Search Results

Search found 2411 results on 97 pages for 'queue'.

Page 72/97 | < Previous Page | 68 69 70 71 72 73 74 75 76 77 78 79  | Next Page >

  • HPC Server Dynamic Job Scheduling: when jobs spawn jobs

    - by JoshReuben
    HPC Job Types HPC has 3 types of jobs http://technet.microsoft.com/en-us/library/cc972750(v=ws.10).aspx · Task Flow – vanilla sequence · Parametric Sweep – concurrently run multiple instances of the same program, each with a different work unit input · MPI – message passing between master & slave tasks But when you try go outside the box – job tasks that spawn jobs, blocking the parent task – you run the risk of resource starvation, deadlocks, and recursive, non-converging or exponential blow-up. The solution to this is to write some performance monitoring and job scheduling code. You can do this in 2 ways: manually control scheduling - allocate/ de-allocate resources, change job priorities, pause & resume tasks , restrict long running tasks to specific compute clusters Semi-automatically - set threshold params for scheduling. How – Control Job Scheduling In order to manage the tasks and resources that are associated with a job, you will need to access the ISchedulerJob interface - http://msdn.microsoft.com/en-us/library/microsoft.hpc.scheduler.ischedulerjob_members(v=vs.85).aspx This really allows you to control how a job is run – you can access & tweak the following features: max / min resource values whether job resources can grow / shrink, and whether jobs can be pre-empted, whether the job is exclusive per node the creator process id & the job pool timestamp of job creation & completion job priority, hold time & run time limit Re-queue count Job progress Max/ min Number of cores, nodes, sockets, RAM Dynamic task list – can add / cancel jobs on the fly Job counters When – poll perf counters Tweaking the job scheduler should be done on the basis of resource utilization according to PerfMon counters – HPC exposes 2 Perf objects: Compute Clusters, Compute Nodes http://technet.microsoft.com/en-us/library/cc720058(v=ws.10).aspx You can monitor running jobs according to dynamic thresholds – use your own discretion: Percentage processor time Number of running jobs Number of running tasks Total number of processors Number of processors in use Number of processors idle Number of serial tasks Number of parallel tasks Design Your algorithms correctly Finally , don’t assume you have unlimited compute resources in your cluster – design your algorithms with the following factors in mind: · Branching factor - http://en.wikipedia.org/wiki/Branching_factor - dynamically optimize the number of children per node · cutoffs to prevent explosions - http://en.wikipedia.org/wiki/Limit_of_a_sequence - not all functions converge after n attempts. You also need a threshold of good enough, diminishing returns · heuristic shortcuts - http://en.wikipedia.org/wiki/Heuristic - sometimes an exhaustive search is impractical and short cuts are suitable · Pruning http://en.wikipedia.org/wiki/Pruning_(algorithm) – remove / de-prioritize unnecessary tree branches · avoid local minima / maxima - http://en.wikipedia.org/wiki/Local_minima - sometimes an algorithm cant converge because it gets stuck in a local saddle – try simulated annealing, hill climbing or genetic algorithms to get out of these ruts   watch out for rounding errors – http://en.wikipedia.org/wiki/Round-off_error - multiple iterations can in parallel can quickly amplify & blow up your algo ! Use an epsilon, avoid floating point errors,  truncations, approximations Happy Coding !

    Read the article

  • SQL SERVER – PREEMPTIVE and Non-PREEMPTIVE – Wait Type – Day 19 of 28

    - by pinaldave
    In this blog post, we are going to talk about a very interesting subject. I often get questions related to SQL Server 2008 Book-Online about various Preemptive wait types. I got a few questions asking what these wait types are and how they could be interpreted. To get current wait types of the system, you can read this article and run the script: SQL SERVER – DMV – sys.dm_os_waiting_tasks and sys.dm_exec_requests – Wait Type – Day 4 of 28. Before we continue understanding them, let us study first what PREEMPTIVE and Non-PREEMPTIVE waits in SQL Server mean. PREEMPTIVE: Simply put, this wait means non-cooperative. While SQL Server is executing a task, the Operating System (OS) interrupts it. This leads to SQL Server to involuntarily give up the execution for other higher priority tasks. This is not good for SQL Server as it is a particular external process which makes SQL Server to yield. This kind of wait can reduce the performance drastically and needs to be investigated properly. Non-PREEMPTIVE: In simple terms, this wait means cooperative. SQL Server manages the scheduling of the threads. When SQL Server manages the scheduling instead of the OS, it makes sure its own priority. In this case, SQL Server decides the priority and one thread yields to another thread voluntarily. In the earlier version of SQL Server, there was no preemptive wait types mentioned and the associated task status with them was marked as suspended. In SQL Server 2005, preemptive wait types were not listed as well, but their associated task status was marked as running. In SQL Server 2008, preemptive wait types are properly listed and their associated task status is also marked as running. Now, SQL Server is in Non-Preemptive mode by default and it works fine. When CLR, extended Stored Procedures and other external components run, they run in Preemptive mode, leading to the creation of these wait types. There are a wide variety of preemptive wait types. If you see consistent high value in the Preemptive wait types, I strongly suggest that you look into the wait type and try to know the root cause. If you are still not sure, you can send me an email or leave a comment about it and I will do my best to help you reduce this wait type. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • SQL SERVER – DMV – sys.dm_os_waiting_tasks and sys.dm_exec_requests – Wait Type – Day 4 of 28

    - by pinaldave
    Previously, we covered the DMV sys.dm_os_wait_stats, and also saw how it can be useful to identify the major resource bottleneck. However, at the same time, we discussed that this is only useful when we are looking at an instance-level picture. Quite often we want to know about the processes going in our server at the given instant. Here is the query for the same. This DMV is written taking the following into consideration: we want to analyze the queries that are currently running or which have recently ran and their plan is still in the cache. SELECT dm_ws.wait_duration_ms, dm_ws.wait_type, dm_es.status, dm_t.TEXT, dm_qp.query_plan, dm_ws.session_ID, dm_es.cpu_time, dm_es.memory_usage, dm_es.logical_reads, dm_es.total_elapsed_time, dm_es.program_name, DB_NAME(dm_r.database_id) DatabaseName, -- Optional columns dm_ws.blocking_session_id, dm_r.wait_resource, dm_es.login_name, dm_r.command, dm_r.last_wait_type FROM sys.dm_os_waiting_tasks dm_ws INNER JOIN sys.dm_exec_requests dm_r ON dm_ws.session_id = dm_r.session_id INNER JOIN sys.dm_exec_sessions dm_es ON dm_es.session_id = dm_r.session_id CROSS APPLY sys.dm_exec_sql_text (dm_r.sql_handle) dm_t CROSS APPLY sys.dm_exec_query_plan (dm_r.plan_handle) dm_qp WHERE dm_es.is_user_process = 1 GO You can change CROSS APPLY to OUTER APPLY if you want to see all the details which are omitted because of the plan cache. Let us analyze the result of the above query and see how it can be helpful to identify the query and the kind of wait type it creates. Click to Enlarage The above query will return various columns. There are various columns that provide very important details. e.g. wait_duration_ms – it indicates current wait for the query that executes at that point of time. wait_type – it indicates the current wait type for the query text – indicates the query text query_plan – when clicked on the same, it will display the query plans There are many other important information like CPU_time, memory_usage, and logical_reads, which can be read from the query as well. In future posts on this series, we will see how once identified wait type we can attempt to reduce the same. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: DMV, Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • Going for Gold

    - by Simple-Talk Editorial Team
    There was a spring in the step of some members of our development teams here at Red Gate, on hearing that on five gold awards at 2012′s SQL Mag Community and Editors Choice Awards. And why not? It’s a nice recognition that their efforts were appreciated by many in the SQL Server community. The team at Simple-Talk don’t tend to spring, but even we felt a twinge of pride in the fact that SQL Scripts Manager received Gold for Editor’s Choice in the Best Free Tools category. The tool began life as a “Down Tools” project and is one that we’ve supported and championed in various articles on Simple-talk.com. Over a Cambridge Bitter in the Waggon and Horses, we’ve often reflected on how nice it would be to nominate our own awards. Of course, we’d have to avoid nominating Red Gate tools in each category, even the free ones, for fear of seeming biased,  but we could still award other people’s free tools, couldn’t we? So allow us to set the stage for the annual Simple-Talk Community Tool awards… Onto the platform we shuffle, to applause from the audience; Chris in immaculate tuxedo, Alice in stunning evening gown, Dave and Tony looking vaguely uncomfortable, Andrew somehow distracted, as if his mind is elsewhere. Tony strides up to the lectern, and coughs lightly…”In the free-tool category we have the three nominations, and they are…” (rustle of the envelope opening) Ola Hallengren’s SQL Server Maintenance Solution (applause) Adam Machanic’s WhoIsActive (cheers, more applause) Brent Ozar’s sp_Blitz (much clapping) “Before we declare the winner, I’d like to say a few words in recognition of a grand tradition in a SQL Server community that continues to offer its members a steady supply of excellent, free tools. It hammers home the fundamental principle that a tool should solve a single, pressing and frustrating problem, but you should only ever build your own solution to that problem if you are certain that you cannot buy it, or that someone has not already provided it free. We have only three finalists tonight, but I feel compelled to mention a few other tools that we also use and appreciate, such as Microsoft’s Logparser, Open source Curl, Microsoft’s TableDiff.exe, Performance Analysis of Logs (PAL) Tool, SQL Server Cache Manager and SQLPSX.” “And now I’ll hand over to Alice to announce the winner.” Alice strides over to the microphone, tearing open the envelope. “The winner,” she pauses for dramatic effect “… is …Ola Hallengren’s SQL Server Maintenance Solution!” Queue much applause and consumption of champagne. Did we get it wrong? What free tool would you nominate? Let us know! Cheers, Simple-Talk Editorial Team (Andrew, Alice, Chris, Dave, Tony)

    Read the article

  • SQL SERVER – LOGBUFFER – Wait Type – Day 18 of 28

    - by pinaldave
    At first, I was not planning to write about this wait type. The reason was simple- I have faced this only once in my lifetime so far maybe because it is one of the top 5 wait types. I am not sure if it is a common wait type or not, but in the samples I had it really looks rare to me. From Book On-Line: LOGBUFFER Occurs when a task is waiting for space in the log buffer to store a log record. Consistently high values may indicate that the log devices cannot keep up with the amount of log being generated by the server. LOGBUFFER Explanation: The book online definition of the LOGBUFFER seems to be very accurate. On the system where I faced this wait type, the log file (LDF) was put on the local disk, and the data files (MDF, NDF) were put on SanDrives. My client then was not familiar about how the file distribution was supposed to be. Once we moved the LDF to a faster drive, this wait type disappeared. Reducing LOGBUFFER wait: There are several suggestions to reduce this wait stats: Move Transaction Log to Separate Disk from mdf and other files. (Make sure your drive where your LDF is has no IO bottleneck issues). Avoid cursor-like coding methodology and frequent commit statements. Find the most-active file based on IO stall time, as shown in the script written over here. You can also use fn_virtualfilestats to find IO-related issues using the script mentioned over here. Check the IO-related counters (PhysicalDisk:Avg.Disk Queue Length, PhysicalDisk:Disk Read Bytes/sec and PhysicalDisk :Disk Write Bytes/sec) for additional details. Read about them over here. If you have noticed, my suggestions for reducing the LOGBUFFER is very similar to WRITELOG. Although the procedures on reducing them are alike, I am not suggesting that LOGBUFFER and WRITELOG are same wait types. From the definition of the two, you will find their difference. However, they are both related to LOG and both of them can severely degrade the performance. Note: The information presented here is from my experience and there is no way that I claim it to be accurate. I suggest reading Book OnLine for further clarification. All the discussion of Wait Stats in this blog is generic and varies from system to system. It is recommended that you test this on a development server before implementing it to a production server. Reference: Pinal Dave (http://blog.SQLAuthority.com)   Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • Engagement: Don’t Forget Your Employees!

    - by Kellsey Ruppel
    By Mark Brown, Sr. Director, Oracle WebCenter  This week we want to focus on Employee Engagement, and how it is critical to your business. Today we hear and read a great deal about “Customer Engagement” – and rightly so, it is those customers, whether they be traditional paying customers, citizens, students, club members, or whomever it is that are “paying the bills”.  A more engaged customer is more likely to make it easier to pay those bills by buying more, giving good reviews, or spreading the word of how wonderful their experience was. But what about those who are providing those services, those who design and make those goods; why is it that all too often they are left out of conversations concerning engagement? In fact, it is critical that we consider our employees as customers since they are using internal systems that run your organization the same way customers use external systems. Studies have shown that an organization in which the employees feel “engaged” or better able to make decisions, do their jobs, and are connected to their peers have better return to their stakeholders. (shareholders).  On the surface this seems obvious, happy employees are more productive employees. But it leads to the question – how many of our existing policies, systems and processes are actually reducing that level of engagement? Let’s look at a couple examples. If posting new information that may be of great value to everyone in the larger organization is hard to do because we use an antiquated system, then we’re making it hard to share and increasing the potential for duplicate work. If it is not trivially obvious how to create and publish this post, then chances are very high that I’ll put it on the bottom of my queue. And finally, when critical information is spread across various systems, intranet sites, workgroups and peoples inboxes, then it is very hard to learn and grow from that information.  These may sound trivial, but how often do we push things off not because it is intellectually challenging, we may have the answer at our fingertips, but because it is hard to make that information readily available.  If an engaged employee is a productive employee, then what can we do to increase their level of engagement? We can start by looking for opportunities to provide self-documenting self-service solutions. Our newer employees grew up using simplified web interfaces everyday and they loathe calling a help-desk unless it is the last resort. Sadly, many of our enterprise applications have not kept pace and we all still have processes that are based on sending an email -- like discount approvals, vacation requests, or even offer-letter approvals.   My suggestion is to pick one highly visible, high-impact process where employees are either reticent to execute on the process or openly complain about how cumbersome it is and look at the mechanism for that process. If there are better ways, streamlined steps, better UIs that could be done, then you have a candidate to reconfigure that process and make it more engaging. Looking to better engage your employees? Start here!

    Read the article

  • Installing Canon LBP6000 in Ubuntu 12.04

    - by MMA
    This is really frustrating. I am trying to install LBP6000 in Ubuntu 12.04 without any success. (Well, I had success about a week back when I first bought the printer and finally printed pages after a struggle of several hours. Then today it suddenly stopped working and I uninstalled everything and started from scratch. Now, I seem to have lost the way.) My steps Downloaded the latest Canon driver from Canon site. File Linux_CAPT_PrinterDriver_V240_uk_EN.tar.gz Got the radu script (I am allowed only two hyperlinks, so can not put the link here. You can Google radu Canon) Changed the /etc/modprobe.d/blacklist-cups-usblp.conf file as instructed in, Official Documentation. (See the section Ubuntu 12.04 Install). Now this file looks like, # cups talks to the raw USB devices, so we need to blacklist usblp to avoid # grabbing them # blacklist usblp Rebooted my machine Changed the port in radu script to 59787 as instructed in the link at step 3. (Again see the section Ubuntu 12.04 Install, or see the comment at How to Install Canon LBP Printers in Ubuntu. Also put the latest deb files from step 1 in the appropriate directory of this script. Ran the radu script. A printer, LBP6000 got added. Not two printers, one to be disabled, as appeared in the message on the terminal after running the script. sudo /etc/init.d/ccpd status shows, Canon Printer Daemon for CUPS: ccpd: 3142 3139 Results The printer does not print. Printer state (from System Setting-Printing, or at cups http interface localhost:631/printers/LBP6000) goes from Idle to Processing, a job appears in print queue, and then the job disappears and the printer state goes back to Idle. The actual printer does not even blink. Diagnostics (got help from the link in step 3, Troubleshooting) captstatusui -P LBP6000 shows communication error lsmod | grep usblp did not show anything. After running, sudo modprobe usblp, shows usblp 17885 0 However, ls -l /dev/usb/lp0 gives, ls: cannot access /dev/usb/lp0: No such file or directory /var/ccpd did not exist, created, sudo mkdir /var/ccpd sudo mkfifo /var/ccpd/fifo0 sudo chown -R lp:lp /var/ccpd Any suggestion will be appreciated. Do not know what to do.

    Read the article

  • Why lock statements don't scale

    - by Alex.Davies
    We are going to have to stop using lock statements one day. Just like we had to stop using goto statements. The problem is similar, they're pretty easy to follow in small programs, but code with locks isn't composable. That means that small pieces of program that work in isolation can't necessarily be put together and work together. Of course actors scale fine :) Why lock statements don't scale as software gets bigger Deadlocks. You have a program with lots of threads picking up lots of locks. You already know that if two of your threads both try to pick up a lock that the other already has, they will deadlock. Your program will come to a grinding halt, and there will be fire and brimstone. "Easy!" you say, "Just make sure all the threads pick up the locks in the same order." Yes, that works. But you've broken composability. Now, to add a new lock to your code, you have to consider all the other locks already in your code and check that they are taken in the right order. Algorithm buffs will have noticed this approach means it takes quadratic time to write a program. That's bad. Why lock statements don't scale as hardware gets bigger Memory bus contention There's another headache, one that most programmers don't usually need to think about, but is going to bite us in a big way in a few years. Locking needs exclusive use of the entire system's memory bus while taking out the lock. That's not too bad for a single or dual-core system, but already for quad-core systems it's a pretty large overhead. Have a look at this blog about the .NET 4 ThreadPool for some numbers and a weird analogy (see the author's comment). Not too bad yet, but I'm scared my 1000 core machine of the future is going to go slower than my machine today! I don't know the answer to this problem yet. Maybe some kind of per-core work queue system with hierarchical work stealing. Definitely hardware support. But what I do know is that using locks specifically prevents any solution to this. We should be abstracting our code away from the details of locks as soon as possible, so we can swap in whatever solution arrives when it does. NAct uses locks at the moment. But my advice is that you code using actors (which do scale well as software gets bigger). And when there's a better way of implementing actors that'll scale well as hardware gets bigger, only NAct needs to work out how to use it, and your program will go fast on it's own.

    Read the article

  • XNA: Networking gone totally out of sync

    - by MesserChups
    I'm creating a multiplayer interface for a game in 2D some of my friends made, and I'm stuck with a huge latency or sync problem. I started by adapting my game to the msdn xna network tutorial and right now when I join a SystemLink network session (1 host on PC and 1 client on Xbox) I can move two players, everything is ok, but few minutes later the two machines start being totally out of synchronization. When I move one player it takes 10 or 20 seconds (increasing with TIME) to take effect on the second machine. I've tried to : Create a thread which calls NetworkSession.Update() continuously as suggested on this forum, didn't worked. Call the Send() method one frame on 10, and the receive() method at each frame, didn't worked either. I've cleaned my code, flushed all buffers at each call and switched the host and client but the problem still remain... I hope you have a solution because I'm running out of ideas... Thanks SendPackets() code : protected override void SendPackets() { if ((NetworkSessionState)m_networkSession.SessionState == NetworkSessionState.Playing) //Only while playing { //Write in the packet manager m_packetWriter.Write(m_packetManager.PacketToSend.ToArray(), 0, (int)m_packetManager.PacketToSend.Position); m_packetManager.ResetPacket(); //flush //Sends the packets to all remote gamers foreach (NetworkGamer l_netGamer in m_networkSession.RemoteGamers) { if (m_packetWriter.Length != 0) { FirstLocalNetGamer.SendData(m_packetWriter, SendDataOptions.None, l_netGamer); } } m_packetWriter.Flush();//m m_packetWriter.Seek(0, 0); } } ReceivePackets() code : public override void ReceivePackets() { base.ReceivePackets(); if ((NetworkSessionState)m_networkSession.SessionState == NetworkSessionState.Playing) //Only while playing { if (m_networkSession.LocalGamers.Count > 0) //Verify that there's at least one local gamer { foreach (LocalNetworkGamer l_localGamer in m_networkSession.LocalGamers) { //every LocalNetworkGamer must read to flush their stream // Keep reading while packets are available. NetworkGamer l_oldSender = null; while (l_localGamer.IsDataAvailable) { // Read a single packet, even if we are the host, we must read to clear the queue NetworkGamer l_newSender; l_localGamer.ReceiveData(m_packetReader, out l_newSender); if (l_newSender != l_oldSender) { if ((!l_newSender.IsLocal) && (l_localGamer == FirstLocalNetGamer)) { //Parsing PacketReader to MemoryStream m_packetManager.Receive(new MemoryStream(m_packetReader.ReadBytes(m_packetReader.Length))); } } l_oldSender = l_newSender; m_packetReader.BaseStream.Flush(); m_packetReader.BaseStream.Seek(0, SeekOrigin.Begin); } } m_packetManager.ParsePackets(); } } }

    Read the article

  • Giving a Zone "More Power"

    - by Brian Leonard
    In addition to the traditional virtualization benefits that Solaris zones offer, applications running in zones are also running in a more secure environment. One way to quantify this is compare the privileges available to the global zone with those of a local zone. For example, there a 82 distinct privileges available to the global zone: bleonard@solaris:~$ ppriv -l | wc -l 82 You can view the descriptions for each of those privileges as follows: bleonard@solaris:~$ ppriv -lv contract_event Allows a process to request critical events without limitation. Allows a process to request reliable delivery of all events on any event queue. contract_identity Allows a process to set the service FMRI value of a process contract template. ... Or for just one or more privileges: bleonard@solaris:~$ ppriv -lv file_dac_read file_dac_write file_dac_read Allows a process to read a file or directory whose permission bits or ACL do not allow the process read permission. file_dac_write Allows a process to write a file or directory whose permission bits or ACL do not allow the process write permission. In order to write files owned by uid 0 in the absence of an effective uid of 0 ALL privileges are required. However, in a non-global zone, only 43 of the 83 privileges are available by default: root@myzone:~# ppriv -l zone | wc -l 43 The missing privileges are: cpc_cpu dtrace_kernel dtrace_proc dtrace_user file_downgrade_sl file_flag_set file_upgrade_sl graphics_access graphics_map net_mac_implicit proc_clock_highres proc_priocntl proc_zone sys_config sys_devices sys_ipc_config sys_linkdir sys_dl_config sys_net_config sys_res_bind sys_res_config sys_smb sys_suser_compat sys_time sys_trans_label virt_manage win_colormap win_config win_dac_read win_dac_write win_devices win_dga win_downgrade_sl win_fontpath win_mac_read win_mac_write win_selection win_upgrade_sl xvm_control However, just like Tim Taylor, it is possible to give your zones more power. For example, a zone by default doesn't have the privileges to support DTrace: root@myzone:~# dtrace -l ID PROVIDER MODULE FUNCTION NAME The DTrace privileges can be added, however, as follows: bleonard@solaris:~$ sudo zonecfg -z myzone Password: zonecfg:myzone> set limitpriv="default,dtrace_proc,dtrace_user" zonecfg:myzone> verify zonecfg:myzone> exit bleonard@solaris:~$ sudo zoneadm -z myzone reboot Now I can run DTrace from within the zone: root@myzone:~# dtrace -l | more ID PROVIDER MODULE FUNCTION NAME 1 dtrace BEGIN 2 dtrace END 3 dtrace ERROR 7115 syscall nosys entry 7116 syscall nosys return ... Note, certain privileges are never allowed to be assigned to a zone. You'll be notified on boot if you attempt to assign a prohibited privilege to a zone: bleonard@solaris:~$ sudo zoneadm -z myzone reboot privilege "dtrace_kernel" is not permitted within the zone's privilege set zoneadm: zone myzone failed to verify Here's a nice listing of all the privileges and their zone status (default, optional, prohibited): Privileges in a Non-Global Zone.

    Read the article

  • Windows Azure Recipe: High Performance Computing

    - by Clint Edmonson
    One of the most attractive ways to use a cloud platform is for parallel processing. Commonly known as high-performance computing (HPC), this approach relies on executing code on many machines at the same time. On Windows Azure, this means running many role instances simultaneously, all working in parallel to solve some problem. Doing this requires some way to schedule applications, which means distributing their work across these instances. To allow this, Windows Azure provides the HPC Scheduler. This service can work with HPC applications built to use the industry-standard Message Passing Interface (MPI). Software that does finite element analysis, such as car crash simulations, is one example of this type of application, and there are many others. The HPC Scheduler can also be used with so-called embarrassingly parallel applications, such as Monte Carlo simulations. Whatever problem is addressed, the value this component provides is the same: It handles the complex problem of scheduling parallel computing work across many Windows Azure worker role instances. Drivers Elastic compute and storage resources Cost avoidance Solution Here’s a sketch of a solution using our Windows Azure HPC SDK: Ingredients Web Role – this hosts a HPC scheduler web portal to allow web based job submission and management. It also exposes an HTTP web service API to allow other tools (including Visual Studio) to post jobs as well. Worker Role – typically multiple worker roles are enlisted, including at least one head node that schedules jobs to be run among the remaining compute nodes. Database – stores state information about the job queue and resource configuration for the solution. Blobs, Tables, Queues, Caching (optional) – many parallel algorithms persist intermediate and/or permanent data as a result of their processing. These fast, highly reliable, parallelizable storage options are all available to all the jobs being processed. Training Here is a link to online Windows Azure training labs where you can learn more about the individual ingredients described above. (Note: The entire Windows Azure Training Kit can also be downloaded for offline use.) Windows Azure HPC Scheduler (3 labs)  The Windows Azure HPC Scheduler includes modules and features that enable you to launch and manage high-performance computing (HPC) applications and other parallel workloads within a Windows Azure service. The scheduler supports parallel computational tasks such as parametric sweeps, Message Passing Interface (MPI) processes, and service-oriented architecture (SOA) requests across your computing resources in Windows Azure. With the Windows Azure HPC Scheduler SDK, developers can create Windows Azure deployments that support scalable, compute-intensive, parallel applications. See my Windows Azure Resource Guide for more guidance on how to get started, including links web portals, training kits, samples, and blogs related to Windows Azure.

    Read the article

  • Solving Inbound Refinery PDF Conversion Issues, Part 1

    - by Kevin Smith
    Working with Inbound Refinery (IBR)  and PDF Conversion can be very frustrating. When everything is working smoothly you kind of forgot it is even there. Documents are cheeked into WebCenter Content (WCC), sent to IBR for conversion, converted to PDF, returned to WCC, and viola your Office documents have a nice PDF rendition available for viewing. Then a user checks in a bunch of password protected Word files, the conversions fail, your IBR queue starts backing up, users start calling asking why their document have not been released yet, and your spend a frustrating afternoon trying to recover and get things back running properly again. Password protected documents are one cause of PDF conversion failures, and I will cover those in a future blog post, but there are many other problems that can cause conversions to fail, especially when working with the WinNativeConverter and using the native applications, e.g. Word, to convert a document to PDF. There are other conversion options like PDFExportConverter which uses Oracle OutsideIn to convert documents directly to PDF without the need for the native applications. However, to get the best fidelity to the original document the native applications must be used. Many customers have tried PDFExportConverter, but have stayed with the native applications for conversion since the conversion results from PDFExportConverter were not as good as when the native applications are used. One problem I ran into recently, that at least has a easy solution, are Word documents that display a Show Repairs dialog when the document is opened. If you open the problem document yourself you will see this dialog. This will cause the conversion to time out. Any time the native application displays a dialog that requires user input the conversion will time out. The solution is to set add a setting for BulletProofOnCorruption to the registry for the user running Word on the IBR server. See this support note from Microsoft for details. The support note says to set the registry key under HKEY_CURRENT_USER, but since we are running IBR as a service the correct location is under HKEY_USERS\.DEFAULT. Also since in our environment we were using Office 2007, the correct registry key to use was: HKEY_USERS\.DEFAULT\Software\Microsoft\Office\11.0\Word\Options Once you have done this restart the IBR managed server and resubmit your problem document. It should now be converted successfully. For more details on IBR see the Oracle® WebCenter Content Administrator's Guide for Conversion.

    Read the article

  • What if you could work on anything you wanted?

    - by red@work
    This week we've downed our tools and organised ourselves into small project teams or struck out alone. We're working on whatever we like, with whoever we like, wherever we like. We've called it Down Tools week and so far it's a blast. It all started a few months ago with an idea from Neil, our CEO. Neil wanted to capture the excitement, innovation, and productivity of Coding by the Sea and extend this to all Red Gaters working in Product Development. A brainstorm is always a good place to start for an "anything goes" project. Half of Red Gate piled into our largest meeting room (it's pretty big) armed with flip charts, post its and a heightened sense of possibility. An hour or so later our SQL Servery walls were covered in project ideas. So what would you do, if you could work on anything you wanted? Many projects are related to tools we already make, others are for internal product development use and some are, well, just something completely different. Someone suggested we point a web cam at the SQL Servery lunch queue so we can check it before heading to lunch. That one couldn't wait for Down Tools Week. It was up and running within a few days and even better, it captures the table tennis table too. Thursday is the Show and Tell - I am looking forward to seeing what everyone has come up with. Some of the projects will turn into new products or features so this probably isn't the time or place to go into detail of what is being worked on. Rest assured, you'll hear all about it! We're making a video as we go along too which will be up on our website as soon. In the meantime, all meetings are cancelled, we've got plenty of food in and people are being very creative with the £500 expenses budget (Richard, do you really need an iPad?). It's brilliant to see it all coming together from the idea stage to reality. Catch up with our progress by following #downtoolsweek on Twitter. Who knows, maybe a future Red Gate flagship tool is coming to life right now? By the way, it's business as usual for our customer facing and internal operations teams. Hmm, maybe we can all down tools for a week and ask Product Development to hold the fort? Post by: Alice Chapman

    Read the article

  • How to build a 4x game?

    - by Marco
    I'm trying to study how succefully implement a 4x game. Area of interest: 1) map data: how to store stellars systems (graphs?), how to generate them and so on.. 2) multiplayer: how to organize code in a non graphical server and a client to display it 3) command system: what are patters to catch user and ai decisions and handle them, adding at first "explore" and "colonize" then "combat", "research", "spy" and so on (commands can affect ships, planets, research, etc..) 4) ai system: ai can use commands to expand, upgrade planets and ship I know is a big questions, so help is appreciated :D 1) Map data Best choice is have a graph to model a galaxy. A node is a stellar system and every system have a list of planets. Ship cannot travel outside of predefined paths, like in Ascendancy: http://www.abandonia.com/files/games/221/Ascendancy_2.png Every connection between two stellar systems have a cost, in turns. Generate a galaxy is only a matter of: - dimension: number of stellar systems, - variety: randomize number of planets and types (desertic, earth, etc..), - positions of each stellar system on game space - connections: assure that exist a path between every node, so graph is "connected" (not sure if this a matematically correct term) 2) Multiplayer Game is organized in turns: player 1, player 2, ai1, ai2. Server take care of all data and clients just diplay it and collect data change. Because is a turn game, latency is not a problem :D 3) Command system I would like to design a hierarchy of commands to take care of this aspect: abstract Genericcommand (target) ExploreCommand (Ship) extends genericcommand colonizeCommand (Ship) buildcommand(planet, object) and so on. In my head all this commands are stored in a queue for every planets, ships or reasearch center or spy, and each turn a command is sent to a server to apply command and change data state 4) ai system I don't have any idea about this. Is a big topic and what I want is a simple ai. Something like "expand and fight against everyone". I think about a behaviour tree to control ai moves, so I can develop an ai that try to build ships to expand and then colonize planets, upgrade them throught science and combat enemies. Could be done with a finite state machine too ? any ideas, resources, article are welcome!

    Read the article

  • Ubuntu missing from the Grub menu

    - by varevarao
    Recently I've had some audio issues with Ubuntu (using precise), and in the process of trying to resolve that I ran a dist-upgrade. Everything went just fine, and the sound seemed good, until I rebooted my machine for the first time since the dist-upgrade. All I see now in the Grub menu at startup is memtest86+, another memtest variant, and Windows 7. It's not showing any of the linux kernels that Ubuntu is running on. I am attaching my bootinfoscript: Boot Info Script 0.61.full + Boot-Repair extra info [Boot-Info November 20th 2012] ============================= Boot Info Summary: =============================== => Grub2 (v1.99) is installed in the MBR of /dev/sda and looks at sector 1 of the same hard drive for core.img. core.img is at this location and looks for (,msdos6)/boot/grub on this drive. sda1: __________________________________________________________________________ File system: vfat Boot sector type: Dell Utility: FAT16 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sda2: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sda3: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Windows 7 Boot files: sda4: __________________________________________________________________________ File system: Extended Partition Boot sector type: Unknown Boot sector info: sda5: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: According to the info in the boot sector, sda5 starts at sector 2048. Operating System: Boot files: sda6: __________________________________________________________________________ File system: ext4 Boot sector type: Grub2 (v1.99-2.00) Boot sector info: Grub2 (v1.99) is installed in the boot sector of sda6 and looks at sector 220046240 of the same hard drive for core.img. core.img is at this location and looks for (,msdos6)/boot/grub on this drive. Operating System: Ubuntu 12.04.1 LTS Boot files: /boot/grub/grub.cfg /etc/fstab /boot/grub/core.img sda7: __________________________________________________________________________ File system: swap Boot sector type: - Boot sector info: ============================ Drive/Partition Info: ============================= Drive: sda _____________________________________________________________________ Disk /dev/sda: 320.1 GB, 320072933376 bytes 255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sda1 63 273,104 273,042 de Dell Utility /dev/sda2 * 274,432 19,406,847 19,132,416 7 NTFS / exFAT / HPFS /dev/sda3 19,406,848 218,274,364 198,867,517 7 NTFS / exFAT / HPFS /dev/sda4 218,275,838 625,139,711 406,863,874 f W95 Extended (LBA) /dev/sda5 328,630,272 625,139,711 296,509,440 7 NTFS / exFAT / HPFS /dev/sda6 218,275,840 324,030,463 105,754,624 83 Linux /dev/sda7 324,032,512 328,626,175 4,593,664 82 Linux swap / Solaris "blkid" output: ________________________________________________________________ Device UUID TYPE LABEL /dev/loop0 squashfs /dev/sda1 07DA-0512 vfat DellUtility /dev/sda2 8834146034145392 ntfs RECOVERY /dev/sda3 48E2189DE21890F4 ntfs OS /dev/sda5 BC2A44C02A447982 ntfs Varshneya /dev/sda6 34731459-4b0f-46ac-a9bf-cb360a2c947c ext4 /dev/sda7 dcb9ce9b-799a-4c65-b008-887b01775670 swap /dev/sr0 iso9660 Ubuntu 12.04.1 LTS i386 ================================ Mount points: ================================= Device Mount_Point Type Options /dev/loop0 /rofs squashfs (ro,noatime) /dev/sda6 /mnt ext4 (rw) /dev/sr0 /cdrom iso9660 (ro,noatime) =========================== sda6/boot/grub/grub.cfg: =========================== -------------------------------------------------------------------------------- # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi set default="0" if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { insmod vbe insmod vga insmod video_bochs insmod video_cirrus } insmod part_msdos insmod ext2 set root='(hd0,msdos6)' search --no-floppy --fs-uuid --set=root 34731459-4b0f-46ac-a9bf-cb360a2c947c if loadfont /boot/grub/unicode.pf2 ; then set gfxmode=auto load_video insmod gfxterm insmod part_msdos insmod ext2 set root='(hd0,msdos6)' search --no-floppy --fs-uuid --set=root 34731459-4b0f-46ac-a9bf-cb360a2c947c set locale_dir=($root)/boot/grub/locale set lang=en_US insmod gettext fi terminal_output gfxterm if [ "${recordfail}" = 1 ]; then set timeout=-1 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### function gfxmode { set gfxpayload="${1}" if [ "${1}" = "keep" ]; then set vt_handoff=vt.handoff=7 else set vt_handoff= fi } if [ "${recordfail}" != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode if [ "${linux_gfx_mode}" != "text" ]; then load_video; fi ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { insmod part_msdos insmod ext2 set root='(hd0,msdos6)' search --no-floppy --fs-uuid --set=root 34731459-4b0f-46ac-a9bf-cb360a2c947c linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { insmod part_msdos insmod ext2 set root='(hd0,msdos6)' search --no-floppy --fs-uuid --set=root 34731459-4b0f-46ac-a9bf-cb360a2c947c linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### menuentry "Windows 7 (loader) (on /dev/sda2)" --class windows --class os { insmod part_msdos insmod ntfs set root='(hd0,msdos2)' search --no-floppy --fs-uuid --set=root 8834146034145392 chainloader +1 } ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### -------------------------------------------------------------------------------- =============================== sda6/etc/fstab: ================================ -------------------------------------------------------------------------------- # /etc/fstab: static file system information. # # Use 'blkid -o value -s UUID' to print the universally unique identifier # for a device; this may be used with UUID= as a more robust way to name # devices that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> proc /proc proc nodev,noexec,nosuid 0 0 # / was on /dev/sda6 during installation UUID=34731459-4b0f-46ac-a9bf-cb360a2c947c / ext4 errors=remount-ro,user_xattr 0 1 # swap was on /dev/sda7 during installation UUID=dcb9ce9b-799a-4c65-b008-887b01775670 none swap sw 0 0 -------------------------------------------------------------------------------- =================== sda6: Location of files loaded by Grub: ==================== GiB - GB File Fragment(s) 104.851909637 = 112.583880704 boot/grub/core.img 1 121.191410065 = 130.128285696 boot/grub/grub.cfg 1 ======================== Unknown MBRs/Boot Sectors/etc: ======================== Unknown BootLoader on sda4 00000000 eb 0f 2a 5d f4 b7 75 f2 e9 56 12 b8 50 b4 79 ec |..*]..u..V..P.y.| 00000010 89 91 ca c3 16 40 31 d0 ae c4 53 3d c7 dd d7 98 |[email protected]=....| 00000020 bd a4 f2 a4 e8 ab fc ea 36 30 1b 34 cf 8a 28 30 |........60.4..(0| 00000030 43 95 6c 31 3e 76 93 58 84 37 99 c3 ae 3a 88 a3 |C.l1>v.X.7...:..| 00000040 c2 a6 36 2a f8 e0 e1 03 91 8d a1 50 cd ad b0 b5 |..6*.......P....| 00000050 ad 69 3a 49 63 1f 4a 33 97 6e 0c 71 bf 7d bd 35 |.i:Ic.J3.n.q.}.5| 00000060 86 c5 17 93 b4 9f e5 af e0 c4 6f f4 6f f9 4b dd |..........o.o.K.| 00000070 14 39 e2 9e b9 36 ca b1 56 5b d9 b1 66 2c 05 b2 |.9...6..V[..f,..| 00000080 5d 5b 99 c0 db e6 81 27 ab c2 e1 55 00 ac 0b 2c |][.....'...U...,| 00000090 24 d3 8e 54 b0 3d ab 58 e4 23 fc 3a 79 93 fb 5e |$..T.=.X.#.:y..^| 000000a0 94 5a 3a c2 16 4e 56 cb 1b 7f 7e b3 4c 38 ca 5b |.Z:..NV...~.L8.[| 000000b0 ca ab c1 2c 2a 64 e7 77 fe 2a ba ee 08 33 b5 9b |...,*d.w.*...3..| 000000c0 d0 c2 b4 a8 fc 73 4f 01 fd 03 61 75 eb 6d 1a 74 |.....sO...au.m.t| 000000d0 5f 79 31 7f ed e6 f5 99 21 36 16 ed 25 d9 6d 2b |_y1.....!6..%.m+| 000000e0 5f f4 42 b8 9d 01 89 10 fe df a4 98 e7 ab ab ea |_.B.............| 000000f0 1d 1c 44 e1 49 d9 19 c9 ab f5 41 eb 4a 32 c2 39 |..D.I.....A.J2.9| 00000100 87 57 f6 f6 f3 b5 4d 17 72 f2 b1 16 19 aa ec 24 |.W....M.r......$| 00000110 39 bd e3 b1 68 b3 b0 7f fa 2a 3a 2e 99 ed db 8a |9...h....*:.....| 00000120 f8 61 b4 ef 9d 7d 85 95 ed ad eb 9e 71 f4 27 d3 |.a...}......q.'.| 00000130 f3 04 8b 8a 69 98 02 72 df e1 f9 83 27 5b 01 4c |....i..r....'[.L| 00000140 d4 9a b9 3b db ca 1e 40 35 db 6f c1 52 c0 7f 27 |...;[email protected]..'| 00000150 8a 1d bc 34 89 24 b6 e3 fd ec a1 2a e5 9e d1 8f |...4.$.....*....| 00000160 77 e0 d5 52 c0 4c c4 38 38 3c 28 19 bf 20 f0 03 |w..R.L.88<(.. ..| 00000170 38 a4 b1 b5 ed 6a b8 f7 a9 7b 65 b1 7b 64 4a 33 |8....j...{e.{dJ3| 00000180 66 1a 60 29 38 1d 5b 52 40 31 de a5 0c 0f cc 6f |f.`)8.[[email protected]| 00000190 dd 31 6d 3d f0 2a 32 85 67 66 ca 4f 02 aa 0d 30 |.1m=.*2.gf.O...0| 000001a0 66 c9 b2 33 c2 4b 8a fa 3c 7b 52 02 00 88 8e cf |f..3.K..<{R.....| 000001b0 67 1e d4 20 49 1d 1a b8 71 ad c2 d4 37 9d 00 fe |g.. I...q...7...| 000001c0 ff ff 07 fe ff ff 02 e0 93 06 00 60 ac 11 00 fe |...........`....| 000001d0 ff ff 05 fe ff ff 01 00 00 00 01 b0 4d 06 00 00 |............M...| 000001e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 000001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 aa |..............U.| 00000200 ADDITIONAL INFORMATION : =================== log of boot-repair 2012-11-24__09h45 =================== boot-repair version : 3.195~ppa2~precise boot-sav version : 3.195~ppa2~precise glade2script version : 3.2.2~ppa45~precise boot-sav-extra version : 3.195~ppa2~precise boot-repair is executed in live-session (Ubuntu 12.04.1 LTS, precise, Ubuntu, i686) CPU op-mode(s): 32-bit, 64-bit file=/cdrom/preseed/ubuntu.seed boot=casper initrd=/casper/initrd.lz quiet splash -- =================== os-prober: /dev/sda2:Windows 7 (loader):Windows:chain /dev/sda6:Ubuntu 12.04.1 LTS (12.04):Ubuntu:linux =================== blkid: /dev/sda1: SEC_TYPE="msdos" LABEL="DellUtility" UUID="07DA-0512" TYPE="vfat" /dev/sda2: LABEL="RECOVERY" UUID="8834146034145392" TYPE="ntfs" /dev/sda3: LABEL="OS" UUID="48E2189DE21890F4" TYPE="ntfs" /dev/sda5: LABEL="Varshneya" UUID="BC2A44C02A447982" TYPE="ntfs" /dev/loop0: TYPE="squashfs" /dev/sda6: UUID="34731459-4b0f-46ac-a9bf-cb360a2c947c" TYPE="ext4" /dev/sda7: UUID="dcb9ce9b-799a-4c65-b008-887b01775670" TYPE="swap" /dev/sr0: LABEL="Ubuntu 12.04.1 LTS i386" TYPE="iso9660" 1 disks with OS, 2 OS : 1 Linux, 0 MacOS, 1 Windows, 0 unknown type OS. Windows not detected by os-prober on sda3. Warning: extended partition does not start at a cylinder boundary. DOS and Linux will interpret the contents differently. =================== /mnt/etc/default/grub : # If you change this file, run 'update-grub' afterwards to update # /boot/grub/grub.cfg. # For full documentation of the options in this file, see: # info -f grub -n 'Simple configuration' GRUB_DEFAULT=0 GRUB_HIDDEN_TIMEOUT=0 GRUB_HIDDEN_TIMEOUT_QUIET=true GRUB_TIMEOUT=10 GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` GRUB_CMDLINE_LINUX_DEFAULT="quiet splash" GRUB_CMDLINE_LINUX="" # Uncomment to enable BadRAM filtering, modify to suit your needs # This works with Linux (no patch required) and with any kernel that obtains # the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...) #GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef" # Uncomment to disable graphical terminal (grub-pc only) #GRUB_TERMINAL=console # The resolution used on graphical terminal # note that you can use only modes which your graphic card supports via VBE # you can see them in real GRUB with the command `vbeinfo' #GRUB_GFXMODE=640x480 # Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux #GRUB_DISABLE_LINUX_UUID=true # Uncomment to disable generation of recovery mode menu entries #GRUB_DISABLE_RECOVERY="true" # Uncomment to get a beep at grub start #GRUB_INIT_TUNE="480 440 1" =================== /mnt/etc/grub.d/ : drwxr-xr-x 2 root root 4096 Nov 22 16:15 grub.d total 56 -rwxr-xr-x 1 root root 6743 Sep 12 20:19 00_header -rwxr-xr-x 1 root root 5522 Sep 12 20:05 05_debian_theme -rwxr-xr-x 1 root root 7407 Sep 12 20:19 10_linux -rwxr-xr-x 1 root root 6335 Sep 12 20:19 20_linux_xen -rwxr-xr-x 1 root root 1588 Sep 24 2010 20_memtest86+ -rwxr-xr-x 1 root root 7603 Sep 12 20:19 30_os-prober -rwxr-xr-x 1 root root 214 Sep 12 20:19 40_custom -rwxr-xr-x 1 root root 95 Sep 12 20:19 41_custom -rw-r--r-- 1 root root 483 Sep 12 20:19 README =================== No kernel in /mnt/boot: grub memtest86+.bin memtest86+_multiboot.bin =================== UEFI/Legacy mode: This live-session is not EFI-compatible. SecureBoot maybe enabled. =================== PARTITIONS & DISKS: sda1 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, not-far, /mnt/boot-sav/sda1. sda2 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, is-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, bootmgr, is-winboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, not-far, /mnt/boot-sav/sda2. sda3 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, is-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, haswinload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda3. sda5 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda5. sda6 : sda, not-sepboot, grubenv-ok grub2, grub-pc, update-grub, 64, no-kernel, is-os, not--efi--part, fstab-without-boot, fstab-without-efi, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, apt-get, grub-install, with--usr, fstab-without-usr, not-sep-usr, standard, farbios, /mnt. sda : not-GPT, BIOSboot-not-needed, has-no-EFIpart, not-usb, has-os, 63 sectors * 512 bytes =================== parted -l: Model: ATA ST9320423AS (scsi) Disk /dev/sda: 320GB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 32.3kB 140MB 140MB primary fat16 diag 2 141MB 9936MB 9796MB primary ntfs boot 3 9936MB 112GB 102GB primary ntfs 4 112GB 320GB 208GB extended lba 6 112GB 166GB 54.1GB logical ext4 7 166GB 168GB 2352MB logical linux-swap(v1) 5 168GB 320GB 152GB logical ntfs Model: HL-DT-ST DVD+-RW GA31N (scsi) Disk /dev/sr0: 4700MB Sector size (logical/physical): 2048B/2048B Partition Table: msdos Number Start End Size Type File system Flags 1 131kB 2916MB 2916MB primary boot, hidden =================== parted -lm: BYT; /dev/sda:320GB:scsi:512:512:msdos:ATA ST9320423AS; 1:32.3kB:140MB:140MB:fat16::diag; 2:141MB:9936MB:9796MB:ntfs::boot; 3:9936MB:112GB:102GB:ntfs::; 4:112GB:320GB:208GB:::lba; 6:112GB:166GB:54.1GB:ext4::; 7:166GB:168GB:2352MB:linux-swap(v1)::; 5:168GB:320GB:152GB:ntfs::; BYT; /dev/sr0:4700MB:scsi:2048:2048:msdos:HL-DT-ST DVD+-RW GA31N; 1:131kB:2916MB:2916MB:::boot, hidden; =================== mount: /cow on / type overlayfs (rw) proc on /proc type proc (rw,noexec,nosuid,nodev) sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) udev on /dev type devtmpfs (rw,mode=0755) devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620) tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755) /dev/sr0 on /cdrom type iso9660 (ro,noatime) /dev/loop0 on /rofs type squashfs (ro,noatime) none on /sys/fs/fuse/connections type fusectl (rw) none on /sys/kernel/debug type debugfs (rw) none on /sys/kernel/security type securityfs (rw) tmpfs on /tmp type tmpfs (rw,nosuid,nodev) none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880) none on /run/shm type tmpfs (rw,nosuid,nodev) gvfs-fuse-daemon on /home/ubuntu/.gvfs type fuse.gvfs-fuse-daemon (rw,nosuid,nodev,user=ubuntu) /dev/sda6 on /mnt type ext4 (rw) /dev on /mnt/dev type none (rw,bind) /proc on /mnt/proc type none (rw,bind) /sys on /mnt/sys type none (rw,bind) /usr on /mnt/usr type none (rw,bind) /dev/sda1 on /mnt/boot-sav/sda1 type vfat (rw) /dev/sda2 on /mnt/boot-sav/sda2 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda3 on /mnt/boot-sav/sda3 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda5 on /mnt/boot-sav/sda5 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) =================== ls: /sys/block/sda (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro sda1 sda2 sda3 sda4 sda5 sda6 sda7 size slaves stat subsystem trace uevent /sys/block/sr0 (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro size slaves stat subsystem trace uevent /dev (filtered): autofs block bsg btrfs-control bus cdrom cdrw char console core cpu cpu_dma_latency disk dri dvd dvdrw ecryptfs fb0 fd full fuse fw0 hidraw0 hpet input kmsg log mapper mcelog mei mem net network_latency network_throughput null oldmem port ppp psaux ptmx pts random rfkill rtc rtc0 sda sda1 sda2 sda3 sda4 sda5 sda6 sda7 sg0 sg1 shm snapshot snd sr0 stderr stdin stdout uinput urandom usbmon0 usbmon1 usbmon2 v4l vga_arbiter video0 zero ls /dev/mapper: control =================== df -Th: Filesystem Type Size Used Avail Use% Mounted on /cow overlayfs 1.9G 113M 1.8G 6% / udev devtmpfs 1.9G 12K 1.9G 1% /dev tmpfs tmpfs 777M 872K 776M 1% /run /dev/sr0 iso9660 696M 696M 0 100% /cdrom /dev/loop0 squashfs 667M 667M 0 100% /rofs tmpfs tmpfs 1.9G 20K 1.9G 1% /tmp none tmpfs 5.0M 0 5.0M 0% /run/lock none tmpfs 1.9G 176K 1.9G 1% /run/shm /dev/sda6 ext4 51G 27G 22G 56% /mnt /dev/sda1 vfat 134M 9.1M 125M 7% /mnt/boot-sav/sda1 /dev/sda2 fuseblk 9.2G 5.6G 3.6G 61% /mnt/boot-sav/sda2 /dev/sda3 fuseblk 95G 80G 16G 84% /mnt/boot-sav/sda3 /dev/sda5 fuseblk 142G 130G 12G 92% /mnt/boot-sav/sda5 =================== fdisk -l: Disk /dev/sda: 320.1 GB, 320072933376 bytes 255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0xb8000000 Device Boot Start End Blocks Id System /dev/sda1 63 273104 136521 de Dell Utility /dev/sda2 * 274432 19406847 9566208 7 HPFS/NTFS/exFAT /dev/sda3 19406848 218274364 99433758+ 7 HPFS/NTFS/exFAT /dev/sda4 218275838 625139711 203431937 f W95 Ext'd (LBA) /dev/sda5 328630272 625139711 148254720 7 HPFS/NTFS/exFAT /dev/sda6 218275840 324030463 52877312 83 Linux /dev/sda7 324032512 328626175 2296832 82 Linux swap / Solaris Partition table entries are not in disk order =================== Repair blockers 64bits detected. Please use this software in a 64bits session. (Please use Ubuntu-Secure-Remix-64bits (www.sourceforge.net/p/ubuntu-secured) which contains a 64bits-compatible version of this software.) This will enable this feature. =================== Final advice in case of recommended repair The boot files of [Ubuntu 12.04.1 LTS] are far from the start of the disk. Your BIOS may not detect them. You may want to retry after creating a /boot partition (EXT4, >200MB, start of the disk). This can be performed via tools such as gParted. Then select this partition via the [Separate /boot partition:] option of [Boot Repair]. (https://help.ubuntu.com/community/BootPartition) =================== Default settings Recommended-Repair This setting would reinstall the grub2 of sda6 into the MBR of sda, using the following options: kernel-purge Additional repair would be performed: unhide-bootmenu-10s fix-windows-boot =================== Settings chosen by the user Boot-Info This setting will not act on the MBR. No change has been performed on your computer. See you soon! pastebinit packages needed dpkg-preconfigure: unable to re-open stdin: No such file or directory pastebin.com ko (), using paste.ubuntu Please report this message to [email protected] Any help would be great, I'm really missing Ubuntu (hate being stuck in the Windows world).

    Read the article

  • Five hours of Task Flow Overview Recordings Available

    - by Frank Nimphius
    In addition to the ADF Controller task flow documentation in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework 11g Release 1 http://download.oracle.com/docs/cd/E21764_01/web.1111/b31974/partpage3.htm#BABHIIAI The ADF Insider website … http://www.oracle.com/technetwork/developer-tools/adf/learnmore/adfinsider-093342.html … hosts five online videos that explain how to build and work with ADF Controller task flows in Oracle ADF. ADF Task Flow - Overview (Part 1) This 90 minute recording introduces the concept of ADF unbounded and bounded task flows, as well as other ADF Controller features. The session starts with an overview of unbounded task flows, bounded task flows and the different activities that exist for developers to build complex application flows. Exception handling and the Train navigation model is also covered in this first part of a two part series. By example of developing a sample application, the recording guides viewers through building unbounded and bounded task flows. This session is continued in a second part. http://download.oracle.com/otn_hosted_doc/jdeveloper/11gdemos/taskflow-overview-p1/taskflow-overview-p1.html ADF Task Flow - Overview (Part 2) This 75 minute session continues where part 1 ended and completes the sample application that guides viewers through different aspects of unbounded and bounded task flow development. In this recording, memory scopes, save for later, task flow opening in dialogs and remote task flow calls are explained and demonstrated. If you are new to ADF Task Flow, then it is recommended to first watch part 1 of this series to be able to follow the explanation guided by the sample application. http://download.oracle.com/otn_hosted_doc/jdeveloper/11gdemos/taskflow-overview-p2/taskflow-overview-p2.html ADF Region Interaction - An Overview This session covers most of the options that exist for communicating between regions. It briefly discusses what it takes to build regions from bounded task flows before going into details using slides and samples. The following interaction is explained: contextual events, queue action in region, input parameters and PPR, drag and drop, shared Data Controls, parent action and region navigation listener. http://download.oracle.com/otn_hosted_doc/jdeveloper/11gdemos/adf-region-interaction/adf-region-interaction.html ADF Region Interaction - Contextual Events Contextual event is used as a communication channel between a parent view and its contained regions, as well as between regions. By example, this session explains how to set up contextual events, how to define producers and event listeners and how to define the payload message. http://download.oracle.com/otn_hosted_doc/jdeveloper/11gdemos/AdfInsiderContextualEvents/AdfInsiderContextualEvents.html

    Read the article

  • An Epic Question "How to call a method when the page loads"

    - by Arunkumar Ramamoorthy
    Quite often, there comes a question in OTN, with different subjects, all meaning "How to call a method when my ADF page loads?". More often, people tend to take the approach of ADF Phase Listener by overriding before/afterPhase methods.In this blog, we will go through different options in achieving it.1. Method Call Activity as default activity in Taskflow :If the application is built with taskflows, then this is the best suited approach to take. 1.a. Calling a Data Control Method :To call a Data Control method (ex: A method in AMImpl exposed as client interface), simply Drag and Drop the method as Default Method Call Activity, then draw a control flow case from the method to your page. Once after this, drop the taskflow as region in main page. When we run the main page, the Method Call Activity would be called first, and then the page will be rendered.1.b. Calling a Method in Backing Bean: To call a method in the backing bean before pageload, we can follow the similar approach as above. Instead of binding the Method Call Activity to an action/method binding in pagedef, we bind to the method. Insert a Method Call Activity (and make it as default) from the Component Palette. Double click on to select a method to bind. This approach can also be used, to perform some action in backing bean along with calling a method Data Control (just need to add bindings code in backing bean to execute DC method). 2. Using invokeAction Executable :If the application is built with pages and no taskflows are involved, then this option can be taken into consideration.In the page definition of the page, add an invokeAction Executable and bind it to the method needed to be executed. 3. Using combination of Server and Client Listeners : If the page does not have any page definition, then to call a method in backing bean, this approach can be taken. In this, a serverListener would be added at the document level, which would be calling the method in backing bean. Along with this, a clientListener would be added with "load" type (i.e will be triggered when the page loads), which would queue a serverEvent to trigger the method. 4. Using Page Phase Listener :This should be the last resort. Care should be taken when using this approach since the Phase Listener would be called for each request sent by the client.Zeeshan Baig's blog covers this scenario.

    Read the article

  • An Epic Question "How to call a method when the page loads"

    - by Arunkumar Ramamoorthy
    Quite often, there comes a question in OTN, with different subjects, all meaning "How to call a method when my ADF page loads?". More often, people tend to take the approach of ADF Phase Listener by overriding before/afterPhase methods.In this blog, we will go through different options in achieving it.1. Method Call Activity as default activity in Taskflow :If the application is built with taskflows, then this is the best suited approach to take. 1.a. Calling a Data Control Method :To call a Data Control method (ex: A method in AMImpl exposed as client interface), simply Drag and Drop the method as Default Method Call Activity, then draw a control flow case from the method to your page. Once after this, drop the taskflow as region in main page. When we run the main page, the Method Call Activity would be called first, and then the page will be rendered.1.b. Calling a Method in Backing Bean: To call a method in the backing bean before pageload, we can follow the similar approach as above. Instead of binding the Method Call Activity to an action/method binding in pagedef, we bind to the method. Insert a Method Call Activity (and make it as default) from the Component Palette. Double click on to select a method to bind. This approach can also be used, to perform some action in backing bean along with calling a method Data Control (just need to add bindings code in backing bean to execute DC method). 2. Using invokeAction Executable :If the application is built with pages and no taskflows are involved, then this option can be taken into consideration.In the page definition of the page, add an invokeAction Executable and bind it to the method needed to be executed. 3. Using combination of Server and Client Listeners : If the page does not have any page definition, then to call a method in backing bean, this approach can be taken. In this, a serverListener would be added at the document level, which would be calling the method in backing bean. Along with this, a clientListener would be added with "load" type (i.e will be triggered when the page loads), which would queue a serverEvent to trigger the method. 4. Using Page Phase Listener :This should be the last resort. Care should be taken when using this approach since the Phase Listener would be called for each request sent by the client.Zeeshan Baig's blog covers this scenario.

    Read the article

  • Implementing the Reactive Manifesto with Azure and AWS

    - by Elton Stoneman
    Originally posted on: http://geekswithblogs.net/EltonStoneman/archive/2013/10/31/implementing-the-reactive-manifesto-with-azure-and-aws.aspxMy latest Pluralsight course, Implementing the Reactive Manifesto with Azure and AWS has just been published! I’d planned to do a course on dual-running a messaging-based solution in Azure and AWS for super-high availability and scale, and the Reactive Manifesto encapsulates exactly what I wanted to do. A “reactive” application describes an architecture which is inherently resilient and scalable, being event-driven at the core, and using asynchronous communication between components. In the course, I compare that architecture to a classic n-tier approach, and go on to build out an app which exhibits all the reactive traits: responsive, event-driven, scalable and resilient. I use a suite of technologies which are enablers for all those traits: ASP.NET SignalR for presentation, with server push notifications to the user Messaging in the middle layer for asynchronous communication between presentation and compute Azure Service Bus Queues and Topics AWS Simple Queue Service AWS Simple Notification Service MongoDB at the storage layer for easy HA and scale, with minimal locking under load. Starting with a couple of console apps to demonstrate message sending, I build the solution up over 7 modules, deploying to Azure and AWS and running the app across both clouds concurrently for the whole stack - web servers, messaging infrastructure, message handlers and database servers. I demonstrating failover by killing off bits of infrastructure, and show how a reactive app deployed across two clouds can survive machine failure, data centre failure and even whole cloud failure. The course finishes by configuring auto-scaling in AWS and Azure for the compute and presentation layers, and running a load test with blitz.io. The test pushes masses of load into the app, which is deployed across four data centres in Azure and AWS, and the infrastructure scales up seamlessly to meet the load – the blitz report is pretty impressive: That’s 99.9% success rate for hits to the website, with the potential to serve over 36,000,000 hits per day – all from a few hours’ build time, and a fairly limited set of auto-scale configurations. When the load stops, the infrastructure scales back down again to a minimal set of servers for high availability, so the app doesn’t cost much to host unless it’s getting a lot of traffic. This is my third course for Pluralsight, with Nginx and PHP Fundamentals and Caching in the .NET Stack: Inside-Out released earlier this year. Now that it’s out, I’m starting on the fourth one, which is focused on C#, and should be out by the end of the year.

    Read the article

  • Another question about handling game states

    - by Eva
    I'm making a game designed with the entity-component paradigm that uses systems to communicate between components as explained here. I've reached the point in my development that I need to add game states (such as paused, playing, level start, round start, game over, etc.), but I'm not sure how to do it with my framework. I've looked at this code example on game states which everyone seems to reference, but I don't think it fits with my framework. It seems to have each state handling its own drawing and updating. My framework has a SystemManager that handles all the updating using systems. For example, here's my RenderingSystem class: public class RenderingSystem extends GameSystem { private GameView gameView_; /** * Constructor * Creates a new RenderingSystem. * @param gameManager The game manager. Used to get the game components. */ public RenderingSystem(GameManager gameManager) { super(gameManager); } /** * Method: registerGameView * Registers gameView into the RenderingSystem. * @param gameView The game view registered. */ public void registerGameView(GameView gameView) { gameView_ = gameView; } /** * Method: triggerRender * Adds a repaint call to the event queue for the dirty rectangle. */ public void triggerRender() { Rectangle dirtyRect = new Rectangle(); for (GameObject object : getRenderableObjects()) { GraphicsComponent graphicsComponent = object.getComponent(GraphicsComponent.class); dirtyRect.add(graphicsComponent.getDirtyRect()); } gameView_.repaint(dirtyRect); } /** * Method: renderGameView * Renders the game objects onto the game view. * @param g The graphics object that draws the game objects. */ public void renderGameView(Graphics g) { for (GameObject object : getRenderableObjects()) { GraphicsComponent graphicsComponent = object.getComponent(GraphicsComponent.class); if (!graphicsComponent.isVisible()) continue; GraphicsComponent.Shape shape = graphicsComponent.getShape(); BoundsComponent boundsComponent = object.getComponent(BoundsComponent.class); Rectangle bounds = boundsComponent.getBounds(); g.setColor(graphicsComponent.getColor()); if (shape == GraphicsComponent.Shape.RECTANGULAR) { g.fill3DRect(bounds.x, bounds.y, bounds.width, bounds.height, true); } else if (shape == GraphicsComponent.Shape.CIRCULAR) { g.fillOval(bounds.x, bounds.y, bounds.width, bounds.height); } } } /** * Method: getRenderableObjects * @return The renderable game objects. */ private HashSet<GameObject> getRenderableObjects() { return gameManager.getGameObjectManager().getRelevantObjects( getClass()); } } Also all the updating in my game is event-driven. I don't have a loop like theirs that simply updates everything at the same time. I like my framework because it makes it easy to add new GameObjects, but doesn't have the problems some component-based designs encounter when communicating between components. I would hate to chuck it just to get pause to work. Is there a way I can add game states to my game without removing the entity-component design? Does the game state example actually fit my framework, and I'm just missing something?

    Read the article

  • How can I make a universal construction more efficient?

    - by VF1
    A "universal construction" is a wrapper class for a sequential object that enables it to be linearized (a strong consistency condition for concurrent objects). For instance, here's an adapted wait-free construction, in Java, from [1], which presumes the existence of a wait-free queue that satisfies the interface WFQ (which only requires one-time consensus between threads) and assumes a Sequential interface: public interface WFQ<T> // "FIFO" iteration { int enqueue(T t); // returns the sequence number of t Iterable<T> iterateUntil(int max); // iterates until sequence max } public interface Sequential { // Apply an invocation (method + arguments) // and get a response (return value + state) Response apply(Invocation i); } public interface Factory<T> { T generate(); } // generate new default object public interface Universal extends Sequential {} public class SlowUniversal implements Universal { Factory<? extends Sequential> generator; WFQ<Invocation> wfq = new WFQ<Invocation>(); Universal(Factory<? extends Sequential> g) { generator = g; } public Response apply(Invocation i) { int max = wfq.enqueue(i); Sequential s = generator.generate(); for(Invocation invoc : wfq.iterateUntil(max)) s.apply(invoc); return s.apply(i); } } This implementation isn't very satisfying, however, since it presumes determinism of a Sequential and is really slow. I attempted to add memory recycling: public interface WFQD<T> extends WFQ<T> { T dequeue(int n); } // dequeues only when n is the tail, else assists other threads public interface CopyableSequential extends Sequential { CopyableSequential copy(); } public class RecyclingUniversal implements Universal { WFQD<CopyableSequential> wfqd = new WFQD<CopyableSequential>(); Universal(CopyableSequential init) { wfqd.enqueue(init); } public Response apply(Invocation i) { int max = wfqd.enqueue(i); CopyableSequential cs = null; int ctr = max; for(CopyableSequential csq : wfq.iterateUntil(max)) if(--max == 0) cs = csq.copy(); wfqd.dequeue(max); return cs.apply(i); } } Here are my specific questions regarding the extension: Does my implementation create a linearizable multi-threaded version of a CopyableSequential? Is it possible extend memory recycling without extending the interface (perhaps my new methods trivialize the problem)? My implementation only reduces memory when a thread returns, so can this be strengthened? [1] provided an implementation for WFQ<T>, not WFQD<T> - one does exist, though, correct? [1] Herlihy and Shavit, The Art of Multiprocessor Programming.

    Read the article

  • Why does creating dynamic bodies in JBox2D freeze my app?

    - by Amplify91
    My game hangs/freezes when I create dynamic bullet objects with Box2D and I don't know why. I am making a game where the main character can shoot bullets by the user tapping on the screen. Each touch event spawns a new FireProjectileEvent that is handled properly by an event queue. So I know my problem is not trying to create a new body while the box2d world is locked. My bullets are then created and managed by an object pool class like this: public Projectile getProjectile(){ for(int i=0;i<mProjectiles.size();i++){ if(!mProjectiles.get(i).isActive){ return mProjectiles.get(i); } } return mSpriteFactory.createProjectile(); } mSpriteFactory.createProjectile() leads to the physics component of the Projectile class creating its box2d body. I have narrowed the issue down to this method and it looks like this: public void create(World world, float x, float y, Vec2 vertices[], boolean dynamic){ BodyDef bodyDef = new BodyDef(); if(dynamic){ bodyDef.type = BodyType.DYNAMIC; }else{ bodyDef.type = BodyType.STATIC; } bodyDef.position.set(x, y); mBody = world.createBody(bodyDef); PolygonShape dynamicBox = new PolygonShape(); dynamicBox.set(vertices, vertices.length); FixtureDef fixtureDef = new FixtureDef(); fixtureDef.shape = dynamicBox; fixtureDef.density = 1.0f; fixtureDef.friction = 0.0f; mBody.createFixture(fixtureDef); mBody.setFixedRotation(true); } If the dynamic parameter is set to true my game freezes before crashing, but if it is false, it will create a projectile exactly how I want it just doesn't function properly (because a projectile is not a static object). Why does my program fail when I try to create a dynamic object at runtime but not when I create a static one? I have other dynamic objects (like my main character) that work fine. Any help would be greatly appreciated. This is a screenshot of a method profile I did: Especially notable is number 8. I'm just still unsure what I'm doing wrong. Other notes: I am using JBox2D 2.1.2.2. (Upgraded from 2.1.2.1 to try to fix this problem) When the application freezes, if I hit the back button, it appears to move my game backwards by one update tick. Very strange.

    Read the article

  • Monitoring C++ applications

    - by Scott A
    We're implementing a new centralized monitoring solution (Zenoss). Incorporating servers, networking, and Java programs is straightforward with SNMP and JMX. The question, however, is what are the best practices for monitoring and managing custom C++ applications in large, heterogenous (Solaris x86, RHEL Linux, Windows) environments? Possibilities I see are: Net SNMP Advantages single, central daemon on each server well-known standard easy integration into monitoring solutions we run Net SNMP daemons on our servers already Disadvantages: complex implementation (MIBs, Net SNMP library) new technology to introduce for the C++ developers rsyslog Advantages single, central daemon on each server well-known standard unknown integration into monitoring solutions (I know they can do alerts based on text, but how well would it work for sending telemetry like memory usage, queue depths, thread capacity, etc) simple implementation Disadvantages: possible integration issues somewhat new technology for C++ developers possible porting issues if we switch monitoring vendors probably involves coming up with an ad-hoc communication protocol (or using RFC5424 structured data; I don't know if Zenoss supports that without custom Zenpack coding) Embedded JMX (embed a JVM and use JNI) Advantages consistent management interface for both Java and C++ well-known standard easy integration into monitoring solutions somewhat simple implementation (we already do this today for other purposes) Disadvantages: complexity (JNI, thunking layer between native C++ and Java, basically writing the management code twice) possible stability problems requires a JVM in each process, using considerably more memory JMX is new technology for C++ developers each process has it's own JMX port (we run a lot of processes on each machine) Local JMX daemon, processes connect to it Advantages single, central daemon on each server consistent management interface for both Java and C++ well-known standard easy integration into monitoring solutions Disadvantages: complexity (basically writing the management code twice) need to find or write such a daemon need a protocol between the JMX daemon and the C++ process JMX is new technology for C++ developers CodeMesh JunC++ion Advantages consistent management interface for both Java and C++ well-known standard easy integration into monitoring solutions single, central daemon on each server when run in shared JVM mode somewhat simple implementation (requires code generation) Disadvantages: complexity (code generation, requires a GUI and several rounds of tweaking to produce the proxied code) possible JNI stability problems requires a JVM in each process, using considerably more memory (in embedded mode) Does not support Solaris x86 (deal breaker) Even if it did support Solaris x86, there are possible compiler compatibility issues (we use an odd combination of STLPort and Forte on Solaris each process has it's own JMX port when run in embedded mode (we run a lot of processes on each machine) possibly precludes a shared JMX server for non-C++ processes (?) Is there some reasonably standardized, simple solution I'm missing? Given no other reasonable solutions, which of these solutions is typically used for custom C++ programs? My gut feel is that Net SNMP is how people do this, but I'd like other's input and experience before I make a decision.

    Read the article

  • Keep Learning After Your Oracle Training Class is Over - Save 50%!

    - by KJones
    Written by Amit Kumar, Senior Director Oracle University Digital Training        Every training class you take about the latest Oracle application or technology moves you closer to developing the skills you need to succeed. But after class is over, how do you keep up with today’s accelerating pace of innovation? To   To keep with the very latest technological advances, you need an ongoing and flexible training solution.       One that lets you learn during your own downtime.       Knowledge that’s easy to access.       Interactive lessons where you connect with experts.       A simple way to increase your knowledge, on your own time and at your own pace. The new Oracle Learning Streams is the flexible training solution you're looking for. Continuously Learn with Oracle Learning Streams Over time, Oracle Learning Streams help you develop the depth and breadth of knowledge that will give you the tools to become an expert in your field. By taking advantage of comprehensive and frequently updated information, you can keep learning continuously, at your own pace, when it's convenient for you. Sign up today and get 12 months of unlimited access to: •    Hundreds of videos delivered by Oracle experts for fresh and continuous product learning•    Live connections with Oracle's top instructors•    Robust video search capability to find exactly what you’re looking for•    Features that allow you to build your own custom learning queue and request new content Oracle Learning Streams are now available for Oracle Database and Oracle Middleware. Take a moment to preview the content now.  For a Limited Time - Save 50% For a limited time, save 50% when you order Oracle Learning Streams with any other Oracle Classroom, Live Virtual Class or Training On Demand course. Now there is no reason for learning to stop when class is over!

    Read the article

  • Problems uploading package to launchpad

    - by user74513
    I'm having a lot of problems uploading my showdown project to a PPA. I've setup correctly PGP keys and my public ssh key to launchpad. I've packaged with debuild my C++ project, producing a source package lintian gave me only those two warnings that I think are ok for the showdown rules: W: massren source: native-package-with-dash-version W: massren source: binary-nmu-debian-revision-in-source 1.0-0extras12.04.1~ppa2 Producing a binary package works to and the package installs without problem on my ubuntu 12.04 machine, I only have a few more lintian warnings about the fact I'm installing in /opt/extras.ubuntu.com/ I'm uploading with: dput ppa:gabrielegreco/massren massren_1.0-0extras12.04.1~ppa2_source.changes When I upload with dput I have no errors, signatures seems ok, and public key seems accepted to (since the upload goes on without asking passwords...): dput ppa:gabrielegreco/massren massren_1.0-0extras12.04.1~ppa2_source.changes Checking signature on .changes gpg: Signature made Mon 02 Jul 2012 10:00:38 AM CEST using RSA key ID 49982576 gpg: Good signature from "Gabriele Greco " Good signature on /home/gabry/no-backup/massren_1.0-0extras12.04.1~ppa2_source.changes. Checking signature on .dsc gpg: Signature made Mon 02 Jul 2012 10:00:33 AM CEST using RSA key ID 49982576 gpg: Good signature from "Gabriele Greco " Good signature on /home/gabry/no-backup/massren_1.0-0extras12.04.1~ppa2.dsc. Uploading to ppa (via ftp to ppa.launchpad.net): Uploading massren_1.0-0extras12.04.1~ppa2.dsc: done. Uploading massren_1.0-0extras12.04.1~ppa2.tar.gz: done. Uploading massren_1.0-0extras12.04.1~ppa2_source.changes: done. Successfully uploaded packages. At the moment I'm not receiving responses from launchpad site, but the upload does not show in the ppa page. Previous attempts gave me response e-mails with different kind of errors: File massren_1.0-0extras12.04.1~ppa1.tar.gz mentioned in the changes has a checksum mismatch. 1503fa155226cbc4aba2f8ba9aa11a75 != 294a5e0caf3fe95b0b007a10766e9672 File massren_1.0-0extras12.04.1~ppa1.tar.gz mentioned in the changes has a checksum mismatch. 1503fa155226cbc4aba2f8ba9aa11a75 != 294a5e0caf3fe95b0b007a10766e9672 Or more cryptic: GPG verification of /srv/launchpad.net/ppa-queue/incoming/upload-ftp-20120629-163320-001135/~gabrielegreco/massren/ubuntu/massren_1.0-0extras12.04.1~ppa1.dsc failed: Verification failed 3 times: ["(7, 58, u'No data')", "(7, 58, u'No data')", "(7, 58, u'No data')"] Further error processing not possible because of a critical previous error. Any idea how can I solve this problem? I'm new to ubuntu packaging, so I may miss some step... There is an alternative to dput (aka manual upload)?

    Read the article

< Previous Page | 68 69 70 71 72 73 74 75 76 77 78 79  | Next Page >