Search Results

Search found 11697 results on 468 pages for 'requires sense of humor'.

Page 70/468 | < Previous Page | 66 67 68 69 70 71 72 73 74 75 76 77  | Next Page >

  • Hi, anyone met the sending issue like this? By using powershell

    - by pansal
    My script is about sending notfication email, and it was running well on my local machine, but when I removed it to an server 2k3, the email cannot be sent out with below error log: Exception calling "Send" with "1" argument(s): "The SMTP server requires a secure connection or the client was not authenticated. The server response was: 5.7.1 Client was not authenticated" At line:1 char:19 + $smtp_buglist.Send <<<< ($mail_buglist) + CategoryInfo : NotSpecified: (:) [], MethodInvocationException + FullyQualifiedErrorId : DotNetMethodException Please help me out of this, I am confused.

    Read the article

  • Console program settings

    - by sahana
    I have a generalized program to be run both in windows and linux. When I run the program in the windows console it halts at a point where the .sh file is to be executed with a window popping asking for "which program to use" and requires manual intervention to cancel. My question is: How do I change the setting available in the console that will let not the execution to halt when an unknown file extension is encountered?

    Read the article

  • Windows Vista/Win7 Privilege Problem: SeDebugPrivilege & OpenProcess

    - by KevenK
    Everything I've been able to find about escalating to the appropriate privileges for my needs has agreed with my current methods, but the problem exists. I'm hoping maybe someone has some Windows Vista/Win7 internals experience that might shine some light where there is only darkness. I'm sure this will get long, but please bare with me. Context: I'm working on an app that requires accessing the memory of other processes on the current machine. This, obviously, requires administrator rights. It also requires SeDebugPrivilege, which I believe myself to be acquiring correctly, although I question if more privileges aren't necessary and thus the cause of my problems. Code has so far worked successfully on all versions of Windows XP, and on my test Vista32 and Win7x64 environments. Process: Program will Always be run with Administrator Rights. This can be assumed throughout this post. Escalating the current process's Access Token to include SeDebugPrivilege rights. Using EnumProcesses to create a list of current PIDs on the system Opening a handle using OpenProcess with PROCESS_ALL_ACCESS access rights Using ReadProcessMemory to read the memory of the other process. Problem: Everything has been working fine during development and my personal testing (including Windows XP 32 & 64, Windows Vista 32, and Windows 7 x64). However, during a test deployment onto both Windows Vista(32-bit) and Windows 7(64-bit) machines of a colleague, there seems to be a privilege/rights problem with OpenProcess failing with a generic Access Denied error. This occurs both when running as a limited User (as would be expected) and also when run explicitly as Administrator (Right-click Run as Administrator and when run from an Administrator level command prompt). However, this problem has been unreproducible for myself in my test environment. I have witnessed the problem first hand, so I trust that the problem exists. The only difference that I can discern between the actual environment and my test environment is that the actual error is occurring when using a Domain Administrator account at the UAC prompt, whereas my tests (which work with no errors) use a local administrator account at the UAC prompt. It appears that although the credentials being used allow UAC to 'run as administrator', the process is still not obtaining the correct rights to be able to OpenProcess on another process. I am not familiar enough with the internals of Vista/Win7 to know what this might be, and I am hoping someone has an idea of what could be the cause. The Kicker: The person who has reported this error, and who's environment can regularly reproduce this bug, has a small application named along the lines of RunWithDebugEnabled which is a small bootstrap program which appears to escalate its own privileges and then launch the executable passed to it (thus inheriting the escalated privileges). When run with this program, using the same Domain Administrator credentials at UAC prompt, the program works correctly and is able to successfully call OpenProcess and operates as intended. So this is definitely a problem with acquiring the correct privileges, and it is known that the Domain Administrator account is an administrator account that should be able to access the correct rights. (Obviously obtaining this source code would be great, but I wouldn't be here if that were possible). Notes: As noted, the errors reported by the failed OpenProcess attempts are Access Denied. According to MSDN documentation of OpenProcess: If the caller has enabled the SeDebugPrivilege privilege, the requested access is granted regardless of the contents of the security descriptor. This leads me to believe that perhaps there is a problem under these conditions either with (1) Obtaining SeDebugPrivileges or (2) Requiring other privileges which have not been mentioned in any MSDN documentation, and which might differ between a Domain Administrator account and a Local Administrator account Sample Code: void sample() { ///////////////////////////////////////////////////////// // Note: Enabling SeDebugPrivilege adapted from sample // MSDN @ http://msdn.microsoft.com/en-us/library/aa446619%28VS.85%29.aspx // Enable SeDebugPrivilege HANDLE hToken = NULL; TOKEN_PRIVILEGES tokenPriv; LUID luidDebug; if(OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES, &hToken) != FALSE) { if(LookupPrivilegeValue(NULL, SE_DEBUG_NAME, &luidDebug) != FALSE) { tokenPriv.PrivilegeCount = 1; tokenPriv.Privileges[0].Luid = luidDebug; tokenPriv.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED; if(AdjustTokenPrivileges(hToken, FALSE, &tokenPriv, 0, NULL, NULL) != FALSE) { // Always successful, even in the cases which lead to OpenProcess failure cout << "SUCCESSFULLY CHANGED TOKEN PRIVILEGES" << endl; } else { cout << "FAILED TO CHANGE TOKEN PRIVILEGES, CODE: " << GetLastError() << endl; } } } CloseHandle(hToken); // Enable SeDebugPrivilege ///////////////////////////////////////////////////////// vector<DWORD> pidList = getPIDs(); // Method that simply enumerates all current process IDs ///////////////////////////////////////////////////////// // Attempt to open processes for(int i = 0; i < pidList.size(); ++i) { HANDLE hProcess = NULL; hProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pidList[i]); if(hProcess == NULL) { // Error is occurring here under the given conditions cout << "Error opening process PID(" << pidList[i] << "): " << GetLastError() << endl; } CloseHandle(hProcess); } // Attempt to open processes ///////////////////////////////////////////////////////// } Thanks! If anyone has some insight into what possible permissions/privileges/rights/etc that I may be missing to correctly open another process (Assuming the executable has been properly "Run as Administrator"ed) on Windows Vista and Windows 7 under the above conditions, it would be most greatly appreciated. I wouldn't be here if I weren't absolutely stumped, but I'm hopeful that once again the experience and knowledge of the group shines bright. I thank you for taking the time to read this wall of text. The good intentions alone are appreciated, thanks for being the type of person that makes SO so useful to all!

    Read the article

  • SQL CLR Assembly Error 80131051 when late binding to a registered C# COM .dll

    - by Shanubus
    I must have hit an unusual one, because I can't find any reference to this specific failing anywhere... Scenario: I have a legacy SQL function used to transform(encrypt) data. This function is called from within many stored procedures used by multiple applications. I say this, because the obvious answer of 'just call it from your code' is not really an option (or at least one I'd prefer not explore). The legacy function used sp_OA with an ActiveX dll on SQL2000 to perform its work. The new function is targeted at SQL2008 x64. I am ditching the sp_OA call in favor of CLR assembly; and am getting rid of the ActiveX dll and using a COM+ .dll (3rd party) to perform the same work. This 3rd party COM+ is required to be used based on spec given to me, so can't get rid of this piece either. Problem: After multiple attempts at getting this to work I have eliminated the following approaches 1) Create a Sql Assembly to call the local COM+ directly -- Can't do this as it requires a reference to System.EnterpriseServices. Including this requires that a whole slew of unsupported assemblies be registered which I don't want. The COM+ requires it's methods to be accessed via an Interface, so my attempts at late binding to it directly have not been successful (late binding would allow me to drop the unsupported references). 2) Create a Sql Assembly which references a C# class library that then calls the COM+. -- Same issue as #1; since the referenced dll uses System.EnterpriseServices and will be added as a dependency when referenced in the Sql Assembly, again trying to load all the unsupported libraries 3) Create a Sql Assembly which late binds to an ActiveX COM dll that calls the COM+. -- Worked in my dev environment, but can't go to x64 in production with ActiveX dll's written in VB6 (not to mention I hate backtracking anyway)... again failure... I am now onto an approach that is almost working, with of course one last hangup. I now have -a Sql Assembly that late binds to a C# COM dll, eliminating the need for including System.EnterpriseServices and eliminating the need to reference the C# COM in the SqlAssembly itself. The C# COM does reference System.EnterpriseServices to call the COM+, but since I am late binding to it from the SqlAssembly, I bypass the need for Sql to actually load them as referenced assemblies. Works in debugger.. Works on my dev box when the SqlAssembly dll is referenced in a test console app and called directly Installs to Sql2008 just fine Executing the actual UDF works, but returns no data due to a failure reporting from the late bound dll! So the SqlAssembly is instanciated just fine. It actually fails on it's late binding to the C# COM, which is working from a test console app on the same machine. It appears to be a difference in behavior based on whether called from within the SQL UDF or not. Since it is working on the same box from my console app, I am assuming it's on the SQL side. My steps to install were. --Install the COM+ dll and ensure it can be called successfully (as from with in the console app) --Register the C# COM dll (which calls the COM+) and get it to the GAC (again proofed to be working from console app) --Create my Assymetric Key CREATE ASYMMETRIC KEY SqlCryptoKey FROM EXECUTABLE FILE = 'D:\SqlEx.dll' CREATE LOGIN SqlExLogin FROM ASYMMETRIC KEY SqlExKey GRANT UNSAFE ASSEMBLY TO SqlExLogin GO --Add the assembly CREATE ASSEMBLY SqlEx FROM 'D:\SqlEx.dll' WITH PERMISSION_SET = UNSAFE; GO --Create the function CREATE FUNCTION dbo.f_SqlEx( @clearText [nvarchar](512) ) RETURNS nvarchar(512) WITH EXECUTE AS CALLER AS EXTERNAL NAME SqlEx.[SqlEx.SqlEx].Ex GO With all that done, I can now call my function SELECT dbo.f_SqlEx('test') But get this error in the event log... Retrieving the COM class factory for component with CLSID {F69D6320-5884-323F-936A-7657946604BE} failed due to the following error: 80131051. I can't really provide direct code examples, due to internal security implications; but all the code itself seems to work, I am suspecting perms or something of the like... I just find it odd that I can't find any reference to error 80131051. If someone out there believe some 'indirect' code samples will help, I will be happy to provide. Any assistance is appreciated.

    Read the article

  • Policy based design and defaults.

    - by Noah Roberts
    Hard to come up with a good title for this question. What I really need is to be able to provide template parameters with different number of arguments in place of a single parameter. Doesn't make a lot of sense so I'll go over the reason: template < typename T, template <typename,typename> class Policy = default_policy > struct policy_based : Policy<T, policy_based<T,Policy> > { // inherits R Policy::fun(arg0, arg1, arg2,...,argn) }; // normal use: policy_base<type_a> instance; // abnormal use: template < typename PolicyBased > // No T since T is always the same when you use this struct custom_policy {}; policy_base<type_b,custom_policy> instance; The deal is that for many abnormal uses the Policy will be based on one single type T, and can't really be parameterized on T so it makes no sense to take T as a parameter. For other uses, including the default, a Policy can make sense with any T. I have a couple ideas but none of them are really favorites. I thought that I had a better answer--using composition instead of policies--but then I realized I have this case where fun() actually needs extra information that the class itself won't have. This is like the third time I've refactored this silly construct and I've got quite a few custom versions of it around that I'm trying to consolidate. I'd like to get something nailed down this time rather than just fish around and hope it works this time. So I'm just fishing for ideas right now hoping that someone has something I'll be so impressed by that I'll switch deities. Anyone have a good idea? Edit: You might be asking yourself why I don't just retrieve T from the definition of policy based in the template for default_policy. The reason is that default_policy is actually specialized for some types T. Since asking the question I have come up with something that may be what I need, which will follow, but I could still use some other ideas. template < typename T > struct default_policy; template < typename T, template < typename > class Policy = default_policy > struct test : Policy<test<T,Policy>> {}; template < typename T > struct default_policy< test<T, default_policy> > { void f() {} }; template < > struct default_policy< test<int, default_policy> > { void f(int) {} }; Edit: Still messing with it. I wasn't too fond of the above since it makes default_policy permanently coupled with "test" and so couldn't be reused in some other method, such as with multiple templates as suggested below. It also doesn't scale at all and requires a list of parameters at least as long as "test" has. Tried a few different approaches that failed until I found another that seems to work so far: template < typename T > struct default_policy; template < typename T, template < typename > class Policy = default_policy > struct test : Policy<test<T,Policy>> {}; template < typename PolicyBased > struct fetch_t; template < typename PolicyBased, typename T > struct default_policy_base; template < typename PolicyBased > struct default_policy : default_policy_base<PolicyBased, typename fetch_t<PolicyBased>::type> {}; template < typename T, template < typename > class Policy > struct fetch_t< test<T,Policy> > { typedef T type; }; template < typename PolicyBased, typename T > struct default_policy_base { void f() {} }; template < typename PolicyBased > struct default_policy_base<PolicyBased,int> { void f(int) {} };

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • SQLAuthority News – The Best Quotes of “Who Wrote This?” Contest

    - by pinaldave
    I am a frequent reader of Brent Ozar PLF, it is one of my favorite blogs. A recent post announced a “Who Wrote This?” contest to see if readers could tell their three contributors apart based on some writing samples. Here are my favorite lines from the sample paragraphs, from each of the three “mystery authors.” Topic 1: Working with Bad Managers Mystery Author A – “Working with bad managers means working against my own happiness, and I’ve come to learn that there’s no changing bad managers.” I love this line because, as anyone who has had a bad manager knows, often a lot of self-doubt rises up. We all have to remember that sometimes the problem is out of our control. Mystery Author B – “Mentor your manager just like you would mentor a junior DBA.” Having a bad manager can be extremely depressing, and we often feel out of control. But we all need to remember that our work is a two-way street, and that sometimes we can subtly influence those above us. Mystery Author C – “The trick to working for all bad managers is to remember that they aren’t your parent. Take charge of your career.” We all also need to learn not to play the blame game. Would you rather stay in a place where you are unhappy, or would you rather take charge of your life? I hope most people would pick the latter. Topic 2: Working with Remote Teams Mystery Author A – “Like almost anything else the key is to make sure that everyone on the team has an understanding of how and when communication will occur.” Communication is so important. I cannot over emphasize how much. And this one line captures how I feel and even communicates the idea clearly! Mystery Author B – “The key to remote team success is verifiable trust: feeling confident that invisible team members are doing the right amount of the right thing at the right time.” I think this line not only captures the key aspects of remote work – verifiable work and trust – but there were so many lines that followed that I loved and could not fit here. The whole paragraph is a list for successful remote work. Everyone could benefit from reading it. Mystery Author C – “What seems clear, precise, and specific in one time zone comes across as vague, soupy, and just plain weird in another.” You know what? I just love this description. The author is right – sometimes vague e-mails really do seem soupy and weird! Topic 3: Working with Your Nemesis Mystery Author A – “Every job is temporary, but your reputation stays with you.” Everyone needs to remember this. The workplace is meant to be a professional arena, and many people have the opinion that work is temporary and disposable. No one wants to work with co-worker like that. Mystery Author B – “Unhealthy conflict is going to lead to leaving three week old tuna fish sandwiches in someone’s desk drawer.” Sometimes humor really is the best policy! Mystery Author C – “Oh no, it’s that guy.” This might seem like a weird phrase to choose as my favorite from an entire paragraph. But the whole piece was written in the form of a story of co-workers getting drunk and plotting against a nemesis. It was too funny to overlook, but too long to post here. A must read! Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQLAuthority News, T SQL, Technology

    Read the article

  • ADF Enterprise Application Development - Made Simple (Book Review)

    - by Frank Nimphius
      Sten E. Vesterli wrote the "Oracle ADF Enterprise Application Development – Made Simple" book published by Packt Publishing in 2011 http://www.packtpub.com/oracle-adf-enterprise-application-development/book A common question on OTN, but also when talking to clients or customers is about where and how to start your ADF application development. Especially when the current programming background is not in Java, but 4 GL or PLSQL, developers often look for answers to the following questions: · How long does it take to learn Oracle ADF ? · How long does it take to replace a Forms application with ADF ? · How many developers do I need? · Do I need to know Java to use ADF and if yes, how good do I need to know this? · How do I structure my programming files, organizing them in JDeveloper work spaces, projects and libraries? · What is best practices for naming Java packages and how to void naming conflicts in ADF in general? · How many Application Modules do I need or should I create? · How to test applications? Sten Vesterli answers all of the above questions and more in his book http://www.packtpub.com/oracle-adf-enterprise-application-development/book , which makes it great value add to the 3 existing Oracle ADF books. In order of complexity (which also is the order in which reading the available Oracle ADF books makes sense), in my opinion, Sten's book should come second – though it also is useful to those that are already more advanced with Oracle ADF. So if you are absolutely new to Oracle ADF, then the order of books to read to get you up on an expert level should be: 1. Grant Ronald; "Quick Start Guide to Oracle Fusion Development: Oracle JDeveloper and Oracle ADF" (McGraw Hill 2010) 2. Sten Vesterli; "Oracle ADF Enterprise Application Development – Made Simple" (Packt Publishing 2011) 3. Duncan Mills, Peter Koletzke; " Oracle JDeveloper 11g Handbook: A Guide to Fusion Web Development" (McGraw Hill 2009) 4. Frank Nimphius, Lynn Munsinger; " Oracle Fusion Developer Guide: Building Rich Internet Applications with Oracle ADF Business Components and Oracle ADF Faces" (McGraw Hill 2010) If you are not new to Oracle ADF and Orace JDeveloper, then buy Sten Vesterli's book anyway. It is worth it and you want to have it on your book shelf. See below the table of content to get a better idea of what this book covers: · Chapter 1: The ADF Proof of Concept · Chapter 2: Estimating the Effort · Chapter 3: Getting Organized · Chapter 4: Productive Teamwork · Chapter 5: Prepare to Build · Chapter 6: Building the Enterprise Application · Chapter 7: Testing your Application · Chapter 8: Look and Feel · Chapter 9: Customizing the Functionality · Chapter 10: Securing your ADF Application · Chapter 11: Package and Deliver · Appendix: Internationalization The book is written with a lot of good humor, which makes the read very enjoyable (from a geek's perspective, of course). My favorite quote – just in case you are interested - is from page 97, when Sten talks about getting organized: " Stop sending e-mails to your team. Just stop it. E-mail is so last century.…" So true, so true! This quote's runner up is the "boss key" on page 128 where Sten talks about productivity and how Oracle Team Productivity Center (TPC) can help you with this. Quotes like these stick to your brains and make sure you never forget. Go for it!

    Read the article

  • maintaining a growing, diverse codebase with continuous integration

    - by Nate
    I am in need of some help with philosophy and design of a continuous integration setup. Our current CI setup uses buildbot. When I started out designing it, I inherited (well, not strictly, as I was involved in its design a year earlier) a bespoke CI builder that was tailored to run the entire build at once, overnight. After a while, we decided that this was insufficient, and started exploring different CI frameworks, eventually choosing buildbot. One of my goals in transitioning to buildbot (besides getting to enjoy all the whiz-bang extras) was to overcome some of the inadequacies of our bespoke nightly builder. Humor me for a moment, and let me explain what I have inherited. The codebase for my company is almost 150 unique c++ Windows applications, each of which has dependencies on one or more of a dozen internal libraries (and many on 3rd party libraries as well). Some of these libraries are interdependent, and have depending applications that (while they have nothing to do with each other) have to be built with the same build of that library. Half of these applications and libraries are considered "legacy" and unportable, and must be built with several distinct configurations of the IBM compiler (for which I have written unique subclasses of Compile), and the other half are built with visual studio. The code for each compiler is stored in two separate Visual SourceSafe repositories (which I am simply handling using a bunch of ShellCommands, as there is no support for VSS). Our original nightly builder simply took down the source for everything, and built stuff in a certain order. There was no way to build only a single application, or pick a revision, or to group things. It would launched virtual machines to build a number of the applications. It wasn't very robust, it wasn't distributable. It wasn't terribly extensible. I wanted to be able to overcame all of these limitations in buildbot. The way I did this originally was to create entries for each of the applications we wanted to build (all 150ish of them), then create triggered schedulers that could build various applications as groups, and then subsume those groups under an overall nightly build scheduler. These could run on dedicated slaves (no more virtual machine chicanery), and if I wanted I could simply add new slaves. Now, if we want to do a full build out of schedule, it's one click, but we can also build just one application should we so desire. There are four weaknesses of this approach, however. One is our source tree's complex web of dependencies. In order to simplify config maintenace, all builders are generated from a large dictionary. The dependencies are retrieved and built in a not-terribly robust fashion (namely, keying off of certain things in my build-target dictionary). The second is that each build has between 15 and 21 build steps, which is hard to browse and look at in the web interface, and since there are around 150 columns, takes forever to load (think from 30 seconds to multiple minutes). Thirdly, we no longer have autodiscovery of build targets (although, as much as one of my coworkers harps on me about this, I don't see what it got us in the first place). Finally, aformentioned coworker likes to constantly bring up the fact that we can no longer perform a full build on our local machine (though I never saw what that got us, either, considering that it took three times as long as the distributed build; I think he is just paranoically phobic of ever breaking the build). Now, moving to new development, we are starting to use g++ and subversion (not porting the old repository, mind you - just for the new stuff). Also, we are starting to do more unit testing ("more" might give the wrong picture... it's more like any), and integration testing (using python). I'm having a hard time figuring out how to fit these into my existing configuration. So, where have I gone wrong philosophically here? How can I best proceed forward (with buildbot - it's the only piece of the puzzle I have license to work on) so that my configuration is actually maintainable? How do I address some of my design's weaknesses? What really works in terms of CI strategies for large, (possibly over-)complex codebases?

    Read the article

  • What are some good questions (and good/bad answers) to ask at an interview to gauge the competency of the company/team?

    - by Wayne M
    I'm already familiar with the Joel Test, but it's been my experience that some of the questions there have the answers "massaged" to make the company seem better than it is. I've had several jobs in the past that, for instance, claimed they had a QA process and did unit testing, and what they really meant is "The programmers test the app, and test with the debugger and via trial-and-error."; they said they used SVN but they just lumped everything into one giant repository and had no concept of branching/merging or anything more complicated than updating and committing; said they can build in one step and what they really mean is it's "one step" to copy dozens of files by hand from the programmer's PC to the live server. How do you go about properly gauging a company's environment to make sure that it's a well-evolved company and not stuck on doing things a certain way because they've done it for years and they're ignorant of change? You can almost never ask to see their source code, so you're stuck trying to figure out if the interviewer's answer is accurate or BS to make the company seem good. Besides the Joel Test what are some other good questions to get the proper feel for a company, and more importantly what are some good and bad answers that could indicate a good or bad company? I mean something like (take at face value, please, it's all I could think of at short notice): Question: How does the software team apply the SOLID principles and Inversion of Control to their code? Good Answer: We adhere to SOLID wherever possible; we use TDD so it kind of forces us to write abstract, testable code. We use Ninject for our IoC container because it's fairly easy to configure - it was that or StructureMap but I find Ninject a bit more intuitive, and who doesn't like ninjas? You're not a pirate, are you? Bad Answer: Our code is pretty secure, yeah. And what's this Inversion of Control thing? I've never heard of it before. You see what I did there. The "good" answer uses facts to back it up and has a bit of "in crowd" humor; the bad answer shows complete ignorance of the question - not necessarily a bad thing if you are interviewing for a manger/director position, but a terrible answer and a huge red flag if you're interviewing as a developer and talking to a senior developer or manager! My biggest problem at the moment is being able to take a generic response and gauge whether it's the good or bad answer; more often than not it's the bad kind and I find myself frustrated almost from day one at the new job. I suppose I could name drop if I ask about specific things (e.g. "Do you write unit tests?" and if the answer is yes, ask if they use NUnit, MbUnit or something else; if they mention data access ask if they use a clean ORM like NHibernate or something more coupled like EF or Linq) but is there another way short of being resolute to actually call the interview on things (which will almost certainly result in not getting the job, but if they are skirting the question it's probably not a job I want).

    Read the article

  • PASS summit 2013. We do not remember days. We remember moments.

    - by Maria Zakourdaev
      "Business or pleasure?" barked the security officer in the Charlotte International Airport. "I’m not sure, sir," I whimpered, immediately losing all courage. "I'm here for the database technologies summit called PASS”. "Sounds boring. Definitely a business trip." Boring?! He couldn’t have been more wrong. If he only knew about the countless meetings throughout the year where I waved my hands at my great boss and explained again and again how fantastic this summit is and how much I learned last year. One by one, the drops of water began eating away at the stone. He finally approved of my trip just to stop me from torturing him. Time moves as slow as a turtle when you are waiting for something. Time runs as fast as a cheetah when you are there. PASS has come...and passed. It’s been an amazing week. Enormous sqlenergy has filled the city, filled the convention center and the surrounding pubs and restaurants. There were awesome speakers, great content, and the chance to meet most inspiring database professionals from all over the world. Some sessions were unforgettable. Imagine a fully packed room with more than 500 people in awed silence, catching each and every one of Paul Randall's words. His tremendous energy and deep knowledge were truly thrilling. No words can describe Rob Farley's unique presentation style, captivating and engaging the audience. When the precious session minutes were over, I could tell that the many random puzzle pieces of information that his listeners knew had been suddenly combined into a clear, cohesive picture. I was amazed as always by Paul White's great sense of humor and his phenomenal ability to explain complicated concepts in a simple way. The keynote by the brilliant Dr. DeWitt from Microsoft in front of the full summit audience of 5000 deeply listening people was genuinely breathtaking. The entire conference throughout offered excellent speakers who inspired me to absorb the knowledge and use it when I got home. To my great surprise, I found that there are other people in this world who like replication as much I do. During the Birds of a Feather Luncheon, SQL Server MVP Ted Krueger was writing a script for replicating the food to other tables. I learned many things at PASS, and not all of them were about SQL. After three summits, this time I finally got the knack of networking. I actually went up and spoke to people, and believe me, that was not easy for an introvert. But this is what the summit is all about. Sqlpeople. They are the ones who make it such an exciting experience. I will be looking forward to the next year. Till then I have my notes and new ideas. How long was the summit? Thousands of unforgettable moments.

    Read the article

  • How do you update live web sites with code changes?

    - by Aaron Anodide
    I know this is a very basic question. If someone could humor me and tell me how they would handle this, I'd be greatful. I decided to post this because I am about to install SynchToy to remedy the issue below, and I feel a bit unprofessional using a "Toy" but I can't think of a better way. Many times I find when I am in this situation, I am missing some painfully obvious way to do things - this comes from being the only developer in the company. ASP.NET web application developed on my computer at work Solution has 2 projects: Website (files) WebsiteLib (C#/dll) Using a Git repository Deployed on a GoGrid 2008R2 web server Deployment: Make code changes. Push to Git. Remote desktop to server. Pull from Git. Overwrite the live files by dragging/dropping with windows explorer. In Step 5 I delete all the files from the website root.. this can't be a good thing to do. That's why I am about to install SynchToy... UPDATE: THANKS for all the useful responses. I can't pick which one to mark answer - between using a web deployment - it looks like I have several useful suggesitons: Web Project = whole site packaged into a single DLL - downside for me I can't push simple updates - being a lone developer in a company of 50, this remains something that is simpler at times. Pulling straight from SCM into web root of site - i originally didn't do this out of fear that my SCM hidden directory might end up being exposed, but the answers here helped me get over that (although i still don't like having one more thing to worry about forgetting to make sure is still true over time) Using a web farm, and systematically deploying to nodes - this is the ideal solution for zero downtime, which is actually something I care about since the site is essentially a real time revenue source for my company - i might have a hard time convincing them to double the cost of the servers though. -- finally, the re-enforcement of the basic principal that there needs to be a single click deployment for the site OR ELSE THERE SOMETHING WRONG is probably the most useful thing I got out of the answers. UPDATE 2: I thought I come back to this and update with the actual solution that's been in place for many months now and is working perfectly (for my single web server solution). The process I use is: Make code changes Push to Git Remote desktop to server Pull from Git Run the following batch script: cd C:\Users\Administrator %systemroot%\system32\inetsrv\appcmd.exe stop site "/site.name:Default Web Site" robocopy Documents\code\da\1\work\Tree\LendingTreeWebSite1 c:\inetpub\wwwroot /E /XF connectionsconfig Web.config %systemroot%\system32\inetsrv\appcmd.exe start site "/site.name:Default Web Site" As you can see this brings the site down, uses robocopy to intelligently copy the files that have changed then brings the site back up. It typically runs in less than 2 seconds. Since peak traffic on this site is about 2 requests per second, missing 4 requests per site update is acceptable. Sine I've gotten more proficient with Git I've found that the first four steps above being a "manual process" is also acceptable, although I'm sure I could roll the whole thing into a single click if I wanted to. The documentation for AppCmd.exe is here. The documentation for Robocopy is here.

    Read the article

  • Using Perl WWW::Facebook::API to Publish To Facebook Newsfeed

    - by Russell C.
    We use Facebook Connect on our site in conjunction with the WWW::Facebook::API CPAN module to publish to our users newsfeed when requested by the user. So far we've been able to successfully update the user's status using the following code: use WWW::Facebook::API; my $facebook = WWW::Facebook::API->new( desktop => 0, api_key => $fb_api_key, secret => $fb_secret, session_key => $query->cookie($fb_api_key.'_session_key'), session_expires => $query->cookie($fb_api_key.'_expires'), session_uid => $query->cookie($fb_api_key.'_user') ); my $response = $facebook->stream->publish( message => qq|Test status message|, ); However, when we try to update the code above so we can publish newsfeed stories that include attachments and action links as specified in the Facebook API documentation for Stream.Publish, we have tried about 100 different ways without any success. According to the CPAN documentation all we should have to do is update our code to something like the following and pass the attachments & action links appropriately which doesn't seem to work: my $response = $facebook->stream->publish( message => qq|Test status message|, attachment => $json, action_links => [@links], ); For example, we are passing the above arguments as follows: $json = qq|{ 'name': 'i\'m bursting with joy', 'href': ' http://bit.ly/187gO1', 'caption': '{*actor*} rated the lolcat 5 stars', 'description': 'a funny looking cat', 'properties': { 'category': { 'text': 'humor', 'href': 'http://bit.ly/KYbaN'}, 'ratings': '5 stars' }, 'media': [{ 'type': 'image', 'src': 'http://icanhascheezburger.files.wordpress.com/2009/03/funny-pictures-your-cat-is-bursting-with-joy1.jpg', 'href': 'http://bit.ly/187gO1'}] }|; @links = ["{'text':'Link 1', 'href':'http://www.link1.com'}","{'text':'Link 2', 'href':'http://www.link2.com'}"]; The above, nor any of the other representations we tried seem to work. I'm hoping some other perl developer out there has this working and can explain how to create the attachment and action_links variables appropriately in Perl for posting to the Facebook news feed through WWW::Facebook::API. Thanks in advance for your help!

    Read the article

  • How do I use Perl's WWW::Facebook::API to publish to a user's newsfeed?

    - by Russell C.
    We use Facebook Connect on our site in conjunction with the WWW::Facebook::API CPAN module to publish to our users newsfeed when requested by the user. So far we've been able to successfully update the user's status using the following code: use WWW::Facebook::API; my $facebook = WWW::Facebook::API->new( desktop => 0, api_key => $fb_api_key, secret => $fb_secret, session_key => $query->cookie($fb_api_key.'_session_key'), session_expires => $query->cookie($fb_api_key.'_expires'), session_uid => $query->cookie($fb_api_key.'_user') ); my $response = $facebook->stream->publish( message => qq|Test status message|, ); However, when we try to update the code above so we can publish newsfeed stories that include attachments and action links as specified in the Facebook API documentation for Stream.Publish, we have tried about 100 different ways without any success. According to the CPAN documentation all we should have to do is update our code to something like the following and pass the attachments & action links appropriately which doesn't seem to work: my $response = $facebook->stream->publish( message => qq|Test status message|, attachment => $json, action_links => [@links], ); For example, we are passing the above arguments as follows: $json = qq|{ 'name': 'i\'m bursting with joy', 'href': ' http://bit.ly/187gO1', 'caption': '{*actor*} rated the lolcat 5 stars', 'description': 'a funny looking cat', 'properties': { 'category': { 'text': 'humor', 'href': 'http://bit.ly/KYbaN'}, 'ratings': '5 stars' }, 'media': [{ 'type': 'image', 'src': 'http://icanhascheezburger.files.wordpress.com/2009/03/funny-pictures-your-cat-is-bursting-with-joy1.jpg', 'href': 'http://bit.ly/187gO1'}] }|; @links = ["{'text':'Link 1', 'href':'http://www.link1.com'}","{'text':'Link 2', 'href':'http://www.link2.com'}"]; The above, nor any of the other representations we tried seem to work. I'm hoping some other perl developer out there has this working and can explain how to create the attachment and action_links variables appropriately in Perl for posting to the Facebook news feed through WWW::Facebook::API. Thanks in advance for your help!

    Read the article

  • uiview's controls unresponsive.. or how to foul up a view hierarchy

    - by user293139
    Hello all, I'm working on an app that has two sections, a config section and a results section. My config section needs to be 2 separate views (horizontal and vert, and yes, I can hear the intake of breath from here), with one rotatable view for the results. b/c of layout restraints and a lot of pain around rotation, I'm not using a navigation controller. I've been experiencing the joys of rotation experimentation and have settled upon keeping my views contained as subviews of my view controller. i.e. view controller.view.subviews = configH, configV, and results. I then use the controller.view bringSubviewToFront to bring the either the configH, configV, or the result view to the front. Rotation works-queue(humor intended) the angelic choirs... almost. What's happening is that my configV button's are responsive, but when the device (or simulator) is rotated, my configH controls are not. (configV is the second subview added, but the first one to be brought to the front because app comes up in portrait mode) The controls on the results view also work. Plan B was to assign the controller.view to configH, configV, or results. All of my controls now work, but rotation is now fouled up. Question 1: Is there a better way to do this? (a horizontal and vertical config view and a rotatable results view) Question 2: Does the above suggest a design issue, or is it more likely that my addled brain is just missing something in my own code. (nothing from the peanut gallery please) many thanks!

    Read the article

  • horizontal uiview's controls unresponsive.. or how to foul up a view hierarchy

    - by Oldmicah
    Hello all, I'm working on an app that has two sections, a config section and a results section. My config section needs to be 2 separate views (horizontal and vert, and yes, I can hear the intake of breath from here), with one rotatable view for the results. b/c of layout restraints and a lot of pain around rotation, I'm not using a navigation controller. I've been experiencing the joys of rotation experimentation and have settled upon keeping my views contained as subviews of my view controller. i.e. view controller.view.subviews = configH, configV, and results. I then use the controller.view bringSubviewToFront to bring the either the configH, configV, or the result view to the front. Rotation works-queue(humor intended) the angelic choirs... almost. What's happening is that my configV button's are responsive, but when the device (or simulator) is rotated, my configH controls are not. (configV is the second subview added, but the first one to be brought to the front because app comes up in portrait mode) The controls on the results view also work. Plan B was to assign the controller.view to configH, configV, or results. All of my controls now work, but rotation is now fouled up. Question 1: Is there a better way to do this? (a horizontal and vertical config view and a rotatable results view) Question 2: Does the above suggest a design issue, or is it more likely that my addled brain is just missing something in my own code. (nothing from the peanut gallery please) many thanks!

    Read the article

  • Can't delete record via the datacontext it was retrieved from

    - by Antilogic
    I just upgraded one of my application's methods to use compiled queries (not sure if this is relevant). Now I'm getting contradicting error messages when I run the code. This is my method: MyClass existing = Queries.MyStaticCompiledQuery(MyRequestScopedDataContext, param1, param2).SingleOrDefault(); if (existing != null) { MyRequestScopedDataContext.MyClasses.DeleteOnSubmit(existing); } When I run it I get this message: Cannot remove an entity that has not been attached. Note that the compiled query and the DeleteOnSubmit reference the same DataContext. Still I figured I'd humor the application and add an attach command before the DeleteOnSubmit, like so: MyClass existing = Queries.MyStaticCompiledQuery(MyRequestScopedDataContext, param1, param2).SingleOrDefault(); if (existing != null) { MyRequestScopedDataContext.MyClasses.Attach(existing); MyRequestScopedDataContext.MyClasses.DeleteOnSubmit(existing); } BUT... When I run this code, I get a completely different contradictory error message: An attempt has been made to Attach or Add an entity that is not new, perhaps having been loaded from another DataContext. This is not supported. I'm at a complete loss... Does anyone else have some insight as to why I can't delete a record via the same DataContext I retrieved it from?

    Read the article

  • Upgraded to Ubuntu 13.10 - Apache not able to start

    - by 0R10N
    I updated to Ubuntu 13.10 (from Ubuntu 13.04) last weekend, and now Apache is not being able to start. It was working perfectly well until the upgraded, and I haven't changed anything myself. When I ran a restart this is what I get apache2: Syntax error on line 260 of /etc/apache2/apache2.conf: Could not open configuration file /etc/apache2/conf.d/: No such file or directory So, I created the directory, and then I get this: * Starting web server apache2 * * The apache2 configtest failed. Output of config test was: [Wed Oct 30 11:17:42.921934 2013] [proxy_html:notice] [pid 2496] AH01425: I18n support in mod_proxy_html requires mod_xml2enc. Without it, non-ASCII characters in proxied pages are likely to display incorrectly. AH00526: Syntax error on line 84 of /etc/apache2/apache2.conf: Invalid command 'LockFile', perhaps misspelled or defined by a module not included in the server configuration Action 'configtest' failed. The Apache error log may have more information. Thanks!

    Read the article

  • Installing missing package that provides Xm/Xm.h

    - by Nicholas Kinar
    I'm compiling a software package that requires a header file. The header file is missing from my Ubuntu 11.10 (64-bit) installation. During the compilation using make, gcc and gfortran, I receive the following error message. XMstr.c:7:19: fatal error: Xm/Xm.h: No such file or directory Googling for an answer leads me to believe that a MESA library needs to be installed on my system, but I can't find an exact match for the package name. What might be the name of the package that I need to install? Does the package have the same name on more recent Ubuntu distros?

    Read the article

  • Broadband wireless drivers don't work

    - by user88235
    I have a Dell Latitude E6520 which is a Ubuntu 12.04 certified hardware. However the driver assigned to the Dell Wireless 5630 (EVDO-HSPA) Mobile Broadband Mini-Card doesn't seem to work. When I boot in Windows 7 I connect to Verizon dialing *99# with no username or password but it won't connect using Ubuntu. The windows drivers are from Novatel Wireless Inc 1.0.0.6 if that helps. This is also an internal card not USB and the hardware Id is USB\VID_413C&PID_8194&REV_0002&MI_00 If anyone can help me with obtaining the correct driver or maybe some other way of getting it to work I would be very grateful. My job requires traveling and I need internet access but hate using Win7.

    Read the article

  • AMD-V is not enable in virtualbox in amd APU

    - by shantanu
    I am running Dual core AMD E450 APU. When i tried to run a 64-bit OS that requires hardware virtualization using virtual-box it showed me an error "AMD-V is not enable". My AMD processor should provide AMD-V support. And i can find no option for AMD-V in BIOS. How can i solve this problem? How could i enable AMD-V for my APU? Thanks in advance lscpu :- Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 2 On-line CPU(s) list: 0,1 Thread(s) per core: 1 Core(s) per socket: 2 Socket(s): 1 NUMA node(s): 1 Vendor ID: AuthenticAMD CPU family: 20 Model: 2 Stepping: 0 CPU MHz: 1650.000 BogoMIPS: 3291.72 Virtualization: AMD-V L1d cache: 32K L1i cache: 32K L2 cache: 512K NUMA node0 CPU(s): 0,1 EDITED:- Error of virtualBOX:- Failed to open a session for the virtual machine XXX. AMD-V is disabled in the BIOS. (VERR_SVM_DISABLED). Result Code: NS_ERROR_FAILURE (0x80004005) Component: Console Interface: IConsole {1968b7d3-e3bf-4ceb-99e0-cb7c913317bb}

    Read the article

  • How to install Juniper VPN on Ubuntu 14.04 LTS?

    - by Max Ricardo Mercurio Ribeiro
    Could you please help me ? On my old Ubuntu 13.10 I was able to run Juniper VPN (on Firefox only) using a workaround which requires you to install the missing 32libs and IcedTea (32bits). However, I recently upgraded from Ubuntu 13.10 to 14.04 (both 64 bits) and my Juniper VPN does not work anymore because it fails during startup showing the following message: "Please ensure that necessary 32 bit libraries are installed. For more details, refer KB article KB25230" "Setup failed. Please install 32 bit Java and update alternatives links using update-alternatives command. For more details, refer KB article KB25230" For some odd reason, it seems the 14.04 upgrade do not work anymore with the openjdk-7:386 and consequently the Juniper VPN as well. Any ideas ? Thanks

    Read the article

  • Status of stack based languages

    - by Andrea
    I have recently become curious about Factor, which, as far as I understand, is the most practical stack based language around. Forth seems not to be used much these days - I think it is because it was meant to be used on its own, instead of inside an operating system, although ports of course exist. It is also pretty low level. Joy is essentially dead, as the author stated that it does not make sense to mantain it in spite of adopting Factor. The fact is that Factor itself does not seem much developed today. The GitHub repo does not seem very active, and a lot of stuff languishes in unmantained. So, are there any other languages of this type that are more actively mantained? Are any in production use?

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Database model for keeping track of likes/shares/comments on blog posts over time

    - by gage
    My goal is to keep track of the popular posts on different blog sites based on social network activity at any given time. The goal is not to simply get the most popular now, but instead find posts that are popular compared to other posts on the same blog. For example, I follow a tech blog, a sports blog, and a gossip blog. The tech blog gets waaay more readership than the other two blogs, so in raw numbers every post on the tech blog will always out number views on the other two. So lets say the average tech blog post gets 500 facebook likes and the other two get an average of 50 likes per post. Then when there is a sports blog post that has 200 fb likes and a gossip blog post with 300 while the tech blog posts today have 500 likes I want to highlight the sports and gossip blog posts (more likes than average vs tech blog with more # of likes but just average for the blog) The approach I am thinking of taking is to make an entry in a database for each blog post. Every x minutes (say every 15 minutes) I will check how many likes/shares/comments an entry has received on all the social networks (facebook, twitter, google+, linkeIn). So over time there will be a history of likes for each blog post, i.e post 1234 after 15 min: 10 fb likes, 4 tweets, 6 g+ after 30 min: 15 fb likes, 15 tweets, 10 g+ ... ... after 48 hours: 200 fb likes, 25 tweets, 15 g+ By keeping a history like this for each blog post I can know the average number of likes/shares/tweets at any give time interval. So for example the average number of fb likes for all blog posts 48hrs after posting is 50, and a particular post has 200 I can mark that as a popular post and feature/highlight it. A consideration in the design is to be able to easily query the values (likes/shares) for a specific time-frame, i.e. fb likes after 30min or tweets after 24 hrs in-order to compute averages with which to compare against (or should averages be stored in it's own table?) If this approach is flawed or could use improvement please let me know, but it is not my main question. My main question is what should a database scheme for storing this info look like? Assuming that the above approach is taken I am trying to figure out what a database schema for storing the likes over time would look like. I am brand new to databases, in doing some basic reading I see that it is advisable to make a 3NF database. I have come up with the following possible schema. Schema 1 DB Popular Posts Table: Post post_id ( primary key(pk) ) url title Table: Social Activity activity_id (pk) url (fk) type (i.e. facebook,twitter,g+) value timestamp This was my initial instinct (base on my very limited db knowledge). As far as I under stand this schema would be 3NF? I searched for designs of similar database model, and found this question on stackoverflow, http://stackoverflow.com/questions/11216080/data-structure-for-storing-height-and-weight-etc-over-time-for-multiple-users . The scenario in that question is similar (recording weight/height of users overtime). Taking the accepted answer for that question and applying it to my model results in something like: Schema 2 (same as above, but break down the social activity into 2 tables) DB Popular Posts Table: Post post_id (pk) url title Table: Social Measurement measurement_id (pk) post_id (fk) timestamp Table: Social stat stat_id (pk) measurement_id (fk) type (i.e. facebook,twitter,g+) value The advantage I see in schema 2 is that I will likely want to access all the values for a given time, i.e. when making a measurement at 30min after a post is published I will simultaneous check number of fb likes, fb shares, fb comments, tweets, g+, linkedIn. So with this schema it may be easier get get all stats for a measurement_id corresponding to a certain time, i.e. all social stats for post 1234 at time x. Another thought I had is since it doesn't make sense to compare number of fb likes with number of tweets or g+ shares, maybe it makes sense to separate each social measurement into it's own table? Schema 3 DB Popular Posts Table: Post post_id (pk) url title Table: fb_likes fb_like_id (pk) post_id (fk) timestamp value Table: fb_shares fb_shares_id (pk) post_id (fk) timestamp value Table: tweets tweets__id (pk) post_id (fk) timestamp value Table: google_plus google_plus_id (pk) post_id (fk) timestamp value As you can see I am generally lost/unsure of what approach to take. I'm sure this typical type of database problem (storing measurements overtime, i.e temperature statistic) that must have a common solution. Is there a design pattern/model for this, does it have a name? I tried searching for "database periodic data collection" or "database measurements over time" but didn't find anything specific. What would be an appropriate model to solve the needs of this problem?

    Read the article

< Previous Page | 66 67 68 69 70 71 72 73 74 75 76 77  | Next Page >