Search Results

Search found 1977 results on 80 pages for 'concurrent modification'.

Page 71/80 | < Previous Page | 67 68 69 70 71 72 73 74 75 76 77 78  | Next Page >

  • How to reliably categorize HTTP sessions in proxy to corresponding browser' windows/tabs user is viewing?

    - by Jehonathan
    I was using the Fiddler core .Net library as a local proxy to record the user activity in web. However I ended up with a problem which seems dirty to solve. I have a web browser say Google Chrome, and the user opened like 10 different tabs each with different web URLs. The problem is that the proxy records all the HTTP session initiated by each pages separately, causing me to figure out using my intelligence the tab which the corresponding HTTP session belonged to. I understand that this is because of the stateless nature of HTTP protocol. However I am just wondering is there an easy way to do this? I ended up with below c# code for that in Fiddler. Still its not a reliable solution due to the heuristics. This is a modification of the sample project bundled with Fiddler core for .NET 4. Basically what it does is filtering HTTP sessions initiated in last few seconds to find the first request or switching to another page made by the same tab in browser. It almost works, but not seems to be a universal solution. Fiddler.FiddlerApplication.AfterSessionComplete += delegate(Fiddler.Session oS) { //exclude other HTTP methods if (oS.oRequest.headers.HTTPMethod == "GET" || oS.oRequest.headers.HTTPMethod == "POST") //exclude other HTTP Status codes if (oS.oResponse.headers.HTTPResponseStatus == "200 OK" || oS.oResponse.headers.HTTPResponseStatus == "304 Not Modified") { //exclude other MIME responses (allow only text/html) var accept = oS.oRequest.headers.FindAll("Accept"); if (accept != null) { if(accept.Count>0) if (accept[0].Value.Contains("text/html")) { //exclude AJAX if (!oS.oRequest.headers.Exists("X-Requested-With")) { //find the referer for this request var referer = oS.oRequest.headers.FindAll("Referer"); //if no referer then assume this as a new request and display the same if(referer!=null) { //if no referer then assume this as a new request and display the same if (referer.Count > 0) { //lock the sessions Monitor.Enter(oAllSessions); //filter further using the response if (oS.oResponse.MIMEType == string.Empty || oS.oResponse.MIMEType == "text/html") //get all previous sessions with the same process ID this session request if(oAllSessions.FindAll(a=>a.LocalProcessID == oS.LocalProcessID) //get all previous sessions within last second (assuming the new tab opened initiated multiple sessions other than parent) .FindAll(z => (z.Timers.ClientBeginRequest > oS.Timers.ClientBeginRequest.AddSeconds(-1))) //get all previous sessions that belongs to the same port of the current session .FindAll(b=>b.port == oS.port ).FindAll(c=>c.clientIP ==oS.clientIP) //get all previus sessions with the same referrer URL of the current session .FindAll(y => referer[0].Value.Equals(y.fullUrl)) //get all previous sessions with the same host name of the current session .FindAll(m=>m.hostname==oS.hostname).Count==0 ) //if count ==0 that means this is the parent request Console.WriteLine(oS.fullUrl); //unlock sessions Monitor.Exit(oAllSessions); } else Console.WriteLine(oS.fullUrl); } else Console.WriteLine(oS.fullUrl); Console.WriteLine(); } } } } };

    Read the article

  • What are the rules governing how a bind variable can be used in Postgres and where is this defined?

    - by Craig Miles
    I can have a table and function defined as: CREATE TABLE mytable ( mycol integer ); INSERT INTO mytable VALUES (1); CREATE OR REPLACE FUNCTION myfunction (l_myvar integer) RETURNS mytable AS $$ DECLARE l_myrow mytable; BEGIN SELECT * INTO l_myrow FROM mytable WHERE mycol = l_myvar; RETURN l_myrow; END; $$ LANGUAGE plpgsql; In this case l_myvar acts as a bind variable for the value passed when I call: SELECT * FROM myfunction(1); and returns the row where mycol = 1 If I redefine the function as: CREATE OR REPLACE FUNCTION myfunction (l_myvar integer) RETURNS mytable AS $$ DECLARE l_myrow mytable; BEGIN SELECT * INTO l_myrow FROM mytable WHERE mycol IN (l_myvar); RETURN l_myrow; END; $$ LANGUAGE plpgsql; SELECT * FROM myfunction(1); still returns the row where mycol = 1 However, if I now change the function definition to allow me to pass an integer array and try to this array in the IN clause, I get an error: CREATE OR REPLACE FUNCTION myfunction (l_myvar integer[]) RETURNS mytable AS $$ DECLARE l_myrow mytable; BEGIN SELECT * INTO l_myrow FROM mytable WHERE mycol IN (array_to_string(l_myvar, ',')); RETURN l_myrow; END; $$ LANGUAGE plpgsql; Analysis reveals that although: SELECT array_to_string(ARRAY[1, 2], ','); returns 1,2 as expected SELECT * FROM myfunction(ARRAY[1, 2]); returns the error operator does not exist: integer = text at the line: WHERE mycol IN (array_to_string(l_myvar, ',')); If I execute: SELECT * FROM mytable WHERE mycol IN (1,2); I get the expected result. Given that array_to_string(l_myvar, ',') evaluates to 1,2 as shown, why arent these statements equivalent. From the error message it is something to do with datatypes, but doesnt the IN(variable) construct appear to be behaving differently from the = variable construct? What are the rules here? I know that I could build a statement to EXECUTE, treating everything as a string, to achieve what I want to do, so I am not looking for that as a solution. I do want to understand though what is going on in this example. Is there a modification to this approach to make it work, the particular example being to pass in an array of values to build a dynamic IN clause without resorting to EXECUTE? Thanks in advance Craig

    Read the article

  • Random generates same number in java

    - by user1613360
    This is my java code. import java.io.*; import java.util.*; import java.util.concurrent.TimeUnit; class search { private int numelem; private int[] input=new int[100]; public void setNumofelem() { System.out.println("Enter the total numebr of elements"); Scanner yz=new Scanner(System.in); numelem=yz.nextInt(); } public void randomnumber() throws Exception { int max=500,min=1,n=numelem; Random rand = new Random(); for (int j=0;j < n;j++) { input[j]=rand.nextInt(max)+1; } } public void printinput() { int b=numelem,t=0; while(true) if(b!=0) { System.out.print(" "+input[t]); b--; t++; } else break; } } public class mycode { public static void main(String args[]) throws Exception { search a=new search(); a.setNumofelem(); a.randomnumber(); a.printinput(); } } Now the function randomnumber() just returns the same number.The function executes perfectly if I execute it as a separate java program but fails miserably if I call it using an object.I have also tried the following variations but nothing works everything return the same number. Variation 1: public void randomnumber() throws Exception { int max=500,min=1,n=numelem; Random rand = new Random(); for (int j=0;j < n;j++) { TimeUnit.SECONDS.sleep(1); input[j]=rand.nextInt(max)+1; } } Variation 2: public void randomnumber() throws Exception { int max=500,min=1,n=numelem; Random rand = new Random(); for (int j=0;j < n;j++) { rand.setSeed(System.nanoTime()); input[j]=rand.nextInt(max)+1; } } Variation 3: public void randomnumber() throws Exception { int max=500,min=1,n=numelem; Random rand = new Random(); for (int j=0;j < n;j++) { TimeUnit.SECONDS.sleep(1); rand.setSeed(System.nanoTime()); input[j]=rand.nextInt(max)+1; } } Sample input/Output: Enter the number of elements: 5 23 23 23 23 23 23

    Read the article

  • How can a button click method find out which item is selected in a ListView?

    - by Ian Bayley
    I have a single screen with a bank of buttons below a ListView. Entries on the ListView light up in orange when I scroll so I assume that are selected. When I then press the "Delete" button I want the onClickListener to remove the currently selected entry. But getSelectedItemPosition() always gives me -1. If I can't hope to use the GUI controls in this way, please give me another way of getting the same result. I have even tried setting the onClickListener of the List View to store the index before the button is pressed (in case pressing the button unselects the entry) but even that is always -1 it seems. Here's the code (without the modification which didn't work) package com.bayley; import android.app.Activity; import android.os.Bundle; import android.view.View; import android.widget.ArrayAdapter; import android.widget.Button; import android.widget.EditText; import android.widget.ListView; import java.util.ArrayList; /** * * @author p0074564 */ public class September extends Activity { /** Called when the activity is first created. */ @Override public void onCreate(Bundle icicle) { super.onCreate(icicle); setContentView(R.layout.main); final ListView myListView = (ListView) findViewById(R.id.myListView); Button addButton = (Button) findViewById(R.id.AddButton); Button deleteButton = (Button) findViewById(R.id.DeleteButton); final EditText editText = (EditText) findViewById(R.id.myEditText); final ArrayList<String> todoItems = new ArrayList<String>(); todoItems.add("Monday"); todoItems.add("Tuesday"); todoItems.add("Wednesday"); final ArrayAdapter<String> aa = new ArrayAdapter<String>(this, android.R.layout.simple_list_item_1, todoItems); myListView.setAdapter(aa); addButton.setOnClickListener(new Button.OnClickListener() { public void onClick(View v) { todoItems.add(editText.getText().toString()); aa.notifyDataSetChanged(); } }); deleteButton.setOnClickListener(new Button.OnClickListener() { public void onClick(View v) { // always returns -1 unfortunately ie nothing is ever selected int index = myListView.getSelectedItemPosition(); if (index >= 0) { todoItems.remove(index); } aa.notifyDataSetChanged(); } }); } }

    Read the article

  • Java Flow Control Problem

    - by Kyle_Solo
    I am programming a simple 2d game engine. I've decided how I'd like the engine to function: it will be composed of objects containing "events" that my main game loop will trigger when appropriate. A little more about the structure: Every GameObject has an updateEvent method. objectList is a list of all the objects that will receive update events. Only objects on this list have their updateEvent method called by the game loop. I’m trying to implement this method in the GameObject class (This specification is what I’d like the method to achieve): /** * This method removes a GameObject from objectList. The GameObject * should immediately stop executing code, that is, absolutely no more * code inside update events will be executed for the removed game object. * If necessary, control should transfer to the game loop. * @param go The GameObject to be removed */ public void remove(GameObject go) So if an object tries to remove itself inside of an update event, control should transfer back to the game engine: public void updateEvent() { //object's update event remove(this); System.out.println("Should never reach here!"); } Here’s what I have so far. It works, but the more I read about using exceptions for flow control the less I like it, so I want to see if there are alternatives. Remove Method public void remove(GameObject go) { //add to removedList //flag as removed //throw an exception if removing self from inside an updateEvent } Game Loop for(GameObject go : objectList) { try { if (!go.removed) { go.updateEvent(); } else { //object is scheduled to be removed, do nothing } } catch(ObjectRemovedException e) { //control has been transferred back to the game loop //no need to do anything here } } // now remove the objects that are in removedList from objectList 2 questions: Am I correct in assuming that the only way to implement the stop-right-away part of the remove method as described above is by throwing a custom exception and catching it in the game loop? (I know, using exceptions for flow control is like goto, which is bad. I just can’t think of another way to do what I want!) For the removal from the list itself, it is possible for one object to remove one that is farther down on the list. Currently I’m checking a removed flag before executing any code, and at the end of each pass removing the objects to avoid concurrent modification. Is there a better, preferably instant/non-polling way to do this?

    Read the article

  • SwingWorker exceptions lost even when using wrapper classes

    - by Ti Strga
    I've been struggling with the usability problem of SwingWorker eating any exceptions thrown in the background task, for example, described on this SO thread. That thread gives a nice description of the problem, but doesn't discuss recovering the original exception. The applet I've been handed needs to propagate the exception upwards. But I haven't been able to even catch it. I'm using the SimpleSwingWorker wrapper class from this blog entry specifically to try and address this issue. It's a fairly small class but I'll repost it at the end here just for reference. The calling code looks broadly like try { // lots of code here to prepare data, finishing with SpecialDataHelper helper = new SpecialDataHelper(...stuff...); helper.execute(); } catch (Throwable e) { // used "Throwable" here in desperation to try and get // anything at all to match, including unchecked exceptions // // no luck, this code is never ever used :-( } The wrappers: class SpecialDataHelper extends SimpleSwingWorker { public SpecialDataHelper (SpecialData sd) { this.stuff = etc etc etc; } public Void doInBackground() throws Exception { OurCodeThatThrowsACheckedException(this.stuff); return null; } protected void done() { // called only when successful // never reached if there's an error } } The feature of SimpleSwingWorker is that the actual SwingWorker's done()/get() methods are automatically called. This, in theory, rethrows any exceptions that happened in the background. In practice, nothing is ever caught, and I don't even know why. The SimpleSwingWorker class, for reference, and with nothing elided for brevity: import java.util.concurrent.ExecutionException; import javax.swing.SwingWorker; /** * A drop-in replacement for SwingWorker<Void,Void> but will not silently * swallow exceptions during background execution. * * Taken from http://jonathangiles.net/blog/?p=341 with thanks. */ public abstract class SimpleSwingWorker { private final SwingWorker<Void,Void> worker = new SwingWorker<Void,Void>() { @Override protected Void doInBackground() throws Exception { SimpleSwingWorker.this.doInBackground(); return null; } @Override protected void done() { // Exceptions are lost unless get() is called on the // originating thread. We do so here. try { get(); } catch (final InterruptedException ex) { throw new RuntimeException(ex); } catch (final ExecutionException ex) { throw new RuntimeException(ex.getCause()); } SimpleSwingWorker.this.done(); } }; public SimpleSwingWorker() {} protected abstract Void doInBackground() throws Exception; protected abstract void done(); public void execute() { worker.execute(); } }

    Read the article

  • AllowSetForegroundWindow & SetForegroundWindow: NPAPI plug-in wants to allow a desktop application with no success

    - by David Robert Jones
    Here it's what I have: a web browser plug-in written in C++ and a Windows application written in C#. They communicate through a named pipe. The plug-in instructs the C# application to open a file (suppose that the file is a .txt and it opens in Notepad). Once the C# application is given the command, it opens the file but Notepad doesn't show in the foreground, which isn't acceptable, I must open Notepad in the foreground. I modified the C# application so that it calls the SetForegroundWindow function. This time Notepad didn't open in the foreground, but the taskbar flashes. After reading the documentation for SetForegroundWindow and many articles I think that now I understand what the problem is: the C# application can't bring Notepad to the foreground because it wasn't the the foreground process, the browser was (?). After reading this: "A process that can set the foreground window can enable another process to set the foreground window by calling the AllowSetForegroundWindow function." I decided to modify the plug-in. This time the plug-in calls the AllowSetForegroundWindow function passing ASFW_ANY as a parameter (I know, ASFW_ANY could be risky, but I wanted to make sure that AllowSetForegroundWindow would do it). After I did the modification to the plug-in I tested it and it worked! (Opera 12.02). Then I tested it on Internet Explorer and it worked too. But the problem came when I tested it in Firefox and Chrome. The C# application didn't have the ability to bring Notepad to the foreground. I noticed that for those browsers the AllowSetForegroundWindow function was returning false. So I started investigating and I come to the conclusion that maybe it's because the plugin container that Firefox uses. An idea came to my mind: it worked in Opera 12.02, but they don't have a plugin container, although they did in Opera 12.00. So I downloaded Opera 12.00, I did the test and it failed, which makes me conclude that the plugin container is the culprit. The question is: how can I give to the C# application the ability to set foreground? I don't know how to continue, and I think that I tried all the legitimate ways. The AllowSetForegroundWindow & SetForegroundWindow seems to not apply here.

    Read the article

  • This task is currently locked by a running workflow and cannot be edited. Limitation to both Nintex and SPD workflow

    - by ybbest
    Note, this post is from Nintex Forum here. These limitations apply to both SharePoint designer Workflow and Nintex Workflow as Nintex using the SharePoint workflow engine. The common cause that I experience is that ‘parent’ workflow is generating more than one task at once. This is common as you can have multiple approvers for certain approval process. You could also have workflow running when the task is created, one of the common scenario is you would like to set a custom column value in your approval task. For me this is huge limitation, as Nintex lover I really hope Nintex could solve this problem with Microsoft going forward. Introduction “This task is currently locked by a running workflow and cannot be edited” is a common message that is seen when an error occurs while the SharePoint workflow engine is processing a task item associated with a workflow. When a workflow processes a task normally, the following sequence of events is expected to occur: 1.       The process begins. 2.       The workflow places a ‘lock’ on the task so nothing else can change the values while the workflow is processing. 3.       The workflow processes the task. 4.       The lock is released when the task processing is finished. When the message is encountered, it usually indicates that an error occurred between step 2 and 4. As a result, the lock is never released. Therefore, the ‘task locked’ message is not an error itself, rather a symptom of another error – the ‘task locked’ message does not indicate what went wrong. In most cases, once this message is encountered, the workflow cannot be made to continue and must be terminated and started again. The following is a guide that can help troubleshoot the cause of these messages.  Some initial observations to narrow down the potential causes are: Is the error consistent or intermittent? When the error is consistent, it will happen every time the workflow is run. When it is intermittent, it may happen regularly, but not every time. Does the error occur the first time the user tries to respond to a task, or do they respond and notice the workflow does not continue, and when they respond again the error occurs? If the message is present when the user first responds to the task, the issue would have occurred when the task was created. Otherwise, it would have occurred when the user attempted to respond to the task. Causes Modifying the task list A cause of this error appearing consistently the first time a user tries to respond to a task is a modification to the default task list schema. For example, changing the ‘Assigned to’ field in a task list to be a multiple selection will cause the behaviour. Deleting the workflow task then restoring it from the Recycle bin If you start a workflow, delete the workflow task then restore it from the Recycle Bin in SharePoint, the workflow will fail with the ‘task locked’ error.  This is confirmed behaviour whether using a SharePoint Designer or a Nintex workflow.  You will need to terminate the workflow and start it again. Parallel simultaneous responses A cause of this error appearing inconsistently is multiple users responding to tasks in parallel at the same time. In this scenario, one task will complete correctly and the other will not process. When the user tries again, the ‘task locked’ message will display. Nintex included a workaround for this issue in build 11000. In build 11000 and later, one of the users will receive a message on the task form when they attempt to respond, stating that they need to try again in a few moments. Additional processing on the task A cause of this error appearing consistently and inconsistently is having an additional system running on the items in the task list. Some examples include: a workflow running on the task list, an event receiver running on the task list or another automated process querying and updating workflow tasks. Note: This Microsoft help article (http://office.microsoft.com/en-us/sharepointdesigner/HA102376561033.aspx#5) explains creating a workflow that runs on the task list to update a field on the task. Our experience shows that this causes the ‘Task Locked’ issues when the ‘parent’ workflow is generating more than one task at once. Isolated system error If the error is a rare event, or a ‘one off’ event, then an isolated system error may have occurred. For example, if there is a database connectivity issue while the workflow is processing the task response, the task will lock. In this case, the user will respond to a task but the workflow will not continue. When they respond again, the ‘task locked’ message will display. In this case, there will be an error in the SharePoint ULS Logs at the time that the user originally responded. Temporary delay while workflow processes If the workflow is taking a long time to process after a user submits a task, they may notice and try to respond to the task again. They will see the task locked error, but after a number of attempts (or after waiting some time) the task response page eventually indicates the task has been responded to. In this case, nothing actually went wrong, and the error message gives an accurate indication of what is happening – the workflow temporarily locked the task while it was processing. This scenario may occur in a very large workflow, or after the SharePoint application pool has just started. Modifying the task via a web service with an invalid url If the Nintex Workflow web service is used to respond to or delegate a task, the site context part of the url must be a valid alternative access mapping url. For example, if you access the web service via the IP address of the SharePoint server, and the IP address is not a valid AAM, the task can become locked. The workflow has become stuck without any apparent errors This behaviour can occur as a result of a bug in the SharePoint 2010 workflow engine.  If you do not have the August 2010 Cumulative Update (or later) for SharePoint, and your workflow uses delays, “Flexi-task”, State machine”, “Task Reminder” actions or variables, you could be affected. Check the SharePoint 2010 Updates site here: http://technet.microsoft.com/en-us/sharepoint/ff800847.  The October CU is recommended http://support.microsoft.com/kb/2553031.   The fix is described as “Consider the following scenario. You add a Delay activity to a workflow. Then, you set the duration for the Delay activity. You deploy the workflow in SharePoint Foundation 2010. In this scenario, the workflow is not resumed after the duration of the Delay activity”. If you find this is occurring in your environment, install the October CU, terminate all the running workflows affected and run them afresh. Investigative steps The first step to isolate the issue is to create a new task list on the site and configure the workflow to use it.  Any customizations that were made to the original task list should not be made to the new task list. If the new task list eliminates the issue, then the cause can be attributed to the original task list or a change that was made to it. To change the task list that the workflow uses: In Workflow Designer select Settings -> Startup Options Then configure the task list as required If any of the scenarios above do not help, check the SharePoint logs for any messages with a category of ‘Workflow Infrastructure’. Conclusion The information in this article has been gathered from observations and investigations by Nintex. The sources of these issues are the underlying SharePoint workflow engine. This article will be updated if further causes are discovered. From <http://connect.nintex.com/forums/thread/6503.aspx>

    Read the article

  • Parallelism in .NET – Part 14, The Different Forms of Task

    - by Reed
    Before discussing Task creation and actual usage in concurrent environments, I will briefly expand upon my introduction of the Task class and provide a short explanation of the distinct forms of Task.  The Task Parallel Library includes four distinct, though related, variations on the Task class. In my introduction to the Task class, I focused on the most basic version of Task.  This version of Task, the standard Task class, is most often used with an Action delegate.  This allows you to implement for each task within the task decomposition as a single delegate. Typically, when using the new threading constructs in .NET 4 and the Task Parallel Library, we use lambda expressions to define anonymous methods.  The advantage of using a lambda expression is that it allows the Action delegate to directly use variables in the calling scope.  This eliminates the need to make separate Task classes for Action<T>, Action<T1,T2>, and all of the other Action<…> delegate types.  As an example, suppose we wanted to make a Task to handle the ”Show Splash” task from our earlier decomposition.  Even if this task required parameters, such as a message to display, we could still use an Action delegate specified via a lambda: // Store this as a local variable string messageForSplashScreen = GetSplashScreenMessage(); // Create our task Task showSplashTask = new Task( () => { // We can use variables in our outer scope, // as well as methods scoped to our class! this.DisplaySplashScreen(messageForSplashScreen); }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This provides a huge amount of flexibility.  We can use this single form of task for any task which performs an operation, provided the only information we need to track is whether the task has completed successfully or not.  This leads to my first observation: Use a Task with a System.Action delegate for any task for which no result is generated. This observation leads to an obvious corollary: we also need a way to define a task which generates a result.  The Task Parallel Library provides this via the Task<TResult> class. Task<TResult> subclasses the standard Task class, providing one additional feature – the ability to return a value back to the user of the task.  This is done by switching from providing an Action delegate to providing a Func<TResult> delegate.  If we decompose our problem, and we realize we have one task where its result is required by a future operation, this can be handled via Task<TResult>.  For example, suppose we want to make a task for our “Check for Update” task, we could do: Task<bool> checkForUpdateTask = new Task<bool>( () => { return this.CheckWebsiteForUpdate(); }); Later, we would start this task, and perform some other work.  At any point in the future, we could get the value from the Task<TResult>.Result property, which will cause our thread to block until the task has finished processing: // This uses Task<bool> checkForUpdateTask generated above... // Start the task, typically on a background thread checkForUpdateTask.Start(); // Do some other work on our current thread this.DoSomeWork(); // Discover, from our background task, whether an update is available // This will block until our task completes bool updateAvailable = checkForUpdateTask.Result; This leads me to my second observation: Use a Task<TResult> with a System.Func<TResult> delegate for any task which generates a result. Task and Task<TResult> provide a much cleaner alternative to the previous Asynchronous Programming design patterns in the .NET framework.  Instead of trying to implement IAsyncResult, and providing BeginXXX() and EndXXX() methods, implementing an asynchronous programming API can be as simple as creating a method that returns a Task or Task<TResult>.  The client side of the pattern also is dramatically simplified – the client can call a method, then either choose to call task.Wait() or use task.Result when it needs to wait for the operation’s completion. While this provides a much cleaner model for future APIs, there is quite a bit of infrastructure built around the current Asynchronous Programming design patterns.  In order to provide a model to work with existing APIs, two other forms of Task exist.  There is a constructor for Task which takes an Action<Object> and a state parameter.  In addition, there is a constructor for creating a Task<TResult> which takes a Func<Object, TResult> as well as a state parameter.  When using these constructors, the state parameter is stored in the Task.AsyncState property. While these two overloads exist, and are usable directly, I strongly recommend avoiding this for new development.  The two forms of Task which take an object state parameter exist primarily for interoperability with traditional .NET Asynchronous Programming methodologies.  Using lambda expressions to capture variables from the scope of the creator is a much cleaner approach than using the untyped state parameters, since lambda expressions provide full type safety without introducing new variables.

    Read the article

  • Parallelism in .NET – Part 15, Making Tasks Run: The TaskScheduler

    - by Reed
    In my introduction to the Task class, I specifically made mention that the Task class does not directly provide it’s own execution.  In addition, I made a strong point that the Task class itself is not directly related to threads or multithreading.  Rather, the Task class is used to implement our decomposition of tasks.  Once we’ve implemented our tasks, we need to execute them.  In the Task Parallel Library, the execution of Tasks is handled via an instance of the TaskScheduler class. The TaskScheduler class is an abstract class which provides a single function: it schedules the tasks and executes them within an appropriate context.  This class is the class which actually runs individual Task instances.  The .NET Framework provides two (internal) implementations of the TaskScheduler class. Since a Task, based on our decomposition, should be a self-contained piece of code, parallel execution makes sense when executing tasks.  The default implementation of the TaskScheduler class, and the one most often used, is based on the ThreadPool.  This can be retrieved via the TaskScheduler.Default property, and is, by default, what is used when we just start a Task instance with Task.Start(). Normally, when a Task is started by the default TaskScheduler, the task will be treated as a single work item, and run on a ThreadPool thread.  This pools tasks, and provides Task instances all of the advantages of the ThreadPool, including thread pooling for reduced resource usage, and an upper cap on the number of work items.  In addition, .NET 4 brings us a much improved thread pool, providing work stealing and reduced locking within the thread pool queues.  By using the default TaskScheduler, our Tasks are run asynchronously on the ThreadPool. There is one notable exception to my above statements when using the default TaskScheduler.  If a Task is created with the TaskCreationOptions set to TaskCreationOptions.LongRunning, the default TaskScheduler will generate a new thread for that Task, at least in the current implementation.  This is useful for Tasks which will persist for most of the lifetime of your application, since it prevents your Task from starving the ThreadPool of one of it’s work threads. The Task Parallel Library provides one other implementation of the TaskScheduler class.  In addition to providing a way to schedule tasks on the ThreadPool, the framework allows you to create a TaskScheduler which works within a specified SynchronizationContext.  This scheduler can be retrieved within a thread that provides a valid SynchronizationContext by calling the TaskScheduler.FromCurrentSynchronizationContext() method. This implementation of TaskScheduler is intended for use with user interface development.  Windows Forms and Windows Presentation Foundation both require any access to user interface controls to occur on the same thread that created the control.  For example, if you want to set the text within a Windows Forms TextBox, and you’re working on a background thread, that UI call must be marshaled back onto the UI thread.  The most common way this is handled depends on the framework being used.  In Windows Forms, Control.Invoke or Control.BeginInvoke is most often used.  In WPF, the equivelent calls are Dispatcher.Invoke or Dispatcher.BeginInvoke. As an example, say we’re working on a background thread, and we want to update a TextBlock in our user interface with a status label.  The code would typically look something like: // Within background thread work... string status = GetUpdatedStatus(); Dispatcher.BeginInvoke(DispatcherPriority.Normal, new Action( () => { statusLabel.Text = status; })); // Continue on in background method .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This works fine, but forces your method to take a dependency on WPF or Windows Forms.  There is an alternative option, however.  Both Windows Forms and WPF, when initialized, setup a SynchronizationContext in their thread, which is available on the UI thread via the SynchronizationContext.Current property.  This context is used by classes such as BackgroundWorker to marshal calls back onto the UI thread in a framework-agnostic manner. The Task Parallel Library provides the same functionality via the TaskScheduler.FromCurrentSynchronizationContext() method.  When setting up our Tasks, as long as we’re working on the UI thread, we can construct a TaskScheduler via: TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); We then can use this scheduler on any thread to marshal data back onto the UI thread.  For example, our code above can then be rewritten as: string status = GetUpdatedStatus(); (new Task(() => { statusLabel.Text = status; })) .Start(uiScheduler); // Continue on in background method This is nice since it allows us to write code that isn’t tied to Windows Forms or WPF, but is still fully functional with those technologies.  I’ll discuss even more uses for the SynchronizationContext based TaskScheduler when I demonstrate task continuations, but even without continuations, this is a very useful construct. In addition to the two implementations provided by the Task Parallel Library, it is possible to implement your own TaskScheduler.  The ParallelExtensionsExtras project within the Samples for Parallel Programming provides nine sample TaskScheduler implementations.  These include schedulers which restrict the maximum number of concurrent tasks, run tasks on a single threaded apartment thread, use a new thread per task, and more.

    Read the article

  • HP SmartArray P400: How to repair failed logical drive?

    - by TegtmeierDE
    I have a HP Server with SmartArray P400 controller (incl. 256 MB Cache/Battery Backup) with a logicaldrive with replaced failed physicaldrive that does not rebuild. This is how it looked when I detected the error: ~# /usr/sbin/hpacucli ctrl slot=0 show config Smart Array P400 in Slot 0 (Embedded) (sn: XXXX) array A (SATA, Unused Space: 0 MB) logicaldrive 1 (698.6 GB, RAID 1, OK) physicaldrive 1I:1:1 (port 1I:box 1:bay 1, SATA, 750 GB, OK) physicaldrive 1I:1:2 (port 1I:box 1:bay 2, SATA, 750 GB, OK) array B (SATA, Unused Space: 0 MB) logicaldrive 2 (2.7 TB, RAID 5, Failed) physicaldrive 1I:1:3 (port 1I:box 1:bay 3, SATA, 750 GB, OK) physicaldrive 1I:1:4 (port 1I:box 1:bay 4, SATA, 750 GB, OK) physicaldrive 2I:1:5 (port 2I:box 1:bay 5, SATA, 750 GB, OK) physicaldrive 2I:1:6 (port 2I:box 1:bay 6, SATA, 750 GB, Failed) physicaldrive 2I:1:7 (port 2I:box 1:bay 7, SATA, 750 GB, OK) unassigned physicaldrive 2I:1:8 (port 2I:box 1:bay 8, SATA, 750 GB, OK) ~# I thought that I had drive 2I:1:8 configured as a spare for Array A and Array B, but it seems this was not the case :-(. I noticed the problem due to I/O errors on the host, even if only 1 physicaldrive of the RAID5 is failed. Does someone know why this could happen? The logicaldrive should go into "Degraded" mode but still be fully accessible from the host os!? I first tried to add the unassigned drive 2I:1:8 as a spare to logicaldrive 2, but this was not possible: ~# /usr/sbin/hpacucli ctrl slot=0 array B add spares=2I:1:8 Error: This operation is not supported with the current configuration. Use the "show" command on devices to show additional details about the configuration. ~# Interestingly it is possible to add the unassigned drive to the first array without problems. I thought maybe the controller put the array into "failed" state due to the missing spare and protects failed arrays from modification. So I tried was to reenable the logicaldrive (to add the spare afterwards): ~# /usr/sbin/hpacucli ctrl slot=0 ld 2 modify reenable Warning: Any previously existing data on the logical drive may not be valid or recoverable. Continue? (y/n) y Error: This operation is not supported with the current configuration. Use the "show" command on devices to show additional details about the configuration. ~# But as you can see, re-enabling the logicaldrive this was not possible. Now I replaced the failed drive by hotswapping it with the unassigned drive. The status now looks like this: ~# /usr/sbin/hpacucli ctrl slot=0 show config Smart Array P400 in Slot 0 (Embedded) (sn: XXXX) array A (SATA, Unused Space: 0 MB) logicaldrive 1 (698.6 GB, RAID 1, OK) physicaldrive 1I:1:1 (port 1I:box 1:bay 1, SATA, 750 GB, OK) physicaldrive 1I:1:2 (port 1I:box 1:bay 2, SATA, 750 GB, OK) array B (SATA, Unused Space: 0 MB) logicaldrive 2 (2.7 TB, RAID 5, Failed) physicaldrive 1I:1:3 (port 1I:box 1:bay 3, SATA, 750 GB, OK) physicaldrive 1I:1:4 (port 1I:box 1:bay 4, SATA, 750 GB, OK) physicaldrive 2I:1:5 (port 2I:box 1:bay 5, SATA, 750 GB, OK) physicaldrive 2I:1:6 (port 2I:box 1:bay 6, SATA, 750 GB, OK) physicaldrive 2I:1:7 (port 2I:box 1:bay 7, SATA, 750 GB, OK) ~# The logical drive is still not accessible. Why is it not rebuilding? What can I do? FYI, this is the configuration of my controller: ~# /usr/sbin/hpacucli ctrl slot=0 show Smart Array P400 in Slot 0 (Embedded) Bus Interface: PCI Slot: 0 Serial Number: XXXX Cache Serial Number: XXXX RAID 6 (ADG) Status: Enabled Controller Status: OK Chassis Slot: Hardware Revision: Rev E Firmware Version: 5.22 Rebuild Priority: Medium Expand Priority: Medium Surface Scan Delay: 15 secs Surface Analysis Inconsistency Notification: Disabled Raid1 Write Buffering: Disabled Post Prompt Timeout: 0 secs Cache Board Present: True Cache Status: OK Accelerator Ratio: 25% Read / 75% Write Drive Write Cache: Disabled Total Cache Size: 256 MB No-Battery Write Cache: Disabled Cache Backup Power Source: Batteries Battery/Capacitor Count: 1 Battery/Capacitor Status: OK SATA NCQ Supported: True ~# Thanks for you help in advance.

    Read the article

  • ASP.NET MVC 3: Implicit and Explicit code nuggets with Razor

    - by ScottGu
    This is another in a series of posts I’m doing that cover some of the new ASP.NET MVC 3 features: New @model keyword in Razor (Oct 19th) Layouts with Razor (Oct 22nd) Server-Side Comments with Razor (Nov 12th) Razor’s @: and <text> syntax (Dec 15th) Implicit and Explicit code nuggets with Razor (today) In today’s post I’m going to discuss how Razor enables you to both implicitly and explicitly define code nuggets within your view templates, and walkthrough some code examples of each of them.  Fluid Coding with Razor ASP.NET MVC 3 ships with a new view-engine option called “Razor” (in addition to the existing .aspx view engine).  You can learn more about Razor, why we are introducing it, and the syntax it supports from my Introducing Razor blog post. Razor minimizes the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow. Unlike most template syntaxes, you do not need to interrupt your coding to explicitly denote the start and end of server blocks within your HTML. The Razor parser is smart enough to infer this from your code. This enables a compact and expressive syntax which is clean, fast and fun to type. For example, the Razor snippet below can be used to iterate a collection of products and output a <ul> list of product names that link to their corresponding product pages: When run, the above code generates output like below: Notice above how we were able to embed two code nuggets within the content of the foreach loop.  One of them outputs the name of the Product, and the other embeds the ProductID within a hyperlink.  Notice that we didn’t have to explicitly wrap these code-nuggets - Razor was instead smart enough to implicitly identify where the code began and ended in both of these situations.  How Razor Enables Implicit Code Nuggets Razor does not define its own language.  Instead, the code you write within Razor code nuggets is standard C# or VB.  This allows you to re-use your existing language skills, and avoid having to learn a customized language grammar. The Razor parser has smarts built into it so that whenever possible you do not need to explicitly mark the end of C#/VB code nuggets you write.  This makes coding more fluid and productive, and enables a nice, clean, concise template syntax.  Below are a few scenarios that Razor supports where you can avoid having to explicitly mark the beginning/end of a code nugget, and instead have Razor implicitly identify the code nugget scope for you: Property Access Razor allows you to output a variable value, or a sub-property on a variable that is referenced via “dot” notation: You can also use “dot” notation to access sub-properties multiple levels deep: Array/Collection Indexing: Razor allows you to index into collections or arrays: Calling Methods: Razor also allows you to invoke methods: Notice how for all of the scenarios above how we did not have to explicitly end the code nugget.  Razor was able to implicitly identify the end of the code block for us. Razor’s Parsing Algorithm for Code Nuggets The below algorithm captures the core parsing logic we use to support “@” expressions within Razor, and to enable the implicit code nugget scenarios above: Parse an identifier - As soon as we see a character that isn't valid in a C# or VB identifier, we stop and move to step 2 Check for brackets - If we see "(" or "[", go to step 2.1., otherwise, go to step 3  Parse until the matching ")" or "]" (we track nested "()" and "[]" pairs and ignore "()[]" we see in strings or comments) Go back to step 2 Check for a "." - If we see one, go to step 3.1, otherwise, DO NOT ACCEPT THE "." as code, and go to step 4 If the character AFTER the "." is a valid identifier, accept the "." and go back to step 1, otherwise, go to step 4 Done! Differentiating between code and content Step 3.1 is a particularly interesting part of the above algorithm, and enables Razor to differentiate between scenarios where an identifier is being used as part of the code statement, and when it should instead be treated as static content: Notice how in the snippet above we have ? and ! characters at the end of our code nuggets.  These are both legal C# identifiers – but Razor is able to implicitly identify that they should be treated as static string content as opposed to being part of the code expression because there is whitespace after them.  This is pretty cool and saves us keystrokes. Explicit Code Nuggets in Razor Razor is smart enough to implicitly identify a lot of code nugget scenarios.  But there are still times when you want/need to be more explicit in how you scope the code nugget expression.  The @(expression) syntax allows you to do this: You can write any C#/VB code statement you want within the @() syntax.  Razor will treat the wrapping () characters as the explicit scope of the code nugget statement.  Below are a few scenarios where we could use the explicit code nugget feature: Perform Arithmetic Calculation/Modification: You can perform arithmetic calculations within an explicit code nugget: Appending Text to a Code Expression Result: You can use the explicit expression syntax to append static text at the end of a code nugget without having to worry about it being incorrectly parsed as code: Above we have embedded a code nugget within an <img> element’s src attribute.  It allows us to link to images with URLs like “/Images/Beverages.jpg”.  Without the explicit parenthesis, Razor would have looked for a “.jpg” property on the CategoryName (and raised an error).  By being explicit we can clearly denote where the code ends and the text begins. Using Generics and Lambdas Explicit expressions also allow us to use generic types and generic methods within code expressions – and enable us to avoid the <> characters in generics from being ambiguous with tag elements. One More Thing….Intellisense within Attributes We have used code nuggets within HTML attributes in several of the examples above.  One nice feature supported by the Razor code editor within Visual Studio is the ability to still get VB/C# intellisense when doing this. Below is an example of C# code intellisense when using an implicit code nugget within an <a> href=”” attribute: Below is an example of C# code intellisense when using an explicit code nugget embedded in the middle of a <img> src=”” attribute: Notice how we are getting full code intellisense for both scenarios – despite the fact that the code expression is embedded within an HTML attribute (something the existing .aspx code editor doesn’t support).  This makes writing code even easier, and ensures that you can take advantage of intellisense everywhere. Summary Razor enables a clean and concise templating syntax that enables a very fluid coding workflow.  Razor’s ability to implicitly scope code nuggets reduces the amount of typing you need to perform, and leaves you with really clean code. When necessary, you can also explicitly scope code expressions using a @(expression) syntax to provide greater clarity around your intent, as well as to disambiguate code statements from static markup. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • WebSocket and Java EE 7 - Getting Ready for JSR 356 (TOTD #181)

    - by arungupta
    WebSocket is developed as part of HTML 5 specification and provides a bi-directional, full-duplex communication channel over a single TCP socket. It provides dramatic improvement over the traditional approaches of Polling, Long-Polling, and Streaming for two-way communication. There is no latency from establishing new TCP connections for each HTTP message. There is a WebSocket API and the WebSocket Protocol. The Protocol defines "handshake" and "framing". The handshake defines how a normal HTTP connection can be upgraded to a WebSocket connection. The framing defines wire format of the message. The design philosophy is to keep the framing minimum to avoid the overhead. Both text and binary data can be sent using the API. WebSocket may look like a competing technology to Server-Sent Events (SSE), but they are not. Here are the key differences: WebSocket can send and receive data from a client. A typical example of WebSocket is a two-player game or a chat application. Server-Sent Events can only push data data to the client. A typical example of SSE is stock ticker or news feed. With SSE, XMLHttpRequest can be used to send data to the server. For server-only updates, WebSockets has an extra overhead and programming can be unecessarily complex. SSE provides a simple and easy-to-use model that is much better suited. SSEs are sent over traditional HTTP and so no modification is required on the server-side. WebSocket require servers that understand the protocol. SSE have several features that are missing from WebSocket such as automatic reconnection, event IDs, and the ability to send arbitrary events. The client automatically tries to reconnect if the connection is closed. The default wait before trying to reconnect is 3 seconds and can be configured by including "retry: XXXX\n" header where XXXX is the milliseconds to wait before trying to reconnect. Event stream can include a unique event identifier. This allows the server to determine which events need to be fired to each client in case the connection is dropped in between. The data can span multiple lines and can be of any text format as long as EventSource message handler can process it. WebSockets provide true real-time updates, SSE can be configured to provide close to real-time by setting appropriate timeouts. OK, so all excited about WebSocket ? Want to convert your POJOs into WebSockets endpoint ? websocket-sdk and GlassFish 4.0 is here to help! The complete source code shown in this project can be downloaded here. On the server-side, the WebSocket SDK converts a POJO into a WebSocket endpoint using simple annotations. Here is how a WebSocket endpoint will look like: @WebSocket(path="/echo")public class EchoBean { @WebSocketMessage public String echo(String message) { return message + " (from your server)"; }} In this code "@WebSocket" is a class-level annotation that declares a POJO to accept WebSocket messages. The path at which the messages are accepted is specified in this annotation. "@WebSocketMessage" indicates the Java method that is invoked when the endpoint receives a message. This method implementation echoes the received message concatenated with an additional string. The client-side HTML page looks like <div style="text-align: center;"> <form action=""> <input onclick="send_echo()" value="Press me" type="button"> <input id="textID" name="message" value="Hello WebSocket!" type="text"><br> </form></div><div id="output"></div> WebSocket allows a full-duplex communication. So the client, a browser in this case, can send a message to a server, a WebSocket endpoint in this case. And the server can send a message to the client at the same time. This is unlike HTTP which follows a "request" followed by a "response". In this code, the "send_echo" method in the JavaScript is invoked on the button click. There is also a <div> placeholder to display the response from the WebSocket endpoint. The JavaScript looks like: <script language="javascript" type="text/javascript"> var wsUri = "ws://localhost:8080/websockets/echo"; var websocket = new WebSocket(wsUri); websocket.onopen = function(evt) { onOpen(evt) }; websocket.onmessage = function(evt) { onMessage(evt) }; websocket.onerror = function(evt) { onError(evt) }; function init() { output = document.getElementById("output"); } function send_echo() { websocket.send(textID.value); writeToScreen("SENT: " + textID.value); } function onOpen(evt) { writeToScreen("CONNECTED"); } function onMessage(evt) { writeToScreen("RECEIVED: " + evt.data); } function onError(evt) { writeToScreen('<span style="color: red;">ERROR:</span> ' + evt.data); } function writeToScreen(message) { var pre = document.createElement("p"); pre.style.wordWrap = "break-word"; pre.innerHTML = message; output.appendChild(pre); } window.addEventListener("load", init, false);</script> In this code The URI to connect to on the server side is of the format ws://<HOST>:<PORT>/websockets/<PATH> "ws" is a new URI scheme introduced by the WebSocket protocol. <PATH> is the path on the endpoint where the WebSocket messages are accepted. In our case, it is ws://localhost:8080/websockets/echo WEBSOCKET_SDK-1 will ensure that context root is included in the URI as well. WebSocket is created as a global object so that the connection is created only once. This object establishes a connection with the given host, port and the path at which the endpoint is listening. The WebSocket API defines several callbacks that can be registered on specific events. The "onopen", "onmessage", and "onerror" callbacks are registered in this case. The callbacks print a message on the browser indicating which one is called and additionally also prints the data sent/received. On the button click, the WebSocket object is used to transmit text data to the endpoint. Binary data can be sent as one blob or using buffering. The HTTP request headers sent for the WebSocket call are: GET ws://localhost:8080/websockets/echo HTTP/1.1Origin: http://localhost:8080Connection: UpgradeSec-WebSocket-Extensions: x-webkit-deflate-frameHost: localhost:8080Sec-WebSocket-Key: mDbnYkAUi0b5Rnal9/cMvQ==Upgrade: websocketSec-WebSocket-Version: 13 And the response headers received are Connection:UpgradeSec-WebSocket-Accept:q4nmgFl/lEtU2ocyKZ64dtQvx10=Upgrade:websocket(Challenge Response):00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00 The headers are shown in Chrome as shown below: The complete source code shown in this project can be downloaded here. The builds from websocket-sdk are integrated in GlassFish 4.0 builds. Would you like to live on the bleeding edge ? Then follow the instructions below to check out the workspace and install the latest SDK: Check out the source code svn checkout https://svn.java.net/svn/websocket-sdk~source-code-repository Build and install the trunk in your local repository as: mvn install Copy "./bundles/websocket-osgi/target/websocket-osgi-0.3-SNAPSHOT.jar" to "glassfish3/glassfish/modules/websocket-osgi.jar" in your GlassFish 4 latest promoted build. Notice, you need to overwrite the JAR file. Anybody interested in building a cool application using WebSocket and get it running on GlassFish ? :-) This work will also feed into JSR 356 - Java API for WebSocket. On a lighter side, there seems to be less agreement on the name. Here are some of the options that are prevalent: WebSocket (W3C API, the URL is www.w3.org/TR/websockets though) Web Socket (HTML5 Demos - html5demos.com/web-socket) Websocket (Jenkins Plugin - wiki.jenkins-ci.org/display/JENKINS/Websocket%2BPlugin) WebSockets (Used by Mozilla - developer.mozilla.org/en/WebSockets, but use WebSocket as well) Web sockets (HTML5 Working Group - www.whatwg.org/specs/web-apps/current-work/multipage/network.html) Web Sockets (Chrome Blog - blog.chromium.org/2009/12/web-sockets-now-available-in-google.html) I prefer "WebSocket" as that seems to be most common usage and used by the W3C API as well. What do you use ?

    Read the article

  • Using SQL Source Control with Fortress or Vault &ndash; Part 2

    - by AjarnMark
    In Part 1, I started talking about using Red-Gate’s newest version of SQL Source Control and how I really like it as a viable method to source control your database development.  It looks like this is going to turn into a little series where I will explain how we have done things in the past, and how life is different with SQL Source Control.  I will also explain some of my philosophy and methodology around deployment with these tools.  But for now, let’s talk about some of the good and the bad of the tool itself. More Kudos and Features I mentioned previously how impressed I was with the responsiveness of Red-Gate’s team.  I have been having an ongoing email conversation with Gyorgy Pocsi, and as I have run into problems or requested things behave a little differently, it has not been more than a day or two before a new Build is ready for me to download and test.  Quite impressive! I’m sure much of the requests I put in were already in the plans, so I can’t really take credit for them, but throughout this conversation, Red-Gate has implemented several features that were not in the first Early Access version.  Those include: Honoring the Fortress configuration option to require Work Item (Bug) IDs on check-ins. Adding the check-in comment text as a comment to the Work Item. Adding the list of checked-in files, along with the Fortress links for automatic History and DIFF view Updating the status of a Work Item on check-in (e.g. setting the item to Complete or, in our case “Dev-Complete”) Support for the Fortress 2.0 API, and not just the Vault Pro 5.1 API.  (See later notes regarding support for Fortress 2.0). These were all features that I felt we really needed to have in-place before I could honestly consider converting my team to using SQL Source Control on a regular basis.  Now that I have those, my only excuse is not wanting to switch boats on the team mid-stream.  So when we wrap up our current release in a few weeks, we will make the jump.  In the meantime, I will continue to bang on it to make sure it is stable.  It passed one test for stability when I did a test load of one of our larger database schemas into Fortress with SQL Source Control.  That database has about 150 tables, 200 User-Defined Functions and nearly 900 Stored Procedures.  The initial load to source control went smoothly and took just a brief amount of time. Warnings Remember that this IS still in pre-release stage and while I have not had any problems after that first hiccup I wrote about last time, you still need to treat it with a healthy respect.  As I understand it, the RTM is targeted for February.  There are a couple more features that I hope make it into the final release version, but if not, they’ll probably be coming soon thereafter.  Those are: A Browse feature to let me lookup the Work Item ID instead of having to remember it or look back in my Item details.  This is just a matter of convenience. I normally have my Work Item list open anyway, so I can easily look it up, but hey, why not make it even easier. A multi-line comment area.  The current space for writing check-in comments is a single-line text box.  I would like to have a multi-line space as I sometimes write lengthy commentary.  But I recognize that it is a struggle to get most developers to put in more than the word “fixed” as their comment, so this meets the need of the majority as-is, and it’s not a show-stopper for us. Merge.  SQL Source Control currently does not have a Merge feature.  If two or more people make changes to the same database object, you will get a warning of the conflict and have to choose which one wins (and then manually edit to include the others’ changes).  I think it unlikely you will run into actual conflicts in Stored Procedures and Functions, but you might with Views or Tables.  This will be nice to have, but I’m not losing any sleep over it.  And I have multiple tools at my disposal to do merges manually, so really not a show-stopper for us. Automation has its limits.  As cool as this automation is, it has its limits and there are some changes that you will be better off scripting yourself.  For example, if you are refactoring table definitions, and want to change a column name, you can write that as a quick sp_rename command and preserve the data within that column.  But because this tool is looking just at a before and after picture, it cannot tell that you just renamed a column.  To the tool, it looks like you dropped one column and added another.  This is not a knock against Red-Gate.  All automated scripting tools have this issue, unless the are actively monitoring your every step to know exactly what you are doing.  This means that when you go to Deploy your changes, SQL Compare will script the change as a column drop and add, or will attempt to rebuild the entire table.  Unfortunately, neither of these approaches will preserve the existing data in that column the way an sp_rename will, and so you are better off scripting that change yourself.  Thankfully, SQL Compare will produce warnings about the potential loss of data before it does the actual synchronization and give you a chance to intercept the script and do it yourself. Also, please note that the current official word is that SQL Source Control supports Vault Professional 5.1 and later.  Vault Professional is the new name for what was previously known as Fortress.  (You can read about the name change on SourceGear’s site.)  The last version of Fortress was 2.x, and the API for Fortress 2.x is different from the API for Vault Pro.  At my company, we are currently running Fortress 2.0, with plans to upgrade to Vault Pro early next year.  Gyorgy was able to come up with a work-around for me to be able to use SQL Source Control with Fortress 2.0, even though it is not officially supported.  If you are using Fortress 2.0 and want to use SQL Source Control, be aware that this is not officially supported, but it is working for us, and you can probably get the work-around instructions from Red-Gate if you’re really, really nice to them. Upcoming Topics Some of the other topics I will likely cover in this series over the next few weeks are: How we used to do source control back in the old days (a few weeks ago) before SQL Source Control was available to Vault users What happens when you restore a database that is linked to source control Handling multiple development branches of source code Concurrent Development practices and handling Conflicts Deployment Tips and Best Practices A recap after using the tool for a while

    Read the article

  • How-to tell the ViewCriteria a user chose in an af:query component

    - by frank.nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The af:query component defines a search form for application users to enter search conditions for a selected View Criteria. A View Criteria is a named where clauses that you can create declaratively on the ADF Business Component View Object. A default View Criteria that allows users to search in all attributes exists by default and exposed in the Data Controls panel. To create an ADF Faces search form, expand the View Object node that contains the View Criteria definition in the Data Controls panel. Drag the View Criteria that should be displayed as the default criteria onto the page and choose Query in the opened context menu. One of the options within the Query option is to create an ADF Query Panel with Table, which displays the result set in a table view, which can have additional column filters defined. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} To intercept the user query for modification, or just to know about the selected View Criteria, you override the QueryListener property on the af:query component of the af:table component. Overriding the QueryListener on the table makes sense if the table allows users to further filter the result set using column filters.To override the default QueryListener, copy the existing string referencing the binding layer to the clipboard and then select Edit from the field context menu (press the arrow icon to open it) to selecte or create a new managed bean and method to handle the query event.  The code below is from a managed bean with custom query listener handlers defined for the af:query component and the af:table component. The default listener entry copied to the clipboard was "#{bindings.ImplicitViewCriteriaQuery.processQuery}"  public void onQueryList(QueryEvent queryEvent) {   // The generated QueryListener replaced by this method   //#{bindings.ImplicitViewCriteriaQuery.processQuery}        QueryDescriptor qdes = queryEvent.getDescriptor();          //print or log selected View Criteria   System.out.println("NAME "+qdes.getName());           //call default Query Event        invokeQueryEventMethodExpression("      #{bindings.ImplicitViewCriteriaQuery.processQuery}",queryEvent);  } public void onQueryTable(QueryEvent queryEvent) {   // The generated QueryListener replaced by this method   //#{bindings.ImplicitViewCriteriaQuery.processQuery}   QueryDescriptor qdes = queryEvent.getDescriptor();   //print or log selected View Criteria   System.out.println("NAME "+qdes.getName());                   invokeQueryEventMethodExpression(     "#{bindings.ImplicitViewCriteriaQuery.processQuery}",queryEvent); } private void invokeQueryEventMethodExpression(                        String expression, QueryEvent queryEvent){   FacesContext fctx = FacesContext.getCurrentInstance();   ELContext elctx = fctx.getELContext();   ExpressionFactory efactory   fctx.getApplication().getExpressionFactory();     MethodExpression me =     efactory.createMethodExpression(elctx,expression,                                     Object.class,                                     new Class[]{QueryEvent.class});     me.invoke(elctx, new Object[]{queryEvent}); } Of course, this code also can be used as a starting point for other query manipulations and also works with saved custom criterias. To read more about the af:query component, see: http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_query.html

    Read the article

  • New OFM versions released SOA Suite 11.1.1.4 &amp; BPM 11.1.1.4 &amp; JDeveloper 11.1.1.4 WebLogic on JRockit 10.3.4 feedback from the community

    - by Jürgen Kress
    Oracle SOA Suite 11g Installations This is the latest release of the Oracle SOA Suite 11g. Please see the Documentation tab for Release Notes, Installation Guides and other release specific information. Please also see the List of New Features and Samples provided for this release. Release 11gR1 (11.1.1.4.0) Microsoft Windows (32-bit JVM) Linux (32-bit JVM) Generic Oracle JDeveloper 11g Rel 1 (11.1.1.x) (JDeveloper + ADF) Integrated development environment certified on Windows, Linux, and Macintosh. License is free (read the Pricing FAQ). Studio Edition for Windows (1.2 GB) | Studio Edition for Linux (1.3 GB) | See All See Additional Development Tools Oracle WebLogic Server 11g Rel 1 (10.3.4) Installers The WebLogic Server installers include Oracle Coherence and Oracle Enterprise Pack for Eclipse and supports development with other Fusion Middleware products . The zip includes WebLogic Server only and is intended for WebLogic Server development only. Linux x86 (1.1 GB) | Windows x86 (1 GB) Zip for Windows x86, Linux x86, Mac OS X (316 MB) | See All Oracle WebLogic Server 11gR1 (10.3.4) on JRockit Virtual Edition Download For additional downloads please visit the Oracle Fusion Middleware Products Update Center Share your feedback with the @soacommunity on twitter SOASimone Simone Geib SOA Suite 11gR1 (11.1.1.4.0) has just been released: http://www.oracle.com/technetwork/middleware/soasuite/downloads/index.html gschmutz gschmutz My new blog post: WebLogic Server, JDev, SOA, BPM, OSB and CEP 11.1.1.4 (PS3) available! - http://tinyurl.com/4negnpn simon_haslam Simon Haslam I'm very pleased to see WLS 10.3.4 for JRockit VE launched at the same time as the rest of PS3 http://j.mp/gl1nQm (32bit anyway) lucasjellema Lucas Jellema See http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/156082.xml for PS3 extension downloads BPM, SOA Editor, WebCenter demed demed List of new features in @OracleSOA 11gR1 PS3: http://bit.ly/fVRwsP is not extremely long but huge release by # of bugs fixed. Go! biemond Edwin Biemond WebLogic 10.3.4 new features http://bit.ly/f7L1Eu Exalogic Elastic Cloud , JPA2 , Maven plugin, OWSM policies on WebLogic SCA applications JDeveloper JDeveloper & ADF JDeveloper and Oracle ADF 11g Release 1 Patch Set 3 (11.1.1.4.0): New Features and Bug Fixes http://bit.ly/feghnY simon_haslam Simon Haslam WebLogic Server 10.3.4 (i.e. 11gR1 PS3) available now too http://bit.ly/eeysZ2 JDeveloper JDeveloper & ADF Share your impressions on the new JDeveloper 11g Patchset 3 release that came out today! Download it here: http://bit.ly/dogRN8 VikasAatOracle Vikas Anand SOA Suite 11gR1PS3 is Hotpluggable ...see list of features that @Demed posted..#soa #soacommunity   New versions of Oracle Fusion Middleware 11g R1 (11.1.1.4.x)  include: Oracle WebLogic Server 11g R1 (10.3.4) Oracle SOA Suite 11g R1 (11.1.1.4.0) Oracle Business Process Management 11g R1 (11.1.1.4.0) Oracle Complex Event Processing 11g R1 (11.1.1.4.0) Oracle Application Integration Architecture Foundation Pack 11g R1 (11.1.1.4.0) Oracle Service Bus 11g R1 (11.1.1.4.0) Oracle Enterprise Repository 11g R1 (11.1.1.4.0) Oracle Identity Management 11g R1 (11.1.1.4.0) Oracle Enterprise Content Management 11g R1 (11.1.1.4.0) Oracle WebCenter 11g R1 (11.1.1.4.0) - coming soon Oracle Forms, Reports, Portal & Discoverer 11g R1 (11.1.1.4.0) Oracle Repository Creation Utility 11g R1 (11.1.1.4.0) Oracle JDeveloper & Application Development Runtime 11g R1 (11.1.1.4.0) Resources Download  (OTN) Certification Documentation   New Features in Oracle SOA Suite 11g Release 1 (11.1.1.4.0) Updated: January, 2011 Go to Oracle SOA Suite 11g Doc Introduction Oracle SOA Suite 11gR1 (11.1.1.4.0) includes both bug fixes as well as new features listed below - click on the title of each feature for more details. Downloads, documentation links and more information on the Oracle SOA Suite available on the SOA Suite OTN page and as always, we welcome your feedback on the SOA OTN forum. New in Oracle SOA Suite in this release BPEL Component BPEL 2.0 support in JDeveloper The BPEL editor in JDeveloper now generates BPEL 2.0 code and introduces several new activities. Augmented XML variables auto-initialization capabilities The XML variable auto-initialization capabilities have been enhanced to support two need additional use cases: to initialize the to-spec node if it doesn't exist during the rule and to initialize array elements. New Assign Activity dialog The new Assign Activity supports the same drag & drop paradigm used for the XSLT mapper, greatly streamlining the task of assigning multiple variables. Mediator Component Time window parameter for the resequencer This new parameter lets users initiate a best-effort resequencing based on a time window rather than a number of messages. Support for attachments in the Mediator assign dialog The Mediator assign dialog now supports attachment, enabling usage of the Mediator to transmit attachments even if source and target schemas are different. Adapters & Bindings ChunkSize property added to the File Adapter header properties The ChunkSize property of the File Adapter is now available as a header property, allowing in-process modification of the value for this property. Improved support for distributed WLS JMS topics though automatic rebalancing of listeners The JMS Adapter has been enhanced to subscribe to administrative events from WLS JMS. Based on these events, it dynamically rebalances listeners when there are changes to the members of a local or remote WLS JMS distributed destination. JDeveloper configuration wizard for custom JCA adapters A new wizard is available in JDeveloper to configure custom-built adapters Administration & Enterprise Manager Enhanced purging capabilities to manage database growth Historical instance data can now be purged using three different strategies: batch script, scheduled batch script or data partitioning. Asynchronous bulk instance deletion in Enterprise Manager Bulk deletion of instances in Enterprise Manager now executes as an asynchronous operation in Enterprise Manager, returning control to the user as soon as the action has been submitted and acknowledged. B2B Ability to schedule partner downtime This feature allows trading partners to notify each other about planned downtime and to delay delivery of messages during that period. Message sequencing B2B now supports both inbound and outbound message sequencing. Simplified BAM integration with B2B B2B ships with various pre-configured artifacts to simplify monitoring in BAM. Instance Message Java API for B2B The new instance message Java API supports programmatic access to B2B instance message data. Oracle Service Bus (OSB) Certification of the File and FTP JCA Adapters The File and FTP JCA adapters are now certified for use with Oracle Service Bus (in addition to the native transports). Security enhancements Oracle Service Bus now supports SAML 2.0 as well as the OWSM authorization policies. Check the Oracle Service Bus 11.1.1.4 Release Notes for a complete list of new features. Installation, Hot-Pluggability & Certifications Ability to run Oracle SOA Suite on IBM WebSphere Application Server Oracle SOA Suite can now be deployed on IBM WebSphere Application Server Network Deployment (ND) 7.0.11 and IBM WebSphere Application Server 7.0.11. Single JVM developer installation template Oracle SOA Suite can now be targeted to the WebLogic admin server - there is no requirement to also have a managed server. This topology is intended to minimize the memory foorprint of development environments. This is in addition to the list of supported browsers, operating systems and databases already certified in prior releases. Complex Event Processing (CEP) IDE enhancements This release introduces several enhancements to the development IDE, such as adapter wizards and event-type repository. CQL enhancements CQL enhancements include JDBC data cartridges and parametrized queries. Tracing and injecting events in the Event Processing Network (EPN) In the development environment you can now trace and inject events. Check the Oracle CEP 11.1.1.4 Release Notes for a complete list of new features. SOA Suite page on OTN For more information on SOA Specialization and the SOA Partner Community please feel free to register at www.oracle.com/goto/emea/soa (OPN account required) Blog Twitter LinkedIn Mix Forum Wiki Website Technorati Tags: SOA Suite 11.1.1.4,JDeveloper 11.1.1.4,WebLogic 10.3.4,JRockit 10.3.4,SOA Community,Oracle,OPN,SOA,Simone Geib,Guido Schmutz,Edwin Biemond,Lucas Jellema,Simon Haslam,Demed,Vikas Anand,Jürgen Kress

    Read the article

  • General monitoring for SQL Server Analysis Services using Performance Monitor

    - by Testas
    A recent customer engagement required a setup of a monitoring solution for SSAS, due to the time restrictions placed upon this, native Windows Performance Monitor (Perfmon) and SQL Server Profiler Monitoring Tools was used as using a third party tool would have meant the customer providing an additional monitoring server that was not available.I wanted to outline the performance monitoring counters that was used to monitor the system on which SSAS was running. Due to the slow query performance that was occurring during certain scenarios, perfmon was used to establish if any pressure was being placed on the Disk, CPU or Memory subsystem when concurrent connections access the same query, and Profiler to pinpoint how the query was being managed within SSAS, profiler I will leave for another blogThis guide is not designed to provide a definitive list of what should be used when monitoring SSAS, different situations may require the addition or removal of counters as presented by the situation. However I hope that it serves as a good basis for starting your monitoring of SSAS. I would also like to acknowledge Chris Webb’s awesome chapters from “Expert Cube Development” that also helped shape my monitoring strategy:http://cwebbbi.spaces.live.com/blog/cns!7B84B0F2C239489A!6657.entrySimulating ConnectionsTo simulate the additional connections to the SSAS server whilst monitoring, I used ascmd to simulate multiple connections to the typical and worse performing queries that were identified by the customer. A similar sript can be downloaded from codeplex at http://www.codeplex.com/SQLSrvAnalysisSrvcs.     File name: ASCMD_StressTestingScripts.zip. Performance MonitorWithin performance monitor,  a counter log was created that contained the list of counters below. The important point to note when running the counter log is that the RUN AS property within the counter log properties should be changed to an account that has rights to the SSAS instance when monitoring MSAS counters. Failure to do so means that the counter log runs under the system account, no errors or warning are given while running the counter log, and it is not until you need to view the MSAS counters that they will not be displayed if run under the default account that has no right to SSAS. If your connection simulation takes hours, this could prove quite frustrating if not done beforehand JThe counters used……  Object Counter Instance Justification System Processor Queue legnth N/A Indicates how many threads are waiting for execution against the processor. If this counter is consistently higher than around 5 when processor utilization approaches 100%, then this is a good indication that there is more work (active threads) available (ready for execution) than the machine's processors are able to handle. System Context Switches/sec N/A Measures how frequently the processor has to switch from user- to kernel-mode to handle a request from a thread running in user mode. The heavier the workload running on your machine, the higher this counter will generally be, but over long term the value of this counter should remain fairly constant. If this counter suddenly starts increasing however, it may be an indicating of a malfunctioning device, especially if the Processor\Interrupts/sec\(_Total) counter on your machine shows a similar unexplained increase Process % Processor Time sqlservr Definately should be used if Processor\% Processor Time\(_Total) is maxing at 100% to assess the effect of the SQL Server process on the processor Process % Processor Time msmdsrv Definately should be used if Processor\% Processor Time\(_Total) is maxing at 100% to assess the effect of the SQL Server process on the processor Process Working Set sqlservr If the Memory\Available bytes counter is decreaing this counter can be run to indicate if the process is consuming larger and larger amounts of RAM. Process(instance)\Working Set measures the size of the working set for each process, which indicates the number of allocated pages the process can address without generating a page fault. Process Working Set msmdsrv If the Memory\Available bytes counter is decreaing this counter can be run to indicate if the process is consuming larger and larger amounts of RAM. Process(instance)\Working Set measures the size of the working set for each process, which indicates the number of allocated pages the process can address without generating a page fault. Processor % Processor Time _Total and individual cores measures the total utilization of your processor by all running processes. If multi-proc then be mindful only an average is provided Processor % Privileged Time _Total To see how the OS is handling basic IO requests. If kernel mode utilization is high, your machine is likely underpowered as it's too busy handling basic OS housekeeping functions to be able to effectively run other applications. Processor % User Time _Total To see how the applications is interacting from a processor perspective, a high percentage utilisation determine that the server is dealing with too many apps and may require increasing thje hardware or scaling out Processor Interrupts/sec _Total  The average rate, in incidents per second, at which the processor received and serviced hardware interrupts. Shoulr be consistant over time but a sudden unexplained increase could indicate a device malfunction which can be confirmed using the System\Context Switches/sec counter Memory Pages/sec N/A Indicates the rate at which pages are read from or written to disk to resolve hard page faults. This counter is a primary indicator of the kinds of faults that cause system-wide delays, this is the primary counter to watch for indication of possible insufficient RAM to meet your server's needs. A good idea here is to configure a perfmon alert that triggers when the number of pages per second exceeds 50 per paging disk on your system. May also want to see the configuration of the page file on the Server Memory Available Mbytes N/A is the amount of physical memory, in bytes, available to processes running on the computer. if this counter is greater than 10% of the actual RAM in your machine then you probably have more than enough RAM. monitor it regularly to see if any downward trend develops, and set an alert to trigger if it drops below 2% of the installed RAM. Physical Disk Disk Transfers/sec for each physical disk If it goes above 10 disk I/Os per second then you've got poor response time for your disk. Physical Disk Idle Time _total If Disk Transfers/sec is above  25 disk I/Os per second use this counter. which measures the percent time that your hard disk is idle during the measurement interval, and if you see this counter fall below 20% then you've likely got read/write requests queuing up for your disk which is unable to service these requests in a timely fashion. Physical Disk Disk queue legnth For the OLAP and SQL physical disk A value that is consistently less than 2 means that the disk system is handling the IO requests against the physical disk Network Interface Bytes Total/sec For the NIC Should be monitored over a period of time to see if there is anb increase/decrease in network utilisation Network Interface Current Bandwidth For the NIC is an estimate of the current bandwidth of the network interface in bits per second (BPS). MSAS 2005: Memory Memory Limit High KB N/A Shows (as a percentage) the high memory limit configured for SSAS in C:\Program Files\Microsoft SQL Server\MSAS10.MSSQLSERVER\OLAP\Config\msmdsrv.ini MSAS 2005: Memory Memory Limit Low KB N/A Shows (as a percentage) the low memory limit configured for SSAS in C:\Program Files\Microsoft SQL Server\MSAS10.MSSQLSERVER\OLAP\Config\msmdsrv.ini MSAS 2005: Memory Memory Usage KB N/A Displays the memory usage of the server process. MSAS 2005: Memory File Store KB N/A Displays the amount of memory that is reserved for the Cache. Note if total memory limit in the msmdsrv.ini is set to 0, no memory is reserved for the cache MSAS 2005: Storage Engine Query Queries from Cache Direct / sec N/A Displays the rate of queries answered from the cache directly MSAS 2005: Storage Engine Query Queries from Cache Filtered / Sec N/A Displays the Rate of queries answered by filtering existing cache entry. MSAS 2005: Storage Engine Query Queries from File / Sec N/A Displays the Rate of queries answered from files. MSAS 2005: Storage Engine Query Average time /query N/A Displays the average time of a query MSAS 2005: Connection Current connections N/A Displays the number of connections against the SSAS instance MSAS 2005: Connection Requests / sec N/A Displays the rate of query requests per second MSAS 2005: Locks Current Lock Waits N/A Displays thhe number of connections waiting on a lock MSAS 2005: Threads Query Pool job queue Length N/A The number of queries in the job queue MSAS 2005:Proc Aggregations Temp file bytes written/sec N/A Shows the number of bytes of data processed in a temporary file MSAS 2005:Proc Aggregations Temp file rows written/sec N/A Shows the number of bytes of data processed in a temporary file 

    Read the article

  • SPARC T3-1 Record Results Running JD Edwards EnterpriseOne Day in the Life Benchmark with Added Batch Component

    - by Brian
    Using Oracle's SPARC T3-1 server for the application tier and Oracle's SPARC Enterprise M3000 server for the database tier, a world record result was produced running the Oracle's JD Edwards EnterpriseOne applications Day in the Life benchmark run concurrently with a batch workload. The SPARC T3-1 server based result has 25% better performance than the IBM Power 750 POWER7 server even though the IBM result did not include running a batch component. The SPARC T3-1 server based result has 25% better space/performance than the IBM Power 750 POWER7 server as measured by the online component. The SPARC T3-1 server based result is 5x faster than the x86-based IBM x3650 M2 server system when executing the online component of the JD Edwards EnterpriseOne 9.0.1 Day in the Life benchmark. The IBM result did not include a batch component. The SPARC T3-1 server based result has 2.5x better space/performance than the x86-based IBM x3650 M2 server as measured by the online component. The combination of SPARC T3-1 and SPARC Enterprise M3000 servers delivered a Day in the Life benchmark result of 5000 online users with 0.875 seconds of average transaction response time running concurrently with 19 Universal Batch Engine (UBE) processes at 10 UBEs/minute. The solution exercises various JD Edwards EnterpriseOne applications while running Oracle WebLogic Server 11g Release 1 and Oracle Web Tier Utilities 11g HTTP server in Oracle Solaris Containers, together with the Oracle Database 11g Release 2. The SPARC T3-1 server showed that it could handle the additional workload of batch processing while maintaining the same number of online users for the JD Edwards EnterpriseOne Day in the Life benchmark. This was accomplished with minimal loss in response time. JD Edwards EnterpriseOne 9.0.1 takes advantage of the large number of compute threads available in the SPARC T3-1 server at the application tier and achieves excellent response times. The SPARC T3-1 server consolidates the application/web tier of the JD Edwards EnterpriseOne 9.0.1 application using Oracle Solaris Containers. Containers provide flexibility, easier maintenance and better CPU utilization of the server leaving processing capacity for additional growth. A number of Oracle advanced technology and features were used to obtain this result: Oracle Solaris 10, Oracle Solaris Containers, Oracle Java Hotspot Server VM, Oracle WebLogic Server 11g Release 1, Oracle Web Tier Utilities 11g, Oracle Database 11g Release 2, the SPARC T3 and SPARC64 VII+ based servers. This is the first published result running both online and batch workload concurrently on the JD Enterprise Application server. No published results are available from IBM running the online component together with a batch workload. The 9.0.1 version of the benchmark saw some minor performance improvements relative to 9.0. When comparing between 9.0.1 and 9.0 results, the reader should take this into account when the difference between results is small. Performance Landscape JD Edwards EnterpriseOne Day in the Life Benchmark Online with Batch Workload This is the first publication on the Day in the Life benchmark run concurrently with batch jobs. The batch workload was provided by Oracle's Universal Batch Engine. System RackUnits Online Users Resp Time (sec) BatchConcur(# of UBEs) BatchRate(UBEs/m) Version SPARC T3-1, 1xSPARC T3 (1.65 GHz), Solaris 10 M3000, 1xSPARC64 VII+ (2.86 GHz), Solaris 10 4 5000 0.88 19 10 9.0.1 Resp Time (sec) — Response time of online jobs reported in seconds Batch Concur (# of UBEs) — Batch concurrency presented in the number of UBEs Batch Rate (UBEs/m) — Batch transaction rate in UBEs/minute. JD Edwards EnterpriseOne Day in the Life Benchmark Online Workload Only These results are for the Day in the Life benchmark. They are run without any batch workload. System RackUnits Online Users ResponseTime (sec) Version SPARC T3-1, 1xSPARC T3 (1.65 GHz), Solaris 10 M3000, 1xSPARC64 VII (2.75 GHz), Solaris 10 4 5000 0.52 9.0.1 IBM Power 750, 1xPOWER7 (3.55 GHz), IBM i7.1 4 4000 0.61 9.0 IBM x3650M2, 2xIntel X5570 (2.93 GHz), OVM 2 1000 0.29 9.0 IBM result from http://www-03.ibm.com/systems/i/advantages/oracle/, IBM used WebSphere Configuration Summary Hardware Configuration: 1 x SPARC T3-1 server 1 x 1.65 GHz SPARC T3 128 GB memory 16 x 300 GB 10000 RPM SAS 1 x Sun Flash Accelerator F20 PCIe Card, 92 GB 1 x 10 GbE NIC 1 x SPARC Enterprise M3000 server 1 x 2.86 SPARC64 VII+ 64 GB memory 1 x 10 GbE NIC 2 x StorageTek 2540 + 2501 Software Configuration: JD Edwards EnterpriseOne 9.0.1 with Tools 8.98.3.3 Oracle Database 11g Release 2 Oracle 11g WebLogic server 11g Release 1 version 10.3.2 Oracle Web Tier Utilities 11g Oracle Solaris 10 9/10 Mercury LoadRunner 9.10 with Oracle Day in the Life kit for JD Edwards EnterpriseOne 9.0.1 Oracle’s Universal Batch Engine - Short UBEs and Long UBEs Benchmark Description JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations. Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and other manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company. The workload consists of online transactions and the UBE workload of 15 short and 4 long UBEs. LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time. The UBE processes workload runs from the JD Enterprise Application server. Oracle's UBE processes come as three flavors: Short UBEs < 1 minute engage in Business Report and Summary Analysis, Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address, Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs. The UBE workload generates large numbers of PDF files reports and log files. The UBE Queues are categorized as the QBATCHD, a single threaded queue for large UBEs, and the QPROCESS queue for short UBEs run concurrently. One of the Oracle Solaris Containers ran 4 Long UBEs, while another Container ran 15 short UBEs concurrently. The mixed size UBEs ran concurrently from the SPARC T3-1 server with the 5000 online users driven by the LoadRunner. Oracle’s UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute. Key Points and Best Practices Two JD Edwards EnterpriseOne Application Servers and two Oracle Fusion Middleware WebLogic Servers 11g R1 coupled with two Oracle Fusion Middleware 11g Web Tier HTTP Server instances on the SPARC T3-1 server were hosted in four separate Oracle Solaris Containers to demonstrate consolidation of multiple application and web servers. See Also SPARC T3-1 oracle.com SPARC Enterprise M3000 oracle.com Oracle Solaris oracle.com JD Edwards EnterpriseOne oracle.com Oracle Database 11g Release 2 Enterprise Edition oracle.com Disclosure Statement Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 6/27/2011.

    Read the article

  • Apache doesn't run multiple requests

    - by Reinderien
    I'm currently running this simple Python CGI script to test rudimentary IPC: #!/usr/bin/python -u import cgi, errno, fcntl, os, os.path, sys, time print("""Content-Type: text/html; charset=utf-8 <!doctype html> <html lang="en"> <head> <meta charset="utf-8" /> <title>IPC test</title> </head> <body> """) ftempname = '/tmp/ipc-messages' master = not os.path.exists(ftempname) if master: fmode = 'w' else: fmode = 'r' print('<p>Opening file</p>') sys.stdout.flush() ftemp = open(ftempname, fmode) print('<p>File opened</p>') if master: print('<p>Operating as master</p>') sys.stdout.flush() for i in range(10): print('<p>' + str(i) + '</p>') sys.stdout.flush() time.sleep(1) ftemp.close() os.remove(ftempname) else: print('<p>Operating as a slave</p>') ftemp.close() print(""" </body> </html>""") The 'server-push' portion works; that is, for the first request, I do see piecewise updates. However, while the first request is being serviced, subsequent requests are not started, only to be started after the first request has finished. Any ideas on why, and how to fix it? Edit: I see the same non-concurrent behaviour with vanilla PHP, running this: <!doctype html> <html lang="en"> <!-- $Id: $--> <head> <meta charset="utf-8" /> <title>IPC test</title> </head> <body> <p> <?php function echofl($str) { echo $str . "</b>\n"; ob_flush(); flush(); } define('tempfn', '/tmp/emailsync'); if (file_exists(tempfn)) $perms = 'r+'; else $perms = 'w'; assert($fsync = fopen(tempfn, $perms)); assert(chmod(tempfn, 0600)); if (!flock($fsync, LOCK_EX | LOCK_NB, $wouldblock)) { assert($wouldblock); $master = false; } else $master = true; if ($master) { echofl('Running as master.'); assert(fwrite($fsync, 'content') != false); assert(sleep(5) == 0); assert(flock($fsync, LOCK_UN)); } else { echofl('Running as slave.'); echofl(fgets($fsync)); } assert(fclose($fsync)); echofl('Done.'); ?> </p> </body> </html>

    Read the article

  • SQL SERVER – Faster SQL Server Databases and Applications – Power and Control with SafePeak Caching Options

    - by Pinal Dave
    Update: This blog post is written based on the SafePeak, which is available for free download. Today, I’d like to examine more closely one of my preferred technologies for accelerating SQL Server databases, SafePeak. Safepeak’s software provides a variety of advanced data caching options, techniques and tools to accelerate the performance and scalability of SQL Server databases and applications. I’d like to look more closely at some of these options, as some of these capabilities could help you address lagging database and performance on your systems. To better understand the available options, it is best to start by understanding the difference between the usual “Basic Caching” vs. SafePeak’s “Dynamic Caching”. Basic Caching Basic Caching (or the stale and static cache) is an ability to put the results from a query into cache for a certain period of time. It is based on TTL, or Time-to-live, and is designed to stay in cache no matter what happens to the data. For example, although the actual data can be modified due to DML commands (update/insert/delete), the cache will still hold the same obsolete query data. Meaning that with the Basic Caching is really static / stale cache.  As you can tell, this approach has its limitations. Dynamic Caching Dynamic Caching (or the non-stale cache) is an ability to put the results from a query into cache while maintaining the cache transaction awareness looking for possible data modifications. The modifications can come as a result of: DML commands (update/insert/delete), indirect modifications due to triggers on other tables, executions of stored procedures with internal DML commands complex cases of stored procedures with multiple levels of internal stored procedures logic. When data modification commands arrive, the caching system identifies the related cache items and evicts them from cache immediately. In the dynamic caching option the TTL setting still exists, although its importance is reduced, since the main factor for cache invalidation (or cache eviction) become the actual data updates commands. Now that we have a basic understanding of the differences between “basic” and “dynamic” caching, let’s dive in deeper. SafePeak: A comprehensive and versatile caching platform SafePeak comes with a wide range of caching options. Some of SafePeak’s caching options are automated, while others require manual configuration. Together they provide a complete solution for IT and Data managers to reach excellent performance acceleration and application scalability for  a wide range of business cases and applications. Automated caching of SQL Queries: Fully/semi-automated caching of all “read” SQL queries, containing any types of data, including Blobs, XMLs, Texts as well as all other standard data types. SafePeak automatically analyzes the incoming queries, categorizes them into SQL Patterns, identifying directly and indirectly accessed tables, views, functions and stored procedures; Automated caching of Stored Procedures: Fully or semi-automated caching of all read” stored procedures, including procedures with complex sub-procedure logic as well as procedures with complex dynamic SQL code. All procedures are analyzed in advance by SafePeak’s  Metadata-Learning process, their SQL schemas are parsed – resulting with a full understanding of the underlying code, objects dependencies (tables, views, functions, sub-procedures) enabling automated or semi-automated (manually review and activate by a mouse-click) cache activation, with full understanding of the transaction logic for cache real-time invalidation; Transaction aware cache: Automated cache awareness for SQL transactions (SQL and in-procs); Dynamic SQL Caching: Procedures with dynamic SQL are pre-parsed, enabling easy cache configuration, eliminating SQL Server load for parsing time and delivering high response time value even in most complicated use-cases; Fully Automated Caching: SQL Patterns (including SQL queries and stored procedures) that are categorized by SafePeak as “read and deterministic” are automatically activated for caching; Semi-Automated Caching: SQL Patterns categorized as “Read and Non deterministic” are patterns of SQL queries and stored procedures that contain reference to non-deterministic functions, like getdate(). Such SQL Patterns are reviewed by the SafePeak administrator and in usually most of them are activated manually for caching (point and click activation); Fully Dynamic Caching: Automated detection of all dependent tables in each SQL Pattern, with automated real-time eviction of the relevant cache items in the event of “write” commands (a DML or a stored procedure) to one of relevant tables. A default setting; Semi Dynamic Caching: A manual cache configuration option enabling reducing the sensitivity of specific SQL Patterns to “write” commands to certain tables/views. An optimization technique relevant for cases when the query data is either known to be static (like archive order details), or when the application sensitivity to fresh data is not critical and can be stale for short period of time (gaining better performance and reduced load); Scheduled Cache Eviction: A manual cache configuration option enabling scheduling SQL Pattern cache eviction based on certain time(s) during a day. A very useful optimization technique when (for example) certain SQL Patterns can be cached but are time sensitive. Example: “select customers that today is their birthday”, an SQL with getdate() function, which can and should be cached, but the data stays relevant only until 00:00 (midnight); Parsing Exceptions Management: Stored procedures that were not fully parsed by SafePeak (due to too complex dynamic SQL or unfamiliar syntax), are signed as “Dynamic Objects” with highest transaction safety settings (such as: Full global cache eviction, DDL Check = lock cache and check for schema changes, and more). The SafePeak solution points the user to the Dynamic Objects that are important for cache effectiveness, provides easy configuration interface, allowing you to improve cache hits and reduce cache global evictions. Usually this is the first configuration in a deployment; Overriding Settings of Stored Procedures: Override the settings of stored procedures (or other object types) for cache optimization. For example, in case a stored procedure SP1 has an “insert” into table T1, it will not be allowed to be cached. However, it is possible that T1 is just a “logging or instrumentation” table left by developers. By overriding the settings a user can allow caching of the problematic stored procedure; Advanced Cache Warm-Up: Creating an XML-based list of queries and stored procedure (with lists of parameters) for periodically automated pre-fetching and caching. An advanced tool allowing you to handle more rare but very performance sensitive queries pre-fetch them into cache allowing high performance for users’ data access; Configuration Driven by Deep SQL Analytics: All SQL queries are continuously logged and analyzed, providing users with deep SQL Analytics and Performance Monitoring. Reduce troubleshooting from days to minutes with database objects and SQL Patterns heat-map. The performance driven configuration helps you to focus on the most important settings that bring you the highest performance gains. Use of SafePeak SQL Analytics allows continuous performance monitoring and analysis, easy identification of bottlenecks of both real-time and historical data; Cloud Ready: Available for instant deployment on Amazon Web Services (AWS). As you can see, there are many options to configure SafePeak’s SQL Server database and application acceleration caching technology to best fit a lot of situations. If you’re not familiar with their technology, they offer free-trial software you can download that comes with a free “help session” to help get you started. You can access the free trial here. Also, SafePeak is available to use on Amazon Cloud. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Is the Cloud ready for an Enterprise Java web application? Seeking a JEE hosting advice.

    - by Jakub Holý
    Greetings to all the smart people around here! I'd like to ask whether it is feasible or a good idea at all to deploy a Java enterprise web application to a Cloud such as Amazon EC2. More exactly, I'm looking for infrastructure options for an application that shall handle few hundred users with long but neither CPU nor memory intensive sessions. I'm considering dedicated servers, virtual private servers (VPSs) and EC2. I've noticed that there is a project called JBoss Cloud so people are working on enabling such a deployment, on the other hand it doesn't seem to be mature yet and I'm not sure that the cloud is ready for this kind of applications, which differs from the typical cloud-based applications like Twitter. Would you recommend to deploy it to the cloud? What are the pros and cons? The application is a Java EE 5 web application whose main function is to enable users to compose their own customized Product by combining the available Parts. It uses stateless and stateful session beans and JPA for persistence of entities to a RDBMS and fetches information about Parts from the company's inventory system via a web service. Aside of external users it's used also by few internal ones, who are authenticated against the company's LDAP. The application should handle around 300-400 concurrent users building their product and should be reasonably scalable and available though these qualities are only of a medium importance at this stage. I've proposed an architecture consisting of a firewall (FW) and load balancer supporting sticky sessions and https (in the Cloud this would be replaced with EC2's Elastic Load Balancing service and FW on the app. servers, in a physical architecture the load-balancer would be a HW), then two physical clustered application servers combined with web servers (so that if one fails, a user doesn't loose his/her long built product) and finally a database server. The DB server would need a slave backup instance that can replace the master instance if it fails. This should provide reasonable availability and fault tolerance and provide good scalability as long as a single RDBMS can keep with the load, which should be OK for quite a while because most of the operations are done in the memory using a stateful bean and only occasionally stored or retrieved from the DB and the amount of data is low too. A problematic part could be the dependency on the remote inventory system webservice but with good caching of its outputs in the application it should be OK too. Unfortunately I've only vague idea of the system resources (memory size, number and speed of CPUs/cores) that such an "average Java EE application" for few hundred users needs. My rough and mostly unfounded estimate based on actual Amazon offerings is that 1.7GB and a single, 2-core "modern CPU" with speed around 2.5GHz (the High-CPU Medium Instance) should be sufficient for any of the two application servers (since we can handle higher load by provisioning more of them). Alternatively I would consider using the Large instance (64b, 7.5GB RAM, 2 cores at 1GHz) So my question is whether such a deployment to the cloud is technically and financially feasible or whether dedicated/VPS servers would be a better option and whether there are some real-world experiences with something similar. Thank you very much! /Jakub Holy PS: I've found the JBoss EAP in a Cloud Case Study that shows that it is possible to deploy a real-world Java EE application to the EC2 cloud but unfortunately there're no details regarding topology, instance types, or anything :-(

    Read the article

  • mod_mono 'Service Temporarily Unavailable' issue

    - by Charlie Somerville
    I've deployed an ASP.NET web application on a Linux (Debian) server running Apache 2.2 and mod_mono 1.9 It's working well, however Mono occasionally segfaults and uses the entire CPU which causes the website to stop working and display 'Service Temporarily Unavailable' Killing mono fixes it, but obviously this isn't a good solution. I tailed the system log after this happened and I saw the following error messages from the kernel: Apr 20 01:49:37 charliesomerville kernel: [1596436.204158] mono[17909]: segfault at b645f671 ip b645f671 sp b4ffb604 error 4<6>mono[19047]: segfault at b645f66e ip b645f66e sp b4bf7604 error 4<6>mono[18017]: segfault at b645f66e ip b645f66e sp b52fe604 error 4<6>mono[19668]: segfault at b645f5e6 ip b645f5e6 sp b48f4604 error 4<6>mono[22565]: segfault at b645f674 ip b645f674 sp b45f1604 error 4<6>mono[17700]: segfault at b645f661 ip b645f661 sp b51fd604 error 4<6>mono[19596]: segfault at b645f5e6 ip b645f5e6 sp b49f5604 error 4 Apr 20 01:49:37 charliesomerville kernel: [1596436.208172] mono[23219]: segfault at b645f66e ip b645f66e sp b44f0604 error 4 At the end of Apache's error.log are the following errors: [Tue Apr 20 03:10:23 2010] [error] (70014)End of file found: read_data failed [Tue Apr 20 03:10:23 2010] [error] Command stream corrupted, last command was 1 [Tue Apr 20 03:10:23 2010] [error] Command stream corrupted, last command was 1 [Tue Apr 20 03:10:23 2010] [error] Command stream corrupted, last command was 1 System.ArgumentNullException: null key Parameter name: key at System.Collections.Hashtable.get_Item (System.Object key) [0x00000] at System.Runtime.Serialization.SerializationCallbacks.GetSerializationCallbacks (System.Type t) [0x00000] at System.Runtime.Serialization.ObjectManager.RaiseOnDeserializingEvent (System.Object obj) [0x00000] at System.Runtime.Serialization.Formatters.Binary.ObjectReader.ReadObjectContent (System.IO.BinaryReader reader, System.Runtime.Serialization.Formatters.Binary.TypeMetadata metadata, Int64 objectId, System.Object& objectInstance, System.Runtime.Serialization.SerializationInfo& info) [0x00000] at System.Runtime.Serialization.Formatters.Binary.ObjectReader.ReadObjectInstance (System.IO.BinaryReader reader, Boolean isRuntimeObject, Boolean hasTypeInfo, System.Int64& objectId, System.Object& value, System.Runtime.Serialization.SerializationInfo& info) [0x00000] at System.Runtime.Serialization.Formatters.Binary.ObjectReader.ReadObject (BinaryElement element, System.IO.BinaryReader reader, System.Int64& objectId, System.Object& value, System.Runtime.Serialization.SerializationInfo& info) [0x00000] at System.Runtime.Serialization.Formatters.Binary.ObjectReader.ReadNextObject (System.IO.BinaryReader reader) [0x00000] at System.Runtime.Serialization.Formatters.Binary.ObjectReader.ReadObjectGraph (System.IO.BinaryReader reader, Boolean readHeaders, System.Object& result, System.Runtime.Remoting.Messaging.Header[]& headers) [0x00000] at System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.NoCheckDeserialize (System.IO.Stream serializationStream, System.Runtime.Remoting.Messaging.HeaderHandler handler) [0x00000] at System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.Deserialize (System.IO.Stream serializationStream) [0x00000] at System.Runtime.Remoting.Channels.CADSerializer.DeserializeObject (System.IO.MemoryStream mem) [0x00000] at System.Runtime.Remoting.RemotingServices.GetDomainProxy (System.AppDomain domain) [0x00000] at System.AppDomain.CreateDomain (System.String friendlyName, System.Security.Policy.Evidence securityInfo, System.AppDomainSetup info) [0x00000] at System.Web.Hosting.ApplicationHost.CreateApplicationHost (System.Type hostType, System.String virtualDir, System.String physicalDir) [0x00000] at Mono.WebServer.VPathToHost.CreateHost (Mono.WebServer.ApplicationServer server, Mono.WebServer.WebSource webSource) [0x00000] at Mono.WebServer.ApplicationServer.GetApplicationForPath (System.String vhost, Int32 port, System.String path, Boolean defaultToRoot) [0x00000] at (wrapper remoting-invoke-with-check) Mono.WebServer.ApplicationServer:GetApplicationForPath (string,int,string,bool) at Mono.WebServer.ModMonoWorker.GetOrCreateApplication (System.String vhost, Int32 port, System.String filepath, System.String virt) [0x00000] at Mono.WebServer.ModMonoWorker.InnerRun (System.Object state) [0x00000] at Mono.WebServer.ModMonoWorker.Run (System.Object state) [0x00000] [Tue Apr 20 03:10:26 2010] [error] (70014)End of file found: read_data failed [Tue Apr 20 03:10:26 2010] [error] Command stream corrupted, last command was -1 Along with the above errors, Apache's error.log is packed with hundreds (if not thousands) of the following error: Maximum number (20) of concurrent mod_mono requests to /tmp/mod_mono_dashboard_default_2.lock reached. Droping request. At the moment, I'm thinking there might be something wrong with configuration here (it's basically running on out-of-the-box config)

    Read the article

  • MySQL Cluster 7.3 Labs Release – Foreign Keys Are In!

    - by Mat Keep
    0 0 1 1097 6254 Homework 52 14 7337 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Summary (aka TL/DR): Support for Foreign Key constraints has been one of the most requested feature enhancements for MySQL Cluster. We are therefore extremely excited to announce that Foreign Keys are part of the first Labs Release of MySQL Cluster 7.3 – available for download, evaluation and feedback now! (Select the mysql-cluster-7.3-labs-June-2012 build) In this blog, I will attempt to discuss the design rationale, implementation, configuration and steps to get started in evaluating the first MySQL Cluster 7.3 Labs Release. Pace of Innovation It was only a couple of months ago that we announced the General Availability (GA) of MySQL Cluster 7.2, delivering 1 billion Queries per Minute, with 70x higher cross-shard JOIN performance, Memcached NoSQL key-value API and cross-data center replication.  This release has been a huge hit, with downloads and deployments quickly reaching record levels. The announcement of the first MySQL Cluster 7.3 Early Access lab release at today's MySQL Innovation Day event demonstrates the continued pace in Cluster development, and provides an opportunity for the community to evaluate and feedback on new features they want to see. What’s the Plan for MySQL Cluster 7.3? Well, Foreign Keys, as you may have gathered by now (!), and this is the focus of this first Labs Release. As with MySQL Cluster 7.2, we plan to publish a series of preview releases for 7.3 that will incrementally add new candidate features for a final GA release (subject to usual safe harbor statement below*), including: - New NoSQL APIs; - Features to automate the configuration and provisioning of multi-node clusters, on premise or in the cloud; - Performance and scalability enhancements; - Taking advantage of features in the latest MySQL 5.x Server GA. Design Rationale MySQL Cluster is designed as a “Not-Only-SQL” database. It combines attributes that enable users to blend the best of both relational and NoSQL technologies into solutions that deliver web scalability with 99.999% availability and real-time performance, including: Concurrent NoSQL and SQL access to the database; Auto-sharding with simple scale-out across commodity hardware; Multi-master replication with failover and recovery both within and across data centers; Shared-nothing architecture with no single point of failure; Online scaling and schema changes; ACID compliance and support for complex queries, across shards. Native support for Foreign Key constraints enables users to extend the benefits of MySQL Cluster into a broader range of use-cases, including: - Packaged applications in areas such as eCommerce and Web Content Management that prescribe databases with Foreign Key support. - In-house developments benefiting from Foreign Key constraints to simplify data models and eliminate the additional application logic needed to maintain data consistency and integrity between tables. Implementation The Foreign Key functionality is implemented directly within MySQL Cluster’s data nodes, allowing any client API accessing the cluster to benefit from them – whether using SQL or one of the NoSQL interfaces (Memcached, C++, Java, JPA or HTTP/REST.) The core referential actions defined in the SQL:2003 standard are implemented: CASCADE RESTRICT NO ACTION SET NULL In addition, the MySQL Cluster implementation supports the online adding and dropping of Foreign Keys, ensuring the Cluster continues to serve both read and write requests during the operation. An important difference to note with the Foreign Key implementation in InnoDB is that MySQL Cluster does not support the updating of Primary Keys from within the Data Nodes themselves - instead the UPDATE is emulated with a DELETE followed by an INSERT operation. Therefore an UPDATE operation will return an error if the parent reference is using a Primary Key, unless using CASCADE action, in which case the delete operation will result in the corresponding rows in the child table being deleted. The Engineering team plans to change this behavior in a subsequent preview release. Also note that when using InnoDB "NO ACTION" is identical to "RESTRICT". In the case of MySQL Cluster “NO ACTION” means “deferred check”, i.e. the constraint is checked before commit, allowing user-defined triggers to automatically make changes in order to satisfy the Foreign Key constraints. Configuration There is nothing special you have to do here – Foreign Key constraint checking is enabled by default. If you intend to migrate existing tables from another database or storage engine, for example from InnoDB, there are a couple of best practices to observe: 1. Analyze the structure of the Foreign Key graph and run the ALTER TABLE ENGINE=NDB in the correct sequence to ensure constraints are enforced 2. Alternatively drop the Foreign Key constraints prior to the import process and then recreate when complete. Getting Started Read this blog for a demonstration of using Foreign Keys with MySQL Cluster.  You can download MySQL Cluster 7.3 Labs Release with Foreign Keys today - (select the mysql-cluster-7.3-labs-June-2012 build) If you are new to MySQL Cluster, the Getting Started guide will walk you through installing an evaluation cluster on a singe host (these guides reflect MySQL Cluster 7.2, but apply equally well to 7.3) Post any questions to the MySQL Cluster forum where our Engineering team will attempt to assist you. Post any bugs you find to the MySQL bug tracking system (select MySQL Cluster from the Category drop-down menu) And if you have any feedback, please post them to the Comments section of this blog. Summary MySQL Cluster 7.2 is the GA, production-ready release of MySQL Cluster. This first Labs Release of MySQL Cluster 7.3 gives you the opportunity to preview and evaluate future developments in the MySQL Cluster database, and we are very excited to be able to share that with you. Let us know how you get along with MySQL Cluster 7.3, and other features that you want to see in future releases. * Safe Harbor Statement This information is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.

    Read the article

  • How you can extend Tasklists in Fusion Applications

    - by Elie Wazen
    In this post we describe the process of modifying and extending a Tasklist available in the Regional Area of a Fusion Applications UI Shell. This is particularly useful to Customers who would like to expose Setup Tasks (generally available in the Fusion Setup Manager application) in the various functional pillars workareas. Oracle Composer, the tool used to implement such extensions allows changes to be made at runtime. The example provided in this document is for an Oracle Fusion Financials page. Let us examine the case of a customer role who requires access to both, a workarea and its associated functional tasks, and to an FSM (setup) task.  Both of these tasks represent ADF Taskflows but each is accessible from a different page.  We will show how an FSM task is added to a Functional tasklist and made accessible to a user from within a single workarea, eliminating the need to navigate between the FSM application and the Functional workarea where transactions are conducted. In general, tasks in Fusion Applications are grouped in two ways: Setup tasks are grouped in tasklists available to implementers in the Functional Setup Manager (FSM). These Tasks are accessed by implementation users and in general do not represent daily operational tasks that fit into a functional business process and were consequently included in the FSM application. For these tasks, the primary organizing principle is precedence between tasks. If task "Manage Suppliers" has prerequisites, those tasks must precede it in a tasklist. Task Lists are organized to efficiently implement an offering. Tasks frequently performed as part of business process flows are made available as links in the tasklist of their corresponding menu workarea. The primary organizing principle in the menu and task pane entries is to group tasks that are generally accessed together. Customizing a tasklist thus becomes required for business scenarios where a task packaged under FSM as a setup task, is for a particular customer a regular maintenance task that is accessed for record updates or creation as part of normal operational activities and where the frequency of this access merits the inclusion of that task in the related operational tasklist A user with the role of maintaining Journals in General Ledger is also responsible for maintaining Chart of Accounts Mappings.  In the Fusion Financials Product Family, Manage Journals is a task available from within the Journals Menu whereas Chart of Accounts Mapping is available via FSM under the Define Chart of Accounts tasklist Figure 1. The Manage Chart of Accounts Mapping Task in FSM Figure 2. The Manage Journals Task in the Task Pane of the Journals Workarea Our goal is to simplify cross task navigation and allow the user to access both tasks from a single tasklist on a single page without having to navigate to FSM for the Mapping task and to the Journals workarea for the Manage task. To accomplish that, we use Oracle Composer to customize  the Journals tasklist by adding to it the Mapping task. Identify the Taskflow name and path of the FSM Task The first step in our process is to identify the underlying taskflow for the Manage Chart of Accounts Mappings task. We select to Setup and Maintenance from the Navigator to launch the FSM Application, and we query the task from Manage Tasklists and Tasks Figure 3. Task Details including Taskflow path The Manage Chart of Accounts Mapping Task Taskflow is: /WEB-INF/oracle/apps/financials/generalLedger/sharedSetup/coaMappings/ui/flow /CoaMappingsMainAreaFlow.xml#CoaMappingsMainAreaFlow We copy that value and use it later as a parameter to our new task in the customized Journals Tasklist. Customize the Journals Page A user with Administration privileges can start the run time customization directly from the Administration Menu of the Global Area.  This customization is done at the Site level and once implemented becomes available to all users with access to the Journals Workarea. Figure 4.  Customization Menu The Oracle Composer Window is displayed in the same browser and the Hierarchy of the page component is displayed and available for modification. Figure 5.  Oracle Composer In the composer Window select the PanelFormLayout node and click on the Edit Button.  Note that the selected component is simultaneously highlighted in the lower pane in the browser. In the Properties popup window, select the Tasks List and Task Properties Tab, where the user finds the hierarchy of the Tasklist and is able to Edit nodes or create new ones. src="https://blogs.oracle.com/FunctionalArchitecture/resource/TL5.jpg" Figure 6.  The Tasklist in edit mode Add a Child Task to the Tasklist In the Edit Window the user will now create a child node at the desired level in the hierarchy by selecting the immediate parent node and clicking on the insert node button.  This process requires four values to be set as described in Table 1 below. Parameter Value How to Determine the Value Focus View Id /JournalEntryPage This is the Focus View ID of the UI Shell where the Tasklist we want to customize is.  A simple way to determine this value is to copy it from any of the Standard tasks on the Tasklist Label COA Mapping This is the Display name of the Task as it will appear in the Tasklist Task Type dynamicMain If the value is dynamicMain, the page contains a new link in the Regional Area. When you click the link, a new tab with the loaded task opens Taskflowid /WEB-INF/oracle/apps/financials/generalLedger/sharedSetup/ coaMappings/ui/flow/ CoaMappingsMainAreaFlow.xml#CoaMappingsMainAreaFlow This is the Taskflow path we retrieved from the Task Definition in FSM earlier in the process Table 1.  Parameters and Values for the Task to be added to the customized Tasklist Figure 7.   The parameters window of the newly added Task   Access the FSM Task from the Journals Workarea Once the FSM task is added and its parameters defined, the user saves the record, closes the Composer making the new task immediately available to users with access to the Journals workarea (Refer to Figure 8 below). Figure 8.   The COA Mapping Task is now visible and can be invoked from the Journals Workarea   Additional Considerations If a Task Flow is part of a product that is deployed on the same app server as the Tasklist workarea then that task flow can be added to a customized tasklist in that workarea. Otherwise that task flow can be invoked from its parent product’s workarea tasklist by selecting that workarea from the Navigator menu. For Example The following Taskflows  belong respectively to the Subledger Accounting, and to the General Ledger Products.  /WEB-INF/oracle/apps/financials/subledgerAccounting/accountingMethodSetup/mappingSets/ui/flow/MappingSetFlow.xml#MappingSetFlow /WEB-INF/oracle/apps/financials/generalLedger/sharedSetup/coaMappings/ui/flow/CoaMappingsMainAreaFlow.xml#CoaMappingsMainAreaFlow Since both the Subledger Accounting and General Ledger products are part of the LedgerApp J2EE Applicaton and are both deployed on the General Ledger Cluster Server (Figure 8 below), the user can add both of the above taskflows to the  tasklist in the  /JournalEntryPage FocusVIewID Workarea. Note:  both FSM Taskflows and Functional Taskflows can be added to the Tasklists as described in this document Figure 8.   The Topology of the Fusion Financials Product Family. Note that SubLedger Accounting and General Ledger are both deployed on the Ledger App Conclusion In this document we have shown how an administrative user can edit the Tasklist in the Regional Area of a Fusion Apps page using Oracle Composer. This is useful for cases where tasks packaged in different workareas are frequently accessed by the same user. By making these tasks available from the same page, we minimize the number of steps in the navigation the user has to do to perform their transactions and queries in Fusion Apps.  The example explained above showed that tasks classified as Setup tasks, meaning made accessible to implementation users from the FSM module can be added to the workarea of their respective Fusion application. This eliminates the need to navigate to FSM to access tasks that are both setup and regular maintenance tasks. References Oracle Fusion Applications Extensibility Guide 11g Release 1 (11.1.1.5) Part Number E16691-02 (Section 3.2) Oracle Fusion Applications Developer's Guide 11g Release 1 (11.1.4) Part Number E15524-05

    Read the article

  • Does Test Driven Development (TDD) improve Quality and Correctness? (Part 1)

    - by David V. Corbin
    Since the dawn of the computer age, various methodologies have been introduced to improve quality and reduce cost. In this posting, I will by sharing my experiences with Test Driven Development; both its benefits and limitations. To start this topic, we need to agree on what TDD is. The first is to define each of the three words as used in this context. Test - An item or action which measures something in some quantifiable form. Driven - The primary motivation or focus of a series of activities (process) Development - All phases of a software project/product from concept through delivery. The above are very simple definitions that result in the following: "TDD is a process where the primary focus is on measuring and quantifying all aspects of the creation of a (software) product." There are many places where TDD is used outside of software development, even though it is not known by this name. Consider the (conventional) education process that most of us grew up on. The focus was to get the best grades as measured by different tests. Many of these tests measured rote memorization and not understanding of the subject matter. The result of this that many people graduated with high scores but without "quality and correctness" in their ability to utilize the subject matter (of course, the flip side is true where certain people DID understand the material but were not very good at taking this type of test). Returning to software development, let us look at some common scenarios. While these items are generally applicable regardless of platform, language and tools; the remainder of this post will utilize Microsoft Visual Studio and Team Foundation Server (TFS) for examples. It should be realized that everyone does at least some aspect of TDD. At the most rudimentary level, getting a program to compile involves a "pass/fail" measurement (is the syntax valid) that drives their ability to proceed further (run the program). Other developers may create "Unit Tests" in the belief that having a test for every method/property of a class and good code coverage is the goal of TDD. These items may be helpful and even important, but really only address a small aspect of the overall effort. To see TDD in a bigger view, lets identify the various activities that are part of the Software Development LifeCycle. These are going to be presented in a Waterfall style for simplicity, but each item also occurs within Iterative methodologies such as Agile/Scrum. the key ones here are: Requirements Gathering Architecture Design Implementation Quality Assurance Can each of these items be subjected to a process which establishes metrics (quantified metrics) that reflect both the quality and correctness of each item? It should be clear that conventional Unit Tests do not apply to all of these items; at best they can verify that a local aspect (e.g. a Class/Method) of implementation matches the (test writers perspective of) the appropriate design document. So what can we do? For each of area, the goal is to create tests that are quantifiable and durable. The ability to quantify the measurements (beyond a simple pass/fail) is critical to tracking progress(eventually measuring the level of success that has been achieved) and for providing clear information on what items need to be addressed (along with the appropriate time to address them - in varying levels of detail) . Durability is important so that the test can be reapplied (ideally in an automated fashion) over the entire cycle. Returning for a moment back to our "education example", one must also be careful of how the tests are organized and how the measurements are taken. If a test is in a multiple choice format, there is a significant statistical probability that a correct answer might be the result of a random guess. Also, in many situations, having the student simply provide a final answer can obscure many important elements. For example, on a math test, having the student simply provide a numeric answer (rather than showing the methodology) may result in a complete mismatch between the process and the result. It is hard to determine which is worse: The student who makes a simple arithmetric error at one step of a long process (resulting in a wrong answer) or The student who (without providing the "workflow") uses a completely invalid approach, yet still comes up with the right number. The "Wrong Process"/"Right Answer" is probably the single biggest problem in software development. Even very simple items can suffer from this. As an example consider the following code for a "straight line" calculation....Is it correct? (for Integral Points)         int Solve(int m, int b, int x) { return m * x + b; }   Most people would respond "Yes". But let's take the question one step further... Is it correct for all possible values of m,b,x??? (no fair if you cheated by being focused on the bolded text!)  Without additional information regarding constrains on "the possible values of m,b,x" the answer must be NO, there is the risk of overflow/wraparound that will produce an incorrect result! To properly answer this question (i.e. Test the Code), one MUST be able to backtrack from the implementation through the design, and architecture all the way back to the requirements. And the requirement itself must be tested against the stakeholder(s). It is only when the bounding conditions are defined that it is possible to determine if the code is "Correct" and has "Quality". Yet, how many of us (myself included) have written such code without even thinking about it. In many canses we (think we) "know" what the bounds are, and that the code will be correct. As we all know, requirements change, "code reuse" causes implementations to be applied to different scenarios, etc. This leads directly to the types of system failures that plague so many projects. This approach to TDD is much more holistic than ones which start by focusing on the details. The fundamental concepts still apply: Each item should be tested. The test should be defined/implemented before (or concurrent with) the definition/implementation of the actual item. We also add concepts that expand the scope and alter the style by recognizing: There are many things beside "lines of code" that benefit from testing (measuring/evaluating in a formal way) Correctness and Quality can not be solely measured by "correct results" In the future parts, we will examine in greater detail some of the techniques that can be applied to each of these areas....

    Read the article

< Previous Page | 67 68 69 70 71 72 73 74 75 76 77 78  | Next Page >