Search Results

Search found 9163 results on 367 pages for 'feature packs'.

Page 72/367 | < Previous Page | 68 69 70 71 72 73 74 75 76 77 78 79  | Next Page >

  • High-level strategy for distinguishing a regular string from invalid JSON (ie. JSON-like string detection)

    - by Jonline
    Disclaimer On Absence of Code: I have no code to post because I haven't started writing; was looking for more theoretical guidance as I doubt I'll have trouble coding it but am pretty befuddled on what approach(es) would yield best results. I'm not seeking any code, either, though; just direction. Dilemma I'm toying with adding a "magic method"-style feature to a UI I'm building for a client, and it would require intelligently detecting whether or not a string was meant to be JSON as against a simple string. I had considered these general ideas: Look for a sort of arbitrarily-determined acceptable ratio of the frequency of JSON-like syntax (ie. regex to find strings separated by colons; look for colons between curly-braces, etc.) to the number of quote-encapsulated strings + nulls, bools and ints/floats. But the smaller the data set, the more fickle this would get look for key identifiers like opening and closing curly braces... not sure if there even are more easy identifiers, and this doesn't appeal anyway because it's so prescriptive about the kinds of mistakes it could find try incrementally parsing chunks, as those between curly braces, and seeing what proportion of these fractional statements turn out to be valid JSON; this seems like it would suffer less than (1) from smaller datasets, but would probably be much more processing-intensive, and very susceptible to a missing or inverted brace Just curious if the computational folks or algorithm pros out there had any approaches in mind that my semantics-oriented brain might have missed. PS: It occurs to me that natural language processing, about which I am totally ignorant, might be a cool approach; but, if NLP is a good strategy here, it sort of doesn't matter because I have zero experience with it and don't have time to learn & then implement/ this feature isn't worth it to the client.

    Read the article

  • Using Subdomains for Newly Regional Company

    - by Taylord22
    The company I work for is expanding their business to new territories. I've got a lot of stabilization to do in the region/state where we're one of the most well known companies of our kind. Currently, we have 3 distinct product lines which are currently distinguished by 3 separate URLS. This is affecting the user flow of our site, so we'd like to clean it up before launching our products into the various regions. The business has decided to grow into 5 new states (one state consisting of one county only) — none of which will feature all 3 products. Our homebase state is the only one that will have all 3 products this year. My initial thought was to use subdomains to separate out the regions, that way we could use a canonical tag to stabilize the root domain (which would feature home state content, and support content for all regions), and remove us from potential duplicate content penalization. Our product content will be nearly identical across the regions for the first year. I second guessed myself by thinking that it was perhaps better to use a "[product].root/region" URL instead. And I'm currently stuck by wondering if it was not better to build out subdomains for products and regions...using one modifier or the other as a funnel/branding page into the other. For instance, user lands on "region.root.com" and sees exactly what products we offer in that region. Basically, a tailored landing page. Meanwhile the bulk of the product content would actually live under "product.root.com/region/page". My head is spinning. And while searching for similar questions I also bumped into reference of another tag meant to be used in some similar cases to mine. I feel like there's a lot of risks involved in this subdomain strategy, but I also can't help but see the benefits in the user flow.

    Read the article

  • How should a team share/store game content during development?

    - by irwinb
    Other than Dropbox, what out there has been especially useful for storing and sharing game content like images during development (similar feature set to Dropbox like working offline, automatic syncing and support for windows/osx)? We are looking into hosting our own SharePoint server but it seems to be really focused on documents... Maybe Box.net would work? EDIT For code, we are using Git. To be more precise, I was looking for an easy, automatic way for content produced by artists/audio engineers to be available to everyone. Features like approvals of assets don't hurt either. Following the answer linked by Tetrad, Alienbrain looked pretty interesting but..is way out of our budget (may be something to invest in in the future). What ended up doing... We were going to go with Box.net but downloading the sync apps for desktop use required us to wait to be contacted by them for some reason. We did not have much time to wait so we ended up going with Dropbox Teams. Box.net has a nice feature set but we never really felt held back without them. Thanks for the help :).

    Read the article

  • Oracle ADF Mobile

    - by rituchhibber
    We are happy to announce that Oracle ADF Mobile is now available for our customers.Oracle ADF Mobile enables developer to build applications that install and run on both iOS and Android devices from one source code.Development is done with JDeveloper and ADF and leverages Java and HTML5 technologies, while keeping the same visual and declarative approach ADF is known for.Please Click here to read more about the Oracle ADF Mobile release and learn more on our OTN Page. Feature Highlights: Java - Oracle brings a Java VM embedded with each application so you can develop all your business logic in the platform neutral language you know and love! (Yes, even iOS!) JDBC - Since we give you Java, we also provide JDBC along with a SQLite driver and engine that also supports encryption out of the box. Multi-Platform - Truly develop your application only once and deploy to multiple platforms. iOS and Android platforms are supported for both phone and tablet. Flexible - You can decide how to implement the UI: Use existing server-based UI framework like JSF. Use your own favorite HTML5 framework like JQuery. Use our declarative HTML5 component set provided with the framework. Device Feature Access - You can get access to device features from either Java or JavaScript to invoke features like camera, GPS, email, SMS, contacts, etc. Secure - ADF Mobile provides integrated security that works with your server back-end as well. Whether you’re using remote URLs, local HTML or AMX, you can secure any/all of your features with a single consistent login page. Since we also give you SQLite encryption, we are assured that your data is safe. Rapid - Using the same development techniques that ADF developers are already used to, you can quickly create mobile applications without ever learning another language!ADF Mobile XML or AMX for short, provides all the normal input and layout controls you expect and we also add charts/maps/gauges along with it to provide a very comprehensive UI controls. You can also mix and match any of the three for ultimate flexibility!

    Read the article

  • Why does Ubuntu 12.10 Beta2 insist on commiting changes to the partition table?

    - by Uten
    Why does Ubuntu 12.10 Beta2 insist on commiting changes to the partition table even as no real changes has been done? This is a show stopper for me as I'm installing without a CD/DVD ROM. This is how I go about it. I downloaded the iso image and extracted vmlinuz and initrd.lz to the same folder I keep the iso image. Configured grub (0.9x) to boot /ubuntu/vmlinuz with the iso image like this: title ubuntu live-cd kernel /ubuntu/vmlinuz boot=casper iso-scan/filename=/ubuntu/ubuntu-12.10-beta2-desktop-i386.iso ro quiet splash initrd /ubuntu/initrd.lz boot This works well and I get a running livecd session. The iso image is mounted on /isomedia (or something similar). The spare HD space where I want to install Ubuntu is in the logical area (at the wery end of the disk). I have tried both to use the space as empty and preformated with ext4. After selecting the partition and selecting "use as ext4" and selecting a mountpoint (/) I get the message: "The installer needs to commit changes to partition tables, but cannot do so because partitions on the following mount points could not be unmounted" "/isomedia" (or something similar). Is this a "feature" of the installer? To insist that everything is unmounted even if no changes is nescesary (as fare as I understand). It's probably a safety feature but is it needed? I have cahnged layouts with parted and gparted (at the end of the disk) for years without any failures. I understand that booting the iso image like this is not the common way. But it is just such a beautifull way of doing it when you hav a running system and want to play with another. Any one had any success installing Ubuntu (12.10 beta2 ) like this? Best regards Uten

    Read the article

  • Languages and VMs: Features that are hard to optimize and why

    - by mrjoltcola
    I'm doing a survey of features in preparation for a research project. Name a mainstream language or language feature that is hard to optimize, and why the feature is or isn't worth the price paid, or instead, just debunk my theories below with anecdotal evidence. Before anyone flags this as subjective, I am asking for specific examples of languages or features, and ideas for optimization of these features, or important features that I haven't considered. Also, any references to implementations that prove my theories right or wrong. Top on my list of hard to optimize features and my theories (some of my theories are untested and are based on thought experiments): 1) Runtime method overloading (aka multi-method dispatch or signature based dispatch). Is it hard to optimize when combined with features that allow runtime recompilation or method addition. Or is it just hard, anyway? Call site caching is a common optimization for many runtime systems, but multi-methods add additional complexity as well as making it less practical to inline methods. 2) Type morphing / variants (aka value based typing as opposed to variable based) Traditional optimizations simply cannot be applied when you don't know if the type of someting can change in a basic block. Combined with multi-methods, inlining must be done carefully if at all, and probably only for a given threshold of size of the callee. ie. it is easy to consider inlining simple property fetches (getters / setters) but inlining complex methods may result in code bloat. The other issue is I cannot just assign a variant to a register and JIT it to the native instructions because I have to carry around the type info, or every variable needs 2 registers instead of 1. On IA-32 this is inconvenient, even if improved with x64's extra registers. This is probably my favorite feature of dynamic languages, as it simplifies so many things from the programmer's perspective. 3) First class continuations - There are multiple ways to implement them, and I have done so in both of the most common approaches, one being stack copying and the other as implementing the runtime to use continuation passing style, cactus stacks, copy-on-write stack frames, and garbage collection. First class continuations have resource management issues, ie. we must save everything, in case the continuation is resumed, and I'm not aware if any languages support leaving a continuation with "intent" (ie. "I am not coming back here, so you may discard this copy of the world"). Having programmed in the threading model and the contination model, I know both can accomplish the same thing, but continuations' elegance imposes considerable complexity on the runtime and also may affect cache efficienty (locality of stack changes more with use of continuations and co-routines). The other issue is they just don't map to hardware. Optimizing continuations is optimizing for the less-common case, and as we know, the common case should be fast, and the less-common cases should be correct. 4) Pointer arithmetic and ability to mask pointers (storing in integers, etc.) Had to throw this in, but I could actually live without this quite easily. My feelings are that many of the high-level features, particularly in dynamic languages just don't map to hardware. Microprocessor implementations have billions of dollars of research behind the optimizations on the chip, yet the choice of language feature(s) may marginalize many of these features (features like caching, aliasing top of stack to register, instruction parallelism, return address buffers, loop buffers and branch prediction). Macro-applications of micro-features don't necessarily pan out like some developers like to think, and implementing many languages in a VM ends up mapping native ops into function calls (ie. the more dynamic a language is the more we must lookup/cache at runtime, nothing can be assumed, so our instruction mix is made up of a higher percentage of non-local branching than traditional, statically compiled code) and the only thing we can really JIT well is expression evaluation of non-dynamic types and operations on constant or immediate types. It is my gut feeling that bytecode virtual machines and JIT cores are perhaps not always justified for certain languages because of this. I welcome your answers.

    Read the article

  • SharePoint 2007 Force Culture and UI Culture

    - by jdcorr
    i'm developing a sharepoint portal, and i want to force a portal culture to 'pt-PT', i already installed the moss and wss language packs and i changed the web.config too with the following statment: but if i set the browser language to other language the controls change their culture (this only occurs in portal frontoffice, in backoffice the culture is always pt). What i have to do to fix this problem?

    Read the article

  • Diophantine Equation [closed]

    - by ANIL
    In mathematics, a Diophantine equation (named for Diophantus of Alexandria, a third century Greek mathematician) is a polynomial equation where the variables can only take on integer values. Although you may not realize it, you have seen Diophantine equations before: one of the most famous Diophantine equations is: X^n+Y^n=Z^n We are not certain that McDonald's knows about Diophantine equations (actually we doubt that they do), but they use them! McDonald's sells Chicken McNuggets in packages of 6, 9 or 20 McNuggets. Thus, it is possible, for example, to buy exactly 15 McNuggets (with one package of 6 and a second package of 9), but it is not possible to buy exactly 16 nuggets, since no non- negative integer combination of 6's, 9's and 20's adds up to 16. To determine if it is possible to buy exactly n McNuggets, one has to solve a Diophantine equation: find non-negative integer values of a, b, and c, such that 6a + 9b + 20c = n. Problem 1 Show that it is possible to buy exactly 50, 51, 52, 53, 54, and 55 McNuggets, by finding solutions to the Diophantine equation. You can solve this in your head, using paper and pencil, or writing a program. However you chose to solve this problem, list the combinations of 6, 9 and 20 packs of McNuggets you need to buy in order to get each of the exact amounts. Given that it is possible to buy sets of 50, 51, 52, 53, 54 or 55 McNuggets by combinations of 6, 9 and 20 packs, show that it is possible to buy 56, 57,..., 65 McNuggets. In other words, show how, given solutions for 50-55, one can derive solutions for 56-65. Problem 2 Write an iterative program that finds the largest number of McNuggets that cannot be bought in exact quantity. Your program should print the answer in the following format (where the correct number is provided in place of n): "Largest number of McNuggets that cannot be bought in exact quantity: n" Hints: Hypothesize possible instances of numbers of McNuggets that cannot be purchased exactly, starting with 1 For each possible instance, called n, a. Test if there exists non-negative integers a, b, and c, such that 6a+9b+20c = n. (This can be done by looking at all feasible combinations of a, b, and c) b. If not, n cannot be bought in exact quantity, save n When you have found six consecutive values of n that in fact pass the test of having an exact solution, the last answer that was saved (not the last value of n that had a solution) is the correct answer, since you know by the theorem that any amount larger can also be bought in exact quantity

    Read the article

  • Query Results Not Expected

    - by E-Madd
    I've been a CF developer for 15 years and I've never run into anything this strange or frustrating. I've pulled my hair out for hours, googled, abstracted, simplified, prayed and done it all in reverse. Can you help me? A cffunction takes one string argument and from that string I build an array of "phrases" to run a query with, attempting to match a location name in my database. For example, the string "the republic of boulder" would produce the array: ["the","republic","of","boulder","the republic","the republic of","the republic of boulder","republic of","republic of boulder","of boulder"]. Another cffunction uses the aforementioned cffunction and runs a cfquery. A query based on the previously given example would be... select locationid, locationname, locationaliasname from vwLocationsWithAlias where LocationName in ('the','the republic','the republic of','republic','republic of','republic of boulder','of','of boulder','boulder') or LocationAliasName in ('the','the republic','the republic of','republic','republic of','republic of boulder','of','of boulder','boulder') This returns 2 records... locationid - locationname - locationalias 99 - 'Boulder' - 'the republic' 68 - 'Boulder' - NULL This is good. Works fine and dandy. HOWEVER... if the string is changed to "the republic", resulting in the phrases array ["the","republic","the republic"] which is then used to produce the query... select locationid, locationname, locationaliasname from vwLocationsWithAlias where LocationName in ('the','the republic','republic') or LocationAliasName in ('the','the republic','republic') This returns 0 records. Say what?! OK, just to make sure I'm not involuntarily HIGH I run that very same query in my SQL console against the same database in the cf datasource. 1 RECORD! locationid - locationname - locationalias 99 - 'Boulder' - 'the republic' I can even hard-code that sql within the same cffunction and get that one result, but never from the dynamically generated SQL. I can get my location phrases from another cffunction of a different name that returns hard-coded array values and those work, but never if the array is dynamically built. I've tried removing cfqueryparams, triple-checking my datatypes, datasource setups, etc., etc., etc. NO DICE WTF!? Is this an obscure bug? Am I losing my mind? I've tried everything I can think of and others (including Ray Camden) can think of. ColdFusion 8 (with all the latest hotfixes) SQL Server 2005 (with all the greatest service packs) Windows 2003 Server (with all the latest updates, service packs and nightly MS voodoo)

    Read the article

  • Which web crawler to use to save news articles from a website into .txt files?

    - by brokencoding
    Hi, i am currently in dire need of news articles to test a LSI implementation (it's in a foreign language, so there isnt the usual packs of files ready to use). So i need a crawler that given a starting url, let's say http://news.bbc.co.uk/ follows all the contained links and saves their content into .txt files, if we could specify the format to be UTF8 i would be in heaven. I have 0 expertise in this area, so i beg you for some sugestions in which crawler to use for this task.

    Read the article

  • Localization and JQuery/JavaScript

    - by vikp
    Hi, I'm working on different language packs for my web app. Some of the output is generated by the JavaScript/JQuery and I can't use .aspx.resx resource files within the JavaScript. What options do I have in order to localize output produced by the client? Thanky you

    Read the article

  • Check user language selection in NSIS MUI2

    - by wls
    I have multiple language packs in my NSIS installer, using the MUI2 interface. Now I try to select the language pack, which is installed by the "Typical" installation type according to the user's chosen setup language. My problem is, that I can't figure out, how to get the user's language selection. I already tried to access the variables $LANGUAGE and $mui.LangDLL.RegistryLanguage, as well as trying to compare a defined language string to a specific translation string, but without success.

    Read the article

  • Browse asp.net development server from usb attached itouch

    - by Jim Maguire
    I can browse using the desktop browsers via ..localhost:54647/... and from windows mobile emulators via my gateway ..//192.168.0.199:54647/..., but neither method works from either my Android emulator or from a usb attached itouch. I know I may have to run IIS locally but it's more convenient to run the development server from Visual Studio 2008. I'm running Vista with latest service packs. I'm developing a mobile app using ASP.Net MVC. Thanks!

    Read the article

  • python-McNuggets

    - by challarao
    I have created some program for this.But printed a,b,c values are not correct.Please check this weather it is correct or not? n=input("Enter the no.of McNuggets:") a,b,c=0,0,0 count=0 for a in range(n): if 6*a+9*b+20*c==n: count=count+1 break else: for b in range(n): if 6*a+9*b+20*c==n: count=count+1 break else: for c in range(n): if 6*a+9*b+20*c==n: count=count+1 break if count>0: print "It is possible to buy exactly",n,"packs of McNuggetss",a,b,c else: print "It is not possible to buy"

    Read the article

  • debugging Python program

    - by challarao
    I have created some program for this.But printed a,b,c values are not correct.Please check this whether it is correct or not? n=input("Enter the no.of McNuggets:") a,b,c=0,0,0 count=0 for a in range(n): if 6*a+9*b+20*c==n: count=count+1 break else: for b in range(n): if 6*a+9*b+20*c==n: count=count+1 break else: for c in range(n): if 6*a+9*b+20*c==n: count=count+1 break if count>0: print "It is possible to buy exactly",n,"packs of McNuggetss",a,b,c else: print "It is not possible to buy"

    Read the article

  • Apple Itunes app limitations

    - by user339625
    I have a iphone game that i am creating and wanted to know a couple limitations once the person downloads the game and they sign in with a user name i want them to be able to download new content maps packs etc. What is the limit in size these downloads can be? where can this content be stored? thank you!

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • The Challenge with HTML5 – In Pictures

    - by dwahlin
    I love working with Web technologies and am looking forward to the new functionality that HTML5 will ultimately bring to the table (some of which can be used today). Having been through the div versus layer battle back in the IE4 and Netscape 4 days I think we’re headed down that road again as a result of browsers implementing features differently. I’ve been spending a lot of time researching and playing around with HTML5 samples and features (mainly because we’re already seeing demand for training on HTML5) and there’s a lot of great stuff there that will truly revolutionize web applications as we know them. However, browsers just aren’t there yet and many people outside of the development world don’t really feel a need to upgrade their browser if it’s working reasonably well (Mom and Dad come to mind) so it’s going to be awhile. There’s a nice test site at http://www.HTML5Test.com that runs through different HTML5 features and scores how well they’re supported. They don’t test for everything and are very clear about that on the site: “The HTML5 test score is only an indication of how well your browser supports the upcoming HTML5 standard and related specifications. It does not try to test all of the new features offered by HTML5, nor does it try to test the functionality of each feature it does detect. Despite these shortcomings we hope that by quantifying the level of support users and web developers will get an idea of how hard the browser manufacturers work on improving their browsers and the web as a development platform. The score is calculated by testing for the many new features of HTML5. Each feature is worth one or more points. Apart from the main HTML5 specification and other specifications created the W3C HTML Working Group, this test also awards points for supporting related drafts and specifications. Some of these specifications were initially part of HTML5, but are now further developed by other W3C working groups. WebGL is also part of this test despite not being developed by the W3C, because it extends the HTML5 canvas element with a 3d context. The test also awards bonus points for supporting audio and video codecs and supporting SVG or MathML embedding in a plain HTML document. These test do not count towards the total score because HTML5 does not specify any required audio or video codec. Also SVG and MathML are not required by HTML5, the specification only specifies rules for how such content should be embedded inside a plain HTML file. Please be aware that the specifications that are being tested are still in development and could change before receiving an official status. In the future new tests will be added for the pieces of the specification that are currently still missing. The maximum number of points that can be scored is 300 at this moment, but this is a moving goalpost.” It looks like their tests haven’t been updated since June, but the numbers are pretty scary as a developer because it means I’m going to have to do a lot of browser sniffing before assuming a particular feature is available to use. Not that much different from what we do today as far as browser sniffing you say? I’d have to disagree since HTML5 takes it to a whole new level. In today’s world we have script libraries such as jQuery (my personal favorite), Prototype, script.aculo.us, YUI Library, MooTools, etc. that handle the heavy lifting for us. Until those libraries handle all of the key HTML5 features available it’s going to be a challenge. Certain features such as Canvas are supported fairly well across most of the major browsers while other features such as audio and video are hit or miss depending upon what codec you want to use. Run the tests yourself to see what passes and what fails for different browsers. You can also view the HTML5 Test Suite Conformance Results at http://test.w3.org/html/tests/reporting/report.htm (a work in progress). The table below lists the scores that the HTML5Test site returned for different browsers I have installed on my desktop PC and laptop. A specific list of tests run and features supported are given when you go to the site. Note that I went ahead and tested the IE9 beta and it didn’t do nearly as good as I expected it would, but it’s not officially out yet so I expect that number will change a lot. Am I opposed to HTML5 as a result of these tests? Of course not - I’m actually really excited about what it offers.  However, I’m trying to be realistic and feel it'll definitely add a new level of headache to the Web application development process having been through something like this many years ago. On the flipside, developers that are able to target a specific browser (typically Intranet apps) or master the cross-browser issues are going to release some pretty sweet applications. Check out http://html5gallery.com/ for a look at some of the more cutting-edge sites out there that use HTML5. Also check out the http://www.beautyoftheweb.com site that Microsoft put together to showcase IE9. Chrome 8 Safari 5 for Windows     Opera 10 Firefox 3.6     Internet Explorer 9 Beta (Note that it’s still beta) Internet Explorer 8

    Read the article

  • Professional WordPress Business Themes

    - by Matt
    Every now and then JustSkins.com receives quote requests for WordPress design for business websites. Most companies now keep up to date with a blog on their corporate website, that showcases their day to day activities & progresses.  Getting such professional wordpress driven website designed from the scratch costs you a lot. If you have decided to make WordPress the CMS for your business website, there are some Professional WordPress themes you can take a look at. We have created this list to help you save some time to do all the trying and the testing. Optimize by WooThemes Last year one of the most popular Business theme by WooThemes was the Coffee Break theme, Optimize is further adaptation of the same. It is simple, sleek design with great functionality. The customizable front page lets you showcase your work or product etc. Demo | Price: $70, Developer Price: $150 | DOWNLOAD WooThemes is also offering their whole Business theme pack for a very very reasonable fee, If you like multiple designs from them you can get this big deal for only $125 Onyx , Impacto by Simple Themes Simple Themes has been making very crisp & beautiful WordPress Themes & are also very reasonably priced. If their themes solve your purpose $39 membership for 3 months is a good deal.  If you are looking to create quick website, landing page or micro site their templates are best. Demo | Price: $39 for 3 Months Membership Rejuvenate by Templatic One of the most beautiful Premium WordPress Theme, Available in 4 elegant color schemes. This theme can be used for your Beauty, Spa and Studio Business. Demo | Price: $65  | DOWNLOAD Templatic has created great professional business templates, such as Gourmet, Real Estate, Job Board, Automobile & lots More. You can also get a Best Value Offer in $299 for all of Templatic Themes. TheProfessional by ElegantThemes Elegant Themes is known to provide very beautiful & straightforward designs. The professional wordpress theme is a simple, crisp & concise Theme you can use to create a business website. The 3 short blurbs on the homepage are simple, which can be used to point them to your major offerings and the prominent slider indicates a clear call to action. There are 52 themes to choose from & Elegant Themes is giving a great offer at such a small yearly fee. Demo | Price: $39 Yearly Membership  | DOWNLOAD Elegant Themes has a cluster of 52 magnificent themes, and all you have to do is pay $39 to win access to all of them. Join today! Some of the Professional designs that I like for a business website are SimplePress and Corporation. Extatic by Chimera Themes The theme includes plenty of great features including custom feature tour pages, portfolio sections, static feature areas, pricing table page, 20+ shortcodes, multiple page/post options, unlimited custom sidebars which can be assigned to posts/pages, advanced theme style editor and options page and much more. Its a must buy Demo | Price: $37 | DOWNLOAD Corporate by Clover Themes Simple Theme for a small business. Corporate is an clean, powerful and feature-rich corporate theme with dynamic and energy design. Demo | Price: $69.95 | DOWNLOAD Bizco by Themify Bizco is a very professional template for wordpress targeted at corporate and product based businesses. This theme is simple yet highly functional and is suitable for showcasing features of your service or product. With the custom page template you can change the display of your pages and posts easily with our visual custom panel. Demo | Price: $70  |DOWNLOAD Devision by Themetrust Devision is a small business wordpress theme that can be used to make a business website within a few minutes. It makes it very easy to showcase and highlight your services or product on the homepage. Demo | Price: Euro 39 | DOWNLOAD BizPress by WPZoom A professional business WordPress theme from WPZoom suitable for companies, organizations, product showcases or other business websites. The theme comes with 4 colour options, featured products / services slider on the homepage, drop down menus, theme options page etc. Demo | Price: $ 69 | DOWNLOAD Clean Classy Corporate by ThemeFuse A very impressive WordPress business theme, that can be used in multiple ways. It is suitable for many kinds, like web products, services, hosting etc etc. Clean Classy Corporate WordPress Theme has a clean crisp look and is professional in appeal. Demo | Price: $49  | DOWNLOAD Insdustry by ThemeJam A powerful Business WordPress Template along with lots of options, colors, and customizable features. This is one for almost any kind of blogger, corporate, or organization. Lots of features, gives it the kind of scalability you might need to create any kind of website. Demo | Price: $ 59 | DOWNLOAD AppPress by ChimeraThemes This professional business WordPress theme includes 5 different colour schemes, advanced theme options page, multiple homepage sliders, custom widgets and page templates. The theme also includes a range of other unique features such as custom title, live style editor to modify colours, font styles, sizes etc, and 20+ shortcodes for creating pricing tables, content columns, boxes, buttons and others. Demo | Price: $ 37 | DOWNLOAD Why WordPress Professional Template? You can modify them, these usually come with a lot of fancy features that enable you to create the website as per your usability & choice. In some cases the  Premium WordPress business themes can be accessed through a subscription service. Premium Vs Free WordPress Themes There are very good Free WordPress themes out there that you can use to modify and code further or create what you want, but this possible when you are technically able. On the contrary Premium WordPress business themes offers great features & can save you a lot of time and money. It varies from business to business, some like to keep their website simple while most want to keep cool nifty features and abilities to scale it differently for various sections, products or categories. All this & more is possible with a Professional Business theme that is suitable/close to your needs.

    Read the article

  • New Product: Oracle Java ME Embedded 3.2 – Small, Smart, Connected

    - by terrencebarr
    The Internet of Things (IoT) is coming. And, with todays launch of the Oracle Java ME Embedded 3.2 product, Java is going to play an even greater role in it. Java in the Internet of Things By all accounts, intelligent embedded devices are penetrating the world around us – driving industrial processes, monitoring environmental conditions, providing better health care, analyzing and processing data, and much more. And these devices are becoming increasingly connected, adding another dimension of utility. Welcome to the Internet of Things. As I blogged yesterday, this is a huge opportunity for the Java technology and ecosystem. To enable and utilize these billions of devices effectively you need a programming model, tools, and protocols which provide a feature-rich, consistent, scalable, manageable, and interoperable platform.  Java technology is ideally suited to address these technical and business problems, enabling you eliminate many of the typical challenges in designing embedded solutions. By using Java you can focus on building smarter, more valuable embedded solutions faster. To wit, Java technology is already powering around 10 billion devices worldwide. Delivering on this vision and accelerating the growth of embedded Java solutions, Oracle is today announcing a brand-new product: Oracle Java Micro Edition (ME) Embedded 3.2, accompanied by an update release of the Java ME Software Development Kit (SDK) to version 3.2. What is Oracle Java ME Embedded 3.2? Oracle Java ME Embedded 3.2 is a complete Java runtime client, optimized for ARM architecture connected microcontrollers and other resource-constrained systems. The product provides dedicated embedded functionality and is targeted for low-power, limited memory devices requiring support for a range of network services and I/O interfaces.  What features and APIs are provided by Oracle Java ME Embedded 3.2? Oracle Java ME Embedded 3.2 is a Java ME runtime based on CLDC 1.1 (JSR-139) and IMP-NG (JSR-228). The runtime and virtual machine (VM) are highly optimized for embedded use. Also included in the product are the following optional JSRs and Oracle APIs: File I/O API’s (JSR-75)  Wireless Messaging API’s (JSR-120) Web Services (JSR-172) Security and Trust Services subset (JSR-177) Location API’s (JSR-179) XML API’s (JSR-280)  Device Access API Application Management System (AMS) API AccessPoint API Logging API Additional embedded features are: Remote application management system Support for continuous 24×7 operation Application monitoring, auto-start, and system recovery Application access to peripheral interfaces such as GPIO, I2C, SPIO, memory mapped I/O Application level logging framework, including option for remote logging Headless on-device debugging – source level Java application debugging over IP Connection Remote configuration of the Java VM What type of platforms are targeted by Oracle Java ME 3.2 Embedded? The product is designed for embedded, always-on, resource-constrained, headless (no graphics/no UI), connected (wired or wireless) devices with a variety of peripheral I/O.  The high-level system requirements are as follows: System based on ARM architecture SOCs Memory footprint (approximate) from 130 KB RAM/350KB ROM (for a minimal, customized configuration) to 700 KB RAM/1500 KB ROM (for the full, standard configuration)  Very simple embedded kernel, or a more capable embedded OS/RTOS At least one type of network connection (wired or wireless) The initial release of the product is delivered as a device emulation environment for x86/Windows desktop computers, integrated with the Java ME SDK 3.2. A standard binary of Oracle Java ME Embedded 3.2 for ARM KEIL development boards based on ARM Cortex M-3/4 (KEIL MCBSTM32F200 using ST Micro SOC STM32F207IG) will soon be available for download from the Oracle Technology Network (OTN).  What types of applications can I develop with Oracle Java ME Embedded 3.2? The Oracle Java ME Embedded 3.2 product is a full-featured embedded Java runtime supporting applications based on the IMP-NG application model, which is derived from the well-known MIDP 2 application model. The runtime supports execution of multiple concurrent applications, remote application management, versatile connectivity, and a rich set of APIs and features relevant for embedded use cases, including the ability to interact with peripheral I/O directly from Java applications. This rich feature set, coupled with familiar and best-in class software development tools, allows developers to quickly build and deploy sophisticated embedded solutions for a wide range of use cases. Target markets well supported by Oracle Java ME Embedded 3.2 include wireless modules for M2M, industrial and building control, smart grid infrastructure, home automation, and environmental sensors and tracking. What tools are available for embedded application development for Oracle Java ME Embedded 3.2? Along with the release of Oracle Java ME Embedded 3.2, Oracle is also making available an updated version of the Java ME Software Development Kit (SDK), together with plug-ins for the NetBeans and Eclipse IDEs, to deliver a complete development environment for embedded application development.  OK – sounds great! Where can I find out more? And how do I get started? There is a complete set of information, data sheet, API documentation, “Getting Started Guide”, FAQ, and download links available: For an overview of Oracle Embeddable Java, see here. For the Oracle Java ME Embedded 3.2 press release, see here. For the Oracle Java ME Embedded 3.2 data sheet, see here. For the Oracle Java ME Embedded 3.2 landing page, see here. For the Oracle Java ME Embedded 3.2 documentation page, including a “Getting Started Guide” and FAQ, see here. For the Oracle Java ME SDK 3.2 landing and download page, see here. Finally, to ask more questions, please see the OTN “Java ME Embedded” forum To get started, grab the “Getting Started Guide” and download the Java ME SDK 3.2, which includes the Oracle Java ME Embedded 3.2 device emulation.  Can I learn more about Oracle Java ME Embedded 3.2 at JavaOne and/or Java Embedded @ JavaOne? Glad you asked Both conferences, JavaOne and Java Embedded @ JavaOne, will feature a host of content and information around the new Oracle Java ME Embedded 3.2 product, from technical and business sessions, to hands-on tutorials, and demos. Stay tuned, I will post details shortly. Cheers, – Terrence Filed under: Mobile & Embedded Tagged: "Oracle Java ME Embedded", Connected, embedded, Embedded Java, Java Embedded @ JavaOne, JavaOne, Smart

    Read the article

  • Forcing an External Activation with Service Broker

    - by Davide Mauri
    In these last days I’ve been working quite a lot with Service Broker, a technology I’m really happy to work with, since it can give a lot of satisfaction. The scale-out solution one can easily build is simply astonishing. I’m helping a company to build a very scalable and – yet almost inexpensive – invoicing system that has to be able to scale out using commodity hardware. To offload the work from the main server to satellite “compute nodes” (yes, I’ve borrowed this term from PDW) we’re using Service Broker and the External Activator application available in the SQL Server Feature Pack. For those who are not used to work with SSB, the External Activation is a feature that allows you to intercept the arrival of a message in a queue right from your application code. http://msdn.microsoft.com/en-us/library/ms171617.aspx (Look for “Event-Based Activation”) In order to make life even more easier, Microsoft released the External Activation application that saves you even from writing even this code. http://blogs.msdn.com/b/sql_service_broker/archive/tags/external+activator/ The External Activator application can be configured to execute your own application so that each time a message – an invoice in my case – arrives in the target queue, the invoking application is executed and the invoice is calculated. The very nice feature of External Activator is that it can automatically execute as many configured application in order to process as many messages as your system can handle.  This also a lot of create a scale-out solution, leaving to the developer only a fraction of the problems that usually came with asynchronous programming. Developers are also shielded from Service Broker since everything can be encapsulated in Stored Procedures, so that – for them – developing such scale-out asynchronous solution is not much more complex than just executing a bunch of Stored Procedures. Now, if everything works correctly, you don’t have to bother of anything else. You put messages in the queue and your application, invoked by the External Activator, process them. But what happen if for some reason your application fails to process the messages. For examples, it crashes? The message is safe in the queue so you just need to process it again. But your application is invoked by the External Activator application, so now the question is, how do you wake up that app? Service Broker will engage the activation process only if certain conditions are met: http://msdn.microsoft.com/en-us/library/ms171601.aspx But how we can invoke the activation process manually, without having to wait for another message to arrive (the arrival of a new message is a condition that can fire the activation process)? The “trick” is to do manually with the activation process does: sending a system message to a queue in charge of handling External Activation messages: declare @conversationHandle uniqueidentifier; declare @n xml = N' <EVENT_INSTANCE>   <EventType>QUEUE_ACTIVATION</EventType>   <PostTime>' + CONVERT(CHAR(24),GETDATE(),126) + '</PostTime>   <SPID>' + CAST(@@SPID AS VARCHAR(9)) + '</SPID>   <ServerName>[your_server_name]</ServerName>   <LoginName>[your_login_name]</LoginName>   <UserName>[your_user_name]</UserName>   <DatabaseName>[your_database_name]</DatabaseName>   <SchemaName>[your_queue_schema_name]</SchemaName>   <ObjectName>[your_queue_name]</ObjectName>   <ObjectType>QUEUE</ObjectType> </EVENT_INSTANCE>' begin dialog conversation     @conversationHandle from service        [<your_initiator_service_name>] to service          '<your_event_notification_service>' on contract         [http://schemas.microsoft.com/SQL/Notifications/PostEventNotification] with     encryption = off,     lifetime = 6000 ; send on conversation     @conversationHandle message type     [http://schemas.microsoft.com/SQL/Notifications/EventNotification] (@n) ;     end conversation @conversationHandle; That’s it! Put the code in a Stored Procedure and you can add to your application a button that says “Force Queue Processing” (or something similar) in order to start the activation process whenever you need it (which should not occur too frequently but it may happen). PS I know that the “fire-and-forget” (ending the conversation without waiting for an answer) technique is not a best practice, but in this case I don’t see how it can hurts so I decided to stay very close to the KISS principle []

    Read the article

  • SQL Server 2012 - AlwaysOn

    - by Claus Jandausch
    Ich war nicht nur irritiert, ich war sogar regelrecht schockiert - und für einen kurzen Moment sprachlos (was nur selten der Fall ist). Gerade eben hatte mich jemand gefragt "Wann Oracle denn etwas Vergleichbares wie AlwaysOn bieten würde - und ob überhaupt?" War ich hier im falschen Film gelandet? Ich konnte nicht anders, als meinen Unmut kundzutun und zu erklären, dass die Fragestellung normalerweise anders herum läuft. Zugegeben - es mag vielleicht strittige Punkte geben im Vergleich zwischen Oracle und SQL Server - bei denen nicht unbedingt immer Oracle die Nase vorn haben muss - aber das Thema Clustering für Hochverfügbarkeit (HA), Disaster Recovery (DR) und Skalierbarkeit gehört mit Sicherheit nicht dazu. Dieses Erlebnis hakte ich am Nachgang als Einzelfall ab, der so nie wieder vorkommen würde. Bis ich kurz darauf eines Besseren belehrt wurde und genau die selbe Frage erneut zu hören bekam. Diesmal sogar im Exadata-Umfeld und einem Oracle Stretch Cluster. Einmal ist keinmal, doch zweimal ist einmal zu viel... Getreu diesem alten Motto war mir klar, dass man das so nicht länger stehen lassen konnte. Ich habe keine Ahnung, wie die Microsoft Marketing Abteilung es geschafft hat, unter dem AlwaysOn Brading eine innovative Technologie vermuten zu lassen - aber sie hat ihren Job scheinbar gut gemacht. Doch abgesehen von einem guten Marketing, stellt sich natürlich die Frage, was wirklich dahinter steckt und wie sich das Ganze mit Oracle vergleichen lässt - und ob überhaupt? Damit wären wir wieder bei der ursprünglichen Frage angelangt.  So viel zum Hintergrund dieses Blogbeitrags - von meiner Antwort handelt der restliche Blog. "Windows was the God ..." Um den wahren Unterschied zwischen Oracle und Microsoft verstehen zu können, muss man zunächst das bedeutendste Microsoft Dogma kennen. Es lässt sich schlicht und einfach auf den Punkt bringen: "Alles muss auf Windows basieren." Die Überschrift dieses Absatzes ist kein von mir erfundener Ausspruch, sondern ein Zitat. Konkret stammt es aus einem längeren Artikel von Kurt Eichenwald in der Vanity Fair aus dem August 2012. Er lautet Microsoft's Lost Decade und sei jedem ans Herz gelegt, der die "Microsoft-Maschinerie" unter Steve Ballmer und einige ihrer Kuriositäten besser verstehen möchte. "YOU TALKING TO ME?" Microsoft C.E.O. Steve Ballmer bei seiner Keynote auf der 2012 International Consumer Electronics Show in Las Vegas am 9. Januar   Manche Dinge in diesem Artikel mögen überspitzt dargestellt erscheinen - sind sie aber nicht. Vieles davon kannte ich bereits aus eigener Erfahrung und kann es nur bestätigen. Anderes hat sich mir erst so richtig erschlossen. Insbesondere die folgenden Passagen führten zum Aha-Erlebnis: “Windows was the god—everything had to work with Windows,” said Stone... “Every little thing you want to write has to build off of Windows (or other existing roducts),” one software engineer said. “It can be very confusing, …” Ich habe immer schon darauf hingewiesen, dass in einem SQL Server Failover Cluster die Microsoft Datenbank eigentlich nichts Nenneswertes zum Geschehen beiträgt, sondern sich voll und ganz auf das Windows Betriebssystem verlässt. Deshalb muss man auch die Windows Server Enterprise Edition installieren, soll ein Failover Cluster für den SQL Server eingerichtet werden. Denn hier werden die Cluster Services geliefert - nicht mit dem SQL Server. Er ist nur lediglich ein weiteres Server Produkt, für das Windows in Ausfallszenarien genutzt werden kann - so wie Microsoft Exchange beispielsweise, oder Microsoft SharePoint, oder irgendein anderes Server Produkt das auf Windows gehostet wird. Auch Oracle kann damit genutzt werden. Das Stichwort lautet hier: Oracle Failsafe. Nur - warum sollte man das tun, wenn gleichzeitig eine überlegene Technologie wie die Oracle Real Application Clusters (RAC) zur Verfügung steht, die dann auch keine Windows Enterprise Edition voraussetzen, da Oracle die eigene Clusterware liefert. Welche darüber hinaus für kürzere Failover-Zeiten sorgt, da diese Cluster-Technologie Datenbank-integriert ist und sich nicht auf "Dritte" verlässt. Wenn man sich also schon keine technischen Vorteile mit einem SQL Server Failover Cluster erkauft, sondern zusätzlich noch versteckte Lizenzkosten durch die Lizenzierung der Windows Server Enterprise Edition einhandelt, warum hat Microsoft dann in den vergangenen Jahren seit SQL Server 2000 nicht ebenfalls an einer neuen und innovativen Lösung gearbeitet, die mit Oracle RAC mithalten kann? Entwickler hat Microsoft genügend? Am Geld kann es auch nicht liegen? Lesen Sie einfach noch einmal die beiden obenstehenden Zitate und sie werden den Grund verstehen. Anders lässt es sich ja auch gar nicht mehr erklären, dass AlwaysOn aus zwei unterschiedlichen Technologien besteht, die beide jedoch wiederum auf dem Windows Server Failover Clustering (WSFC) basieren. Denn daraus ergeben sich klare Nachteile - aber dazu später mehr. Um AlwaysOn zu verstehen, sollte man sich zunächst kurz in Erinnerung rufen, was Microsoft bisher an HA/DR (High Availability/Desaster Recovery) Lösungen für SQL Server zur Verfügung gestellt hat. Replikation Basiert auf logischer Replikation und Pubisher/Subscriber Architektur Transactional Replication Merge Replication Snapshot Replication Microsoft's Replikation ist vergleichbar mit Oracle GoldenGate. Oracle GoldenGate stellt jedoch die umfassendere Technologie dar und bietet High Performance. Log Shipping Microsoft's Log Shipping stellt eine einfache Technologie dar, die vergleichbar ist mit Oracle Managed Recovery in Oracle Version 7. Das Log Shipping besitzt folgende Merkmale: Transaction Log Backups werden von Primary nach Secondary/ies geschickt Einarbeitung (z.B. Restore) auf jedem Secondary individuell Optionale dritte Server Instanz (Monitor Server) für Überwachung und Alarm Log Restore Unterbrechung möglich für Read-Only Modus (Secondary) Keine Unterstützung von Automatic Failover Database Mirroring Microsoft's Database Mirroring wurde verfügbar mit SQL Server 2005, sah aus wie Oracle Data Guard in Oracle 9i, war funktional jedoch nicht so umfassend. Für ein HA/DR Paar besteht eine 1:1 Beziehung, um die produktive Datenbank (Principle DB) abzusichern. Auf der Standby Datenbank (Mirrored DB) werden alle Insert-, Update- und Delete-Operationen nachgezogen. Modi Synchron (High-Safety Modus) Asynchron (High-Performance Modus) Automatic Failover Unterstützt im High-Safety Modus (synchron) Witness Server vorausgesetzt     Zur Frage der Kontinuität Es stellt sich die Frage, wie es um diesen Technologien nun im Zusammenhang mit SQL Server 2012 bestellt ist. Unter Fanfaren seinerzeit eingeführt, war Database Mirroring das erklärte Mittel der Wahl. Ich bin kein Produkt Manager bei Microsoft und kann hierzu nur meine Meinung äußern, aber zieht man den SQL AlwaysOn Team Blog heran, so sieht es nicht gut aus für das Database Mirroring - zumindest nicht langfristig. "Does AlwaysOn Availability Group replace Database Mirroring going forward?” “The short answer is we recommend that you migrate from the mirroring configuration or even mirroring and log shipping configuration to using Availability Group. Database Mirroring will still be available in the Denali release but will be phased out over subsequent releases. Log Shipping will continue to be available in future releases.” Damit wären wir endlich beim eigentlichen Thema angelangt. Was ist eine sogenannte Availability Group und was genau hat es mit der vielversprechend klingenden Bezeichnung AlwaysOn auf sich?   SQL Server 2012 - AlwaysOn Zwei HA-Features verstekcne sich hinter dem “AlwaysOn”-Branding. Einmal das AlwaysOn Failover Clustering aka SQL Server Failover Cluster Instances (FCI) - zum Anderen die AlwaysOn Availability Groups. Failover Cluster Instances (FCI) Entspricht ungefähr dem Stretch Cluster Konzept von Oracle Setzt auf Windows Server Failover Clustering (WSFC) auf Bietet HA auf Instanz-Ebene AlwaysOn Availability Groups (Verfügbarkeitsgruppen) Ähnlich der Idee von Consistency Groups, wie in Storage-Level Replikations-Software von z.B. EMC SRDF Abhängigkeiten zu Windows Server Failover Clustering (WSFC) Bietet HA auf Datenbank-Ebene   Hinweis: Verwechseln Sie nicht eine SQL Server Datenbank mit einer Oracle Datenbank. Und auch nicht eine Oracle Instanz mit einer SQL Server Instanz. Die gleichen Begriffe haben hier eine andere Bedeutung - nicht selten ein Grund, weshalb Oracle- und Microsoft DBAs schnell aneinander vorbei reden. Denken Sie bei einer SQL Server Datenbank eher an ein Oracle Schema, das kommt der Sache näher. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema. Wenn Sie die genauen Unterschiede kennen möchten, finden Sie eine detaillierte Beschreibung in meinem Buch "Oracle10g Release 2 für Windows und .NET", erhältich bei Lehmanns, Amazon, etc.   Windows Server Failover Clustering (WSFC) Wie man sieht, basieren beide AlwaysOn Technologien wiederum auf dem Windows Server Failover Clustering (WSFC), um einerseits Hochverfügbarkeit auf Ebene der Instanz zu gewährleisten und andererseits auf der Datenbank-Ebene. Deshalb nun eine kurze Beschreibung der WSFC. Die WSFC sind ein mit dem Windows Betriebssystem geliefertes Infrastruktur-Feature, um HA für Server Anwendungen, wie Microsoft Exchange, SharePoint, SQL Server, etc. zu bieten. So wie jeder andere Cluster, besteht ein WSFC Cluster aus einer Gruppe unabhängiger Server, die zusammenarbeiten, um die Verfügbarkeit einer Applikation oder eines Service zu erhöhen. Falls ein Cluster-Knoten oder -Service ausfällt, kann der auf diesem Knoten bisher gehostete Service automatisch oder manuell auf einen anderen im Cluster verfügbaren Knoten transferriert werden - was allgemein als Failover bekannt ist. Unter SQL Server 2012 verwenden sowohl die AlwaysOn Avalability Groups, als auch die AlwaysOn Failover Cluster Instances die WSFC als Plattformtechnologie, um Komponenten als WSFC Cluster-Ressourcen zu registrieren. Verwandte Ressourcen werden in eine Ressource Group zusammengefasst, die in Abhängigkeit zu anderen WSFC Cluster-Ressourcen gebracht werden kann. Der WSFC Cluster Service kann jetzt die Notwendigkeit zum Neustart der SQL Server Instanz erfassen oder einen automatischen Failover zu einem anderen Server-Knoten im WSFC Cluster auslösen.   Failover Cluster Instances (FCI) Eine SQL Server Failover Cluster Instanz (FCI) ist eine einzelne SQL Server Instanz, die in einem Failover Cluster betrieben wird, der aus mehreren Windows Server Failover Clustering (WSFC) Knoten besteht und so HA (High Availability) auf Ebene der Instanz bietet. Unter Verwendung von Multi-Subnet FCI kann auch Remote DR (Disaster Recovery) unterstützt werden. Eine weitere Option für Remote DR besteht darin, eine unter FCI gehostete Datenbank in einer Availability Group zu betreiben. Hierzu später mehr. FCI und WSFC Basis FCI, das für lokale Hochverfügbarkeit der Instanzen genutzt wird, ähnelt der veralteten Architektur eines kalten Cluster (Aktiv-Passiv). Unter SQL Server 2008 wurde diese Technologie SQL Server 2008 Failover Clustering genannt. Sie nutzte den Windows Server Failover Cluster. In SQL Server 2012 hat Microsoft diese Basistechnologie unter der Bezeichnung AlwaysOn zusammengefasst. Es handelt sich aber nach wie vor um die klassische Aktiv-Passiv-Konfiguration. Der Ablauf im Failover-Fall ist wie folgt: Solange kein Hardware-oder System-Fehler auftritt, werden alle Dirty Pages im Buffer Cache auf Platte geschrieben Alle entsprechenden SQL Server Services (Dienste) in der Ressource Gruppe werden auf dem aktiven Knoten gestoppt Die Ownership der Ressource Gruppe wird auf einen anderen Knoten der FCI transferriert Der neue Owner (Besitzer) der Ressource Gruppe startet seine SQL Server Services (Dienste) Die Connection-Anforderungen einer Client-Applikation werden automatisch auf den neuen aktiven Knoten mit dem selben Virtuellen Network Namen (VNN) umgeleitet Abhängig vom Zeitpunkt des letzten Checkpoints, kann die Anzahl der Dirty Pages im Buffer Cache, die noch auf Platte geschrieben werden müssen, zu unvorhersehbar langen Failover-Zeiten führen. Um diese Anzahl zu drosseln, besitzt der SQL Server 2012 eine neue Fähigkeit, die Indirect Checkpoints genannt wird. Indirect Checkpoints ähnelt dem Fast-Start MTTR Target Feature der Oracle Datenbank, das bereits mit Oracle9i verfügbar war.   SQL Server Multi-Subnet Clustering Ein SQL Server Multi-Subnet Failover Cluster entspricht vom Konzept her einem Oracle RAC Stretch Cluster. Doch dies ist nur auf den ersten Blick der Fall. Im Gegensatz zu RAC ist in einem lokalen SQL Server Failover Cluster jeweils nur ein Knoten aktiv für eine Datenbank. Für die Datenreplikation zwischen geografisch entfernten Sites verlässt sich Microsoft auf 3rd Party Lösungen für das Storage Mirroring.     Die Verbesserung dieses Szenario mit einer SQL Server 2012 Implementierung besteht schlicht darin, dass eine VLAN-Konfiguration (Virtual Local Area Network) nun nicht mehr benötigt wird, so wie dies bisher der Fall war. Das folgende Diagramm stellt dar, wie der Ablauf mit SQL Server 2012 gehandhabt wird. In Site A und Site B wird HA jeweils durch einen lokalen Aktiv-Passiv-Cluster sichergestellt.     Besondere Aufmerksamkeit muss hier der Konfiguration und dem Tuning geschenkt werden, da ansonsten völlig inakzeptable Failover-Zeiten resultieren. Dies liegt darin begründet, weil die Downtime auf Client-Seite nun nicht mehr nur von der reinen Failover-Zeit abhängt, sondern zusätzlich von der Dauer der DNS Replikation zwischen den DNS Servern. (Rufen Sie sich in Erinnerung, dass wir gerade von Multi-Subnet Clustering sprechen). Außerdem ist zu berücksichtigen, wie schnell die Clients die aktualisierten DNS Informationen abfragen. Spezielle Konfigurationen für Node Heartbeat, HostRecordTTL (Host Record Time-to-Live) und Intersite Replication Frequeny für Active Directory Sites und Services werden notwendig. Default TTL für Windows Server 2008 R2: 20 Minuten Empfohlene Einstellung: 1 Minute DNS Update Replication Frequency in Windows Umgebung: 180 Minuten Empfohlene Einstellung: 15 Minuten (minimaler Wert)   Betrachtet man diese Werte, muss man feststellen, dass selbst eine optimale Konfiguration die rigiden SLAs (Service Level Agreements) heutiger geschäftskritischer Anwendungen für HA und DR nicht erfüllen kann. Denn dies impliziert eine auf der Client-Seite erlebte Failover-Zeit von insgesamt 16 Minuten. Hierzu ein Auszug aus der SQL Server 2012 Online Dokumentation: Cons: If a cross-subnet failover occurs, the client recovery time could be 15 minutes or longer, depending on your HostRecordTTL setting and the setting of your cross-site DNS/AD replication schedule.    Wir sind hier an einem Punkt unserer Überlegungen angelangt, an dem sich erklärt, weshalb ich zuvor das "Windows was the God ..." Zitat verwendet habe. Die unbedingte Abhängigkeit zu Windows wird zunehmend zum Problem, da sie die Komplexität einer Microsoft-basierenden Lösung erhöht, anstelle sie zu reduzieren. Und Komplexität ist das Letzte, was sich CIOs heutzutage wünschen.  Zur Ehrenrettung des SQL Server 2012 und AlwaysOn muss man sagen, dass derart lange Failover-Zeiten kein unbedingtes "Muss" darstellen, sondern ein "Kann". Doch auch ein "Kann" kann im unpassenden Moment unvorhersehbare und kostspielige Folgen haben. Die Unabsehbarkeit ist wiederum Ursache vieler an der Implementierung beteiligten Komponenten und deren Abhängigkeiten, wie beispielsweise drei Cluster-Lösungen (zwei von Microsoft, eine 3rd Party Lösung). Wie man die Sache auch dreht und wendet, kommt man an diesem Fakt also nicht vorbei - ganz unabhängig von der Dauer einer Downtime oder Failover-Zeiten. Im Gegensatz zu AlwaysOn und der hier vorgestellten Version eines Stretch-Clusters, vermeidet eine entsprechende Oracle Implementierung eine derartige Komplexität, hervorgerufen duch multiple Abhängigkeiten. Den Unterschied machen Datenbank-integrierte Mechanismen, wie Fast Application Notification (FAN) und Fast Connection Failover (FCF). Für Oracle MAA Konfigurationen (Maximum Availability Architecture) sind Inter-Site Failover-Zeiten im Bereich von Sekunden keine Seltenheit. Wenn Sie dem Link zur Oracle MAA folgen, finden Sie außerdem eine Reihe an Customer Case Studies. Auch dies ist ein wichtiges Unterscheidungsmerkmal zu AlwaysOn, denn die Oracle Technologie hat sich bereits zigfach in höchst kritischen Umgebungen bewährt.   Availability Groups (Verfügbarkeitsgruppen) Die sogenannten Availability Groups (Verfügbarkeitsgruppen) sind - neben FCI - der weitere Baustein von AlwaysOn.   Hinweis: Bevor wir uns näher damit beschäftigen, sollten Sie sich noch einmal ins Gedächtnis rufen, dass eine SQL Server Datenbank nicht die gleiche Bedeutung besitzt, wie eine Oracle Datenbank, sondern eher einem Oracle Schema entspricht. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema.   Eine Verfügbarkeitsgruppe setzt sich zusammen aus einem Set mehrerer Benutzer-Datenbanken, die im Falle eines Failover gemeinsam als Gruppe behandelt werden. Eine Verfügbarkeitsgruppe unterstützt ein Set an primären Datenbanken (primäres Replikat) und einem bis vier Sets von entsprechenden sekundären Datenbanken (sekundäre Replikate).       Es können jedoch nicht alle SQL Server Datenbanken einer AlwaysOn Verfügbarkeitsgruppe zugeordnet werden. Der SQL Server Spezialist Michael Otey zählt in seinem SQL Server Pro Artikel folgende Anforderungen auf: Verfügbarkeitsgruppen müssen mit Benutzer-Datenbanken erstellt werden. System-Datenbanken können nicht verwendet werden Die Datenbanken müssen sich im Read-Write Modus befinden. Read-Only Datenbanken werden nicht unterstützt Die Datenbanken in einer Verfügbarkeitsgruppe müssen Multiuser Datenbanken sein Sie dürfen nicht das AUTO_CLOSE Feature verwenden Sie müssen das Full Recovery Modell nutzen und es muss ein vollständiges Backup vorhanden sein Eine gegebene Datenbank kann sich nur in einer einzigen Verfügbarkeitsgruppe befinden und diese Datenbank düerfen nicht für Database Mirroring konfiguriert sein Microsoft empfiehl außerdem, dass der Verzeichnispfad einer Datenbank auf dem primären und sekundären Server identisch sein sollte Wie man sieht, eignen sich Verfügbarkeitsgruppen nicht, um HA und DR vollständig abzubilden. Die Unterscheidung zwischen der Instanzen-Ebene (FCI) und Datenbank-Ebene (Availability Groups) ist von hoher Bedeutung. Vor kurzem wurde mir gesagt, dass man mit den Verfügbarkeitsgruppen auf Shared Storage verzichten könne und dadurch Kosten spart. So weit so gut ... Man kann natürlich eine Installation rein mit Verfügbarkeitsgruppen und ohne FCI durchführen - aber man sollte sich dann darüber bewusst sein, was man dadurch alles nicht abgesichert hat - und dies wiederum für Desaster Recovery (DR) und SLAs (Service Level Agreements) bedeutet. Kurzum, um die Kombination aus beiden AlwaysOn Produkten und der damit verbundene Komplexität kommt man wohl in der Praxis nicht herum.    Availability Groups und WSFC AlwaysOn hängt von Windows Server Failover Clustering (WSFC) ab, um die aktuellen Rollen der Verfügbarkeitsreplikate einer Verfügbarkeitsgruppe zu überwachen und zu verwalten, und darüber zu entscheiden, wie ein Failover-Ereignis die Verfügbarkeitsreplikate betrifft. Das folgende Diagramm zeigt de Beziehung zwischen Verfügbarkeitsgruppen und WSFC:   Der Verfügbarkeitsmodus ist eine Eigenschaft jedes Verfügbarkeitsreplikats. Synychron und Asynchron können also gemischt werden: Availability Modus (Verfügbarkeitsmodus) Asynchroner Commit-Modus Primäres replikat schließt Transaktionen ohne Warten auf Sekundäres Synchroner Commit-Modus Primäres Replikat wartet auf Commit von sekundärem Replikat Failover Typen Automatic Manual Forced (mit möglichem Datenverlust) Synchroner Commit-Modus Geplanter, manueller Failover ohne Datenverlust Automatischer Failover ohne Datenverlust Asynchroner Commit-Modus Nur Forced, manueller Failover mit möglichem Datenverlust   Der SQL Server kennt keinen separaten Switchover Begriff wie in Oracle Data Guard. Für SQL Server werden alle Role Transitions als Failover bezeichnet. Tatsächlich unterstützt der SQL Server keinen Switchover für asynchrone Verbindungen. Es gibt nur die Form des Forced Failover mit möglichem Datenverlust. Eine ähnliche Fähigkeit wie der Switchover unter Oracle Data Guard ist so nicht gegeben.   SQL Sever FCI mit Availability Groups (Verfügbarkeitsgruppen) Neben den Verfügbarkeitsgruppen kann eine zweite Failover-Ebene eingerichtet werden, indem SQL Server FCI (auf Shared Storage) mit WSFC implementiert wird. Ein Verfügbarkeitesreplikat kann dann auf einer Standalone Instanz gehostet werden, oder einer FCI Instanz. Zum Verständnis: Die Verfügbarkeitsgruppen selbst benötigen kein Shared Storage. Diese Kombination kann verwendet werden für lokale HA auf Ebene der Instanz und DR auf Datenbank-Ebene durch Verfügbarkeitsgruppen. Das folgende Diagramm zeigt dieses Szenario:   Achtung! Hier handelt es sich nicht um ein Pendant zu Oracle RAC plus Data Guard, auch wenn das Bild diesen Eindruck vielleicht vermitteln mag - denn alle sekundären Knoten im FCI sind rein passiv. Es existiert außerdem eine weitere und ernsthafte Einschränkung: SQL Server Failover Cluster Instanzen (FCI) unterstützen nicht das automatische AlwaysOn Failover für Verfügbarkeitsgruppen. Jedes unter FCI gehostete Verfügbarkeitsreplikat kann nur für manuelles Failover konfiguriert werden.   Lesbare Sekundäre Replikate Ein oder mehrere Verfügbarkeitsreplikate in einer Verfügbarkeitsgruppe können für den lesenden Zugriff konfiguriert werden, wenn sie als sekundäres Replikat laufen. Dies ähnelt Oracle Active Data Guard, jedoch gibt es Einschränkungen. Alle Abfragen gegen die sekundäre Datenbank werden automatisch auf das Snapshot Isolation Level abgebildet. Es handelt sich dabei um eine Versionierung der Rows. Microsoft versuchte hiermit die Oracle MVRC (Multi Version Read Consistency) nachzustellen. Tatsächlich muss man die SQL Server Snapshot Isolation eher mit Oracle Flashback vergleichen. Bei der Implementierung des Snapshot Isolation Levels handelt sich um ein nachträglich aufgesetztes Feature und nicht um einen inhärenten Teil des Datenbank-Kernels, wie im Falle Oracle. (Ich werde hierzu in Kürze einen weiteren Blogbeitrag verfassen, wenn ich mich mit der neuen SQL Server 2012 Core Lizenzierung beschäftige.) Für die Praxis entstehen aus der Abbildung auf das Snapshot Isolation Level ernsthafte Restriktionen, derer man sich für den Betrieb in der Praxis bereits vorab bewusst sein sollte: Sollte auf der primären Datenbank eine aktive Transaktion zu dem Zeitpunkt existieren, wenn ein lesbares sekundäres Replikat in die Verfügbarkeitsgruppe aufgenommen wird, werden die Row-Versionen auf der korrespondierenden sekundären Datenbank nicht sofort vollständig verfügbar sein. Eine aktive Transaktion auf dem primären Replikat muss zuerst abgeschlossen (Commit oder Rollback) und dieser Transaktions-Record auf dem sekundären Replikat verarbeitet werden. Bis dahin ist das Isolation Level Mapping auf der sekundären Datenbank unvollständig und Abfragen sind temporär geblockt. Microsoft sagt dazu: "This is needed to guarantee that row versions are available on the secondary replica before executing the query under snapshot isolation as all isolation levels are implicitly mapped to snapshot isolation." (SQL Storage Engine Blog: AlwaysOn: I just enabled Readable Secondary but my query is blocked?)  Grundlegend bedeutet dies, dass ein aktives lesbares Replikat nicht in die Verfügbarkeitsgruppe aufgenommen werden kann, ohne das primäre Replikat vorübergehend stillzulegen. Da Leseoperationen auf das Snapshot Isolation Transaction Level abgebildet werden, kann die Bereinigung von Ghost Records auf dem primären Replikat durch Transaktionen auf einem oder mehreren sekundären Replikaten geblockt werden - z.B. durch eine lang laufende Abfrage auf dem sekundären Replikat. Diese Bereinigung wird auch blockiert, wenn die Verbindung zum sekundären Replikat abbricht oder der Datenaustausch unterbrochen wird. Auch die Log Truncation wird in diesem Zustant verhindert. Wenn dieser Zustand längere Zeit anhält, empfiehlt Microsoft das sekundäre Replikat aus der Verfügbarkeitsgruppe herauszunehmen - was ein ernsthaftes Downtime-Problem darstellt. Die Read-Only Workload auf den sekundären Replikaten kann eingehende DDL Änderungen blockieren. Obwohl die Leseoperationen aufgrund der Row-Versionierung keine Shared Locks halten, führen diese Operatioen zu Sch-S Locks (Schemastabilitätssperren). DDL-Änderungen durch Redo-Operationen können dadurch blockiert werden. Falls DDL aufgrund konkurrierender Lese-Workload blockiert wird und der Schwellenwert für 'Recovery Interval' (eine SQL Server Konfigurationsoption) überschritten wird, generiert der SQL Server das Ereignis sqlserver.lock_redo_blocked, welches Microsoft zum Kill der blockierenden Leser empfiehlt. Auf die Verfügbarkeit der Anwendung wird hierbei keinerlei Rücksicht genommen.   Keine dieser Einschränkungen existiert mit Oracle Active Data Guard.   Backups auf sekundären Replikaten  Über die sekundären Replikate können Backups (BACKUP DATABASE via Transact-SQL) nur als copy-only Backups einer vollständigen Datenbank, Dateien und Dateigruppen erstellt werden. Das Erstellen inkrementeller Backups ist nicht unterstützt, was ein ernsthafter Rückstand ist gegenüber der Backup-Unterstützung physikalischer Standbys unter Oracle Data Guard. Hinweis: Ein möglicher Workaround via Snapshots, bleibt ein Workaround. Eine weitere Einschränkung dieses Features gegenüber Oracle Data Guard besteht darin, dass das Backup eines sekundären Replikats nicht ausgeführt werden kann, wenn es nicht mit dem primären Replikat kommunizieren kann. Darüber hinaus muss das sekundäre Replikat synchronisiert sein oder sich in der Synchronisation befinden, um das Beackup auf dem sekundären Replikat erstellen zu können.   Vergleich von Microsoft AlwaysOn mit der Oracle MAA Ich komme wieder zurück auf die Eingangs erwähnte, mehrfach an mich gestellte Frage "Wann denn - und ob überhaupt - Oracle etwas Vergleichbares wie AlwaysOn bieten würde?" und meine damit verbundene (kurze) Irritation. Wenn Sie diesen Blogbeitrag bis hierher gelesen haben, dann kennen Sie jetzt meine darauf gegebene Antwort. Der eine oder andere Punkt traf dabei nicht immer auf Jeden zu, was auch nicht der tiefere Sinn und Zweck meiner Antwort war. Wenn beispielsweise kein Multi-Subnet mit im Spiel ist, sind alle diesbezüglichen Kritikpunkte zunächst obsolet. Was aber nicht bedeutet, dass sie nicht bereits morgen schon wieder zum Thema werden könnten (Sag niemals "Nie"). In manch anderes Fettnäpfchen tritt man wiederum nicht unbedingt in einer Testumgebung, sondern erst im laufenden Betrieb. Erst recht nicht dann, wenn man sich potenzieller Probleme nicht bewusst ist und keine dedizierten Tests startet. Und wer AlwaysOn erfolgreich positionieren möchte, wird auch gar kein Interesse daran haben, auf mögliche Schwachstellen und den besagten Teufel im Detail aufmerksam zu machen. Das ist keine Unterstellung - es ist nur menschlich. Außerdem ist es verständlich, dass man sich in erster Linie darauf konzentriert "was geht" und "was gut läuft", anstelle auf das "was zu Problemen führen kann" oder "nicht funktioniert". Wer will schon der Miesepeter sein? Für mich selbst gesprochen, kann ich nur sagen, dass ich lieber vorab von allen möglichen Einschränkungen wissen möchte, anstelle sie dann nach einer kurzen Zeit der heilen Welt schmerzhaft am eigenen Leib erfahren zu müssen. Ich bin davon überzeugt, dass es Ihnen nicht anders geht. Nachfolgend deshalb eine Zusammenfassung all jener Punkte, die ich im Vergleich zur Oracle MAA (Maximum Availability Architecture) als unbedingt Erwähnenswert betrachte, falls man eine Evaluierung von Microsoft AlwaysOn in Betracht zieht. 1. AlwaysOn ist eine komplexe Technologie Der SQL Server AlwaysOn Stack ist zusammengesetzt aus drei verschiedenen Technlogien: Windows Server Failover Clustering (WSFC) SQL Server Failover Cluster Instances (FCI) SQL Server Availability Groups (Verfügbarkeitsgruppen) Man kann eine derartige Lösung nicht als nahtlos bezeichnen, wofür auch die vielen von Microsoft dargestellten Einschränkungen sprechen. Während sich frühere SQL Server Versionen in Richtung eigener HA/DR Technologien entwickelten (wie Database Mirroring), empfiehlt Microsoft nun die Migration. Doch weshalb dieser Schwenk? Er führt nicht zu einem konsisten und robusten Angebot an HA/DR Technologie für geschäftskritische Umgebungen.  Liegt die Antwort in meiner These begründet, nach der "Windows was the God ..." noch immer gilt und man die Nachteile der allzu engen Kopplung mit Windows nicht sehen möchte? Entscheiden Sie selbst ... 2. Failover Cluster Instanzen - Kein RAC-Pendant Die SQL Server und Windows Server Clustering Technologie basiert noch immer auf dem veralteten Aktiv-Passiv Modell und führt zu einer Verschwendung von Systemressourcen. In einer Betrachtung von lediglich zwei Knoten erschließt sich auf Anhieb noch nicht der volle Mehrwert eines Aktiv-Aktiv Clusters (wie den Real Application Clusters), wie er von Oracle bereits vor zehn Jahren entwickelt wurde. Doch kennt man die Vorzüge der Skalierbarkeit durch einfaches Hinzufügen weiterer Cluster-Knoten, die dann alle gemeinsam als ein einziges logisches System zusammenarbeiten, versteht man was hinter dem Motto "Pay-as-you-Grow" steckt. In einem Aktiv-Aktiv Cluster geht es zwar auch um Hochverfügbarkeit - und ein Failover erfolgt zudem schneller, als in einem Aktiv-Passiv Modell - aber es geht eben nicht nur darum. An dieser Stelle sei darauf hingewiesen, dass die Oracle 11g Standard Edition bereits die Nutzung von Oracle RAC bis zu vier Sockets kostenfrei beinhaltet. Möchten Sie dazu Windows nutzen, benötigen Sie keine Windows Server Enterprise Edition, da Oracle 11g die eigene Clusterware liefert. Sie kommen in den Genuss von Hochverfügbarkeit und Skalierbarkeit und können dazu die günstigere Windows Server Standard Edition nutzen. 3. SQL Server Multi-Subnet Clustering - Abhängigkeit zu 3rd Party Storage Mirroring  Die SQL Server Multi-Subnet Clustering Architektur unterstützt den Aufbau eines Stretch Clusters, basiert dabei aber auf dem Aktiv-Passiv Modell. Das eigentlich Problematische ist jedoch, dass man sich zur Absicherung der Datenbank auf 3rd Party Storage Mirroring Technologie verlässt, ohne Integration zwischen dem Windows Server Failover Clustering (WSFC) und der darunterliegenden Mirroring Technologie. Wenn nun im Cluster ein Failover auf Instanzen-Ebene erfolgt, existiert keine Koordination mit einem möglichen Failover auf Ebene des Storage-Array. 4. Availability Groups (Verfügbarkeitsgruppen) - Vier, oder doch nur Zwei? Ein primäres Replikat erlaubt bis zu vier sekundäre Replikate innerhalb einer Verfügbarkeitsgruppe, jedoch nur zwei im Synchronen Commit Modus. Während dies zwar einen Vorteil gegenüber dem stringenten 1:1 Modell unter Database Mirroring darstellt, fällt der SQL Server 2012 damit immer noch weiter zurück hinter Oracle Data Guard mit bis zu 30 direkten Stanbdy Zielen - und vielen weiteren durch kaskadierende Ziele möglichen. Damit eignet sich Oracle Active Data Guard auch für die Bereitstellung einer Reader-Farm Skalierbarkeit für Internet-basierende Unternehmen. Mit AwaysOn Verfügbarkeitsgruppen ist dies nicht möglich. 5. Availability Groups (Verfügbarkeitsgruppen) - kein asynchrones Switchover  Die Technologie der Verfügbarkeitsgruppen wird auch als geeignetes Mittel für administrative Aufgaben positioniert - wie Upgrades oder Wartungsarbeiten. Man muss sich jedoch einem gravierendem Defizit bewusst sein: Im asynchronen Verfügbarkeitsmodus besteht die einzige Möglichkeit für Role Transition im Forced Failover mit Datenverlust! Um den Verlust von Daten durch geplante Wartungsarbeiten zu vermeiden, muss man den synchronen Verfügbarkeitsmodus konfigurieren, was jedoch ernstzunehmende Auswirkungen auf WAN Deployments nach sich zieht. Spinnt man diesen Gedanken zu Ende, kommt man zu dem Schluss, dass die Technologie der Verfügbarkeitsgruppen für geplante Wartungsarbeiten in einem derartigen Umfeld nicht effektiv genutzt werden kann. 6. Automatisches Failover - Nicht immer möglich Sowohl die SQL Server FCI, als auch Verfügbarkeitsgruppen unterstützen automatisches Failover. Möchte man diese jedoch kombinieren, wird das Ergebnis kein automatisches Failover sein. Denn ihr Zusammentreffen im Failover-Fall führt zu Race Conditions (Wettlaufsituationen), weshalb diese Konfiguration nicht länger das automatische Failover zu einem Replikat in einer Verfügbarkeitsgruppe erlaubt. Auch hier bestätigt sich wieder die tiefere Problematik von AlwaysOn, mit einer Zusammensetzung aus unterschiedlichen Technologien und der Abhängigkeit zu Windows. 7. Problematische RTO (Recovery Time Objective) Microsoft postioniert die SQL Server Multi-Subnet Clustering Architektur als brauchbare HA/DR Architektur. Bedenkt man jedoch die Problematik im Zusammenhang mit DNS Replikation und den möglichen langen Wartezeiten auf Client-Seite von bis zu 16 Minuten, sind strenge RTO Anforderungen (Recovery Time Objectives) nicht erfüllbar. Im Gegensatz zu Oracle besitzt der SQL Server keine Datenbank-integrierten Technologien, wie Oracle Fast Application Notification (FAN) oder Oracle Fast Connection Failover (FCF). 8. Problematische RPO (Recovery Point Objective) SQL Server ermöglicht Forced Failover (erzwungenes Failover), bietet jedoch keine Möglichkeit zur automatischen Übertragung der letzten Datenbits von einem alten zu einem neuen primären Replikat, wenn der Verfügbarkeitsmodus asynchron war. Oracle Data Guard hingegen bietet diese Unterstützung durch das Flush Redo Feature. Dies sichert "Zero Data Loss" und beste RPO auch in erzwungenen Failover-Situationen. 9. Lesbare Sekundäre Replikate mit Einschränkungen Aufgrund des Snapshot Isolation Transaction Level für lesbare sekundäre Replikate, besitzen diese Einschränkungen mit Auswirkung auf die primäre Datenbank. Die Bereinigung von Ghost Records auf der primären Datenbank, wird beeinflusst von lang laufenden Abfragen auf der lesabaren sekundären Datenbank. Die lesbare sekundäre Datenbank kann nicht in die Verfügbarkeitsgruppe aufgenommen werden, wenn es aktive Transaktionen auf der primären Datenbank gibt. Zusätzlich können DLL Änderungen auf der primären Datenbank durch Abfragen auf der sekundären blockiert werden. Und imkrementelle Backups werden hier nicht unterstützt.   Keine dieser Restriktionen existiert unter Oracle Data Guard.

    Read the article

< Previous Page | 68 69 70 71 72 73 74 75 76 77 78 79  | Next Page >