Search Results

Search found 11135 results on 446 pages for 'thread safe'.

Page 72/446 | < Previous Page | 68 69 70 71 72 73 74 75 76 77 78 79  | Next Page >

  • difference between http.context.user and thread.currentprincipal and when to use them?

    - by yamspog
    I have just recently run into an issue running an asp.net web app under visual studio 2008. I get the error 'type is not resolved for member...customUserPrincipal'. Tracking down various discussion groups it seems that there is an issue with Visual Studio's web server when you assign a custom principal against the Thread.CurrentPrincipal. In my code, I now use... HttpContext.Current.User = myCustomPrincipal //Thread.CurrentPrincipal = myCustomPrincipal I'm glad that I got the error out of the way, but it begs the question "What is the difference between these two methods of setting a principal?". There are other stackoverflow questions related to the differences but they don't get into the details of the two approaches. I did find one tantalizing post that had the following grandiose comment but no explanation to back up his assertions... Use HttpConext.Current.User for all web (ASPX/ASMX) applications. Use Thread.CurrentPrincipal for all other applications like winForms, console and windows service applications. Can any of you security/dot.net gurus shed some light on this subject?

    Read the article

  • creating a QT gui using a thread in c++?

    - by rashid
    I am trying to create this QT gui using a thread but no luck. Below is my code. Problem is gui never shows up. But if i put QApplication app(m.s_argc,m.s_argv); //object instantiation guiClass *gui = new guiClass(); //show gui gui-show(); app.exec(); in main() then it works. /*INCLUDES HERE... .... */ using namespace std; struct mainStruct { int s_argc; char ** s_argv; }; typedef struct mainStruct mas; void *guifunc(void * arg); int main(int argc, char * argv[]) { mas m; m.s_argc = argc; m.s_argv = argv; pthread_t threadGUI; //start a new thread for gui int result = pthread_create(&threadGUI, NULL, guifunc, (void *) &m); if (result) { printf("Error creating gui thread"); exit(0); } return 0; } void *guifunc(void * arg) { mas m = *(mas *)arg; QApplication app(m.s_argc,m.s_argv); //object instantiation guiClass *gui = new guiClass(); //show gui gui-show(); app.exec(); }

    Read the article

  • How do I stop Ant from hanging after executing a java program that attempted to interrupt a thread (and failed) and continued?

    - by Zugwalt
    I have Ant build and execute a java program. This program tries to do something that sometimes hangs, so we execute it in a thread. actionThread.start(); try { actionThread.join(10000); } catch (InterruptedException e) { System.out.println("InterruptedException: "+e.getMessage()); } if (actionThread.isAlive()) { actionThread.interrupt(); System.out.println("Thread timed out and never died"); } The ant call looks like this: <java fork="true" failonerror="yes" classname="myPackage.myPathName" classpath="build"> <arg line=""/> <classpath> <pathelement location="bin" /> <fileset dir="lib"> <include name="**/*.jar"/> </fileset> </classpath> </java> And when this runs I see the "Thread timed out and never died" statement, and I also see the main program finish execution, but then Ant just hangs. Presumably it is waiting for the child threads to finish, but they never will. How can I have Ant be done once it is done executing main() and just kill or ignore dead threads?

    Read the article

  • Why does the BackgroundWorker in WPF need Thread.Sleep to update UI controls?

    - by user364060
    namespace WpfApplication1 { /// <summary> /// Interaction logic for Window1.xaml /// </summary> public partial class Window1 : Window { BackgroundWorker bgWorker; Action<int> myProgressReporter; public Window1() { InitializeComponent(); bgWorker = new BackgroundWorker(); bgWorker.DoWork += bgWorker_Task; bgWorker.RunWorkerCompleted += myWorker_RunWorkerCompleted; // hook event to method bgWorker.ProgressChanged += bgWorker_ReportProgress; // hook the delegate to the method myProgressReporter = updateProgress; bgWorker.WorkerReportsProgress = true; } private void myWorker_RunWorkerCompleted(object sender, System.ComponentModel.RunWorkerCompletedEventArgs e) { object result; result = e.Result; MessageBox.Show(result.ToString()); progressBar1.Value = 0; button1.IsEnabled = true; } private void bgWorker_ReportProgress(object sender, ProgressChangedEventArgs e) { System.Windows.Threading.Dispatcher disp = button1.Dispatcher; disp.BeginInvoke(myProgressReporter,e.ProgressPercentage); //Dispatcher.BeginInvoke(myProgressReporter, DispatcherPriority.Normal, e.ProgressPercentage); } private void updateProgress(int progressPercentage) { progressBar1.Value = progressPercentage; } private void bgWorker_Task(Object sender, DoWorkEventArgs e) { int total = 1000; for (int i = 1; i <= total; i++) { if (bgWorker.WorkerReportsProgress) { int p = (int)(((float)i / (float)total) * 100); bgWorker.ReportProgress(p); } Thread.Sleep(1); // Without Thread.Sleep(x) the main thread freezes or gives stackoverflow exception, } e.Result = "Completed"; } private void button1_Click(object sender, RoutedEventArgs e) { if(!bgWorker.IsBusy) bgWorker.RunWorkerAsync("This is a background process"); button1.IsEnabled = false; } } }

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Could it be that "chkrootkit" just doesn't like .hmac, .packlist, and .relocation-tag files?

    - by Danijel
    I just cleaned up my hacked CentOS server (due to not updating since versino 5.3). But still, "chkrootkit" says this: Possible t0rn v8 \(or variation\) rootkit installed /usr/lib/.libfipscheck.so.1.1.0.hmac /usr/lib/.libgcrypt.so.11.hmac /usr/lib/.libfipscheck.so.1.hmac /lib/.libcrypto.so.0.9.8e.hmac /lib/.libssl.so.0.9.8e.hmac /lib/.libssl.so.6.hmac /lib/.libcrypto.so.6.hmac /usr/lib/perl5/site_perl/5.8.8/i386-linux-thread-multi/auto/Text/Iconv/.packlist /usr/lib/perl5/5.8.8/i386-linux-thread-multi/.packlist /usr/lib/perl5/vendor_perl/5.8.8/i386-linux-thread-multi/auto/HTML-Tree/.packlist /usr/lib/perl5/vendor_perl/5.8.8/i386-linux-thread-multi/auto/Font/AFM/.packlist /usr/lib/perl5/vendor_perl/5.8.8/i386-linux-thread-multi/auto/MLDBM/Sync/.packlist /usr/lib/perl5/vendor_perl/5.8.8/i386-linux-thread-multi/auto/MLDBM/.packlist /usr/lib/perl5/vendor_perl/5.8.8/i386-linux-thread-multi/auto/FreezeThaw/.packlist /usr/lib/perl5/vendor_perl/5.8.8/i386-linux-thread-multi/auto/Apache/ASP/.packlist /usr/lib/perl5/vendor_perl/5.8.8/i386-linux-thread-multi/auto/HTML-Format/.packlist /usr/lib/gtk-2.0/immodules/.relocation-tag /usr/lib/python2.4/plat-linux2/.relocation-tag /usr/lib/python2.4/distutils/.relocation-tag /usr/lib/python2.4/config/.relocation-tag Could it be that "chkrootkit" just doesn't like .hmac, .packlist, and .relocation-tag files? Are these realy still infected?

    Read the article

  • Creating a voxel world with 3D arrays using threads

    - by Sean M.
    I am making a voxel game (a bit like Minecraft) in C++(11), and I've come across an issue with creating a world efficiently. In my program, I have a World class, which holds a 3D array of Region class pointers. When I initialize the world, I give it a width, height, and depth so it knows how large of a world to create. Each Region is split up into a 32x32x32 area of blocks, so as you may guess, it takes a while to initialize the world once the world gets to be above 8x4x8 Regions. In order to alleviate this issue, I thought that using threads to generate different levels of the world concurrently would make it go faster. Having not used threads much before this, and being still relatively new to C++, I'm not entirely sure how to go about implementing one thread per level (level being a xz plane with a height of 1), when there is a variable number of levels. I tried this: for(int i = 0; i < height; i++) { std::thread th(std::bind(&World::load, this, width, height, depth)); th.join(); } Where load() just loads all Regions at height "height". But that executes the threads one at a time (which makes sense, looking back), and that of course takes as long as generating all Regions in one loop. I then tried: std::thread t1(std::bind(&World::load, this, w, h1, h2 - 1, d)); std::thread t2(std::bind(&World::load, this, w, h2, h3 - 1, d)); std::thread t3(std::bind(&World::load, this, w, h3, h4 - 1, d)); std::thread t4(std::bind(&World::load, this, w, h4, h - 1, d)); t1.join(); t2.join(); t3.join(); t4.join(); This works in that the world loads about 3-3.5 times faster, but this forces the height to be a multiple of 4, and it also gives the same exact VAO object to every single Region, which need individual VAOs in order to render properly. The VAO of each Region is set in the constructor, so I'm assuming that somehow the VAO number is not thread safe or something (again, unfamiliar with threads). So basically, my question is two one-part: How to I implement a variable number of threads that all execute at the same time, and force the main thread to wait for them using join() without stopping the other threads? How do I make the VAO objects thread safe, so when a bunch of Regions are being created at the same time across multiple threads, they don't all get the exact same VAO? Turns out it has to do with GL contexts not working across multiple threads. I moved the VAO/VBO creation back to the main thread. Fixed! Here is the code for block.h/.cpp, region.h/.cpp, and CVBObject.h/.cpp which controls VBOs and VAOs, in case you need it. If you need to see anything else just ask. EDIT: Also, I'd prefer not to have answers that are like "you should have used boost". I'm trying to do this without boost to get used to threads before moving onto other libraries.

    Read the article

  • Profile creation process stuck halfway Websphere

    - by ngubk
    I'm creating a cell profile on Linux Mint 12 , WAS 8.0 Network Deployment Trial. But using manageProfiles.sh or Profile Management Tool, I can not create any profile (cell, application ...). When I check the log file, the profile creation process is always stop halfway (does not show any error, just stuck there). The log is always like this <record> <date>2012-11-02T04:11:15</date> <millis>1351847475108</millis> <sequence>2985</sequence> <logger>com.ibm.ws.install.configmanager.actionengine.ant.utils.ANTLogToCmtLogAdapter</logger> <level>INFO</level> <class>com.ibm.ws.install.configmanager.actionengine.ant.utils.ANTLogToCmtLogAdapter</class> <method>messageLogged</method> <thread>0</thread> <message>replacing value for user.install.root (null) with (/opt/IBM/WebSphere/AppServer/profiles)</message> </record> <record> <date>2012-11-02T04:11:15</date> <millis>1351847475108</millis> <sequence>2986</sequence> <logger>com.ibm.ws.install.configmanager.actionengine.ant.utils.ANTLogToCmtLogAdapter</logger> <level>INFO</level> <class>com.ibm.ws.install.configmanager.actionengine.ant.utils.ANTLogToCmtLogAdapter</class> <method>messageLogged</method> <thread>0</thread> <message>replacing value for was.install.root (/opt/IBM/WebSphere/AppServer) with (/opt/IBM/WebSphere/AppServer)</message> </record> <record> <date>2012-11-02T04:11:15</date> <millis>1351847475108</millis> <sequence>2987</sequence> <logger>com.ibm.ws.install.configmanager.actionengine.ant.utils.ANTLogToCmtLogAdapter</logger> <level>INFO</level> <class>com.ibm.ws.install.configmanager.actionengine.ant.utils.ANTLogToCmtLogAdapter</class> <method>messageLogged</method> <thread>0</thread> <message>replacing value for was.repository.root (null) with (/opt/IBM/WebSphere/AppServer/profiles/config)</message> </record> <record> <date>2012-11-02T04:11:15</date> <millis>1351847475108</millis> <sequence>2988</sequence> <logger>com.ibm.ws.install.configmanager.actionengine.ant.utils.ANTLogToCmtLogAdapter</logger> <level>INFO</level> <class>com.ibm.ws.install.configmanager.actionengine.ant.utils.ANTLogToCmtLogAdapter</class> <method>messageLogged</method> <thread>0</thread> <message>replacing value for com.ibm.ws.scripting.wsadminprops (null) with (/opt/IBM/WebSphere/AppServer/profiles/properties/wsadmin.properties)</message> </record> <record> <date>2012-11-02T04:11:15</date> <millis>1351847475120</millis> <sequence>2989</sequence> <logger>com.ibm.ws.install.configmanager.actionengine.ant.utils.ANTLogToCmtLogAdapter</logger> <level>INFO</level> <class>com.ibm.ws.install.configmanager.actionengine.ant.utils.ANTLogToCmtLogAdapter</class> <method>messageLogged</method> <thread>0</thread> <message>Resetting listener available status to: false</message> </record> <record> <date>2012-11-02T04:11:15</date> <millis>1351847475121</millis> <sequence>2990</sequence> <logger>com.ibm.ws.install.configmanager.actionengine.ant.utils.ANTLogToCmtLogAdapter</logger> <level>INFO</level> <class>com.ibm.ws.install.configmanager.actionengine.ant.utils.ANTLogToCmtLogAdapter</class> <method>messageLogged</method> <thread>0</thread> <message>setting wsadmin requester timeouts</message> </record> <record> <date>2012-11-02T04:11:15</date> <millis>1351847475128</millis> <sequence>2991</sequence> <logger>com.ibm.ws.install.configmanager.actionengine.ant.utils.ANTLogToCmtLogAdapter</logger> <level>INFO</level> <class>com.ibm.ws.install.configmanager.actionengine.ant.utils.ANTLogToCmtLogAdapter</class> <method>messageLogged</method> <thread>0</thread> <message>wsadmin requester retry count = 240000, initialization retry count = 12000, shutdown retry count = 12000</message> </record> <record> <date>2012-11-02T04:11:15</date> <millis>1351847475128</millis> <sequence>2992</sequence> <logger>com.ibm.ws.install.configmanager.actionengine.ant.utils.ANTLogToCmtLogAdapter</logger> <level>INFO</level> <class>com.ibm.ws.install.configmanager.actionengine.ant.utils.ANTLogToCmtLogAdapter</class> <method>messageLogged</method> <thread>0</thread> <message>Checking for wsadmin listener initialization</message> </record>

    Read the article

  • How to figure out how much RAM each prefork thread requires for maximum Wordpress performance on an EC2 small instance

    - by two7s_clash
    Just read Making WordPress Stable on EC2-Micro In the "Tuning Apache" section, I can't quite figure out how he comes up with his numbers for his prefork config. He explains how to get the numbers for an average process, which I get. But then: Or roughly 53MB per process...In this case, ten threads should be safe. This means that if we receive more than ten simultaneous requests, the other requests will be queued until a worker thread is available. In order to maximize performance, we will also configure the system to have this number of threads available all of the time. From 53MB per process, with 613MB of RAM, he somehow gets this config, which I don't get: <IfModule prefork.c> StartServers 10 MinSpareServers 10 MaxSpareServers 10 MaxClients 10 MaxRequestsPerChild 4000 </IfModule> How exactly does he get this from 53MB per process, with 613MB limit? Bonus question From the below, on a small instance (1.7 GB memory), what would good settings be? bitnami@ip-10-203-39-166:~$ ps xav |grep httpd 1411 ? Ss 0:00 2 0 114928 15436 0.8 /opt/bitnami/apache2/bin/httpd -f /opt/bitnami/apache2/conf/httpd.conf 1415 ? S 0:06 10 0 125860 55900 3.1 /opt/bitnami/apache2/bin/httpd -f /opt/bitnami/apache2/conf/httpd.conf 1426 ? S 0:08 19 0 127000 62996 3.5 /opt/bitnami/apache2/bin/httpd -f /opt/bitnami/apache2/conf/httpd.conf 1446 ? S 0:05 48 0 131932 72792 4.1 /opt/bitnami/apache2/bin/httpd -f /opt/bitnami/apache2/conf/httpd.conf 1513 ? S 0:05 7 0 125672 54840 3.1 /opt/bitnami/apache2/bin/httpd -f /opt/bitnami/apache2/conf/httpd.conf 1516 ? S 0:02 2 0 125228 48680 2.7 /opt/bitnami/apache2/bin/httpd -f /opt/bitnami/apache2/conf/httpd.conf 1517 ? S 0:06 2 0 127004 55796 3.1 /opt/bitnami/apache2/bin/httpd -f /opt/bitnami/apache2/conf/httpd.conf 1518 ? S 0:03 1 0 127196 54208 3.0 /opt/bitnami/apache2/bin/httpd -f /opt/bitnami/apache2/conf/httpd.conf 1531 ? R 0:04 0 0 127500 54236 3.0 /opt/bitnami/apache2/bin/httpd -f /opt/bitnami/apache2/conf/httpd.conf

    Read the article

  • Is it possible to use WinMerge inside Visual Studio 2008 and Visual Source Safe 6.0?

    - by Tim Santeford
    I would like to use WinMerge as the default diff tool inside VS2008 from the solutions explorer in place of the "Compare..." context menu item. Is this possible? I'm looking for a quick replacement of the current bland diff tool an I just like WinMerge better. I'm not interested in going to the folder explorer and doing the comparison there. Im using Visual Source Safe 6.0 not TFS Is this possible? Thanks in advanced!

    Read the article

  • Android edtftpj/PRo SFTP heap worker problem

    - by Mr. Kakakuwa Bird
    Hi I am using edtftpj-pro3.1 trial copy in my android app to make SFTP connection with the server. After few connections with the server with 5-6 file transfers, my app is crashing with following exception. Is it causing the problem or what could be the problem?? I tried setParallelMode(false) in SSHFTPClient, but it is not working. Exception i'm getting is, 05-31 18:28:12.661: ERROR/dalvikvm(589): HeapWorker is wedged: 10173ms spent inside Lcom/enterprisedt/net/j2ssh/sftp/SftpFileInputStream;.finalize()V 05-31 18:28:12.661: INFO/dalvikvm(589): DALVIK THREADS: 05-31 18:28:12.661: INFO/dalvikvm(589): "main" prio=5 tid=3 WAIT 05-31 18:28:12.661: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=N obj=0x4001b260 self=0xbd18 05-31 18:28:12.661: INFO/dalvikvm(589): | sysTid=589 nice=0 sched=0/0 cgrp=default handle=-1343993192 05-31 18:28:12.661: INFO/dalvikvm(589): at java.lang.Object.wait(Native Method) 05-31 18:28:12.661: INFO/dalvikvm(589): - waiting on <0x122d70 (a android.os.MessageQueue) 05-31 18:28:12.661: INFO/dalvikvm(589): at java.lang.Object.wait(Object.java:288) 05-31 18:28:12.661: INFO/dalvikvm(589): at android.os.MessageQueue.next(MessageQueue.java:148) 05-31 18:28:12.661: INFO/dalvikvm(589): at android.os.Looper.loop(Looper.java:110) 05-31 18:28:12.661: INFO/dalvikvm(589): at android.app.ActivityThread.main(ActivityThread.java:4363) 05-31 18:28:12.661: INFO/dalvikvm(589): at java.lang.reflect.Method.invokeNative(Native Method) 05-31 18:28:12.661: INFO/dalvikvm(589): at java.lang.reflect.Method.invoke(Method.java:521) 05-31 18:28:12.661: INFO/dalvikvm(589): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:860) 05-31 18:28:12.661: INFO/dalvikvm(589): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:618) 05-31 18:28:12.661: INFO/dalvikvm(589): at dalvik.system.NativeStart.main(Native Method) 05-31 18:28:12.671: INFO/dalvikvm(589): "Transport protocol 1" daemon prio=5 tid=29 NATIVE 05-31 18:28:12.671: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=N obj=0x44774768 self=0x3a7938 05-31 18:28:12.671: INFO/dalvikvm(589): | sysTid=605 nice=0 sched=0/0 cgrp=default handle=3834600 05-31 18:28:12.671: INFO/dalvikvm(589): at org.apache.harmony.luni.platform.OSNetworkSystem.receiveStreamImpl(Native Method) 05-31 18:28:12.671: INFO/dalvikvm(589): at org.apache.harmony.luni.platform.OSNetworkSystem.receiveStream(OSNetworkSystem.java:478) 05-31 18:28:12.671: INFO/dalvikvm(589): at org.apache.harmony.luni.net.PlainSocketImpl.read(PlainSocketImpl.java:565) 05-31 18:28:12.671: INFO/dalvikvm(589): at org.apache.harmony.luni.net.SocketInputStream.read(SocketInputStream.java:87) 05-31 18:28:12.671: INFO/dalvikvm(589): at org.apache.harmony.luni.net.SocketInputStream.read(SocketInputStream.java:67) 05-31 18:28:12.671: INFO/dalvikvm(589): at java.io.BufferedInputStream.fillbuf(BufferedInputStream.java:157) 05-31 18:28:12.671: INFO/dalvikvm(589): at java.io.BufferedInputStream.read(BufferedInputStream.java:346) 05-31 18:28:12.671: INFO/dalvikvm(589): at java.io.BufferedInputStream.read(BufferedInputStream.java:341) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.transport.A.A((null):-1) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.transport.A.B((null):-1) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.transport.TransportProtocolCommon.processMessages((null):-1) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.transport.TransportProtocolCommon.startBinaryPacketProtocol((null):-1) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.transport.TransportProtocolCommon.run((null):-1) 05-31 18:28:12.671: INFO/dalvikvm(589): at java.lang.Thread.run(Thread.java:1096) 05-31 18:28:12.671: INFO/dalvikvm(589): "StreamFrameSender" prio=5 tid=27 TIMED_WAIT 05-31 18:28:12.671: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=N obj=0x44750a60 self=0x3964d8 05-31 18:28:12.671: INFO/dalvikvm(589): | sysTid=603 nice=0 sched=0/0 cgrp=default handle=3761648 05-31 18:28:12.671: INFO/dalvikvm(589): at java.lang.Object.wait(Native Method) 05-31 18:28:12.671: INFO/dalvikvm(589): - waiting on <0x399478 (a com.corventis.gateway.ppp.StreamFrameSender) 05-31 18:28:12.671: INFO/dalvikvm(589): at java.lang.Object.wait(Object.java:326) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.corventis.gateway.ppp.StreamFrameSender.run(StreamFrameSender.java:154) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.corventis.gateway.util.MonitoredRunnable.run(MonitoredRunnable.java:41) 05-31 18:28:12.671: INFO/dalvikvm(589): at java.lang.Thread.run(Thread.java:1096) 05-31 18:28:12.671: INFO/dalvikvm(589): "SftpActiveWorker" prio=5 tid=25 TIMED_WAIT 05-31 18:28:12.671: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=N obj=0x447522b0 self=0x398e00 05-31 18:28:12.671: INFO/dalvikvm(589): | sysTid=604 nice=0 sched=0/0 cgrp=default handle=3762704 05-31 18:28:12.671: INFO/dalvikvm(589): at java.lang.Object.wait(Native Method) 05-31 18:28:12.671: INFO/dalvikvm(589): - waiting on <0x3962d8 (a com.corventis.gateway.hostcommunicator.SftpActiveWorker) 05-31 18:28:12.671: INFO/dalvikvm(589): at java.lang.Object.wait(Object.java:326) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.corventis.gateway.hostcommunicator.SftpActiveWorker.run(SftpActiveWorker.java:151) 05-31 18:28:12.671: INFO/dalvikvm(589): at com.corventis.gateway.util.MonitoredRunnable.run(MonitoredRunnable.java:41) 05-31 18:28:12.671: INFO/dalvikvm(589): at java.lang.Thread.run(Thread.java:1096) 05-31 18:28:12.671: INFO/dalvikvm(589): "Thread-12" prio=5 tid=23 NATIVE 05-31 18:28:12.671: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=N obj=0x4474aca8 self=0x115690 05-31 18:28:12.671: INFO/dalvikvm(589): | sysTid=602 nice=0 sched=0/0 cgrp=default handle=878120 05-31 18:28:12.671: INFO/dalvikvm(589): at android.bluetooth.BluetoothSocket.acceptNative(Native Method) 05-31 18:28:12.681: INFO/dalvikvm(589): at android.bluetooth.BluetoothSocket.accept(BluetoothSocket.java:287) 05-31 18:28:12.681: INFO/dalvikvm(589): at android.bluetooth.BluetoothServerSocket.accept(BluetoothServerSocket.java:105) 05-31 18:28:12.681: INFO/dalvikvm(589): at android.bluetooth.BluetoothServerSocket.accept(BluetoothServerSocket.java:91) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.bluetooth.BluetoothManager.openPort(BluetoothManager.java:215) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.bluetooth.BluetoothManager.open(BluetoothManager.java:84) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.patchcommunicator.PatchCommunicator.open(PatchCommunicator.java:123) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.patchcommunicator.PatchCommunicatorRunnable.run(PatchCommunicatorRunnable.java:134) 05-31 18:28:12.681: INFO/dalvikvm(589): at java.lang.Thread.run(Thread.java:1096) 05-31 18:28:12.681: INFO/dalvikvm(589): "HfGatewayApplication" prio=5 tid=21 RUNNABLE 05-31 18:28:12.681: INFO/dalvikvm(589): | group="main" sCount=0 dsCount=0 s=N obj=0x4472d9b0 self=0x120928 05-31 18:28:12.681: INFO/dalvikvm(589): | sysTid=601 nice=0 sched=0/0 cgrp=default handle=1264672 05-31 18:28:12.681: INFO/dalvikvm(589): at com.jcraft.jzlib.Deflate.deflateInit2(Deflate.java:~1361) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.jcraft.jzlib.Deflate.deflateInit(Deflate.java:1316) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.jcraft.jzlib.ZStream.deflateInit(ZStream.java:127) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.jcraft.jzlib.ZStream.deflateInit(ZStream.java:120) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.jcraft.jzlib.ZOutputStream.(ZOutputStream.java:62) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.zipfile.ZipStorer.addStream(ZipStorer.java:211) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.zipfile.ZipStorer.createZip(ZipStorer.java:127) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.hostcommunicator.HostCommunicator.scanAndCompress(HostCommunicator.java:453) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.hostcommunicator.HostCommunicator.doWork(HostCommunicator.java:1434) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.hf.HfGatewayApplication.doWork(HfGatewayApplication.java:621) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.hf.HfGatewayApplication.run(HfGatewayApplication.java:546) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.util.MonitoredRunnable.run(MonitoredRunnable.java:41) 05-31 18:28:12.681: INFO/dalvikvm(589): at java.lang.Thread.run(Thread.java:1096) 05-31 18:28:12.681: INFO/dalvikvm(589): "Thread-10" prio=5 tid=19 TIMED_WAIT 05-31 18:28:12.681: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=N obj=0x447287f8 self=0x1451b8 05-31 18:28:12.681: INFO/dalvikvm(589): | sysTid=598 nice=0 sched=0/0 cgrp=default handle=1331920 05-31 18:28:12.681: INFO/dalvikvm(589): at java.lang.VMThread.sleep(Native Method) 05-31 18:28:12.681: INFO/dalvikvm(589): at java.lang.Thread.sleep(Thread.java:1306) 05-31 18:28:12.681: INFO/dalvikvm(589): at java.lang.Thread.sleep(Thread.java:1286) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.util.Watchdog.run(Watchdog.java:167) 05-31 18:28:12.681: INFO/dalvikvm(589): at java.lang.Thread.run(Thread.java:1096) 05-31 18:28:12.681: INFO/dalvikvm(589): "Thread-9" prio=5 tid=17 RUNNABLE 05-31 18:28:12.681: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=Y obj=0x44722c90 self=0x114e20 05-31 18:28:12.681: INFO/dalvikvm(589): | sysTid=597 nice=0 sched=0/0 cgrp=default handle=1200048 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.time.Time.currentTimeMillis(Time.java:~77) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.patchcommunicator.PatchCommunicatorState$1.run(PatchCommunicatorState.java:27) 05-31 18:28:12.681: INFO/dalvikvm(589): "Thread-8" prio=5 tid=15 RUNNABLE 05-31 18:28:12.681: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=Y obj=0x44722430 self=0x124dd0 05-31 18:28:12.681: INFO/dalvikvm(589): | sysTid=596 nice=0 sched=0/0 cgrp=default handle=1199848 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.time.Time.currentTimeMillis(Time.java:~80) 05-31 18:28:12.681: INFO/dalvikvm(589): at com.corventis.gateway.hostcommunicator.HostCommunicatorState$1.run(HostCommunicatorState.java:35) 05-31 18:28:12.681: INFO/dalvikvm(589): "Binder Thread #2" prio=5 tid=13 NATIVE 05-31 18:28:12.681: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=N obj=0x4471ccc0 self=0x149b60 05-31 18:28:12.681: INFO/dalvikvm(589): | sysTid=595 nice=0 sched=0/0 cgrp=default handle=1317992 05-31 18:28:12.681: INFO/dalvikvm(589): at dalvik.system.NativeStart.run(Native Method) 05-31 18:28:12.681: INFO/dalvikvm(589): "Binder Thread #1" prio=5 tid=11 NATIVE 05-31 18:28:12.681: INFO/dalvikvm(589): | group="main" sCount=1 dsCount=0 s=N obj=0x447159a8 self=0x123298 05-31 18:28:12.681: INFO/dalvikvm(589): | sysTid=594 nice=0 sched=0/0 cgrp=default handle=1164896 05-31 18:28:12.681: INFO/dalvikvm(589): at dalvik.system.NativeStart.run(Native Method) 05-31 18:28:12.691: INFO/dalvikvm(589): "JDWP" daemon prio=5 tid=9 VMWAIT 05-31 18:28:12.691: INFO/dalvikvm(589): | group="system" sCount=1 dsCount=0 s=N obj=0x4470f2a0 self=0x141a90 05-31 18:28:12.691: INFO/dalvikvm(589): | sysTid=593 nice=0 sched=0/0 cgrp=default handle=1316864 05-31 18:28:12.691: INFO/dalvikvm(589): at dalvik.system.NativeStart.run(Native Method) 05-31 18:28:12.691: INFO/dalvikvm(589): "Signal Catcher" daemon prio=5 tid=7 VMWAIT 05-31 18:28:12.691: INFO/dalvikvm(589): | group="system" sCount=1 dsCount=0 s=N obj=0x4470f1e8 self=0x124970 05-31 18:28:12.691: INFO/dalvikvm(589): | sysTid=592 nice=0 sched=0/0 cgrp=default handle=1316800 05-31 18:28:12.691: INFO/dalvikvm(589): at dalvik.system.NativeStart.run(Native Method) 05-31 18:28:12.691: INFO/dalvikvm(589): "HeapWorker" daemon prio=5 tid=5 MONITOR 05-31 18:28:12.691: INFO/dalvikvm(589): | group="system" sCount=1 dsCount=0 s=N obj=0x431b4550 self=0x141670 05-31 18:28:12.691: INFO/dalvikvm(589): | sysTid=591 nice=0 sched=0/0 cgrp=default handle=1316400 05-31 18:28:12.691: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.sftp.SftpSubsystemClient.closeHandle((null):~-1) 05-31 18:28:12.691: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.sftp.SftpSubsystemClient.closeFile((null):-1) 05-31 18:28:12.691: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.sftp.SftpFile.close((null):-1) 05-31 18:28:12.691: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.sftp.SftpFileInputStream.close((null):-1) 05-31 18:28:12.691: INFO/dalvikvm(589): at com.enterprisedt.net.j2ssh.sftp.SftpFileInputStream.finalize((null):-1) 05-31 18:28:12.691: INFO/dalvikvm(589): at dalvik.system.NativeStart.run(Native Method) 05-31 18:28:12.691: ERROR/dalvikvm(589): VM aborting 05-31 18:28:12.801: INFO/DEBUG(49): * ** * ** * ** * ** * ** * 05-31 18:28:12.801: INFO/DEBUG(49): Build fingerprint: 'google/passion/passion/mahimahi:2.1-update1/ERE27/24178:user/release-keys' 05-31 18:28:12.801: INFO/DEBUG(49): pid: 589, tid: 601 com.corventis.gateway.hf <<< 05-31 18:28:12.801: INFO/DEBUG(49): signal 11 (SIGSEGV), fault addr deadd00d 05-31 18:28:12.801: INFO/DEBUG(49): r0 00000026 r1 afe13329 r2 afe13329 r3 00000000 05-31 18:28:12.801: INFO/DEBUG(49): r4 ad081f50 r5 400091e8 r6 009b3a6a r7 00000000 05-31 18:28:12.801: INFO/DEBUG(49): r8 000002e8 r9 ad082ba0 10 ad082ba0 fp 00000000 05-31 18:28:12.801: INFO/DEBUG(49): ip deadd00d sp 46937c58 lr afe14373 pc ad035b4c cpsr 20000030 05-31 18:28:12.851: INFO/DEBUG(49): #00 pc 00035b4c /system/lib/libdvm.so 05-31 18:28:12.861: INFO/DEBUG(49): #01 pc 00044d7c /system/lib/libdvm.so 05-31 18:28:12.861: INFO/DEBUG(49): #02 pc 000162e4 /system/lib/libdvm.so 05-31 18:28:12.861: INFO/DEBUG(49): #03 pc 00016b60 /system/lib/libdvm.so 05-31 18:28:12.861: INFO/DEBUG(49): #04 pc 00016ce0 /system/lib/libdvm.so 05-31 18:28:12.861: INFO/DEBUG(49): #05 pc 00057b64 /system/lib/libdvm.so 05-31 18:28:12.861: INFO/DEBUG(49): #06 pc 00057cc0 /system/lib/libdvm.so 05-31 18:28:12.871: INFO/DEBUG(49): #07 pc 00057dd4 /system/lib/libdvm.so 05-31 18:28:12.871: INFO/DEBUG(49): #08 pc 00012ffc /system/lib/libdvm.so 05-31 18:28:12.871: INFO/DEBUG(49): #09 pc 00019338 /system/lib/libdvm.so 05-31 18:28:12.871: INFO/DEBUG(49): #10 pc 00018804 /system/lib/libdvm.so 05-31 18:28:12.871: INFO/DEBUG(49): #11 pc 0004eed0 /system/lib/libdvm.so 05-31 18:28:12.871: INFO/DEBUG(49): #12 pc 0004eef8 /system/lib/libdvm.so 05-31 18:28:12.871: INFO/DEBUG(49): #13 pc 000426d4 /system/lib/libdvm.so 05-31 18:28:12.881: INFO/DEBUG(49): #14 pc 0000fd74 /system/lib/libc.so 05-31 18:28:12.881: INFO/DEBUG(49): #15 pc 0000f840 /system/lib/libc.so 05-31 18:28:12.881: INFO/DEBUG(49): code around pc: 05-31 18:28:12.881: INFO/DEBUG(49): ad035b3c 58234808 b1036b9b f8df4798 2026c01c 05-31 18:28:12.881: INFO/DEBUG(49): ad035b4c 0000f88c ef52f7d8 0004c428 fffe631c 05-31 18:28:12.881: INFO/DEBUG(49): ad035b5c fffe94f4 000002f8 deadd00d f8dfb40e 05-31 18:28:12.881: INFO/DEBUG(49): code around lr: 05-31 18:28:12.881: INFO/DEBUG(49): afe14360 686768a5 f9b5e008 b120000c 46289201 05-31 18:28:12.881: INFO/DEBUG(49): afe14370 9a014790 35544306 37fff117 6824d5f3 05-31 18:28:12.881: INFO/DEBUG(49): afe14380 d1ed2c00 bdfe4630 00026ab0 000000b4 05-31 18:28:12.881: INFO/DEBUG(49): stack: 05-31 18:28:12.881: INFO/DEBUG(49): 46937c18 00000015 05-31 18:28:12.881: INFO/DEBUG(49): 46937c1c afe13359 /system/lib/libc.so 05-31 18:28:12.881: INFO/DEBUG(49): 46937c20 afe3b02c /system/lib/libc.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c24 afe3afd8 /system/lib/libc.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c28 00000000 05-31 18:28:12.891: INFO/DEBUG(49): 46937c2c afe14373 /system/lib/libc.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c30 afe13329 /system/lib/libc.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c34 afe13329 /system/lib/libc.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c38 afe13380 /system/lib/libc.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c3c ad081f50 /system/lib/libdvm.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c40 400091e8 /dev/ashmem/mspace/dalvik-heap/zygote/0 (deleted) 05-31 18:28:12.891: INFO/DEBUG(49): 46937c44 009b3a6a 05-31 18:28:12.891: INFO/DEBUG(49): 46937c48 00000000 05-31 18:28:12.891: INFO/DEBUG(49): 46937c4c afe1338d /system/lib/libc.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c50 df002777 05-31 18:28:12.891: INFO/DEBUG(49): 46937c54 e3a070ad 05-31 18:28:12.891: INFO/DEBUG(49): #00 46937c58 ad06f573 /system/lib/libdvm.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c5c ad044d81 /system/lib/libdvm.so 05-31 18:28:12.891: INFO/DEBUG(49): #01 46937c60 000027bd 05-31 18:28:12.891: INFO/DEBUG(49): 46937c64 00000000 05-31 18:28:12.891: INFO/DEBUG(49): 46937c68 463b6ab4 /data/dalvik-cache/data@[email protected]@classes.dex 05-31 18:28:12.891: INFO/DEBUG(49): 46937c6c 463d1ecf /data/dalvik-cache/data@[email protected]@classes.dex 05-31 18:28:12.891: INFO/DEBUG(49): 46937c70 00140450 [heap] 05-31 18:28:12.891: INFO/DEBUG(49): 46937c74 ad041d2b /system/lib/libdvm.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c78 ad082f2c /system/lib/libdvm.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c7c ad06826c /system/lib/libdvm.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c80 00140450 [heap] 05-31 18:28:12.891: INFO/DEBUG(49): 46937c84 00000000 05-31 18:28:12.891: INFO/DEBUG(49): 46937c88 000002f8 05-31 18:28:12.891: INFO/DEBUG(49): 46937c8c 400091e8 /dev/ashmem/mspace/dalvik-heap/zygote/0 (deleted) 05-31 18:28:12.891: INFO/DEBUG(49): 46937c90 ad081f50 /system/lib/libdvm.so 05-31 18:28:12.891: INFO/DEBUG(49): 46937c94 000002f8 05-31 18:28:12.891: INFO/DEBUG(49): 46937c98 00002710 05-31 18:28:12.891: INFO/DEBUG(49): 46937c9c ad0162e8 /system/lib/libdvm.so Thanks & Regards,

    Read the article

  • .NET 1.0 ThreadPool Question

    - by dotnet-practitioner
    I am trying to spawn a thread to take care of DoWork task that should take less than 3 seconds. Inside DoWork its taking 15 seconds. I want to abort DoWork and transfer the control back to main thread. I have copied the code as follows and its not working. Instead of aborting DoWork, it still finishes DoWork and then transfers the control back to main thread. What am I doing wrong? class Class1 { /// <summary> /// The main entry point for the application. /// </summary> /// private static System.Threading.ManualResetEvent[] resetEvents; [STAThread] static void Main(string[] args) { resetEvents = new ManualResetEvent[1]; int i = 0; resetEvents[i] = new ManualResetEvent(false); ThreadPool.QueueUserWorkItem(new WaitCallback(DoWork),(object)i); Thread.CurrentThread.Name = "main thread"; Console.WriteLine("[{0}] waiting in the main method", Thread.CurrentThread.Name); DateTime start = DateTime.Now; DateTime end ; TimeSpan span = DateTime.Now.Subtract(start); //abort dowork method if it takes more than 3 seconds //and transfer control to the main thread. do { if (span.Seconds < 3) WaitHandle.WaitAll(resetEvents); else resetEvents[0].Set(); end = DateTime.Now; span = end.Subtract(start); }while (span.Seconds < 2); Console.WriteLine(span.Seconds); Console.WriteLine("[{0}] all done in the main method",Thread.CurrentThread.Name); Console.ReadLine(); } static void DoWork(object o) { int index = (int)o; Thread.CurrentThread.Name = "do work thread"; //simulate heavy duty work. Thread.Sleep(15000); //work is done.. resetEvents[index].Set(); Console.WriteLine("[{0}] do work finished",Thread.CurrentThread.Name); } }

    Read the article

  • Is it safe to spin on a volatile variable in user-mode threads?

    - by yongsun
    I'm not quite sure if it's safe to spin on a volatile variable in user-mode threads, to implement a light-weight spin_lock, I looked at the tbb source code, tbb_machine.h:170, //! Spin WHILE the value of the variable is equal to a given value /** T and U should be comparable types. */ template<typename T, typename U> void spin_wait_while_eq( const volatile T& location, U value ) { atomic_backoff backoff; while( location==value ) backoff.pause(); } And there is no fences in atomic_backoff class as I can see. While from other user-mode spin_lock implementation, most of them use CAS (Compare and Swap).

    Read the article

  • Sending custom PyQt signals?

    - by Enfors
    I'm practicing PyQt and (Q)threads by making a simple Twitter client. I have two Qthreads. Main/GUI thread. Twitter fetch thread - fetches data from Twitter every X minutes. So, every X minutes my Twitter thread downloads a new set of status updates (a Python list). I want to hand this list over to the Main/GUI thread, so that it can update the window with these statuses. I'm assuming that I should be using the signal / slot system to transfer the "statuses" Python list from the Twitter thread, to the Main/GUI thread. So, my question is twofold: How do I send the statuses from the Twitter thread? How do I receive them in the Main/GUI thread? As far as I can tell, PyQt can by default only send PyQt-objects via signals / slots. I think I'm supposed to somehow register a custom signal which I can then send, but the documentation on this that I've found is very unclear to a newbie like me. I have a PyQt book on order, but it won't arrive in another week, and I don't want to wait until then. :-) I'm using PyQt 4.6-1 on Ubuntu Update: This is an excert from the code that doesn't work. First, I try to "connect" the signal ("newStatuses", a name I just made up) to the function self.update_tweet_list in the Main/GUI thread: QtCore.QObject.connect(self.twit_in, QtCore.SIGNAL("newStatuses (statuses)"), self.update_tweet_list) Then, in the Twitter thread, I do this: self.emit(SIGNAL("newStatuses (statuses)"), statuses) When this line is called, I get the following message: QObject::connect: Cannot queue arguments of type 'statuses' (Make sure 'statuses' is registered using qRegisterMetaType().) I did a search for qRegisterMetaType() but I didn't find anything relating to Python that I could understand.

    Read the article

  • Is it safe to use Select Top and Delete Top in sequence?

    - by Rob Nicholson
    I often write T-SQL loops that look like this While Exists (Select * From #MyTable) Begin Declare @ID int, @Word nvarchar(max) Select Top 1 @ID=ID, @Word=[Word] From #MyTable -- Do something -- Delete #MyTable Where ID=@ID End Works a treat but I noticed the new Delete Top function which would be useful when #MyTable is just a list of strings. In this case, would this work: While Exists (Select * From #MyTable) Begin Declare @Word nvarchar(max) Select Top 1 @Word=[Word] From #MyTable -- Do something -- Delete Top(1) #MyTable End Well yes, it works in my test script but is this safe? Will Select Top 1 and Delete Top(1) always refer to the same record or is Top a little more vague. Thanks, Rob.

    Read the article

  • Is there an extensible SQL like query language that is safe for exposing via a public API?

    - by Lokkju
    I want to expose some spatial (and a few non-spatial) datasets via a public API. The backend store will either be PostgreSQL/PostGIS, sqlite/spatialite, or CouchDB/GeoCouch. My goal is to find a some, preferably standard, way to allow people to make complex spatial queries against the data. I would like it to be a simple GET based request. The idea is to allow safe SQL type queries, without allowing unsafe ones. I would rather modify something that is off the shelf than doing the entire thing myself. I specifically want to support requesting specific fields from a table; joining results; and spatial functions that are already implemented by the underlying datastore. Ideas anyone?

    Read the article

  • Google App Engine: Unit testing concurrent access to memcache

    - by Phuong Nguyen de ManCity fan
    Would you guys show me a way to simulating concurrent access to memcache on Google App Engine? I'm trying with LocalServiceTestHelpers and threads but don't have any luck. Every time I try to access Memcache within a thread, then I get this error: ApiProxy$CallNotFoundException: The API package 'memcache' or call 'Increment()' was not found I guess that the testing library of GAE SDK tried to mimic the real environment and thus setup the environment for only one thread (the thread that running the test) which cannot be seen by other thread. Here is a piece of code that can reproduce the problem package org.seamoo.cache.memcacheImpl; import org.testng.Assert; import org.testng.annotations.AfterMethod; import org.testng.annotations.BeforeMethod; import org.testng.annotations.Test; import com.google.appengine.api.memcache.MemcacheService; import com.google.appengine.api.memcache.MemcacheServiceFactory; import com.google.appengine.tools.development.testing.LocalMemcacheServiceTestConfig; import com.google.appengine.tools.development.testing.LocalServiceTestHelper; public class MemcacheTest { LocalServiceTestHelper helper; public MemcacheTest() { LocalMemcacheServiceTestConfig memcacheConfig = new LocalMemcacheServiceTestConfig(); helper = new LocalServiceTestHelper(memcacheConfig); } /** * */ @BeforeMethod public void setUp() { helper.setUp(); } /** * @see LocalServiceTest#tearDown() */ @AfterMethod public void tearDown() { helper.tearDown(); } @Test public void memcacheConcurrentAccess() throws InterruptedException { final MemcacheService service = MemcacheServiceFactory.getMemcacheService(); Runnable runner = new Runnable() { @Override public void run() { // TODO Auto-generated method stub service.increment("test-key", 1L, 1L); try { Thread.sleep(200L); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } service.increment("test-key", 1L, 1L); } }; Thread t1 = new Thread(runner); Thread t2 = new Thread(runner); t1.start(); t2.start(); while (t1.isAlive()) { Thread.sleep(100L); } Assert.assertEquals((Long) (service.get("test-key")), new Long(4L)); } }

    Read the article

  • How to log correct context with Threadpool threads using log4net?

    - by myotherme
    I am trying to find a way to log useful context from a bunch of threads. The problem is that a lot of code is dealt with on Events that are arriving via threadpool threads (as far as I can tell) so their names are not in relation to any context. The problem can be demonstrated with the following code: class Program { private static readonly log4net.ILog log = log4net.LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType); static void Main(string[] args) { new Thread(TestThis).Start("ThreadA"); new Thread(TestThis).Start("ThreadB"); Console.ReadLine(); } private static void TestThis(object name) { var nameStr = (string)name; Thread.CurrentThread.Name = nameStr; log4net.ThreadContext.Properties["ThreadContext"] = nameStr; log4net.LogicalThreadContext.Properties["LogicalThreadContext"] = nameStr; log.Debug("From Thread itself"); ThreadPool.QueueUserWorkItem(x => log.Debug("From threadpool Thread: " + nameStr)); } } The Conversion pattern is: %date [%thread] %-5level %logger [%property] - %message%newline The output is like so: 2010-05-21 15:08:02,357 [ThreadA] DEBUG LogicalContextTest.Program [{LogicalThreadContext=ThreadA, log4net:HostName=xxx, ThreadContext=ThreadA}] - From Thread itself 2010-05-21 15:08:02,357 [ThreadB] DEBUG LogicalContextTest.Program [{LogicalThreadContext=ThreadB, log4net:HostName=xxx, ThreadContext=ThreadB}] - From Thread itself 2010-05-21 15:08:02,404 [7] DEBUG LogicalContextTest.Program [{log4net:HostName=xxx}] - From threadpool Thread: ThreadA 2010-05-21 15:08:02,420 [16] DEBUG LogicalContextTest.Program [{log4net:HostName=xxx}] - From threadpool Thread: ThreadB As you can see the last two rows have no Names of useful information to distinguish the 2 threads, other than manually adding the name to the message (which I want to avoid). How can I get the Name/Context into the log for the threadpool threads without adding it to the message at every call?

    Read the article

  • PHPMailer safe practices - Send escaped / sanitized variables or not ?

    - by FreekOne
    I'm using the PHPMailer-Lite class to build an email sending script and I'm not sure if I should use addslashses() on the $name variable when adding it to the constructor. If somebody's last name would be O'Riley (or any other name that contains characters which should normally be sanitized before handling) and I would send it unescaped, wouldn't it mess with the script/email sending ? Is it safe to send it unescaped ? As a side note, I would also like to avoid having my message body say "Hello, O\'Riley". Looking at the source, I saw that it only trims the whitespace and line ending (\r\n) characters from the received $name variable, so any advice on this would be more than welcome. Thank you all in advance !

    Read the article

  • State machines in C#

    - by Sir Psycho
    Hi, I'm trying to work out what's going on with this code. I have two threads iterating over the range and I'm trying to understand what is happening when the second thread calls GetEnumerator(). This line in particular (T current = start;), seems to spawn a new 'instance' in this method by the second thread. Seeing that there is only one instance of the DateRange class, I'm trying to understand why this works. Thanks in advance. class Program { static void Main(string[] args) { var daterange = new DateRange(DateTime.Now, DateTime.Now.AddDays(10), new TimeSpan(24, 0, 0)); var ts1 = new ThreadStart(delegate { foreach (var date in daterange) { Console.WriteLine("Thread " + Thread.CurrentThread.ManagedThreadId + " " + date); } }); var ts2 = new ThreadStart(delegate { foreach (var date in daterange) { Console.WriteLine("Thread " + Thread.CurrentThread.ManagedThreadId + " " + date); } }); Thread t1 = new Thread(ts1); Thread t2 = new Thread(ts2); t1.Start(); Thread.Sleep(4000); t2.Start(); Console.Read(); } } public class DateRange : Range<DateTime> { public DateTime Start { get; private set; } public DateTime End { get; private set; } public TimeSpan SkipValue { get; private set; } public DateRange(DateTime start, DateTime end, TimeSpan skip) : base(start, end) { SkipValue = skip; } public override DateTime GetNextElement(DateTime current) { return current.Add(SkipValue); } } public abstract class Range<T> : IEnumerable<T> where T : IComparable<T> { readonly T start; readonly T end; public Range(T start, T end) { if (start.CompareTo(end) > 0) throw new ArgumentException("Start value greater than end value"); this.start = start; this.end = end; } public abstract T GetNextElement(T currentElement); public IEnumerator<T> GetEnumerator() { T current = start; do { Thread.Sleep(1000); yield return current; current = GetNextElement(current); } while (current.CompareTo(end) < 1); } System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() { return GetEnumerator(); } }

    Read the article

  • Basic Java Multi-Threading Question

    - by Veered
    When an object is instantiated in Java, is it bound to the thread that instantiated in? Because when I anonymously implement an interface in one thread, and pass it to another thread to be run, all of its methods are run in the original thread. If they are bound to their creation thread, is there anyway to create an object that will run in whatever thread calls it?

    Read the article

  • Using SetThreadAffinityMask function imported from kernel32.dll in C # code.

    - by DotNetBeginner
    I am trying to set Thread Affinity using SetThreadAffinityMask function imported from kernel32.dll in C # code of mine. This is how I import SetThreadAffinityMask function from "kernel32.dll" in my C# .net code [DllImport("kernel32.dll")] static extern IntPtr SetThreadAffinityMask(IntPtr hThread, IntPtr dwThreadAffinityMask); I am creating 3 threads Thread t1=new Thread(some delegate); Thread t2=new Thread(some delegate); Thread t3=new Thread(some delegate); I wish to set Thread affinity for t1,t2 & t3 for which I am using SetThreadAffinityMask function. But I am not getting how to pass parameters to this function. SetThreadAffinityMask takes two parameters 1. HANDLE hThread 2. DWORD_PTR dwThreadAffinityMask Please help me in using SetThreadAffinityMask function in C# Thanks in advance !

    Read the article

  • Is it safe to convert a mysqlpp::sql_blob to a std::string?

    - by Runcible
    I'm grabbing some binary data out of my MySQL database. It comes out as a mysqlpp::sql_blob type. It just so happens that this BLOB is a serialized Google Protobuf. I need to de-serialize it so that I can access it normally. This gives a compile error, since ParseFromString() is not intended for mysqlpp:sql_blob types: protobuf.ParseFromString( record.data ); However, if I force the cast, it compiles OK: protobuf.ParseFromString( (std::string) record.data ); Is this safe? I'm particularly worried because of this snippet from the mysqlpp documentation: "Because C++ strings handle binary data just fine, you might think you can use std::string instead of sql_blob, but the current design of String converts to std::string via a C string. As a result, the BLOB data is truncated at the first embedded null character during population of the SSQLS. There’s no way to fix that without completely redesigning either String or the SSQLS mechanism." Thanks for your assistance!

    Read the article

  • C# Is it possible to interrupt a specific thread inside a ThreadPool?

    - by Lirik
    Suppose that I've queued a work item in a ThreadPool, but the work item blocks if there is no data to process (reading from a BlockingQueue). If the queue is empty and there will be no more work going into the queue, then I must call the Thread.Interrupt method if I want to interrupt the blocking task, but how does one do the same thing with a ThreadPool? The code might look like this: void Run() { try { while(true) { blockingQueue.Dequeue(); doSomething(); } } finally { countDownLatch.Signal(); } } I'm aware that the best thing to do in this situation is use a regular Thread, but I'm wondering if there is a ThreadPool equivalent way to interrupt a work item.

    Read the article

  • Using memtables in sql. When is it reasonable and is it safe?

    - by Spiros
    I was just reading an update from a friend's project, mentioning the use of memtables to store data temporatily and then flush to a table on disk. Up to now, I have never faced a situation where I would use a memtable, or a situation where I would think the use of a mem table would be beneficial; so I wonder, when would someone use mem tables? what makes a memtable (appart from access speed) a reasonable choice? and how safe is it, even for temp data? there is always the limitation of available physical memory.

    Read the article

< Previous Page | 68 69 70 71 72 73 74 75 76 77 78 79  | Next Page >