Search Results

Search found 6387 results on 256 pages for 'cpu allocation'.

Page 71/256 | < Previous Page | 67 68 69 70 71 72 73 74 75 76 77 78  | Next Page >

  • How does one find out which application is associated with an indicator icon?

    - by Amos Annoy
    It is trivial to do this in Ubuntu 10.04. The question is specific to Ubuntu 12.04. some pertinent references (src: answer to What is the difference between indicators and a system tray?: Here is the documentation for indicators: Application indicators | Ubuntu App Developer libindicate Reference Manual libappindicator Reference Manual also DesktopExperienceTeam/ApplicationIndicators - Ubuntu Wiki ref: How can the application that makes an indicator icon be identified? bookmark: How does one find out which application is associated with an indicator icon in Ubuntu 12.04? is a serious question for reasons & problems outlined below and for which a significant investment has been made and is necessary for remedial purposes. reviewing refs. to find an orchestrated resolution ... (an indicator ap. indicator maybe needed) This has nothing to do (does it?) with right click. How can an indicator's icon in Ubuntu 12.04 be matched with the program responsible for it's manifestation on the top panel? A list of running applications can include all processes using System Monitor. How is the correct matching process found for an indicator? How are the sub-indicator applications identified? These are the aps associated with the components of an indicators drop-down menu. (This was to be a separate question and quite naturally follows up the progression. It is included here as it is obvious there is no provisioning to track down offending either sub or indicator aps. easily.) (The examination of SM points out a rather poignant factor in the faster battery depletion and shortened run time - the ambient quiescent CPU rate in 12.04 is now well over 20% when previously, in 10.04, it was well under 10%, between 5% and 7%! - the huge inordinate cpu overhead originates from Xorg and compiz - after booting the system, only SM is run and All Processes are selected, sorting on %CPU - switching between Resources and Processes profiles the execution overhead problem - running another ap like gedit "Text Editor" briefly gives it CPU priority - going back to S&M several aps. are at the top of the list in order: gnome-system-monitor as expected, then: Xorg, compiz, unity-panel-service, hud-service, with dbus-daemon and kworker/x:y's mixed in with some expected daemons and background tasks like nm-applet - not only do Xorg and compiz require excessive CPU time but their entourage has to come along too! further exacerbating the problem - our compute bound tasks no longer work effectively in the field - reduced battery life, reduced CPU time for custom ap.s etc. - and all this precipitated from an examination of what is going on with the battery ap. indicator - this was and is not a flippant, rhetorical or idle musing but has consequences for the credible deployment of 12.04 to reduce the negative impact of its overhead in a production environment) (I have a problem with the battery indicator - it sometimes has % and other times hh:mm - it is necessary to know the ap. & v. to get more info on controlling same. ditto: There are issues with other indicator aps.: NM vs. iwlist/iwconfig conflict, BT ap. vs RF switch, Battery ap. w/ no suspend/sleep for poor battery runtime, ... the list goes on) Details from: How can I find Application Indicator ID's? suggests looking at: file:///usr/share/indicator-application/ordering-override.keyfile [Ordering Index Overrides] nm-applet=1 gnome-power-manager=2 ibus=3 gst-keyboard-xkb=4 gsd-keyboard-xkb=5 which solves the battery ap. identification, and presumably nm is NetworkManager for the rf icon, but the envelope, blue tooth and speaker indicator aps. are still a mystery. (Also, the ordering is not correlated.) Mind you, it was simple in the past to simply right click to get the About option to find the ap. & v. info. browsing around and about: file:///usr/share/indicator-application/ordering-override.keyfile examined: file:///usr/share/indicators file:///usr/share/indicators/messages/applications/ ... perhaps?/presumably? the information sought may be buried in file:///usr/share/indicators A reference in the comments was given to: What is the difference between indicators and a system tray? quoting from that source ... Unfortunately desktop indicators are not well documented yet: I couldn't find any specification doc ... Well ... the actual document https://wiki.ubuntu.com/DesktopExperienceTeam/ApplicationIndicators#Summary does not help much but it's existential information provides considerable insight ...

    Read the article

  • OS Analytics with Oracle Enterprise Manager (by Eran Steiner)

    - by Zeynep Koch
    Oracle Enterprise Manager Ops Center provides a feature called "OS Analytics". This feature allows you to get a better understanding of how the Operating System is being utilized. You can research the historical usage as well as real time data. This post will show how you can benefit from OS Analytics and how it works behind the scenes. The recording of our call to discuss this blog is available here: https://oracleconferencing.webex.com/oracleconferencing/ldr.php?AT=pb&SP=MC&rID=71517797&rKey=4ec9d4a3508564b3Download the presentation here See also: Blog about Alert Monitoring and Problem Notification Blog about Using Operational Profiles to Install Packages and other content Here is quick summary of what you can do with OS Analytics in Ops Center: View historical charts and real time value of CPU, memory, network and disk utilization Find the top CPU and Memory processes in real time or at a certain historical day Determine proper monitoring thresholds based on historical data Drill down into a process details Where to start To start with OS Analytics, choose the OS asset in the tree and click the Analytics tab. You can see the CPU utilization, Memory utilization and Network utilization, along with the current real time top 5 processes in each category (click the image to see a larger version):  In the above screen, you can click each of the top 5 processes to see a more detailed view of that process. Here is an example of one of the processes: One of the cool things is that you can see the process tree for this process along with some port binding and open file descriptors. Next, click the "Processes" tab to see real time information of all the processes on the machine: An interesting column is the "Target" column. If you configured Ops Center to work with Enterprise Manager Cloud Control, then the two products will talk to each other and Ops Center will display the correlated target from Cloud Control in this table. If you are only using Ops Center - this column will remain empty. The "Threshold" tab is particularly helpful - you can view historical trends of different monitored values and based on the graph - determine what the monitoring values should be: You can ask Ops Center to suggest monitoring levels based on the historical values or you can set your own. The different colors in the graph represent the current set levels: Red for critical, Yellow for warning and Blue for Information, allowing you to quickly see how they're positioned against real data. It's important to note that when looking at longer periods, Ops Center smooths out the data and uses averages. So when looking at values such as CPU Usage, try shorter time frames which are more detailed, such as one hour or one day. Applying new monitoring values When first applying new values to monitored attributes - a popup will come up asking if it's OK to get you out of the current Monitoring Policy. This is OK if you want to either have custom monitoring for a specific machine, or if you want to use this current machine as a "Gold image" and extract a Monitoring Policy from it. You can later apply the new Monitoring Policy to other machines and also set it as a default Monitoring Profile. Once you're done with applying the different monitoring values, you can review and change them in the "Monitoring" tab. You can also click the "Extract a Monitoring Policy" in the actions pane on the right to save all the new values to a new Monitoring Policy, which can then be found under "Plan Management" -> "Monitoring Policies". Visiting the past Under the "History" tab you can "go back in time". This is very helpful when you know that a machine was busy a few hours ago (perhaps in the middle of the night?), but you were not around to take a look at it in real time. Here's a view into yesterday's data on one of the machines: You can see an interesting CPU spike happening at around 3:30 am along with some memory use. In the bottom table you can see the top 5 CPU and Memory consumers at the requested time. Very quickly you can see that this spike is related to the Solaris 11 IPS repository synchronization process using the "pkgrecv" command. The "time machine" doesn't stop here - you can also view historical data to determine which of the zones was the busiest at a given time: Under the hood The data collected is stored on each of the agents under /var/opt/sun/xvm/analytics/historical/ An "os.zip" file exists for the main OS. Inside you will find many small text files, named after the Epoch time stamp in which they were taken If you have any zones, there will be a file called "guests.zip" containing the same small files for all the zones, as well as a folder with the name of the zone along with "os.zip" in it If this is the Enterprise Controller or the Proxy Controller, you will have folders called "proxy" and "sat" in which you will find the "os.zip" for that controller The actual script collecting the data can be viewed for debugging purposes as well: On Linux, the location is: /opt/sun/xvmoc/private/os_analytics/collect If you would like to redirect all the standard error into a file for debugging, touch the following file and the output will go into it: # touch /tmp/.collect.stderr   The temporary data is collected under /var/opt/sun/xvm/analytics/.collectdb until it is zipped. If you would like to review the properties for the Analytics, you can view those per each agent in /opt/sun/n1gc/lib/XVM.properties. Find the section "Analytics configurable properties for OS and VSC" to view the Analytics specific values. I hope you find this helpful! Please post questions in the comments below. Eran Steiner

    Read the article

  • Problem with Ogmo Editor (is Tiled Editor a solution?)

    - by Mentoliptus
    I made a level editor for a puzzle game with Ogmo Editor and gave it to our designer/level designer. When he downloaded and started Ogmo, his CPU went to 100%. I looked at my CPU usage while Ogmo is running, and it goes from 20% to 30% (which is also high for an application alike Ogmo). He has a Windows 7 VM running on his Mac and I have a normal Windows PC, can this be a problem? I found a thread on FlashFunk forum that confirms that Ogmo has CPU usage issues. Has anybody maybe solved this issue? The solution seems to use Tiled Editor, but I never used it before. Is it difficult to change a level editor from Ogmo to Tiled? Can they export in the same format (XML with CSV elements for my puzzle game)?

    Read the article

  • What are the valid DepthBuffer Texture formats in DirectX 11? And which are also valid for a staging resource?

    - by sebf
    I am trying to read the contents of the depth buffer into main memory so that my CPU side code can do Some Stuff™ with it. I am attempting to do this by creating a staging resource which can be read by the CPU, which I will copy the contents of the depth buffer into before reading it. I keep encountering errors however, because of, I believe, incompatibilities between the resource format and the view formats. Threads like these lead me to believe it is possible in DX11 to access the depth buffer as a resource, and that I can create a resource with a typeless format and have it interpreted in the view as another, but I cannot get it to work. What are the valid formats for the resource to be used as the depth buffer? Which of these are also valid for a CPU accessible staging resource?

    Read the article

  • Samsung Series 5 overheating

    - by Sean Brad
    I bought a Samsung Series 5 Ultra 2 weeks ago and installed Ubuntu 12.04 LTS. I am experiencing problems with overheating. When streaming, watching a movie or when having several programms/actions going on at the same time the CPU temperature rises to 95 degrees and the computer freezes. This happens sometimes when the computer is on battery and always when it is recharging. When I am using the computer on battery the CPU temperature is floating from around 75-95 degrees depending what it's doing. When the battery is recharging the CPU temperature is ranging from 88-95 degrees no matter what tasks it performs. Have anyone experienced this and how may the problem be solved? Best regards

    Read the article

  • Cutting desktop power usage

    - by steevc
    I'm on a general energy saving mission. I've finally swapped my old CRT monitor for a LCD, so the next step it to optimise the PC power usage. It's using an AMD 64 X2 4600+ CPU which I know can trottle down, but seems to be running at a constant 2.4GHz. A while back I heard about Granola. I've installed it, but when I try to run it I get granola[10568]: Error opening scaling governor file '/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor' in read mode granola[10568]: Is cpufreq enabled in this kernel and do you have a CPU which supports DVFS? granola[10568]: Can't manage DVFS for any CPUs I'm happy to use other applications if Granola is not optimal or viable.

    Read the article

  • Trouble with copying dictionaries and using deepcopy on an SQLAlchemy ORM object

    - by Az
    Hi there, I'm doing a Simulated Annealing algorithm to optimise a given allocation of students and projects. This is language-agnostic pseudocode from Wikipedia: s ? s0; e ? E(s) // Initial state, energy. sbest ? s; ebest ? e // Initial "best" solution k ? 0 // Energy evaluation count. while k < kmax and e > emax // While time left & not good enough: snew ? neighbour(s) // Pick some neighbour. enew ? E(snew) // Compute its energy. if enew < ebest then // Is this a new best? sbest ? snew; ebest ? enew // Save 'new neighbour' to 'best found'. if P(e, enew, temp(k/kmax)) > random() then // Should we move to it? s ? snew; e ? enew // Yes, change state. k ? k + 1 // One more evaluation done return sbest // Return the best solution found. The following is an adaptation of the technique. My supervisor said the idea is fine in theory. First I pick up some allocation (i.e. an entire dictionary of students and their allocated projects, including the ranks for the projects) from entire set of randomised allocations, copy it and pass it to my function. Let's call this allocation aOld (it is a dictionary). aOld has a weight related to it called wOld. The weighting is described below. The function does the following: Let this allocation, aOld be the best_node From all the students, pick a random number of students and stick in a list Strip (DEALLOCATE) them of their projects ++ reflect the changes for projects (allocated parameter is now False) and lecturers (free up slots if one or more of their projects are no longer allocated) Randomise that list Try assigning (REALLOCATE) everyone in that list projects again Calculate the weight (add up ranks, rank 1 = 1, rank 2 = 2... and no project rank = 101) For this new allocation aNew, if the weight wNew is smaller than the allocation weight wOld I picked up at the beginning, then this is the best_node (as defined by the Simulated Annealing algorithm above). Apply the algorithm to aNew and continue. If wOld < wNew, then apply the algorithm to aOld again and continue. The allocations/data-points are expressed as "nodes" such that a node = (weight, allocation_dict, projects_dict, lecturers_dict) Right now, I can only perform this algorithm once, but I'll need to try for a number N (denoted by kmax in the Wikipedia snippet) and make sure I always have with me, the previous node and the best_node. So that I don't modify my original dictionaries (which I might want to reset to), I've done a shallow copy of the dictionaries. From what I've read in the docs, it seems that it only copies the references and since my dictionaries contain objects, changing the copied dictionary ends up changing the objects anyway. So I tried to use copy.deepcopy().These dictionaries refer to objects that have been mapped with SQLA. Questions: I've been given some solutions to the problems faced but due to my über green-ness with using Python, they all sound rather cryptic to me. Deepcopy isn't playing nicely with SQLA. I've been told thatdeepcopy on ORM objects probably has issues that prevent it from working as you'd expect. Apparently I'd be better off "building copy constructors, i.e. def copy(self): return FooBar(....)." Can someone please explain what that means? I checked and found out that deepcopy has issues because SQLAlchemy places extra information on your objects, i.e. an _sa_instance_state attribute, that I wouldn't want in the copy but is necessary for the object to have. I've been told: "There are ways to manually blow away the old _sa_instance_state and put a new one on the object, but the most straightforward is to make a new object with __init__() and set up the attributes that are significant, instead of doing a full deep copy." What exactly does that mean? Do I create a new, unmapped class similar to the old, mapped one? An alternate solution is that I'd have to "implement __deepcopy__() on your objects and ensure that a new _sa_instance_state is set up, there are functions in sqlalchemy.orm.attributes which can help with that." Once again this is beyond me so could someone kindly explain what it means? A more general question: given the above information are there any suggestions on how I can maintain the information/state for the best_node (which must always persist through my while loop) and the previous_node, if my actual objects (referenced by the dictionaries, therefore the nodes) are changing due to the deallocation/reallocation taking place? That is, without using copy?

    Read the article

  • Ubuntu 13.04 is showing some error while opening my computer

    - by Singh
    Few months before when I was using Ubuntu 12.04 then I found some errors while starting my computer. Due to this problem I had given my CPU to a shop to repair it I don't know what he has done to my CPU but I only know that finally I got my CPU with Ubuntu 13.04. The technician was unable to make any partition and I also think that he had installed 13.04 over 12.04 and so now my computer is showing some error when I'm starting my computer the error is as follows: error: attempt to read or write outside of the disk 'hd0'. grub rescue _ Before showing this error, few times my computer was working very slow. So kindly someone tell me that is there any way by which I can start my computer. Please also tell me that what things I have to keep in mind while using Ubuntu so that in future I find no difficulties(errors) while using Ubuntu.

    Read the article

  • Are VM-based languages becoming viable for Graphics since the move to GPU computing?

    - by skiwi
    Perhaps the title is not the most clear, so let me elaborate it more: I am talking about VM-based languages, by that I mean languages that run on the JVM (java) and for example C#. Also I am talking about 3D graphics, just to be clear. Lately the trend has been that most computing is being done on the GPU and not on the CPU, and since times the issue with programming games on a VM-based language is that garbage collecting may happen randomly. So let's take a look which is responsible for what: Showing the graphics: GPU Uploading graphics to the GPU: CPU? Needs to be done every frame? Calculating physics constraints: GPU Doing the real game logic (Determining when to move objects (independent of physics calculations), processing AI): CPU Is my list actually correct? And if it is, is for example Java becoming more viable? Or is uploading the graphics (vertices) still the most expensive operation? Would like to get more insight into this.

    Read the article

  • Manage bad_alloc exception in C++ construtor

    - by Jimmy zhang
    I have Java experience and recently am doing some C++ coding. My question is that if I have class A, in which I have to instantiate class B and class C as two of the member variables of A. If in the constructor of A, should I assume that allocations of class B and C never fail, and handle the bad allocation exception in the destructor of A? If I don't make that assumption, meaning that I add some try catch block to catch bad_alloc of class B and class C, then if the allocation exception occurs, should I do clean up in the constructor of A? What are the recommended practices? If "new" generates a bad allocation, what value does the pointer carry?

    Read the article

  • string manipulations in C

    - by Vivek27
    Following are some basic questions that I have with respect to strings in C. If string literals are stored in read-only data segment and cannot be changed after initialisation, then what is the difference between the following two initialisations. char *string = "Hello world"; const char *string = "Hello world"; When we dynamically allocate memory for strings, I see the following allocation is capable enough to hold a string of arbitary length.Though this allocation work, I undersand/beleive that it is always good practice to allocate the actual size of actual string rather than the size of data type.Please guide on proper usage of dynamic allocation for strings. char *string = (char *)malloc(sizeof(char));

    Read the article

  • Built-in GZip/Deflate Compression on IIS 7.x

    - by Rick Strahl
    IIS 7 improves internal compression functionality dramatically making it much easier than previous versions to take advantage of compression that’s built-in to the Web server. IIS 7 also supports dynamic compression which allows automatic compression of content created in your own applications (ASP.NET or otherwise!). The scheme is based on content-type sniffing and so it works with any kind of Web application framework. While static compression on IIS 7 is super easy to set up and turned on by default for most text content (text/*, which includes HTML and CSS, as well as for JavaScript, Atom, XAML, XML), setting up dynamic compression is a bit more involved, mostly because the various default compression settings are set in multiple places down the IIS –> ASP.NET hierarchy. Let’s take a look at each of the two approaches available: Static Compression Compresses static content from the hard disk. IIS can cache this content by compressing the file once and storing the compressed file on disk and serving the compressed alias whenever static content is requested and it hasn’t changed. The overhead for this is minimal and should be aggressively enabled. Dynamic Compression Works against application generated output from applications like your ASP.NET apps. Unlike static content, dynamic content must be compressed every time a page that requests it regenerates its content. As such dynamic compression has a much bigger impact than static caching. How Compression is configured Compression in IIS 7.x  is configured with two .config file elements in the <system.WebServer> space. The elements can be set anywhere in the IIS/ASP.NET configuration pipeline all the way from ApplicationHost.config down to the local web.config file. The following is from the the default setting in ApplicationHost.config (in the %windir%\System32\inetsrv\config forlder) on IIS 7.5 with a couple of small adjustments (added json output and enabled dynamic compression): <?xml version="1.0" encoding="UTF-8"?> <configuration> <system.webServer> <httpCompression directory="%SystemDrive%\inetpub\temp\IIS Temporary Compressed Files"> <scheme name="gzip" dll="%Windir%\system32\inetsrv\gzip.dll" staticCompressionLevel="9" /> <dynamicTypes> <add mimeType="text/*" enabled="true" /> <add mimeType="message/*" enabled="true" /> <add mimeType="application/x-javascript" enabled="true" /> <add mimeType="application/json" enabled="true" /> <add mimeType="*/*" enabled="false" /> </dynamicTypes> <staticTypes> <add mimeType="text/*" enabled="true" /> <add mimeType="message/*" enabled="true" /> <add mimeType="application/x-javascript" enabled="true" /> <add mimeType="application/atom+xml" enabled="true" /> <add mimeType="application/xaml+xml" enabled="true" /> <add mimeType="*/*" enabled="false" /> </staticTypes> </httpCompression> <urlCompression doStaticCompression="true" doDynamicCompression="true" /> </system.webServer> </configuration> You can find documentation on the httpCompression and urlCompression keys here respectively: http://msdn.microsoft.com/en-us/library/ms690689%28v=vs.90%29.aspx http://msdn.microsoft.com/en-us/library/aa347437%28v=vs.90%29.aspx The httpCompression Element – What and How to compress Basically httpCompression configures what types to compress and how to compress them. It specifies the DLL that handles gzip encoding and the types of documents that are to be compressed. Types are set up based on mime-types which looks at returned Content-Type headers in HTTP responses. For example, I added the application/json to mime type to my dynamic compression types above to allow that content to be compressed as well since I have quite a bit of AJAX content that gets sent to the client. The UrlCompression Element – Enables and Disables Compression The urlCompression element is a quick way to turn compression on and off. By default static compression is enabled server wide, and dynamic compression is disabled server wide. This might be a bit confusing because the httpCompression element also has a doDynamicCompression attribute which is set to true by default, but the urlCompression attribute by the same name actually overrides it. The urlCompression element only has three attributes: doStaticCompression, doDynamicCompression and dynamicCompressionBeforeCache. The doCompression attributes are the final determining factor whether compression is enabled, so it’s a good idea to be explcit! The default for doDynamicCompression='false”, but doStaticCompression="true"! Static Compression is enabled by Default, Dynamic Compression is not Because static compression is very efficient in IIS 7 it’s enabled by default server wide and there probably is no reason to ever change that setting. Dynamic compression however, since it’s more resource intensive, is turned off by default. If you want to enable dynamic compression there are a few quirks you have to deal with, namely that enabling it in ApplicationHost.config doesn’t work. Setting: <urlCompression doDynamicCompression="true" /> in applicationhost.config appears to have no effect and I had to move this element into my local web.config to make dynamic compression work. This is actually a smart choice because you’re not likely to want dynamic compression in every application on a server. Rather dynamic compression should be applied selectively where it makes sense. However, nowhere is it documented that the setting in applicationhost.config doesn’t work (or more likely is overridden somewhere and disabled lower in the configuration hierarchy). So: remember to set doDynamicCompression=”true” in web.config!!! How Static Compression works Static compression works against static content loaded from files on disk. Because this content is static and not bound to change frequently – such as .js, .css and static HTML content – it’s fairly easy for IIS to compress and then cache the compressed content. The way this works is that IIS compresses the files into a special folder on the server’s hard disk and then reads the content from this location if already compressed content is requested and the underlying file resource has not changed. The semantics of serving an already compressed file are very efficient – IIS still checks for file changes, but otherwise just serves the already compressed file from the compression folder. The compression folder is located at: %windir%\inetpub\temp\IIS Temporary Compressed Files\ApplicationPool\ If you look into the subfolders you’ll find compressed files: These files are pre-compressed and IIS serves them directly to the client until the underlying files are changed. As I mentioned before – static compression is on by default and there’s very little reason to turn that functionality off as it is efficient and just works out of the box. The one tweak you might want to do is to set the compression level to maximum. Since IIS only compresses content very infrequently it would make sense to apply maximum compression. You can do this with the staticCompressionLevel setting on the scheme element: <scheme name="gzip" dll="%Windir%\system32\inetsrv\gzip.dll" staticCompressionLevel="9" /> Other than that the default settings are probably just fine. Dynamic Compression – not so fast! By default dynamic compression is disabled and that’s actually quite sensible – you should use dynamic compression very carefully and think about what content you want to compress. In most applications it wouldn’t make sense to compress *all* generated content as it would generate a significant amount of overhead. Scott Fortsyth has a great post that details some of the performance numbers and how much impact dynamic compression has. Depending on how busy your server is you can play around with compression and see what impact it has on your server’s performance. There are also a few settings you can tweak to minimize the overhead of dynamic compression. Specifically the httpCompression key has a couple of CPU related keys that can help minimize the impact of Dynamic Compression on a busy server: dynamicCompressionDisableCpuUsage dynamicCompressionEnableCpuUsage By default these are set to 90 and 50 which means that when the CPU hits 90% compression will be disabled until CPU utilization drops back down to 50%. Again this is actually quite sensible as it utilizes CPU power from compression when available and falling off when the threshold has been hit. It’s a good way some of that extra CPU power on your big servers to use when utilization is low. Again these settings are something you likely have to play with. I would probably set the upper limit a little lower than 90% maybe around 70% to make this a feature that kicks in only if there’s lots of power to spare. I’m not really sure how accurate these CPU readings that IIS uses are as Cpu usage on Web Servers can spike drastically even during low loads. Don’t trust settings – do some load testing or monitor your server in a live environment to see what values make sense for your environment. Finally for dynamic compression I tend to add one Mime type for JSON data, since a lot of my applications send large chunks of JSON data over the wire. You can do that with the application/json content type: <add mimeType="application/json" enabled="true" /> What about Deflate Compression? The default compression is GZip. The documentation hints that you can use a different compression scheme and mentions Deflate compression. And sure enough you can change the compression settings to: <scheme name="deflate" dll="%Windir%\system32\inetsrv\gzip.dll" staticCompressionLevel="9" /> to get deflate style compression. The deflate algorithm produces slightly more compact output so I tend to prefer it over GZip but more HTTP clients (other than browsers) support GZip than Deflate so be careful with this option if you build Web APIs. I also had some issues with the above value actually being applied right away. Changing the scheme in applicationhost.config didn’t show up on the site  right away. It required me to do a full IISReset to get that change to show up before I saw the change over to deflate compressed content. Content was slightly more compressed with deflate – not sure if it’s worth the slightly less common compression type, but the option at least is available. IIS 7 finally makes GZip Easy In summary IIS 7 makes GZip easy finally, even if the configuration settings are a bit obtuse and the documentation is seriously lacking. But once you know the basic settings I’ve described here and the fact that you can override all of this in your local web.config it’s pretty straight forward to configure GZip support and tweak it exactly to your needs. Static compression is a total no brainer as it adds very little overhead compared to direct static file serving and provides solid compression. Dynamic Compression is a little more tricky as it does add some overhead to servers, so it probably will require some tweaking to get the right balance of CPU load vs. compression ratios. Looking at large sites like Amazon, Yahoo, NewEgg etc. – they all use Related Content Code based ASP.NET GZip Caveats HttpWebRequest and GZip Responses © Rick Strahl, West Wind Technologies, 2005-2011Posted in IIS7   ASP.NET  

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • SQL SERVER – NTFS File System Performance for SQL Server

    - by pinaldave
    Note: Before practicing any of the suggestion of this article, consult your IT Infrastructural Admin, applying the suggestion without proper testing can only damage your system. Question: “Pinal, we have 80 GB of data including all the database files, we have our data in NTFS file system. We have proper backups are set up. Any suggestion for our NTFS file system performance improvement. Our SQL Server box is running only SQL Server and nothing else. Please advise.” When I receive questions which I have just listed above, it often sends me deep thought. Honestly, I know a lot but there are plenty of things, I believe can be built with community knowledge base. Today I need you to help me to complete this list. I will start the list and you help me complete it. NTFS File System Performance Best Practices for SQL Server Disable Indexing on disk volumes Disable generation of 8.3 names (command: FSUTIL BEHAVIOR SET DISABLE8DOT3 1) Disable last file access time tracking (command: FSUTIL BEHAVIOR SET DISABLELASTACCESS 1) Keep some space empty (let us say 15% for reference) on drive is possible (Only on Filestream Data storage volume) Defragement the volume Add your suggestions here… The one which I often get a pretty big debate is NTFS allocation size. I have seen that on the disk volume which stores filestream data, when increased allocation to 64K from 4K, it reduces the fragmentation. Again, I suggest you attempt this after proper testing on your server. Every system is different and the file stored is different. Here is when I would like to request you to share your experience with related to NTFS allocation size. If you do not agree with any of the above suggestions, leave a comment with reference and I will modify it. Please note that above list prepared assuming the SQL Server application is only running on the computer system. The next question does all these still relevant for SSD – I personally have no experience with SSD with large database so I will refrain from comment. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Win7 Bluescreen: IRQ_NOT_LESS_OR_EQUAL | athrxusb.sys

    - by wretrOvian
    Hi I'd left my system on last night, and found the bluescreen in the morning. This has been happening occasionally, over the past few days. Details: ================================================== Dump File : 022710-18236-01.dmp Crash Time : 2/27/2010 8:46:44 AM Bug Check String : DRIVER_IRQL_NOT_LESS_OR_EQUAL Bug Check Code : 0x000000d1 Parameter 1 : 00000000`00001001 Parameter 2 : 00000000`00000002 Parameter 3 : 00000000`00000000 Parameter 4 : fffff880`06b5c0e1 Caused By Driver : athrxusb.sys Caused By Address : athrxusb.sys+760e1 File Description : Product Name : Company : File Version : Processor : x64 Computer Name : Full Path : C:\Windows\minidump\022710-18236-01.dmp Processors Count : 2 Major Version : 15 Minor Version : 7600 ================================================== HiJackThis ("[...]" indicates removed text; full log posted to pastebin): Logfile of Trend Micro HijackThis v2.0.2 Scan saved at 8:49:15 AM, on 2/27/2010 Platform: Unknown Windows (WinNT 6.01.3504) MSIE: Internet Explorer v8.00 (8.00.7600.16385) Boot mode: Normal Running processes: C:\Windows\DAODx.exe C:\Program Files (x86)\ASUS\EPU\EPU.exe C:\Program Files\ASUS\TurboV\TurboV.exe C:\Program Files (x86)\PowerISO\PWRISOVM.EXE C:\Program Files (x86)\OpenOffice.org 3\program\soffice.exe C:\Program Files (x86)\OpenOffice.org 3\program\soffice.bin D:\Downloads\HijackThis.exe C:\Program Files (x86)\uTorrent\uTorrent.exe R1 - HKCU\Software\Microsoft\Internet Explorer\[...] [...] O2 - BHO: Java(tm) Plug-In 2 SSV Helper - {DBC80044-A445-435b-BC74-9C25C1C588A9} - C:\Program Files (x86)\Java\jre6\bin\jp2ssv.dll O4 - HKLM\..\Run: [HDAudDeck] C:\Program Files (x86)\VIA\VIAudioi\VDeck\VDeck.exe -r O4 - HKLM\..\Run: [StartCCC] "C:\Program Files (x86)\ATI Technologies\ATI.ACE\Core-Static\CLIStart.exe" MSRun O4 - HKLM\..\Run: [TurboV] "C:\Program Files\ASUS\TurboV\TurboV.exe" O4 - HKLM\..\Run: [PWRISOVM.EXE] C:\Program Files (x86)\PowerISO\PWRISOVM.EXE O4 - HKLM\..\Run: [googletalk] C:\Program Files (x86)\Google\Google Talk\googletalk.exe /autostart O4 - HKLM\..\Run: [AdobeCS4ServiceManager] "C:\Program Files (x86)\Common Files\Adobe\CS4ServiceManager\CS4ServiceManager.exe" -launchedbylogin O4 - HKCU\..\Run: [uTorrent] "C:\Program Files (x86)\uTorrent\uTorrent.exe" O4 - HKUS\S-1-5-19\..\Run: [Sidebar] %ProgramFiles%\Windows Sidebar\Sidebar.exe /autoRun (User 'LOCAL SERVICE') O4 - HKUS\S-1-5-19\..\RunOnce: [mctadmin] C:\Windows\System32\mctadmin.exe (User 'LOCAL SERVICE') O4 - HKUS\S-1-5-20\..\Run: [Sidebar] %ProgramFiles%\Windows Sidebar\Sidebar.exe /autoRun (User 'NETWORK SERVICE') O4 - HKUS\S-1-5-20\..\RunOnce: [mctadmin] C:\Windows\System32\mctadmin.exe (User 'NETWORK SERVICE') O4 - Startup: OpenOffice.org 3.1.lnk = C:\Program Files (x86)\OpenOffice.org 3\program\quickstart.exe O13 - Gopher Prefix: O23 - Service: @%SystemRoot%\system32\Alg.exe,-112 (ALG) - Unknown owner - C:\Windows\System32\alg.exe (file missing) O23 - Service: AMD External Events Utility - Unknown owner - C:\Windows\system32\atiesrxx.exe (file missing) O23 - Service: ASUS System Control Service (AsSysCtrlService) - Unknown owner - C:\Program Files (x86)\ASUS\AsSysCtrlService\1.00.02\AsSysCtrlService.exe O23 - Service: DeviceVM Meta Data Export Service (DvmMDES) - DeviceVM - C:\ASUS.SYS\config\DVMExportService.exe O23 - Service: @%SystemRoot%\system32\efssvc.dll,-100 (EFS) - Unknown owner - C:\Windows\System32\lsass.exe (file missing) O23 - Service: ESET HTTP Server (EhttpSrv) - ESET - C:\Program Files\ESET\ESET NOD32 Antivirus\EHttpSrv.exe O23 - Service: ESET Service (ekrn) - ESET - C:\Program Files\ESET\ESET NOD32 Antivirus\x86\ekrn.exe O23 - Service: @%systemroot%\system32\fxsresm.dll,-118 (Fax) - Unknown owner - C:\Windows\system32\fxssvc.exe (file missing) O23 - Service: FLEXnet Licensing Service - Acresso Software Inc. - C:\Program Files (x86)\Common Files\Macrovision Shared\FLEXnet Publisher\FNPLicensingService.exe O23 - Service: FLEXnet Licensing Service 64 - Acresso Software Inc. - C:\Program Files\Common Files\Macrovision Shared\FLEXnet Publisher\FNPLicensingService64.exe O23 - Service: InstallDriver Table Manager (IDriverT) - Macrovision Corporation - C:\Program Files (x86)\Common Files\InstallShield\Driver\11\Intel 32\IDriverT.exe O23 - Service: @keyiso.dll,-100 (KeyIso) - Unknown owner - C:\Windows\system32\lsass.exe (file missing) O23 - Service: @comres.dll,-2797 (MSDTC) - Unknown owner - C:\Windows\System32\msdtc.exe (file missing) O23 - Service: @%SystemRoot%\System32\netlogon.dll,-102 (Netlogon) - Unknown owner - C:\Windows\system32\lsass.exe (file missing) O23 - Service: @%systemroot%\system32\psbase.dll,-300 (ProtectedStorage) - Unknown owner - C:\Windows\system32\lsass.exe (file missing) O23 - Service: Protexis Licensing V2 (PSI_SVC_2) - Protexis Inc. - c:\Program Files (x86)\Common Files\Protexis\License Service\PsiService_2.exe O23 - Service: @%systemroot%\system32\Locator.exe,-2 (RpcLocator) - Unknown owner - C:\Windows\system32\locator.exe (file missing) O23 - Service: @%SystemRoot%\system32\samsrv.dll,-1 (SamSs) - Unknown owner - C:\Windows\system32\lsass.exe (file missing) O23 - Service: @%SystemRoot%\system32\snmptrap.exe,-3 (SNMPTRAP) - Unknown owner - C:\Windows\System32\snmptrap.exe (file missing) O23 - Service: @%systemroot%\system32\spoolsv.exe,-1 (Spooler) - Unknown owner - C:\Windows\System32\spoolsv.exe (file missing) O23 - Service: @%SystemRoot%\system32\sppsvc.exe,-101 (sppsvc) - Unknown owner - C:\Windows\system32\sppsvc.exe (file missing) O23 - Service: Steam Client Service - Valve Corporation - C:\Program Files (x86)\Common Files\Steam\SteamService.exe O23 - Service: @%SystemRoot%\system32\ui0detect.exe,-101 (UI0Detect) - Unknown owner - C:\Windows\system32\UI0Detect.exe (file missing) O23 - Service: @%SystemRoot%\system32\vaultsvc.dll,-1003 (VaultSvc) - Unknown owner - C:\Windows\system32\lsass.exe (file missing) O23 - Service: @%SystemRoot%\system32\vds.exe,-100 (vds) - Unknown owner - C:\Windows\System32\vds.exe (file missing) O23 - Service: @%systemroot%\system32\vssvc.exe,-102 (VSS) - Unknown owner - C:\Windows\system32\vssvc.exe (file missing) O23 - Service: @%systemroot%\system32\wbengine.exe,-104 (wbengine) - Unknown owner - C:\Windows\system32\wbengine.exe (file missing) O23 - Service: @%Systemroot%\system32\wbem\wmiapsrv.exe,-110 (wmiApSrv) - Unknown owner - C:\Windows\system32\wbem\WmiApSrv.exe (file missing) O23 - Service: @%PROGRAMFILES%\Windows Media Player\wmpnetwk.exe,-101 (WMPNetworkSvc) - Unknown owner - C:\Program Files (x86)\Windows Media Player\wmpnetwk.exe (file missing) -- End of file - 6800 bytes CPU-Z ("[...]" indicates removed text; see full log posted to pastebin): CPU-Z TXT Report ------------------------------------------------------------------------- Binaries ------------------------------------------------------------------------- CPU-Z version 1.53.1 Processors ------------------------------------------------------------------------- Number of processors 1 Number of threads 2 APICs ------------------------------------------------------------------------- Processor 0 -- Core 0 -- Thread 0 0 -- Core 1 -- Thread 0 1 Processors Information ------------------------------------------------------------------------- Processor 1 ID = 0 Number of cores 2 (max 2) Number of threads 2 (max 2) Name AMD Phenom II X2 550 Codename Callisto Specification AMD Phenom(tm) II X2 550 Processor Package Socket AM3 (938) CPUID F.4.2 Extended CPUID 10.4 Brand ID 29 Core Stepping RB-C2 Technology 45 nm Core Speed 3110.7 MHz Multiplier x FSB 15.5 x 200.7 MHz HT Link speed 2006.9 MHz Instructions sets MMX (+), 3DNow! (+), SSE, SSE2, SSE3, SSE4A, x86-64, AMD-V L1 Data cache 2 x 64 KBytes, 2-way set associative, 64-byte line size L1 Instruction cache 2 x 64 KBytes, 2-way set associative, 64-byte line size L2 cache 2 x 512 KBytes, 16-way set associative, 64-byte line size L3 cache 6 MBytes, 48-way set associative, 64-byte line size FID/VID Control yes Min FID 4.0x P-State FID 0xF - VID 0x10 P-State FID 0x8 - VID 0x18 P-State FID 0x3 - VID 0x20 P-State FID 0x100 - VID 0x2C Package Type 0x1 Model 50 String 1 0x7 String 2 0x6 Page 0x0 TDP Limit 79 Watts TDC Limit 66 Amps Attached device PCI device at bus 0, device 24, function 0 Attached device PCI device at bus 0, device 24, function 1 Attached device PCI device at bus 0, device 24, function 2 Attached device PCI device at bus 0, device 24, function 3 Attached device PCI device at bus 0, device 24, function 4 Thread dumps ------------------------------------------------------------------------- CPU Thread 0 APIC ID 0 Topology Processor ID 0, Core ID 0, Thread ID 0 Type 0200400Ah Max CPUID level 00000005h Max CPUID ext. level 8000001Bh Cache descriptor Level 1, I, 64 KB, 1 thread(s) Cache descriptor Level 1, D, 64 KB, 1 thread(s) Cache descriptor Level 2, U, 512 KB, 1 thread(s) Cache descriptor Level 3, U, 6 MB, 2 thread(s) CPUID 0x00000000 0x00000005 0x68747541 0x444D4163 0x69746E65 0x00000001 0x00100F42 0x00020800 0x00802009 0x178BFBFF 0x00000002 0x00000000 0x00000000 0x00000000 0x00000000 0x00000003 0x00000000 0x00000000 0x00000000 0x00000000 0x00000004 0x00000000 0x00000000 0x00000000 0x00000000 0x00000005 0x00000040 0x00000040 0x00000003 0x00000000 [...] CPU Thread 1 APIC ID 1 Topology Processor ID 0, Core ID 1, Thread ID 0 Type 0200400Ah Max CPUID level 00000005h Max CPUID ext. level 8000001Bh Cache descriptor Level 1, I, 64 KB, 1 thread(s) Cache descriptor Level 1, D, 64 KB, 1 thread(s) Cache descriptor Level 2, U, 512 KB, 1 thread(s) Cache descriptor Level 3, U, 6 MB, 2 thread(s) CPUID 0x00000000 0x00000005 0x68747541 0x444D4163 0x69746E65 0x00000001 0x00100F42 0x01020800 0x00802009 0x178BFBFF 0x00000002 0x00000000 0x00000000 0x00000000 0x00000000 0x00000003 0x00000000 0x00000000 0x00000000 0x00000000 0x00000004 0x00000000 0x00000000 0x00000000 0x00000000 0x00000005 0x00000040 0x00000040 0x00000003 0x00000000 [...] Chipset ------------------------------------------------------------------------- Northbridge AMD 790GX rev. 00 Southbridge ATI SB750 rev. 00 Memory Type DDR3 Memory Size 4096 MBytes Channels Dual, (Unganged) Memory Frequency 669.0 MHz (3:10) CAS# latency (CL) 9.0 RAS# to CAS# delay (tRCD) 9 RAS# Precharge (tRP) 9 Cycle Time (tRAS) 24 Bank Cycle Time (tRC) 33 Command Rate (CR) 1T Uncore Frequency 2006.9 MHz Memory SPD ------------------------------------------------------------------------- DIMM # 1 SMBus address 0x50 Memory type DDR3 Module format UDIMM Manufacturer (ID) G.Skill (7F7F7F7FCD000000) Size 2048 MBytes Max bandwidth PC3-10700 (667 MHz) Part number F3-10600CL9-2GBNT Number of banks 8 Nominal Voltage 1.50 Volts EPP no XMP no JEDEC timings table CL-tRCD-tRP-tRAS-tRC @ frequency JEDEC #1 6.0-6-6-17-23 @ 457 MHz JEDEC #2 7.0-7-7-20-27 @ 533 MHz JEDEC #3 8.0-8-8-22-31 @ 609 MHz JEDEC #4 9.0-9-9-25-34 @ 685 MHz DIMM # 2 SMBus address 0x51 Memory type DDR3 Module format UDIMM Manufacturer (ID) G.Skill (7F7F7F7FCD000000) Size 2048 MBytes Max bandwidth PC3-10700 (667 MHz) Part number F3-10600CL9-2GBNT Number of banks 8 Nominal Voltage 1.50 Volts EPP no XMP no JEDEC timings table CL-tRCD-tRP-tRAS-tRC @ frequency JEDEC #1 6.0-6-6-17-23 @ 457 MHz JEDEC #2 7.0-7-7-20-27 @ 533 MHz JEDEC #3 8.0-8-8-22-31 @ 609 MHz JEDEC #4 9.0-9-9-25-34 @ 685 MHz DIMM # 1 SPD registers [...] DIMM # 2 SPD registers [...] Monitoring ------------------------------------------------------------------------- Mainboard Model M4A78T-E (0x000001F7 - 0x00A955E4) LPCIO ------------------------------------------------------------------------- LPCIO Vendor ITE LPCIO Model IT8720 LPCIO Vendor ID 0x90 LPCIO Chip ID 0x8720 LPCIO Revision ID 0x2 Config Mode I/O address 0x2E Config Mode LDN 0x4 Config Mode registers [...] Register space LPC, base address = 0x0290 Hardware Monitors ------------------------------------------------------------------------- Hardware monitor ITE IT87 Voltage 1 1.62 Volts [0x65] (VIN1) Voltage 2 1.15 Volts [0x48] (CPU VCORE) Voltage 3 5.03 Volts [0xBB] (+5V) Voltage 8 3.34 Volts [0xD1] (VBAT) Temperature 0 39°C (102°F) [0x27] (TMPIN0) Temperature 1 43°C (109°F) [0x2B] (TMPIN1) Fan 0 3096 RPM [0xDA] (FANIN0) Register space LPC, base address = 0x0290 [...] Hardware monitor AMD SB6xx/7xx Voltage 0 1.37 Volts [0x1D2] (CPU VCore) Voltage 1 3.50 Volts [0x27B] (CPU IO) Voltage 2 12.68 Volts [0x282] (+12V) Hardware monitor AMD Phenom II X2 550 Power 0 89.10 W (Processor) Temperature 0 35°C (94°F) [0x115] (Core #0) Temperature 1 35°C (94°F) [0x115] (Core #1)

    Read the article

  • KVM Slow performance on XP Guest

    - by Gregg Leventhal
    The system is very slow to do anything, even browse a local folder, and CPU sits at 100% frequently. Guest is XP 32 bit. Host is Scientific Linux 6.2, Libvirt 0.10, Guest XP OS shows ACPI Multiprocessor HAL and a virtIO driver for NIC and SCSI. Installed. CPUInfo on host: processor : 0 vendor_id : GenuineIntel cpu family : 6 model : 42 model name : Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz stepping : 7 cpu MHz : 3200.000 cache size : 8192 KB physical id : 0 siblings : 8 core id : 0 cpu cores : 4 apicid : 0 initial apicid : 0 fpu : yes fpu_exception : yes cpuid level : 13 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp lm constant_tsc arch_perfmon pebs bts rep_good xtopology nonstop_tsc aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic popcnt tsc_deadline_timer aes xsave avx lahf_lm ida arat epb xsaveopt pln pts dts tpr_shadow vnmi flexpriority ept vpid bogomips : 6784.93 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: <memory unit='KiB'>4194304</memory> <currentMemory unit='KiB'>4194304</currentMemory> <vcpu placement='static' cpuset='0'>1</vcpu> <os> <type arch='x86_64' machine='rhel6.3.0'>hvm</type> <boot dev='hd'/> </os> <features> <acpi/> <apic/> <pae/> </features> <cpu mode='custom' match='exact'> <model fallback='allow'>SandyBridge</model> <vendor>Intel</vendor> <feature policy='require' name='vme'/> <feature policy='require' name='tm2'/> <feature policy='require' name='est'/> <feature policy='require' name='vmx'/> <feature policy='require' name='osxsave'/> <feature policy='require' name='smx'/> <feature policy='require' name='ss'/> <feature policy='require' name='ds'/> <feature policy='require' name='tsc-deadline'/> <feature policy='require' name='dtes64'/> <feature policy='require' name='ht'/> <feature policy='require' name='pbe'/> <feature policy='require' name='tm'/> <feature policy='require' name='pdcm'/> <feature policy='require' name='ds_cpl'/> <feature policy='require' name='xtpr'/> <feature policy='require' name='acpi'/> <feature policy='require' name='monitor'/> <feature policy='force' name='sse'/> <feature policy='force' name='sse2'/> <feature policy='force' name='sse4.1'/> <feature policy='force' name='sse4.2'/> <feature policy='force' name='ssse3'/> <feature policy='force' name='x2apic'/> </cpu> <clock offset='localtime'> <timer name='rtc' tickpolicy='catchup'/> </clock> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices> <emulator>/usr/libexec/qemu-kvm</emulator> <disk type='file' device='disk'> <driver name='qemu' type='qcow2' cache='none'/> <source file='/var/lib/libvirt/images/Server-10-9-13.qcow2'/> <target dev='vda' bus='virtio'/> <alias name='virtio-disk0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x08' function='0x0'/> </disk>

    Read the article

  • nginx+php-fpm help optimize configs

    - by Dmitro
    I have 3 servers. First server (CPU - model name: 06/17, 2.66GHz, 4 cores, 8GB RAM) have nginx as load balancer with next config upstream lb_mydomain { server mydomain.ru:81 weight=2; server 66.0.0.18 weight=6; } server { listen 80; server_name ~(?!mydomain.ru)(.*); client_max_body_size 20m; location / { proxy_pass http://lb_mydomain; proxy_redirect off; proxy_set_header Connection close; proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_pass_header Set-Cookie; proxy_pass_header P3P; proxy_pass_header Content-Type; proxy_pass_header Content-Disposition; proxy_pass_header Content-Length; } } And configs from nginx.conf: user www-data; worker_processes 5; # worker_priority -1; error_log /var/log/nginx/error.log; pid /var/run/nginx.pid; events { worker_connections 5024; # multi_accept on; } http { include /etc/nginx/mime.types; access_log /var/log/nginx/access.log; sendfile on; default_type application/octet-stream; #tcp_nopush on; keepalive_timeout 65; tcp_nodelay on; gzip on; gzip_disable "MSIE [1-6]\.(?!.*SV1)"; # PHP-FPM (backend) upstream php-fpm { server 127.0.0.1:9000; } include /etc/nginx/conf.d/*.conf; include /etc/nginx/sites-enabled/*; } And config php-fpm: listen = 127.0.0.1:9000 ;listen.backlog = -1 ;listen.allowed_clients = 127.0.0.1 ;listen.owner = www-data ;listen.group = www-data ;listen.mode = 0666 user = www-data group = www-data pm = dynamic pm.max_children = 80 ;pm.start_servers = 20 pm.min_spare_servers = 5 pm.max_spare_servers = 35 ;pm.max_requests = 500 pm.status_path = /status ping.path = /ping ;ping.response = pong request_terminate_timeout = 30s request_slowlog_timeout = 10s slowlog = /var/log/php-fpm.log.slow ;rlimit_files = 1024 ;rlimit_core = 0 ;chroot = chdir = /var/www ;catch_workers_output = yes ;env[HOSTNAME] = $HOSTNAME ;env[PATH] = /usr/local/bin:/usr/bin:/bin ;env[TMP] = /tmp ;env[TMPDIR] = /tmp ;env[TEMP] = /tmp ;php_admin_value[sendmail_path] = /usr/sbin/sendmail -t -i -f [email protected] ;php_flag[display_errors] = off ;php_admin_value[error_log] = /var/log/fpm-php.www.log ;php_admin_flag[log_errors] = on ;php_admin_value[memory_limit] = 32M In top I see 20 php-fpm processes which use from 1% - 15% CPU. So it's have high load averadge: top - 15:36:22 up 34 days, 20:54, 1 user, load average: 5.98, 7.75, 8.78 Tasks: 218 total, 1 running, 217 sleeping, 0 stopped, 0 zombie Cpu(s): 34.1%us, 3.2%sy, 0.0%ni, 37.0%id, 24.8%wa, 0.0%hi, 0.9%si, 0.0%st Mem: 8183228k total, 7538584k used, 644644k free, 351136k buffers Swap: 9936892k total, 14636k used, 9922256k free, 990540k cached Second server(CPU - model name: Intel(R) Xeon(R) CPU E5504 @ 2.00GHz, 8 cores, 8GB RAM). Nginx configs from nginx.conf: user www-data; worker_processes 5; # worker_priority -1; error_log /var/log/nginx/error.log; pid /var/run/nginx.pid; events { worker_connections 5024; # multi_accept on; } http { include /etc/nginx/mime.types; access_log /var/log/nginx/access.log; sendfile on; default_type application/octet-stream; #tcp_nopush on; keepalive_timeout 65; tcp_nodelay on; gzip on; gzip_disable "MSIE [1-6]\.(?!.*SV1)"; # PHP-FPM (backend) upstream php-fpm { server 127.0.0.1:9000; } include /etc/nginx/conf.d/*.conf; include /etc/nginx/sites-enabled/*; } And config of php-fpm: listen = 127.0.0.1:9000 ;listen.backlog = -1 ;listen.allowed_clients = 127.0.0.1 ;listen.owner = www-data ;listen.group = www-data ;listen.mode = 0666 user = www-data group = www-data pm = dynamic pm.max_children = 50 ;pm.start_servers = 20 pm.min_spare_servers = 5 pm.max_spare_servers = 35 ;pm.max_requests = 500 ;pm.status_path = /status ;ping.path = /ping ;ping.response = pong ;request_terminate_timeout = 0 ;request_slowlog_timeout = 0 ;slowlog = /var/log/php-fpm.log.slow ;rlimit_files = 1024 ;rlimit_core = 0 ;chroot = chdir = /var/www ;catch_workers_output = yes ;env[HOSTNAME] = $HOSTNAME ;env[PATH] = /usr/local/bin:/usr/bin:/bin ;env[TMP] = /tmp ;env[TMPDIR] = /tmp ;env[TEMP] = /tmp ;php_admin_value[sendmail_path] = /usr/sbin/sendmail -t -i -f [email protected] ;php_flag[display_errors] = off ;php_admin_value[error_log] = /var/log/fpm-php.www.log ;php_admin_flag[log_errors] = on ;php_admin_value[memory_limit] = 32M In top I see 50 php-fpm processes which use from 10% - 25% CPU. So it's have high load averadge: top - 15:53:05 up 33 days, 1:15, 1 user, load average: 41.35, 40.28, 39.61 Tasks: 239 total, 40 running, 199 sleeping, 0 stopped, 0 zombie Cpu(s): 96.5%us, 3.1%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.4%si, 0.0%st Mem: 8185560k total, 7804224k used, 381336k free, 161648k buffers Swap: 19802108k total, 16k used, 19802092k free, 5068112k cached Third server is server with database postgresql. Also i try ab -n 50 -c 5 http://www.mydomain.ru/ And I get next info: Complete requests: 50 Failed requests: 48 (Connect: 0, Receive: 0, Length: 48, Exceptions: 0) Write errors: 0 Total transferred: 9271367 bytes HTML transferred: 9247767 bytes Requests per second: 1.02 [#/sec] (mean) Time per request: 4882.427 [ms] (mean) Time per request: 976.486 [ms] (mean, across all concurrent requests) Transfer rate: 185.44 [Kbytes/sec] received Please advise how can I make lower level of load average?

    Read the article

  • Java: Netbeans debugging session works faster than normal run

    - by Martijn Courteaux
    Hello, I'm making Braid in Netbeans 6.7.1. Computer Spec: Windows 7 Running processes: 46 Running threads: +/- 650 NVidia GeForce 9200M GS Intel Core 2 Duo CPU P8400 @ 2.26Ghz Game-spec with normal run: Memory: between 80 MB and 110 MB CPU: between 9% and 20% CPU when time rewinding: 90% The same values for the debugging session, except when I rewind the time: CPU: 20%. Is there any reason for? Is there a way to reach the same performance with a normal run. This is my repaint code: @Override public void repaint() { BufferStrategy bs = getBufferStrategy(); // numBuffers: 4 Graphics g = bs.getDrawGraphics(); g.setColor(Color.BLACK); g.fillRect(-1, -1, 2000, 2000); gamePanel.paint(g.create(x, y, gameDim.width, gameDim.height)); bs.show(); g.dispose(); Toolkit.getDefaultToolkit().sync(); update(g); } The game runs in fullscreen (undecorated + frame.size = screensize) Martijn

    Read the article

  • Bad temperature sensors on Foxconn motherboard?

    - by Gawain
    I have a system with a Foxconn V400 series motherboard and AMD Athlon 3000+ processor. Ever since I got it a few years ago the fans (particularly the CPU fan) have been really loud. So recently I installed SpeedFan to see why they were running so fast. SpeedFan reported the CPU temperature to be 32C, and one motherboard sensor at about 26C. But the other two motherboard sensors were reporting 78C and 64C respectively. Naturally the fans were both maxed out because of this, with the CPU fan at 5800rpm and the case fan at 2400rpm. I opened the case and everything inside was literally cool to the touch, with the exception of the CPU heatsink which was slightly warm, but nowhere near 78C. It seems like the temperature sensors are either defective or being read incorrectly. Is there some way I can decrease my fan noise without risking damage to my processor? Some way to ignore those two temp sensors? Any help would be greatly appreciated.

    Read the article

  • Generate a list of file names based on month and year arithmetic

    - by MacUsers
    How can I list the numbers 01 to 12 (one for each of the 12 months) in such a way so that the current month always comes last where the oldest one is first. In other words, if the number is grater than the current month, it's from the previous year. e.g. 02 is Feb, 2011 (the current month right now), 03 is March, 2010 and 09 is Sep, 2010 but 01 is Jan, 2011. In this case, I'd like to have [09, 03, 01, 02]. This is what I'm doing to determine the year: for inFile in os.listdir('.'): if inFile.isdigit(): month = months[int(inFile)] if int(inFile) <= int(strftime("%m")): year = strftime("%Y") else: year = int(strftime("%Y"))-1 mnYear = month + ", " + str(year) I don't have a clue what to do next. What should I do here? Update: I think, I better upload the entire script for better understanding. #!/usr/bin/env python import os, sys from time import strftime from calendar import month_abbr vGroup = {} vo = "group_lhcb" SI00_fig = float(2.478) months = tuple(month_abbr) print "\n%-12s\t%10s\t%8s\t%10s" % ('VOs','CPU-time','CPU-time','kSI2K-hrs') print "%-12s\t%10s\t%8s\t%10s" % ('','(in Sec)','(in Hrs)','(*2.478)') print "=" * 58 for inFile in os.listdir('.'): if inFile.isdigit(): readFile = open(inFile, 'r') lines = readFile.readlines() readFile.close() month = months[int(inFile)] if int(inFile) <= int(strftime("%m")): year = strftime("%Y") else: year = int(strftime("%Y"))-1 mnYear = month + ", " + str(year) for line in lines[2:]: if line.find(vo)==0: g, i = line.split() s = vGroup.get(g, 0) vGroup[g] = s + int(i) sumHrs = ((vGroup[g]/60)/60) sumSi2k = sumHrs*SI00_fig print "%-12s\t%10s\t%8s\t%10.2f" % (mnYear,vGroup[g],sumHrs,sumSi2k) del vGroup[g] When I run the script, I get this: [root@serv07 usage]# ./test.py VOs CPU-time CPU-time kSI2K-hrs (in Sec) (in Hrs) (*2.478) ================================================== Jan, 2011 211201372 58667 145376.83 Dec, 2010 5064337 1406 3484.07 Feb, 2011 17506049 4862 12048.04 Sep, 2010 210874275 58576 145151.33 As I said in the original post, I like the result to be in this order instead: Sep, 2010 210874275 58576 145151.33 Dec, 2010 5064337 1406 3484.07 Jan, 2011 211201372 58667 145376.83 Feb, 2011 17506049 4862 12048.04 The files in the source directory reads like this: [root@serv07 usage]# ls -l total 3632 -rw-r--r-- 1 root root 1144972 Feb 9 19:23 01 -rw-r--r-- 1 root root 556630 Feb 13 09:11 02 -rw-r--r-- 1 root root 443782 Feb 11 17:23 02.bak -rw-r--r-- 1 root root 1144556 Feb 14 09:30 09 -rw-r--r-- 1 root root 370822 Feb 9 19:24 12 Did I give a better picture now? Sorry for not being very clear in the first place. Cheers!! Update @Mark Ransom This is the result from Mark's suggestion: [root@serv07 usage]# ./test.py VOs CPU-time CPU-time kSI2K-hrs (in Sec) (in Hrs) (*2.478) ========================================================== Dec, 2010 5064337 1406 3484.07 Sep, 2010 210874275 58576 145151.33 Feb, 2011 17506049 4862 12048.04 Jan, 2011 211201372 58667 145376.83 As I said before, I'm looking for the result to b printed in this order: Sep, 2010 - Dec, 2010 - Jan, 2011 - Feb, 2011 Cheers!!

    Read the article

  • Execute a command using php under ssh2 in php

    - by Mervyn
    Using Mint terminal my script connects using ssh2_connect and ssh2_auth-password. When am logged in successfully I want to run a command which will give me the hardware cpu. Is there a way I can use to exec the command in my script then show the results. I have used system and exec for pinging. if i was in the terminal i do the login. then type "get hardware cpu" in the terminal it would look like this: Test~ $ get hardware cpu

    Read the article

< Previous Page | 67 68 69 70 71 72 73 74 75 76 77 78  | Next Page >