz configuration: latency=0 resources: memory:fbc05000-fbc050ff ioport:f000(size=32) *-generic UNCLAIMED description: Signal processing controller product: 5 Series/3400 Series Chipset Thermal Subsystem vendor: Intel Corporation physical id: 1f.6 bus info: pci@0000:00:1f.6 version: 06 width: 64 bits clock: 33MHz capabilities: pm msi bus_master cap_list configuration: latency=0 resources: memory:fbc04000-fbc04fff *-scsi physical id: 2 bus info: usb@2:1.1 logical name: scsi15 capabilities: emulated scsi-host configuration: driver=usb-storage *-disk description: SCSI Disk physical id: 0.0.0 bus info: scsi@15:0.0.0 logical name: /dev/sdb I have tried all options like fdisk /dev/sdb , pmount /dev/sdb but nothing is working .Pls guide me

    Read the article

  • Problem measuring N times the execution time of a code block

    - by Nazgulled
    EDIT: I just found my problem after writing this long post explaining every little detail... If someone can give me a good answer on what I'm doing wrong and how can I get the execution time in seconds (using a float with 5 decimal places or so), I'll mark that as accepted. Hint: The problem was on how I interpreted the clock_getttime() man page. Hi, Let's say I have a function named myOperation that I need to measure the execution time of. To measure it, I'm using clock_gettime() as it was recommend here in one of the comments. My teacher recommends us to measure it N times so we can get an average, standard deviation and median for the final report. He also recommends us to execute myOperation M times instead of just one. If myOperation is a very fast operation, measuring it M times allow us to get a sense of the "real time" it takes; cause the clock being used might not have the required precision to measure such operation. So, execution myOperation only one time or M times really depends if the operation itself takes long enough for the clock precision we are using. I'm having trouble dealing with that M times execution. Increasing M decreases (a lot) the final average value. Which doesn't make sense to me. It's like this, on average you take 3 to 5 seconds to travel from point A to B. But then you go from A to B and back to A 5 times (which makes it 10 times, cause A to B is the same as B to A) and you measure that. Than you divide by 10, the average you get is supposed to be the same average you take traveling from point A to B, which is 3 to 5 seconds. This is what I want my code to do, but it's not working. If I keep increasing the number of times I go from A to B and back A, the average will be lower and lower each time, it makes no sense to me. Enough theory, here's my code: #include <stdio.h> #include <time.h> #define MEASUREMENTS 1 #define OPERATIONS 1 typedef struct timespec TimeClock; TimeClock diffTimeClock(TimeClock start, TimeClock end) { TimeClock aux; if((end.tv_nsec - start.tv_nsec) < 0) { aux.tv_sec = end.tv_sec - start.tv_sec - 1; aux.tv_nsec = 1E9 + end.tv_nsec - start.tv_nsec; } else { aux.tv_sec = end.tv_sec - start.tv_sec; aux.tv_nsec = end.tv_nsec - start.tv_nsec; } return aux; } int main(void) { TimeClock sTime, eTime, dTime; int i, j; for(i = 0; i < MEASUREMENTS; i++) { printf(" » MEASURE %02d\n", i+1); clock_gettime(CLOCK_REALTIME, &sTime); for(j = 0; j < OPERATIONS; j++) { myOperation(); } clock_gettime(CLOCK_REALTIME, &eTime); dTime = diffTimeClock(sTime, eTime); printf(" - NSEC (TOTAL): %ld\n", dTime.tv_nsec); printf(" - NSEC (OP): %ld\n\n", dTime.tv_nsec / OPERATIONS); } return 0; } Notes: The above diffTimeClock function is from this blog post. I replaced my real operation with myOperation() because it doesn't make any sense to post my real functions as I would have to post long blocks of code, you can easily code a myOperation() with whatever you like to compile the code if you wish. As you can see, OPERATIONS = 1 and the results are: » MEASURE 01 - NSEC (TOTAL): 27456580 - NSEC (OP): 27456580 For OPERATIONS = 100 the results are: » MEASURE 01 - NSEC (TOTAL): 218929736 - NSEC (OP): 2189297 For OPERATIONS = 1000 the results are: » MEASURE 01 - NSEC (TOTAL): 862834890 - NSEC (OP): 862834 For OPERATIONS = 10000 the results are: » MEASURE 01 - NSEC (TOTAL): 574133641 - NSEC (OP): 57413 Now, I'm not a math wiz, far from it actually, but this doesn't make any sense to me whatsoever. I've already talked about this with a friend that's on this project with me and he also can't understand the differences. I don't understand why the value is getting lower and lower when I increase OPERATIONS. The operation itself should take the same time (on average of course, not the exact same time), no matter how many times I execute it. You could tell me that that actually depends on the operation itself, the data being read and that some data could already be in the cache and bla bla, but I don't think that's the problem. In my case, myOperation is reading 5000 lines of text from an CSV file, separating the values by ; and inserting those values into a data structure. For each iteration, I'm destroying the data structure and initializing it again. Now that I think of it, I also that think that there's a problem measuring time with clock_gettime(), maybe I'm not using it right. I mean, look at the last example, where OPERATIONS = 10000. The total time it took was 574133641ns, which would be roughly 0,5s; that's impossible, it took a couple of minutes as I couldn't stand looking at the screen waiting and went to eat something.

    Read the article

  • AS3: Synchronize Timer event to actual time?

    - by Nebs
    I plan to use a timer event to fire every second (for a clock application). I may be wrong, but I assume that there will probably be a (very slight) sync issue with the actual system time. For example the timer event might fire when the actual system time milliseconds are at 500 instead of 0 (meaning the seconds will be partially 'out of phase' if you will). Is there a way to either synchronize the timer event to the real time or get some kind of system time event to fire when an second ticks in AS3? Also if I set a Timer to fire every 1000 milliseconds, is that guaranteed or can there be some offset based on the application load? These are probably negligible issues but I'm just curious. Thanks.

    Read the article

  • The clock problem - to if or not to if?

    - by trejder
    Let's say, we have a simple digital clock. To "power" it, we use a routine executed every second. We update seconds part in it. But, what about minutes and hours part? What is better / more professional / offers better performance: Ignore all checking and update hour, minute and seconds part each time, every second. Use if + a variable for checking, if 60 (or 3600) seconds passed and update minute / hour part only at that precise moments. This leads us to a question, what is better -- unnecessary drawings (first approach) or extra ifs? I've just spotted a Javascript digital clock, one of millions similar on one of billions pages. And I noticed that all three parts (hours, minutes and seconds) are updated every second, though first changes its value only once per 3600 seconds and second once per 60 seconds. I'm not to experienced developer, so I might me wrong. But everything, what I've learnt up until now, tells me, that if are far better then executing drawing / refreshing sequences only to draw the same content.

    Read the article

  • The Clocks on USACO

    - by philip
    I submitted my code for a question on USACO titled "The Clocks". This is the link to the question: http://ace.delos.com/usacoprob2?a=wj7UqN4l7zk&S=clocks This is the output: Compiling... Compile: OK Executing... Test 1: TEST OK [0.173 secs, 13928 KB] Test 2: TEST OK [0.130 secs, 13928 KB] Test 3: TEST OK [0.583 secs, 13928 KB] Test 4: TEST OK [0.965 secs, 13928 KB] Run 5: Execution error: Your program (`clocks') used more than the allotted runtime of 1 seconds (it ended or was stopped at 1.584 seconds) when presented with test case 5. It used 13928 KB of memory. ------ Data for Run 5 ------ 6 12 12 12 12 12 12 12 12 ---------------------------- Your program printed data to stdout. Here is the data: ------------------- time:_0.40928452 ------------------- Test 5: RUNTIME 1.5841 (13928 KB) I wrote my program so that it will print out the time taken (in seconds) for the program to complete before it exits. As can be seen, it took 0.40928452 seconds before exiting. So how the heck did the runtime end up to be 1.584 seconds? What should I do about it? This is the code if it helps: import java.io.; import java.util.; class clocks { public static void main(String[] args) throws IOException { long start = System.nanoTime(); // Use BufferedReader rather than RandomAccessFile; it's much faster BufferedReader f = new BufferedReader(new FileReader("clocks.in")); // input file name goes above PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("clocks.out"))); // Use StringTokenizer vs. readLine/split -- lots faster int[] clock = new int[9]; for (int i = 0; i < 3; i++) { StringTokenizer st = new StringTokenizer(f.readLine()); // Get line, break into tokens clock[i * 3] = Integer.parseInt(st.nextToken()); clock[i * 3 + 1] = Integer.parseInt(st.nextToken()); clock[i * 3 + 2] = Integer.parseInt(st.nextToken()); } ArrayList validCombination = new ArrayList();; for (int i = 1; true; i++) { ArrayList combination = getPossibleCombinations(i); for (int j = 0; j < combination.size(); j++) { if (tryCombination(clock, (int[]) combination.get(j))) { validCombination.add(combination.get(j)); } } if (validCombination.size() > 0) { break; } } int [] min = (int[])validCombination.get(0); if (validCombination.size() > 1){ String minS = ""; for (int i=0; i<min.length; i++) minS += min[i]; for (int i=1; i<validCombination.size(); i++){ String tempS = ""; int [] temp = (int[])validCombination.get(i); for (int j=0; j<temp.length; j++) tempS += temp[j]; if (tempS.compareTo(minS) < 0){ minS = tempS; min = temp; } } } for (int i=0; i<min.length-1; i++) out.print(min[i] + " "); out.println(min[min.length-1]); out.close(); // close the output file long end = System.nanoTime(); System.out.println("time: " + (end-start)/1000000000.0); System.exit(0); // don't omit this! } static boolean tryCombination(int[] clock, int[] steps) { int[] temp = Arrays.copyOf(clock, clock.length); for (int i = 0; i < steps.length; i++) transform(temp, steps[i]); for (int i=0; i<temp.length; i++) if (temp[i] != 12) return false; return true; } static void transform(int[] clock, int n) { if (n == 1) { int[] clocksToChange = {0, 1, 3, 4}; add3(clock, clocksToChange); } else if (n == 2) { int[] clocksToChange = {0, 1, 2}; add3(clock, clocksToChange); } else if (n == 3) { int[] clocksToChange = {1, 2, 4, 5}; add3(clock, clocksToChange); } else if (n == 4) { int[] clocksToChange = {0, 3, 6}; add3(clock, clocksToChange); } else if (n == 5) { int[] clocksToChange = {1, 3, 4, 5, 7}; add3(clock, clocksToChange); } else if (n == 6) { int[] clocksToChange = {2, 5, 8}; add3(clock, clocksToChange); } else if (n == 7) { int[] clocksToChange = {3, 4, 6, 7}; add3(clock, clocksToChange); } else if (n == 8) { int[] clocksToChange = {6, 7, 8}; add3(clock, clocksToChange); } else if (n == 9) { int[] clocksToChange = {4, 5, 7, 8}; add3(clock, clocksToChange); } } static void add3(int[] clock, int[] position) { for (int i = 0; i < position.length; i++) { if (clock[position[i]] != 12) { clock[position[i]] += 3; } else { clock[position[i]] = 3; } } } static ArrayList getPossibleCombinations(int size) { ArrayList l = new ArrayList(); int[] current = new int[size]; for (int i = 0; i < current.length; i++) { current[i] = 1; } int[] end = new int[size]; for (int i = 0; i < end.length; i++) { end[i] = 9; } l.add(Arrays.copyOf(current, size)); while (!Arrays.equals(current, end)) { incrementWithoutRepetition(current, current.length - 1); l.add(Arrays.copyOf(current, size)); } int [][] combination = new int[l.size()][size]; for (int i=0; i<l.size(); i++) combination[i] = (int[])l.get(i); return l; } static int incrementWithoutRepetition(int[] n, int index) { if (n[index] != 9) { n[index]++; return n[index]; } else { n[index] = incrementWithoutRepetition(n, index - 1); return n[index]; } } static void p(int[] n) { for (int i = 0; i < n.length; i++) { System.out.print(n[i] + " "); } System.out.println(""); } }

    Read the article

  • High Resolution Timeouts

    - by user12607257
    The default resolution of application timers and timeouts is now 1 msec in Solaris 11.1, down from 10 msec in previous releases. This improves out-of-the-box performance of polling and event based applications, such as ticker applications, and even the Oracle rdbms log writer. More on that in a moment. As a simple example, the poll() system call takes a timeout argument in units of msec: System Calls poll(2) NAME poll - input/output multiplexing SYNOPSIS int poll(struct pollfd fds[], nfds_t nfds, int timeout); In Solaris 11, a call to poll(NULL,0,1) returns in 10 msec, because even though a 1 msec interval is requested, the implementation rounds to the system clock resolution of 10 msec. In Solaris 11.1, this call returns in 1 msec. In specification lawyer terms, the resolution of CLOCK_REALTIME, introduced by POSIX.1b real time extensions, is now 1 msec. The function clock_getres(CLOCK_REALTIME,&res) returns 1 msec, and any library calls whose man page explicitly mention CLOCK_REALTIME, such as nanosleep(), are subject to the new resolution. Additionally, many legacy functions that pre-date POSIX.1b and do not explicitly mention a clock domain, such as poll(), are subject to the new resolution. Here is a fairly comprehensive list: nanosleep pthread_mutex_timedlock pthread_mutex_reltimedlock_np pthread_rwlock_timedrdlock pthread_rwlock_reltimedrdlock_np pthread_rwlock_timedwrlock pthread_rwlock_reltimedwrlock_np mq_timedreceive mq_reltimedreceive_np mq_timedsend mq_reltimedsend_np sem_timedwait sem_reltimedwait_np poll select pselect _lwp_cond_timedwait _lwp_cond_reltimedwait semtimedop sigtimedwait aiowait aio_waitn aio_suspend port_get port_getn cond_timedwait cond_reltimedwait setitimer (ITIMER_REAL) misc rpc calls, misc ldap calls This change in resolution was made feasible because we made the implementation of timeouts more efficient a few years back when we re-architected the callout subsystem of Solaris. Previously, timeouts were tested and expired by the kernel's clock thread which ran 100 times per second, yielding a resolution of 10 msec. This did not scale, as timeouts could be posted by every CPU, but were expired by only a single thread. The resolution could be changed by setting hires_tick=1 in /etc/system, but this caused the clock thread to run at 1000 Hz, which made the potential scalability problem worse. Given enough CPUs posting enough timeouts, the clock thread could be a performance bottleneck. We fixed that by re-implementing the timeout as a per-CPU timer interrupt (using the cyclic subsystem, for those familiar with Solaris internals). This decoupled the clock thread frequency from timeout resolution, and allowed us to improve default timeout resolution without adding CPU overhead in the clock thread. Here are some exceptions for which the default resolution is still 10 msec. The thread scheduler's time quantum is 10 msec by default, because preemption is driven by the clock thread (plus helper threads for scalability). See for example dispadmin, priocntl, fx_dptbl, rt_dptbl, and ts_dptbl. This may be changed using hires_tick. The resolution of the clock_t data type, primarily used in DDI functions, is 10 msec. It may be changed using hires_tick. These functions are only used by developers writing kernel modules. A few functions that pre-date POSIX CLOCK_REALTIME mention _SC_CLK_TCK, CLK_TCK, "system clock", or no clock domain. These functions are still driven by the clock thread, and their resolution is 10 msec. They include alarm, pcsample, times, clock, and setitimer for ITIMER_VIRTUAL and ITIMER_PROF. Their resolution may be changed using hires_tick. Now back to the database. How does this help the Oracle log writer? Foreground processes post a redo record to the log writer, which releases them after the redo has committed. When a large number of foregrounds are waiting, the release step can slow down the log writer, so under heavy load, the foregrounds switch to a mode where they poll for completion. This scales better because every foreground can poll independently, but at the cost of waiting the minimum polling interval. That was 10 msec, but is now 1 msec in Solaris 11.1, so the foregrounds process transactions faster under load. Pretty cool.

    Read the article

  • Calculating CPU frequency in C with RDTSC always returns 0

    - by Nazgulled
    Hi, The following piece of code was given to us from our instructor so we could measure some algorithms performance: #include <stdio.h> #include <unistd.h> static unsigned cyc_hi = 0, cyc_lo = 0; static void access_counter(unsigned *hi, unsigned *lo) { asm("rdtsc; movl %%edx,%0; movl %%eax,%1" : "=r" (*hi), "=r" (*lo) : /* No input */ : "%edx", "%eax"); } void start_counter() { access_counter(&cyc_hi, &cyc_lo); } double get_counter() { unsigned ncyc_hi, ncyc_lo, hi, lo, borrow; double result; access_counter(&ncyc_hi, &ncyc_lo); lo = ncyc_lo - cyc_lo; borrow = lo > ncyc_lo; hi = ncyc_hi - cyc_hi - borrow; result = (double) hi * (1 << 30) * 4 + lo; return result; } However, I need this code to be portable to machines with different CPU frequencies. For that, I'm trying to calculate the CPU frequency of the machine where the code is being run like this: int main(void) { double c1, c2; start_counter(); c1 = get_counter(); sleep(1); c2 = get_counter(); printf("CPU Frequency: %.1f MHz\n", (c2-c1)/1E6); printf("CPU Frequency: %.1f GHz\n", (c2-c1)/1E9); return 0; } The problem is that the result is always 0 and I can't understand why. I'm running Linux (Arch) as guest on VMware. On a friend's machine (MacBook) it is working to some extent; I mean, the result is bigger than 0 but it's variable because the CPU frequency is not fixed (we tried to fix it but for some reason we are not able to do it). He has a different machine which is running Linux (Ubuntu) as host and it also reports 0. This rules out the problem being on the virtual machine, which I thought it was the issue at first. Any ideas why this is happening and how can I fix it?

    Read the article

  • Verilog Posedge Problem

    - by Cenoc
    I'm having the following problem; I have a clk at 50MHz, but I want something else to run with a posedge signal whenever ready, but for some reason it always goes at the 50MHz, although I explicitly write otherwise, do you guys have any suggestions?

    Read the article

  • NSTimer to fire while device is locked

    - by edie
    Hi, I'm currently creating an alarm. I use NSTimer to schedule my alarms. My problem is when the device was put into locked mode my NSTimer doesn't fire. I think that the NSTimer will not fire because my app goes to suspended state when it is lock. Can you help me find a solution to my problem? I've found some topics about UIBackgroundModes, but I don't know how it will help me. Thanks.. The problem in UILocalNotification is when the device was in silent, the sound will not be hear. My implementation was I'm using NSTimer to fire an alarm when the app is in foreground or device is locked but app currently running. When the applicationDidEnterBackground: is called I schedule the UILocalNotification as the alarm.

    Read the article

  • C#: how to obtain the current clock speed of an Intel i-series CPU when TurboBoost is activated

    - by shifuimam
    I know that it's possible to get this information - Intel's own TurboBoost sidebar gadget appears to use an ActiveX control to determine the current clock speed of an i3/i5/i7 CPU when TurboBoost is active. However, I'm wanting to do this programmatically in C# - obtaining the CurrentClockSpeed value from WMI tops out at the set maximum clock speed of the CPU, so in TurboBoost mode, it doesn't report the current actual clock speed.

    Read the article

  • Using client time to calculate timezone

    - by Mike TK
    Hi Folks, Instead of asking a client timezone in registration form (to correctly format datetime, all server dates in UTC) I thought about fetching a time from client computer and calculating time offset between client and server. Anyone tried this? How often clients have something insane on their system clocks? Cheers!

    Read the article

< Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >