Search Results

Search found 20659 results on 827 pages for 'var'.

Page 73/827 | < Previous Page | 69 70 71 72 73 74 75 76 77 78 79 80  | Next Page >

  • Correct use of a "for...in" loop in javascript?

    - by jnkrois
    Hello everybody, before I ask my question I wanted to let everybody know that I appreciate the fact that there's always somebody out there willing to help, and on my end I'll try to give back to the community as much as I can. Thanks Now, I would like to get some pointers as to how to properly take advantage of the "for...in" loop in JavaScript, I already did some research and tried a couple things but it is still not clear to me how to properly use it. Let's say I have a random number of "select" tags in an HTML form, and I don't require the user to select an option for all of them, they can leave some untouched if they want. However I need to know if they selected none or at least one. The way I'm trying to find out if the user selected any of them is by using the "for...in" loop. For example: var allSelected = $("select option:selected"); var totalSelected = $("select option:selected").length; The first variable produces an array of all the selected options. The second variable tells me how many selected options I have in the form (select tags could be more than one and it changes every time). Now, in order to see if any has been selected I loop through each element (selected option), and retrieve the "value" attribute. The default "option" tag has a value="0", so if any selected option returns a value greater than 0, I know at least one option has been selected, however it does not have to be in order, this is my loop so far: for(var i = 0; i < totalSelected; i++){ var eachOption = $(allSelected[i]).val(); var defaultValue = 0; if(eachOption == defaultValue){ ...redirect to another page }else if(eachOption > defaultValue){ ... I display an alert } } My problem here is that as soon as the "if" matches a 0 value, it sends the user to the next page without testing the rest of the elements in the array, and the user could have selected the second or third options. What I really want to do is check all the elements in the array and then take the next action, in my mind this is how I could do it, but I'm not getting it right: var randomValue = 25; for(randomValue in allSelected){ var found = true; var notFound = false if(found){ display an alert }else{ redirect to next page } } This loop or the logic I'm using are flawed (I'm pretty sure), what I want to do is test all the elements in the array against a single variable and take the next action accordingly. I hope this makes some sense to you guys, any help would be appreciated. Thanks, JC

    Read the article

  • Reflection in C#

    - by matt
    var victim = System.IO.Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "Victim.dll"); var assy = AppDomain.CurrentDomain.Load(System.IO.File.ReadAllBytes(victim)); var types = from x in assy.GetTypes() where x.Name.StartsWith("AwesomePage") select x; var pageType = types.First(); page = Activator.CreateInstance(pageType); this.Content = page; Could someone tell me why a dll file would be targeted?

    Read the article

  • How to change h:outputText value by JavaScript?

    - by Peter
    I already tested with 2 inputText, It runs well for example var tdate = document.getElementById('txtDate'); //h:inputText var tdt = document.getElementById('txtDateTime'); //h:inputText tdate.onchange = function(){ tdt.value = tdate.value; }; How can I change the value of " tdt " - h:outputText? var tdate = document.getElementById('txtDate'); //h:inputText var tdt = document.getElementById('txtDateTime'); //h:outputText

    Read the article

  • Function to get the font and calculate the width of the string not working on first instance

    - by user3627265
    I'm trying to calculate the width of the string based on the font style and size. The user will provide the string, the font style and the font size, and then after giving all the data the user will hit the submit button and the function will trigger. Basically this script works but only when the submit button is hit twice or the font is selected twice,. I mean if you selec DNBlock as a font, it will not work for first time, but the second time you hit submit, it will then work. I'm not sure where is the problem here, but when I used the default font style like Arial, times new roman etc it works perfectly fine. Any Idea on this? I suspected that the font style is not being rendered by the script or something. Correct me if I'm wrong. Thanks //Repeat String String.prototype.repeat = function( num ) { return new Array( num + 1 ).join( this ); } //Calculate the width of string String.prototype.textWidth = function() { var fntStyle = document.getElementById("fntStyle").value; if(fntStyle == "1") { var fs = "DNBlock"; } else if(fntStyle == "2") { var fs = "DNBlockDotted"; } else if(fntStyle == "3") { var fs = "DNCursiveClassic"; } else if(fntStyle == "4") { var fs = "DNCursiveDotted"; } else if(fntStyle == "5") { var fs = "FoundationCursiveDots-Regul"; } var f = document.getElementById("fntSize").value.concat('px ', fs), o = $('<div>' + this + '</div>') .css({'position': 'absolute', 'float': 'left', 'white-space': 'nowrap', 'visibility': 'hidden', 'font': f}) .appendTo($('body')), w = o.width(); o.remove(); return w; } //Trigger the event $("#handwriting_gen").submit(function () { var rptNO = parseInt($('#rptNO').val()); $("[name='txtLine[]']").each(function(){ alert(this.value.repeat(rptNO).textWidth()); if(this.value.repeat(rptNO).textWidth() > 1000) { $(this).focus(); $(this).css({"background-color":"#f6d9d4"}).siblings('span.errorMsg').text('Text is too long.'); event.preventDefault(); } }); });

    Read the article

  • Javascript .removeChild() only deletes even nodes?

    - by user1476297
    first posting. I am trying dynamically add children DIV under a DIV with ID="prnt". Addition of nodes work fine no problem. However strange enough when it comes to deleted nodes its only deleting the even numbered nodes including 0. Why is this, I could be something stupid but it seem more like a bug. I could be very wrong. Please help Thank you in advance. <script type="text/javascript"> function displayNodes() { var prnt = document.getElementById("prnt"); var chlds = prnt.childNodes; var cont = document.getElementById("content"); for(i = 0; i < chlds.length; i++) { if(chlds[i].nodeType == 1) { cont.innerHTML +="<br />"; cont.innerHTML +="Node # " + (i+1); cont.innerHTML +="<br />"; cont.innerHTML +=chlds[i].nodeName; cont.innerHTML +="<br />"; } } } function deleteENodes() { var prnt = document.getElementById("prnt"); var chlds = prnt.childNodes; for(i = 0; i < chlds.length; i++) { if(!(chlds[i].nodeType == 3)) { prnt.removeChild(chlds[i]); } } } function AddENodes() { var prnt = document.getElementById("prnt"); //Only even nodes are deletable PROBLEM for(i = 0; i < 10; i++) { var newDIV = document.createElement('div'); newDIV.setAttribute("id", "c"+(i)); var text = document.createTextNode("New Inserted Child "+(i)); newDIV.appendChild(text); prnt.appendChild(newDIV); } } </script> <title>Checking Div Nodes</title> </head> <body> <div id="prnt"> Parent 1 </div> <br /> <br /> <br /> <button type="button" onclick="displayNodes()">Show Node Info</button> <button type="button" onclick="deleteENodes()">Remove All Element Nodes Under Parent 1</button> <button type="button" onclick="AddENodes()">Add 5 New DIV Nodes</button> <div id="content"> </div> </body>

    Read the article

  • Using a mounted NTFS share with nginx

    - by Hoff
    I have set up a local testing VM with Ubuntu Server 12.04 LTS and the LEMP stack. It's kind of an unconventional setup because instead of having all my PHP scripts on the local machine, I've mounted an NTFS share as the document root because I do my development on Windows. I had everything working perfectly up until this morning, now I keep getting a dreaded 'File not found.' error. I am almost certain this must be somehow permission related, because if I copy my site over to /var/www, nginx and php-fpm have no problems serving my PHP scripts. What I can't figure out is why all of a sudden (after a reboot of the server), no PHP files will be served but instead just the 'File not found.' error. Static files work fine, so I think it's PHP that is causing the headache. Both nginx and php-fpm are configured to run as the user www-data: root@ubuntu-server:~# ps aux | grep 'nginx\|php-fpm' root 1095 0.0 0.0 5816 792 ? Ss 11:11 0:00 nginx: master process /opt/nginx/sbin/nginx -c /etc/nginx/nginx.conf www-data 1096 0.0 0.1 6016 1172 ? S 11:11 0:00 nginx: worker process www-data 1098 0.0 0.1 6016 1172 ? S 11:11 0:00 nginx: worker process root 1130 0.0 0.4 175560 4212 ? Ss 11:11 0:00 php-fpm: master process (/etc/php5/php-fpm.conf) www-data 1131 0.0 0.3 175560 3216 ? S 11:11 0:00 php-fpm: pool www www-data 1132 0.0 0.3 175560 3216 ? S 11:11 0:00 php-fpm: pool www www-data 1133 0.0 0.3 175560 3216 ? S 11:11 0:00 php-fpm: pool www root 1686 0.0 0.0 4368 816 pts/1 S+ 11:11 0:00 grep --color=auto nginx\|php-fpm I have mounted the NTFS share at /mnt/webfiles by editing /etc/fstab and adding the following line: //192.168.0.199/c$/Websites/ /mnt/webfiles cifs username=Jordan,password=mypasswordhere,gid=33,uid=33 0 0 Where gid 33 is the www-data group and uid 33 is the user www-data. If I list the contents of one of my sites you can in fact see that they belong to the user www-data: root@ubuntu-server:~# ls -l /mnt/webfiles/nTv5-2.0 total 8 drwxr-xr-x 0 www-data www-data 0 Jun 6 19:12 app drwxr-xr-x 0 www-data www-data 0 Aug 22 19:00 assets -rwxr-xr-x 0 www-data www-data 1150 Jan 4 2012 favicon.ico -rwxr-xr-x 0 www-data www-data 1412 Dec 28 2011 index.php drwxr-xr-x 0 www-data www-data 0 Jun 3 16:44 lib drwxr-xr-x 0 www-data www-data 0 Jan 3 2012 plugins drwxr-xr-x 0 www-data www-data 0 Jun 3 16:45 vendors If I switch to the www-data user, I have no problem creating a new file on the share: root@ubuntu-server:~# su www-data $ > /mnt/webfiles/test.txt $ ls -l /mnt/webfiles | grep test\.txt -rwxr-xr-x 0 www-data www-data 0 Sep 8 11:19 test.txt There should be no problem reading or writing to the share with php-fpm running as the user www-data. When I examine the error log of nginx, it's filled with a bunch of lines that look like the following: 2012/09/08 11:22:36 [error] 1096#0: *1 FastCGI sent in stderr: "Primary script unknown" while reading response header from upstream, client: 192.168.0.199, server: , request: "GET / HTTP/1.1", upstream: "fastcgi://unix:/var/run/php5-fpm.sock:", host: "192.168.0.123" 2012/09/08 11:22:39 [error] 1096#0: *1 FastCGI sent in stderr: "Primary script unknown" while reading response header from upstream, client: 192.168.0.199, server: , request: "GET /apc.php HTTP/1.1", upstream: "fastcgi://unix:/var/run/php5-fpm.sock:", host: "192.168.0.123" It's bizarre that this was working previously and now all of sudden PHP is complaining that it can't "find" the scripts on the share. Does anybody know why this is happening? EDIT I tried editing php-fpm.conf and changing chdir to the following: chdir = /mnt/webfiles When I try and restart the php-fpm service, I get the error: Starting php-fpm [08-Sep-2012 14:20:55] ERROR: [pool www] the chdir path '/mnt/webfiles' does not exist or is not a directory This is a total load of bullshit because this directory DOES exist and is mounted! Any ls commands to list that directory work perfectly. Why the hell can't PHP-FPM see this directory?! Here are my configuration files for reference: nginx.conf user www-data; worker_processes 2; error_log /var/log/nginx/nginx.log info; pid /var/run/nginx.pid; events { worker_connections 1024; multi_accept on; } http { include fastcgi.conf; include mime.types; default_type application/octet-stream; set_real_ip_from 127.0.0.1; real_ip_header X-Forwarded-For; ## Proxy proxy_redirect off; proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; client_max_body_size 32m; client_body_buffer_size 128k; proxy_connect_timeout 90; proxy_send_timeout 90; proxy_read_timeout 90; proxy_buffers 32 4k; ## Compression gzip on; gzip_types text/plain text/css application/x-javascript text/xml application/xml application/xml+rss text/javascript; gzip_disable "MSIE [1-6]\.(?!.*SV1)"; ### TCP options tcp_nodelay on; tcp_nopush on; keepalive_timeout 65; sendfile on; include /etc/nginx/sites-enabled/*; } my site config server { listen 80; access_log /var/log/nginx/$host.access.log; error_log /var/log/nginx/error.log; root /mnt/webfiles/nTv5-2.0/app/webroot; index index.php; ## Block bad bots if ($http_user_agent ~* (HTTrack|HTMLParser|libcurl|discobot|Exabot|Casper|kmccrew|plaNETWORK|RPT-HTTPClient)) { return 444; } ## Block certain Referers (case insensitive) if ($http_referer ~* (sex|vigra|viagra) ) { return 444; } ## Deny dot files: location ~ /\. { deny all; } ## Favicon Not Found location = /favicon.ico { access_log off; log_not_found off; } ## Robots.txt Not Found location = /robots.txt { access_log off; log_not_found off; } if (-f $document_root/maintenance.html) { rewrite ^(.*)$ /maintenance.html last; } location ~* \.(?:ico|css|js|gif|jpe?g|png)$ { # Some basic cache-control for static files to be sent to the browser expires max; add_header Pragma public; add_header Cache-Control "max-age=2678400, public, must-revalidate"; } location / { try_files $uri $uri/ index.php; if (-f $request_filename) { break; } rewrite ^(.+)$ /index.php?url=$1 last; } location ~ \.php$ { include /etc/nginx/fastcgi.conf; fastcgi_pass unix:/var/run/php5-fpm.sock; } } php-fpm.conf ;;;;;;;;;;;;;;;;;;;;; ; FPM Configuration ; ;;;;;;;;;;;;;;;;;;;;; ; All relative paths in this configuration file are relative to PHP's install ; prefix (/opt/php5). This prefix can be dynamicaly changed by using the ; '-p' argument from the command line. ; Include one or more files. If glob(3) exists, it is used to include a bunch of ; files from a glob(3) pattern. This directive can be used everywhere in the ; file. ; Relative path can also be used. They will be prefixed by: ; - the global prefix if it's been set (-p arguement) ; - /opt/php5 otherwise ;include=etc/fpm.d/*.conf ;;;;;;;;;;;;;;;;;; ; Global Options ; ;;;;;;;;;;;;;;;;;; [global] ; Pid file ; Note: the default prefix is /opt/php5/var ; Default Value: none pid = /var/run/php-fpm.pid ; Error log file ; Note: the default prefix is /opt/php5/var ; Default Value: log/php-fpm.log error_log = /var/log/php5-fpm/php-fpm.log ; Log level ; Possible Values: alert, error, warning, notice, debug ; Default Value: notice ;log_level = notice ; If this number of child processes exit with SIGSEGV or SIGBUS within the time ; interval set by emergency_restart_interval then FPM will restart. A value ; of '0' means 'Off'. ; Default Value: 0 ;emergency_restart_threshold = 0 ; Interval of time used by emergency_restart_interval to determine when ; a graceful restart will be initiated. This can be useful to work around ; accidental corruptions in an accelerator's shared memory. ; Available Units: s(econds), m(inutes), h(ours), or d(ays) ; Default Unit: seconds ; Default Value: 0 ;emergency_restart_interval = 0 ; Time limit for child processes to wait for a reaction on signals from master. ; Available units: s(econds), m(inutes), h(ours), or d(ays) ; Default Unit: seconds ; Default Value: 0 ;process_control_timeout = 0 ; Send FPM to background. Set to 'no' to keep FPM in foreground for debugging. ; Default Value: yes ;daemonize = yes ;;;;;;;;;;;;;;;;;;;; ; Pool Definitions ; ;;;;;;;;;;;;;;;;;;;; ; Multiple pools of child processes may be started with different listening ; ports and different management options. The name of the pool will be ; used in logs and stats. There is no limitation on the number of pools which ; FPM can handle. Your system will tell you anyway :) ; Start a new pool named 'www'. ; the variable $pool can we used in any directive and will be replaced by the ; pool name ('www' here) [www] ; Per pool prefix ; It only applies on the following directives: ; - 'slowlog' ; - 'listen' (unixsocket) ; - 'chroot' ; - 'chdir' ; - 'php_values' ; - 'php_admin_values' ; When not set, the global prefix (or /opt/php5) applies instead. ; Note: This directive can also be relative to the global prefix. ; Default Value: none ;prefix = /path/to/pools/$pool ; The address on which to accept FastCGI requests. ; Valid syntaxes are: ; 'ip.add.re.ss:port' - to listen on a TCP socket to a specific address on ; a specific port; ; 'port' - to listen on a TCP socket to all addresses on a ; specific port; ; '/path/to/unix/socket' - to listen on a unix socket. ; Note: This value is mandatory. ;listen = 127.0.0.1:9000 listen = /var/run/php5-fpm.sock ; Set listen(2) backlog. A value of '-1' means unlimited. ; Default Value: 128 (-1 on FreeBSD and OpenBSD) ;listen.backlog = -1 ; List of ipv4 addresses of FastCGI clients which are allowed to connect. ; Equivalent to the FCGI_WEB_SERVER_ADDRS environment variable in the original ; PHP FCGI (5.2.2+). Makes sense only with a tcp listening socket. Each address ; must be separated by a comma. If this value is left blank, connections will be ; accepted from any ip address. ; Default Value: any ;listen.allowed_clients = 127.0.0.1 ; Set permissions for unix socket, if one is used. In Linux, read/write ; permissions must be set in order to allow connections from a web server. Many ; BSD-derived systems allow connections regardless of permissions. ; Default Values: user and group are set as the running user ; mode is set to 0666 ;listen.owner = www-data ;listen.group = www-data ;listen.mode = 0666 ; Unix user/group of processes ; Note: The user is mandatory. If the group is not set, the default user's group ; will be used. user = www-data group = www-data ; Choose how the process manager will control the number of child processes. ; Possible Values: ; static - a fixed number (pm.max_children) of child processes; ; dynamic - the number of child processes are set dynamically based on the ; following directives: ; pm.max_children - the maximum number of children that can ; be alive at the same time. ; pm.start_servers - the number of children created on startup. ; pm.min_spare_servers - the minimum number of children in 'idle' ; state (waiting to process). If the number ; of 'idle' processes is less than this ; number then some children will be created. ; pm.max_spare_servers - the maximum number of children in 'idle' ; state (waiting to process). If the number ; of 'idle' processes is greater than this ; number then some children will be killed. ; Note: This value is mandatory. pm = dynamic ; The number of child processes to be created when pm is set to 'static' and the ; maximum number of child processes to be created when pm is set to 'dynamic'. ; This value sets the limit on the number of simultaneous requests that will be ; served. Equivalent to the ApacheMaxClients directive with mpm_prefork. ; Equivalent to the PHP_FCGI_CHILDREN environment variable in the original PHP ; CGI. ; Note: Used when pm is set to either 'static' or 'dynamic' ; Note: This value is mandatory. pm.max_children = 50 ; The number of child processes created on startup. ; Note: Used only when pm is set to 'dynamic' ; Default Value: min_spare_servers + (max_spare_servers - min_spare_servers) / 2 pm.start_servers = 20 ; The desired minimum number of idle server processes. ; Note: Used only when pm is set to 'dynamic' ; Note: Mandatory when pm is set to 'dynamic' pm.min_spare_servers = 5 ; The desired maximum number of idle server processes. ; Note: Used only when pm is set to 'dynamic' ; Note: Mandatory when pm is set to 'dynamic' pm.max_spare_servers = 35 ; The number of requests each child process should execute before respawning. ; This can be useful to work around memory leaks in 3rd party libraries. For ; endless request processing specify '0'. Equivalent to PHP_FCGI_MAX_REQUESTS. ; Default Value: 0 pm.max_requests = 500 ; The URI to view the FPM status page. If this value is not set, no URI will be ; recognized as a status page. By default, the status page shows the following ; information: ; accepted conn - the number of request accepted by the pool; ; pool - the name of the pool; ; process manager - static or dynamic; ; idle processes - the number of idle processes; ; active processes - the number of active processes; ; total processes - the number of idle + active processes. ; max children reached - number of times, the process limit has been reached, ; when pm tries to start more children (works only for ; pm 'dynamic') ; The values of 'idle processes', 'active processes' and 'total processes' are ; updated each second. The value of 'accepted conn' is updated in real time. ; Example output: ; accepted conn: 12073 ; pool: www ; process manager: static ; idle processes: 35 ; active processes: 65 ; total processes: 100 ; max children reached: 1 ; By default the status page output is formatted as text/plain. Passing either ; 'html' or 'json' as a query string will return the corresponding output ; syntax. Example: ; http://www.foo.bar/status ; http://www.foo.bar/status?json ; http://www.foo.bar/status?html ; Note: The value must start with a leading slash (/). The value can be ; anything, but it may not be a good idea to use the .php extension or it ; may conflict with a real PHP file. ; Default Value: not set pm.status_path = /status ; The ping URI to call the monitoring page of FPM. If this value is not set, no ; URI will be recognized as a ping page. This could be used to test from outside ; that FPM is alive and responding, or to ; - create a graph of FPM availability (rrd or such); ; - remove a server from a group if it is not responding (load balancing); ; - trigger alerts for the operating team (24/7). ; Note: The value must start with a leading slash (/). The value can be ; anything, but it may not be a good idea to use the .php extension or it ; may conflict with a real PHP file. ; Default Value: not set ping.path = /ping ; This directive may be used to customize the response of a ping request. The ; response is formatted as text/plain with a 200 response code. ; Default Value: pong ping.response = pong ; The timeout for serving a single request after which the worker process will ; be killed. This option should be used when the 'max_execution_time' ini option ; does not stop script execution for some reason. A value of '0' means 'off'. ; Available units: s(econds)(default), m(inutes), h(ours), or d(ays) ; Default Value: 0 ;request_terminate_timeout = 0 ; The timeout for serving a single request after which a PHP backtrace will be ; dumped to the 'slowlog' file. A value of '0s' means 'off'. ; Available units: s(econds)(default), m(inutes), h(ours), or d(ays) ; Default Value: 0 ;request_slowlog_timeout = 0 ; The log file for slow requests ; Default Value: not set ; Note: slowlog is mandatory if request_slowlog_timeout is set ;slowlog = log/$pool.log.slow ; Set open file descriptor rlimit. ; Default Value: system defined value ;rlimit_files = 1024 ; Set max core size rlimit. ; Possible Values: 'unlimited' or an integer greater or equal to 0 ; Default Value: system defined value ;rlimit_core = 0 ; Chroot to this directory at the start. This value must be defined as an ; absolute path. When this value is not set, chroot is not used. ; Note: you can prefix with '$prefix' to chroot to the pool prefix or one ; of its subdirectories. If the pool prefix is not set, the global prefix ; will be used instead. ; Note: chrooting is a great security feature and should be used whenever ; possible. However, all PHP paths will be relative to the chroot ; (error_log, sessions.save_path, ...). ; Default Value: not set ;chroot = ; Chdir to this directory at the start. ; Note: relative path can be used. ; Default Value: current directory or / when chroot ;chdir = /var/www ; Redirect worker stdout and stderr into main error log. If not set, stdout and ; stderr will be redirected to /dev/null according to FastCGI specs. ; Note: on highloaded environement, this can cause some delay in the page ; process time (several ms). ; Default Value: no ;catch_workers_output = yes ; Pass environment variables like LD_LIBRARY_PATH. All $VARIABLEs are taken from ; the current environment. ; Default Value: clean env ;env[HOSTNAME] = $HOSTNAME ;env[PATH] = /usr/local/bin:/usr/bin:/bin ;env[TMP] = /tmp ;env[TMPDIR] = /tmp ;env[TEMP] = /tmp ; Additional php.ini defines, specific to this pool of workers. These settings ; overwrite the values previously defined in the php.ini. The directives are the ; same as the PHP SAPI: ; php_value/php_flag - you can set classic ini defines which can ; be overwritten from PHP call 'ini_set'. ; php_admin_value/php_admin_flag - these directives won't be overwritten by ; PHP call 'ini_set' ; For php_*flag, valid values are on, off, 1, 0, true, false, yes or no. ; Defining 'extension' will load the corresponding shared extension from ; extension_dir. Defining 'disable_functions' or 'disable_classes' will not ; overwrite previously defined php.ini values, but will append the new value ; instead. ; Note: path INI options can be relative and will be expanded with the prefix ; (pool, global or /opt/php5) ; Default Value: nothing is defined by default except the values in php.ini and ; specified at startup with the -d argument ;php_admin_value[sendmail_path] = /usr/sbin/sendmail -t -i -f [email protected] ;php_flag[display_errors] = off ;php_admin_value[error_log] = /var/log/fpm-php.www.log ;php_admin_flag[log_errors] = on ;php_admin_value[memory_limit] = 32M php_admin_value[sendmail_path] = /usr/sbin/sendmail -t -i

    Read the article

  • Integrating JavaScript Unit Tests with Visual Studio

    - by Stephen Walther
    Modern ASP.NET web applications take full advantage of client-side JavaScript to provide better interactivity and responsiveness. If you are building an ASP.NET application in the right way, you quickly end up with lots and lots of JavaScript code. When writing server code, you should be writing unit tests. One big advantage of unit tests is that they provide you with a safety net that enable you to safely modify your existing code – for example, fix bugs, add new features, and make performance enhancements -- without breaking your existing code. Every time you modify your code, you can execute your unit tests to verify that you have not broken anything. For the same reason that you should write unit tests for your server code, you should write unit tests for your client code. JavaScript is just as susceptible to bugs as C#. There is no shortage of unit testing frameworks for JavaScript. Each of the major JavaScript libraries has its own unit testing framework. For example, jQuery has QUnit, Prototype has UnitTestJS, YUI has YUI Test, and Dojo has Dojo Objective Harness (DOH). The challenge is integrating a JavaScript unit testing framework with Visual Studio. Visual Studio and Visual Studio ALM provide fantastic support for server-side unit tests. You can easily view the results of running your unit tests in the Visual Studio Test Results window. You can set up a check-in policy which requires that all unit tests pass before your source code can be committed to the source code repository. In addition, you can set up Team Build to execute your unit tests automatically. Unfortunately, Visual Studio does not provide “out-of-the-box” support for JavaScript unit tests. MS Test, the unit testing framework included in Visual Studio, does not support JavaScript unit tests. As soon as you leave the server world, you are left on your own. The goal of this blog entry is to describe one approach to integrating JavaScript unit tests with MS Test so that you can execute your JavaScript unit tests side-by-side with your C# unit tests. The goal is to enable you to execute JavaScript unit tests in exactly the same way as server-side unit tests. You can download the source code described by this project by scrolling to the end of this blog entry. Rejected Approach: Browser Launchers One popular approach to executing JavaScript unit tests is to use a browser as a test-driver. When you use a browser as a test-driver, you open up a browser window to execute and view the results of executing your JavaScript unit tests. For example, QUnit – the unit testing framework for jQuery – takes this approach. The following HTML page illustrates how you can use QUnit to create a unit test for a function named addNumbers(). <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <title>Using QUnit</title> <link rel="stylesheet" href="http://github.com/jquery/qunit/raw/master/qunit/qunit.css" type="text/css" /> </head> <body> <h1 id="qunit-header">QUnit example</h1> <h2 id="qunit-banner"></h2> <div id="qunit-testrunner-toolbar"></div> <h2 id="qunit-userAgent"></h2> <ol id="qunit-tests"></ol> <div id="qunit-fixture">test markup, will be hidden</div> <script type="text/javascript" src="http://code.jquery.com/jquery-latest.js"></script> <script type="text/javascript" src="http://github.com/jquery/qunit/raw/master/qunit/qunit.js"></script> <script type="text/javascript"> // The function to test function addNumbers(a, b) { return a+b; } // The unit test test("Test of addNumbers", function () { equals(4, addNumbers(1,3), "1+3 should be 4"); }); </script> </body> </html> This test verifies that calling addNumbers(1,3) returns the expected value 4. When you open this page in a browser, you can see that this test does, in fact, pass. The idea is that you can quickly refresh this QUnit HTML JavaScript test driver page in your browser whenever you modify your JavaScript code. In other words, you can keep a browser window open and keep refreshing it over and over while you are developing your application. That way, you can know very quickly whenever you have broken your JavaScript code. While easy to setup, there are several big disadvantages to this approach to executing JavaScript unit tests: You must view your JavaScript unit test results in a different location than your server unit test results. The JavaScript unit test results appear in the browser and the server unit test results appear in the Visual Studio Test Results window. Because all of your unit test results don’t appear in a single location, you are more likely to introduce bugs into your code without noticing it. Because your unit tests are not integrated with Visual Studio – in particular, MS Test -- you cannot easily include your JavaScript unit tests when setting up check-in policies or when performing automated builds with Team Build. A more sophisticated approach to using a browser as a test-driver is to automate the web browser. Instead of launching the browser and loading the test code yourself, you use a framework to automate this process. There are several different testing frameworks that support this approach: · Selenium – Selenium is a very powerful framework for automating browser tests. You can create your tests by recording a Firefox session or by writing the test driver code in server code such as C#. You can learn more about Selenium at http://seleniumhq.org/. LTAF – The ASP.NET team uses the Lightweight Test Automation Framework to test JavaScript code in the ASP.NET framework. You can learn more about LTAF by visiting the project home at CodePlex: http://aspnet.codeplex.com/releases/view/35501 jsTestDriver – This framework uses Java to automate the browser. jsTestDriver creates a server which can be used to automate multiple browsers simultaneously. This project is located at http://code.google.com/p/js-test-driver/ TestSwam – This framework, created by John Resig, uses PHP to automate the browser. Like jsTestDriver, the framework creates a test server. You can open multiple browsers that are automated by the test server. Learn more about TestSwarm by visiting the following address: https://github.com/jeresig/testswarm/wiki Yeti – This is the framework introduced by Yahoo for automating browser tests. Yeti uses server-side JavaScript and depends on Node.js. Learn more about Yeti at http://www.yuiblog.com/blog/2010/08/25/introducing-yeti-the-yui-easy-testing-interface/ All of these frameworks are great for integration tests – however, they are not the best frameworks to use for unit tests. In one way or another, all of these frameworks depend on executing tests within the context of a “living and breathing” browser. If you create an ASP.NET Unit Test then Visual Studio will launch a web server before executing the unit test. Why is launching a web server so bad? It is not the worst thing in the world. However, it does introduce dependencies that prevent your code from being tested in isolation. One of the defining features of a unit test -- versus an integration test – is that a unit test tests code in isolation. Another problem with launching a web server when performing unit tests is that launching a web server can be slow. If you cannot execute your unit tests quickly, you are less likely to execute your unit tests each and every time you make a code change. You are much more likely to fall into the pit of failure. Launching a browser when performing a JavaScript unit test has all of the same disadvantages as launching a web server when performing an ASP.NET unit test. Instead of testing a unit of JavaScript code in isolation, you are testing JavaScript code within the context of a particular browser. Using the frameworks listed above for integration tests makes perfect sense. However, I want to consider a different approach for creating unit tests for JavaScript code. Using Server-Side JavaScript for JavaScript Unit Tests A completely different approach to executing JavaScript unit tests is to perform the tests outside of any browser. If you really want to test JavaScript then you should test JavaScript and leave the browser out of the testing process. There are several ways that you can execute JavaScript on the server outside the context of any browser: Rhino – Rhino is an implementation of JavaScript written in Java. The Rhino project is maintained by the Mozilla project. Learn more about Rhino at http://www.mozilla.org/rhino/ V8 – V8 is the open-source Google JavaScript engine written in C++. This is the JavaScript engine used by the Chrome web browser. You can download V8 and embed it in your project by visiting http://code.google.com/p/v8/ JScript – JScript is the JavaScript Script Engine used by Internet Explorer (up to but not including Internet Explorer 9), Windows Script Host, and Active Server Pages. Internet Explorer is still the most popular web browser. Therefore, I decided to focus on using the JScript Script Engine to execute JavaScript unit tests. Using the Microsoft Script Control There are two basic ways that you can pass JavaScript to the JScript Script Engine and execute the code: use the Microsoft Windows Script Interfaces or use the Microsoft Script Control. The difficult and proper way to execute JavaScript using the JScript Script Engine is to use the Microsoft Windows Script Interfaces. You can learn more about the Script Interfaces by visiting http://msdn.microsoft.com/en-us/library/t9d4xf28(VS.85).aspx The main disadvantage of using the Script Interfaces is that they are difficult to use from .NET. There is a great series of articles on using the Script Interfaces from C# located at http://www.drdobbs.com/184406028. I picked the easier alternative and used the Microsoft Script Control. The Microsoft Script Control is an ActiveX control that provides a higher level abstraction over the Window Script Interfaces. You can download the Microsoft Script Control from here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=d7e31492-2595-49e6-8c02-1426fec693ac After you download the Microsoft Script Control, you need to add a reference to it to your project. Select the Visual Studio menu option Project, Add Reference to open the Add Reference dialog. Select the COM tab and add the Microsoft Script Control 1.0. Using the Script Control is easy. You call the Script Control AddCode() method to add JavaScript code to the Script Engine. Next, you call the Script Control Run() method to run a particular JavaScript function. The reference documentation for the Microsoft Script Control is located at the MSDN website: http://msdn.microsoft.com/en-us/library/aa227633%28v=vs.60%29.aspx Creating the JavaScript Code to Test To keep things simple, let’s imagine that you want to test the following JavaScript function named addNumbers() which simply adds two numbers together: MvcApplication1\Scripts\Math.js function addNumbers(a, b) { return 5; } Notice that the addNumbers() method always returns the value 5. Right-now, it will not pass a good unit test. Create this file and save it in your project with the name Math.js in your MVC project’s Scripts folder (Save the file in your actual MVC application and not your MVC test application). Creating the JavaScript Test Helper Class To make it easier to use the Microsoft Script Control in unit tests, we can create a helper class. This class contains two methods: LoadFile() – Loads a JavaScript file. Use this method to load the JavaScript file being tested or the JavaScript file containing the unit tests. ExecuteTest() – Executes the JavaScript code. Use this method to execute a JavaScript unit test. Here’s the code for the JavaScriptTestHelper class: JavaScriptTestHelper.cs   using System; using System.IO; using Microsoft.VisualStudio.TestTools.UnitTesting; using MSScriptControl; namespace MvcApplication1.Tests { public class JavaScriptTestHelper : IDisposable { private ScriptControl _sc; private TestContext _context; /// <summary> /// You need to use this helper with Unit Tests and not /// Basic Unit Tests because you need a Test Context /// </summary> /// <param name="testContext">Unit Test Test Context</param> public JavaScriptTestHelper(TestContext testContext) { if (testContext == null) { throw new ArgumentNullException("TestContext"); } _context = testContext; _sc = new ScriptControl(); _sc.Language = "JScript"; _sc.AllowUI = false; } /// <summary> /// Load the contents of a JavaScript file into the /// Script Engine. /// </summary> /// <param name="path">Path to JavaScript file</param> public void LoadFile(string path) { var fileContents = File.ReadAllText(path); _sc.AddCode(fileContents); } /// <summary> /// Pass the path of the test that you want to execute. /// </summary> /// <param name="testMethodName">JavaScript function name</param> public void ExecuteTest(string testMethodName) { dynamic result = null; try { result = _sc.Run(testMethodName, new object[] { }); } catch { var error = ((IScriptControl)_sc).Error; if (error != null) { var description = error.Description; var line = error.Line; var column = error.Column; var text = error.Text; var source = error.Source; if (_context != null) { var details = String.Format("{0} \r\nLine: {1} Column: {2}", source, line, column); _context.WriteLine(details); } } throw new AssertFailedException(error.Description); } } public void Dispose() { _sc = null; } } }     Notice that the JavaScriptTestHelper class requires a Test Context to be instantiated. For this reason, you can use the JavaScriptTestHelper only with a Visual Studio Unit Test and not a Basic Unit Test (These are two different types of Visual Studio project items). Add the JavaScriptTestHelper file to your MVC test application (for example, MvcApplication1.Tests). Creating the JavaScript Unit Test Next, we need to create the JavaScript unit test function that we will use to test the addNumbers() function. Create a folder in your MVC test project named JavaScriptTests and add the following JavaScript file to this folder: MvcApplication1.Tests\JavaScriptTests\MathTest.js /// <reference path="JavaScriptUnitTestFramework.js"/> function testAddNumbers() { // Act var result = addNumbers(1, 3); // Assert assert.areEqual(4, result, "addNumbers did not return right value!"); }   The testAddNumbers() function takes advantage of another JavaScript library named JavaScriptUnitTestFramework.js. This library contains all of the code necessary to make assertions. Add the following JavaScriptnitTestFramework.js to the same folder as the MathTest.js file: MvcApplication1.Tests\JavaScriptTests\JavaScriptUnitTestFramework.js var assert = { areEqual: function (expected, actual, message) { if (expected !== actual) { throw new Error("Expected value " + expected + " is not equal to " + actual + ". " + message); } } }; There is only one type of assertion supported by this file: the areEqual() assertion. Most likely, you would want to add additional types of assertions to this file to make it easier to write your JavaScript unit tests. Deploying the JavaScript Test Files This step is non-intuitive. When you use Visual Studio to run unit tests, Visual Studio creates a new folder and executes a copy of the files in your project. After you run your unit tests, your Visual Studio Solution will contain a new folder named TestResults that includes a subfolder for each test run. You need to configure Visual Studio to deploy your JavaScript files to the test run folder or Visual Studio won’t be able to find your JavaScript files when you execute your unit tests. You will get an error that looks something like this when you attempt to execute your unit tests: You can configure Visual Studio to deploy your JavaScript files by adding a Test Settings file to your Visual Studio Solution. It is important to understand that you need to add this file to your Visual Studio Solution and not a particular Visual Studio project. Right-click your Solution in the Solution Explorer window and select the menu option Add, New Item. Select the Test Settings item and click the Add button. After you create a Test Settings file for your solution, you can indicate that you want a particular folder to be deployed whenever you perform a test run. Select the menu option Test, Edit Test Settings to edit your test configuration file. Select the Deployment tab and select your MVC test project’s JavaScriptTest folder to deploy. Click the Apply button and the Close button to save the changes and close the dialog. Creating the Visual Studio Unit Test The very last step is to create the Visual Studio unit test (the MS Test unit test). Add a new unit test to your MVC test project by selecting the menu option Add New Item and selecting the Unit Test project item (Do not select the Basic Unit Test project item): The difference between a Basic Unit Test and a Unit Test is that a Unit Test includes a Test Context. We need this Test Context to use the JavaScriptTestHelper class that we created earlier. Enter the following test method for the new unit test: [TestMethod] public void TestAddNumbers() { var jsHelper = new JavaScriptTestHelper(this.TestContext); // Load JavaScript files jsHelper.LoadFile("JavaScriptUnitTestFramework.js"); jsHelper.LoadFile(@"..\..\..\MvcApplication1\Scripts\Math.js"); jsHelper.LoadFile("MathTest.js"); // Execute JavaScript Test jsHelper.ExecuteTest("testAddNumbers"); } This code uses the JavaScriptTestHelper to load three files: JavaScripUnitTestFramework.js – Contains the assert functions. Math.js – Contains the addNumbers() function from your MVC application which is being tested. MathTest.js – Contains the JavaScript unit test function. Next, the test method calls the JavaScriptTestHelper ExecuteTest() method to execute the testAddNumbers() JavaScript function. Running the Visual Studio JavaScript Unit Test After you complete all of the steps described above, you can execute the JavaScript unit test just like any other unit test. You can use the keyboard combination CTRL-R, CTRL-A to run all of the tests in the current Visual Studio Solution. Alternatively, you can use the buttons in the Visual Studio toolbar to run the tests: (Unfortunately, the Run All Impacted Tests button won’t work correctly because Visual Studio won’t detect that your JavaScript code has changed. Therefore, you should use either the Run Tests in Current Context or Run All Tests in Solution options instead.) The results of running the JavaScript tests appear side-by-side with the results of running the server tests in the Test Results window. For example, if you Run All Tests in Solution then you will get the following results: Notice that the TestAddNumbers() JavaScript test has failed. That is good because our addNumbers() function is hard-coded to always return the value 5. If you double-click the failing JavaScript test, you can view additional details such as the JavaScript error message and the line number of the JavaScript code that failed: Summary The goal of this blog entry was to explain an approach to creating JavaScript unit tests that can be easily integrated with Visual Studio and Visual Studio ALM. I described how you can use the Microsoft Script Control to execute JavaScript on the server. By taking advantage of the Microsoft Script Control, we were able to execute our JavaScript unit tests side-by-side with all of our other unit tests and view the results in the standard Visual Studio Test Results window. You can download the code discussed in this blog entry from here: http://StephenWalther.com/downloads/Blog/JavaScriptUnitTesting/JavaScriptUnitTests.zip Before running this code, you need to first install the Microsoft Script Control which you can download from here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=d7e31492-2595-49e6-8c02-1426fec693ac

    Read the article

  • Metro: Declarative Data Binding

    - by Stephen.Walther
    The goal of this blog post is to describe how declarative data binding works in the WinJS library. In particular, you learn how to use both the data-win-bind and data-win-bindsource attributes. You also learn how to use calculated properties and converters to format the value of a property automatically when performing data binding. By taking advantage of WinJS data binding, you can use the Model-View-ViewModel (MVVM) pattern when building Metro style applications with JavaScript. By using the MVVM pattern, you can prevent your JavaScript code from spinning into chaos. The MVVM pattern provides you with a standard pattern for organizing your JavaScript code which results in a more maintainable application. Using Declarative Bindings You can use the data-win-bind attribute with any HTML element in a page. The data-win-bind attribute enables you to bind (associate) an attribute of an HTML element to the value of a property. Imagine, for example, that you want to create a product details page. You want to show a product object in a page. In that case, you can create the following HTML page to display the product details: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Product Details</h1> <div class="field"> Product Name: <span data-win-bind="innerText:name"></span> </div> <div class="field"> Product Price: <span data-win-bind="innerText:price"></span> </div> <div class="field"> Product Picture: <br /> <img data-win-bind="src:photo;alt:name" /> </div> </body> </html> The HTML page above contains three data-win-bind attributes – one attribute for each product property displayed. You use the data-win-bind attribute to set properties of the HTML element associated with the data-win-attribute. The data-win-bind attribute takes a semicolon delimited list of element property names and data source property names: data-win-bind=”elementPropertyName:datasourcePropertyName; elementPropertyName:datasourcePropertyName;…” In the HTML page above, the first two data-win-bind attributes are used to set the values of the innerText property of the SPAN elements. The last data-win-bind attribute is used to set the values of the IMG element’s src and alt attributes. By the way, using data-win-bind attributes is perfectly valid HTML5. The HTML5 standard enables you to add custom attributes to an HTML document just as long as the custom attributes start with the prefix data-. So you can add custom attributes to an HTML5 document with names like data-stephen, data-funky, or data-rover-dog-is-hungry and your document will validate. The product object displayed in the page above with the data-win-bind attributes is created in the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var product = { name: "Tesla", price: 80000, photo: "/images/TeslaPhoto.png" }; WinJS.Binding.processAll(null, product); } }; app.start(); })(); In the code above, a product object is created with a name, price, and photo property. The WinJS.Binding.processAll() method is called to perform the actual binding (Don’t confuse WinJS.Binding.processAll() and WinJS.UI.processAll() – these are different methods). The first parameter passed to the processAll() method represents the root element for the binding. In other words, binding happens on this element and its child elements. If you provide the value null, then binding happens on the entire body of the document (document.body). The second parameter represents the data context. This is the object that has the properties which are displayed with the data-win-bind attributes. In the code above, the product object is passed as the data context parameter. Another word for data context is view model.  Creating Complex View Models In the previous section, we used the data-win-bind attribute to display the properties of a simple object: a single product. However, you can use binding with more complex view models including view models which represent multiple objects. For example, the view model in the following default.js file represents both a customer and a product object. Furthermore, the customer object has a nested address object: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var viewModel = { customer: { firstName: "Fred", lastName: "Flintstone", address: { street: "1 Rocky Way", city: "Bedrock", country: "USA" } }, product: { name: "Bowling Ball", price: 34.55 } }; WinJS.Binding.processAll(null, viewModel); } }; app.start(); })(); The following page displays the customer (including the customer address) and the product. Notice that you can use dot notation to refer to child objects in a view model such as customer.address.street. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Customer Details</h1> <div class="field"> First Name: <span data-win-bind="innerText:customer.firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:customer.lastName"></span> </div> <div class="field"> Address: <address> <span data-win-bind="innerText:customer.address.street"></span> <br /> <span data-win-bind="innerText:customer.address.city"></span> <br /> <span data-win-bind="innerText:customer.address.country"></span> </address> </div> <h1>Product</h1> <div class="field"> Name: <span data-win-bind="innerText:product.name"></span> </div> <div class="field"> Price: <span data-win-bind="innerText:product.price"></span> </div> </body> </html> A view model can be as complicated as you need and you can bind the view model to a view (an HTML document) by using declarative bindings. Creating Calculated Properties You might want to modify a property before displaying the property. For example, you might want to format the product price property before displaying the property. You don’t want to display the raw product price “80000”. Instead, you want to display the formatted price “$80,000”. You also might need to combine multiple properties. For example, you might need to display the customer full name by combining the values of the customer first and last name properties. In these situations, it is tempting to call a function when performing binding. For example, you could create a function named fullName() which concatenates the customer first and last name. Unfortunately, the WinJS library does not support the following syntax: <span data-win-bind=”innerText:fullName()”></span> Instead, in these situations, you should create a new property in your view model that has a getter. For example, the customer object in the following default.js file includes a property named fullName which combines the values of the firstName and lastName properties: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var customer = { firstName: "Fred", lastName: "Flintstone", get fullName() { return this.firstName + " " + this.lastName; } }; WinJS.Binding.processAll(null, customer); } }; app.start(); })(); The customer object has a firstName, lastName, and fullName property. Notice that the fullName property is defined with a getter function. When you read the fullName property, the values of the firstName and lastName properties are concatenated and returned. The following HTML page displays the fullName property in an H1 element. You can use the fullName property in a data-win-bind attribute in exactly the same way as any other property. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1 data-win-bind="innerText:fullName"></h1> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> </body> </html> Creating a Converter In the previous section, you learned how to format the value of a property by creating a property with a getter. This approach makes sense when the formatting logic is specific to a particular view model. If, on the other hand, you need to perform the same type of formatting for multiple view models then it makes more sense to create a converter function. A converter function is a function which you can apply whenever you are using the data-win-bind attribute. Imagine, for example, that you want to create a general function for displaying dates. You always want to display dates using a short format such as 12/25/1988. The following JavaScript file – named converters.js – contains a shortDate() converter: (function (WinJS) { var shortDate = WinJS.Binding.converter(function (date) { return date.getMonth() + 1 + "/" + date.getDate() + "/" + date.getFullYear(); }); // Export shortDate WinJS.Namespace.define("MyApp.Converters", { shortDate: shortDate }); })(WinJS); The file above uses the Module Pattern, a pattern which is used through the WinJS library. To learn more about the Module Pattern, see my blog entry on namespaces and modules: http://stephenwalther.com/blog/archive/2012/02/22/windows-web-applications-namespaces-and-modules.aspx The file contains the definition for a converter function named shortDate(). This function converts a JavaScript date object into a short date string such as 12/1/1988. The converter function is created with the help of the WinJS.Binding.converter() method. This method takes a normal function and converts it into a converter function. Finally, the shortDate() converter is added to the MyApp.Converters namespace. You can call the shortDate() function by calling MyApp.Converters.shortDate(). The default.js file contains the customer object that we want to bind. Notice that the customer object has a firstName, lastName, and birthday property. We will use our new shortDate() converter when displaying the customer birthday property: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var customer = { firstName: "Fred", lastName: "Flintstone", birthday: new Date("12/1/1988") }; WinJS.Binding.processAll(null, customer); } }; app.start(); })(); We actually use our shortDate converter in the HTML document. The following HTML document displays all of the customer properties: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script type="text/javascript" src="js/converters.js"></script> </head> <body> <h1>Customer Details</h1> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> <div class="field"> Birthday: <span data-win-bind="innerText:birthday MyApp.Converters.shortDate"></span> </div> </body> </html> Notice the data-win-bind attribute used to display the birthday property. It looks like this: <span data-win-bind="innerText:birthday MyApp.Converters.shortDate"></span> The shortDate converter is applied to the birthday property when the birthday property is bound to the SPAN element’s innerText property. Using data-win-bindsource Normally, you pass the view model (the data context) which you want to use with the data-win-bind attributes in a page by passing the view model to the WinJS.Binding.processAll() method like this: WinJS.Binding.processAll(null, viewModel); As an alternative, you can specify the view model declaratively in your markup by using the data-win-datasource attribute. For example, the following default.js script exposes a view model with the fully-qualified name of MyWinWebApp.viewModel: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { // Create view model var viewModel = { customer: { firstName: "Fred", lastName: "Flintstone" }, product: { name: "Bowling Ball", price: 12.99 } }; // Export view model to be seen by universe WinJS.Namespace.define("MyWinWebApp", { viewModel: viewModel }); // Process data-win-bind attributes WinJS.Binding.processAll(); } }; app.start(); })(); In the code above, a view model which represents a customer and a product is exposed as MyWinWebApp.viewModel. The following HTML page illustrates how you can use the data-win-bindsource attribute to bind to this view model: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <h1>Customer Details</h1> <div data-win-bindsource="MyWinWebApp.viewModel.customer"> <div class="field"> First Name: <span data-win-bind="innerText:firstName"></span> </div> <div class="field"> Last Name: <span data-win-bind="innerText:lastName"></span> </div> </div> <h1>Product</h1> <div data-win-bindsource="MyWinWebApp.viewModel.product"> <div class="field"> Name: <span data-win-bind="innerText:name"></span> </div> <div class="field"> Price: <span data-win-bind="innerText:price"></span> </div> </div> </body> </html> The data-win-bindsource attribute is used twice in the page above: it is used with the DIV element which contains the customer details and it is used with the DIV element which contains the product details. If an element has a data-win-bindsource attribute then all of the child elements of that element are affected. The data-win-bind attributes of all of the child elements are bound to the data source represented by the data-win-bindsource attribute. Summary The focus of this blog entry was data binding using the WinJS library. You learned how to use the data-win-bind attribute to bind the properties of an HTML element to a view model. We also discussed several advanced features of data binding. We examined how to create calculated properties by including a property with a getter in your view model. We also discussed how you can create a converter function to format the value of a view model property when binding the property. Finally, you learned how to use the data-win-bindsource attribute to specify a view model declaratively.

    Read the article

  • Creating Custom Ajax Control Toolkit Controls

    - by Stephen Walther
    The goal of this blog entry is to explain how you can extend the Ajax Control Toolkit with custom Ajax Control Toolkit controls. I describe how you can create the two halves of an Ajax Control Toolkit control: the server-side control extender and the client-side control behavior. Finally, I explain how you can use the new Ajax Control Toolkit control in a Web Forms page. At the end of this blog entry, there is a link to download a Visual Studio 2010 solution which contains the code for two Ajax Control Toolkit controls: SampleExtender and PopupHelpExtender. The SampleExtender contains the minimum skeleton for creating a new Ajax Control Toolkit control. You can use the SampleExtender as a starting point for your custom Ajax Control Toolkit controls. The PopupHelpExtender control is a super simple custom Ajax Control Toolkit control. This control extender displays a help message when you start typing into a TextBox control. The animated GIF below demonstrates what happens when you click into a TextBox which has been extended with the PopupHelp extender. Here’s a sample of a Web Forms page which uses the control: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowPopupHelp.aspx.cs" Inherits="MyACTControls.Web.Default" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html > <head runat="server"> <title>Show Popup Help</title> </head> <body> <form id="form1" runat="server"> <div> <act:ToolkitScriptManager ID="tsm" runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblSSN" Text="SSN:" AssociatedControlID="txtSSN" runat="server" /> <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblPhone" Text="Phone Number:" AssociatedControlID="txtPhone" runat="server" /> <asp:TextBox ID="txtPhone" runat="server" /> <act:PopupHelpExtender id="ph2" TargetControlID="txtPhone" HelpText="Please enter your phone number." runat="server" /> </div> </form> </body> </html> In the page above, the PopupHelp extender is used to extend the functionality of the two TextBox controls. When focus is given to a TextBox control, the popup help message is displayed. An Ajax Control Toolkit control extender consists of two parts: a server-side control extender and a client-side behavior. For example, the PopupHelp extender consists of a server-side PopupHelpExtender control (PopupHelpExtender.cs) and a client-side PopupHelp behavior JavaScript script (PopupHelpBehavior.js). Over the course of this blog entry, I describe how you can create both the server-side extender and the client-side behavior. Writing the Server-Side Code Creating a Control Extender You create a control extender by creating a class that inherits from the abstract ExtenderControlBase class. For example, the PopupHelpExtender control is declared like this: public class PopupHelpExtender: ExtenderControlBase { } The ExtenderControlBase class is part of the Ajax Control Toolkit. This base class contains all of the common server properties and methods of every Ajax Control Toolkit extender control. The ExtenderControlBase class inherits from the ExtenderControl class. The ExtenderControl class is a standard class in the ASP.NET framework located in the System.Web.UI namespace. This class is responsible for generating a client-side behavior. The class generates a call to the Microsoft Ajax Library $create() method which looks like this: <script type="text/javascript"> $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); }); </script> The JavaScript $create() method is part of the Microsoft Ajax Library. The reference for this method can be found here: http://msdn.microsoft.com/en-us/library/bb397487.aspx This method accepts the following parameters: type – The type of client behavior to create. The $create() method above creates a client PopupHelpBehavior. Properties – Enables you to pass initial values for the properties of the client behavior. For example, the initial value of the HelpText property. This is how server property values are passed to the client. Events – Enables you to pass client-side event handlers to the client behavior. References – Enables you to pass references to other client components. Element – The DOM element associated with the client behavior. This will be the DOM element associated with the control being extended such as the txtSSN TextBox. The $create() method is generated for you automatically. You just need to focus on writing the server-side control extender class. Specifying the Target Control All Ajax Control Toolkit extenders inherit a TargetControlID property from the ExtenderControlBase class. This property, the TargetControlID property, points at the control that the extender control extends. For example, the Ajax Control Toolkit TextBoxWatermark control extends a TextBox, the ConfirmButton control extends a Button, and the Calendar control extends a TextBox. You must indicate the type of control which your extender is extending. You indicate the type of control by adding a [TargetControlType] attribute to your control. For example, the PopupHelp extender is declared like this: [TargetControlType(typeof(TextBox))] public class PopupHelpExtender: ExtenderControlBase { } The PopupHelp extender can be used to extend a TextBox control. If you try to use the PopupHelp extender with another type of control then an exception is thrown. If you want to create an extender control which can be used with any type of ASP.NET control (Button, DataView, TextBox or whatever) then use the following attribute: [TargetControlType(typeof(Control))] Decorating Properties with Attributes If you decorate a server-side property with the [ExtenderControlProperty] attribute then the value of the property gets passed to the control’s client-side behavior. The value of the property gets passed to the client through the $create() method discussed above. The PopupHelp control contains the following HelpText property: [ExtenderControlProperty] [RequiredProperty] public string HelpText { get { return GetPropertyValue("HelpText", "Help Text"); } set { SetPropertyValue("HelpText", value); } } The HelpText property determines the help text which pops up when you start typing into a TextBox control. Because the HelpText property is decorated with the [ExtenderControlProperty] attribute, any value assigned to this property on the server is passed to the client automatically. For example, if you declare the PopupHelp extender in a Web Form page like this: <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" />   Then the PopupHelpExtender renders the call to the the following Microsoft Ajax Library $create() method: $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); You can see this call to the JavaScript $create() method by selecting View Source in your browser. This call to the $create() method calls a method named set_HelpText() automatically and passes the value “Please enter your social security number”. There are several attributes which you can use to decorate server-side properties including: ExtenderControlProperty – When a property is marked with this attribute, the value of the property is passed to the client automatically. ExtenderControlEvent – When a property is marked with this attribute, the property represents a client event handler. Required – When a value is not assigned to this property on the server, an error is displayed. DefaultValue – The default value of the property passed to the client. ClientPropertyName – The name of the corresponding property in the JavaScript behavior. For example, the server-side property is named ID (uppercase) and the client-side property is named id (lower-case). IDReferenceProperty – Applied to properties which refer to the IDs of other controls. URLProperty – Calls ResolveClientURL() to convert from a server-side URL to a URL which can be used on the client. ElementReference – Returns a reference to a DOM element by performing a client $get(). The WebResource, ClientResource, and the RequiredScript Attributes The PopupHelp extender uses three embedded resources named PopupHelpBehavior.js, PopupHelpBehavior.debug.js, and PopupHelpBehavior.css. The first two files are JavaScript files and the final file is a Cascading Style sheet file. These files are compiled as embedded resources. You don’t need to mark them as embedded resources in your Visual Studio solution because they get added to the assembly when the assembly is compiled by a build task. You can see that these files get embedded into the MyACTControls assembly by using Red Gate’s .NET Reflector tool: In order to use these files with the PopupHelp extender, you need to work with both the WebResource and the ClientScriptResource attributes. The PopupHelp extender includes the following three WebResource attributes. [assembly: WebResource("PopupHelp.PopupHelpBehavior.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.debug.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.css", "text/css", PerformSubstitution = true)] These WebResource attributes expose the embedded resource from the assembly so that they can be accessed by using the ScriptResource.axd or WebResource.axd handlers. The first parameter passed to the WebResource attribute is the name of the embedded resource and the second parameter is the content type of the embedded resource. The PopupHelp extender also includes the following ClientScriptResource and ClientCssResource attributes: [ClientScriptResource("MyACTControls.PopupHelpBehavior", "PopupHelp.PopupHelpBehavior.js")] [ClientCssResource("PopupHelp.PopupHelpBehavior.css")] Including these attributes causes the PopupHelp extender to request these resources when you add the PopupHelp extender to a page. If you open View Source in a browser which uses the PopupHelp extender then you will see the following link for the Cascading Style Sheet file: <link href="/WebResource.axd?d=0uONMsWXUuEDG-pbJHAC1kuKiIMteQFkYLmZdkgv7X54TObqYoqVzU4mxvaa4zpn5H9ch0RDwRYKwtO8zM5mKgO6C4WbrbkWWidKR07LD1d4n4i_uNB1mHEvXdZu2Ae5mDdVNDV53znnBojzCzwvSw2&amp;t=634417392021676003" type="text/css" rel="stylesheet" /> You also will see the following script include for the JavaScript file: <script src="/ScriptResource.axd?d=pIS7xcGaqvNLFBvExMBQSp_0xR3mpDfS0QVmmyu1aqDUjF06TrW1jVDyXNDMtBHxpRggLYDvgFTWOsrszflZEDqAcQCg-hDXjun7ON0Ol7EXPQIdOe1GLMceIDv3OeX658-tTq2LGdwXhC1-dE7_6g2&amp;t=ffffffff88a33b59" type="text/javascript"></script> The JavaScrpt file returned by this request to ScriptResource.axd contains the combined scripts for any and all Ajax Control Toolkit controls in a page. By default, the Ajax Control Toolkit combines all of the JavaScript files required by a page into a single JavaScript file. Combining files in this way really speeds up how quickly all of the JavaScript files get delivered from the web server to the browser. So, by default, there will be only one ScriptResource.axd include for all of the JavaScript files required by a page. If you want to disable Script Combining, and create separate links, then disable Script Combining like this: <act:ToolkitScriptManager ID="tsm" runat="server" CombineScripts="false" /> There is one more important attribute used by Ajax Control Toolkit extenders. The PopupHelp behavior uses the following two RequirdScript attributes to load the JavaScript files which are required by the PopupHelp behavior: [RequiredScript(typeof(CommonToolkitScripts), 0)] [RequiredScript(typeof(PopupExtender), 1)] The first parameter of the RequiredScript attribute represents either the string name of a JavaScript file or the type of an Ajax Control Toolkit control. The second parameter represents the order in which the JavaScript files are loaded (This second parameter is needed because .NET attributes are intrinsically unordered). In this case, the RequiredScript attribute will load the JavaScript files associated with the CommonToolkitScripts type and the JavaScript files associated with the PopupExtender in that order. The PopupHelp behavior depends on these JavaScript files. Writing the Client-Side Code The PopupHelp extender uses a client-side behavior written with the Microsoft Ajax Library. Here is the complete code for the client-side behavior: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { Type.registerNamespace('MyACTControls'); MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); Sys.registerComponent(MyACTControls.PopupHelpBehavior, { name: "popupHelp" }); } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })();   In the following sections, we’ll discuss how this client-side behavior works. Wrapping the Behavior for the Script Loader The behavior is wrapped with the following script: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { // Behavior Content } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })(); This code is required by the Microsoft Ajax Library Script Loader. You need this code if you plan to use a behavior directly from client-side code and you want to use the Script Loader. If you plan to only use your code in the context of the Ajax Control Toolkit then you can leave out this code. Registering a JavaScript Namespace The PopupHelp behavior is declared within a namespace named MyACTControls. In the code above, this namespace is created with the following registerNamespace() method: Type.registerNamespace('MyACTControls'); JavaScript does not have any built-in way of creating namespaces to prevent naming conflicts. The Microsoft Ajax Library extends JavaScript with support for namespaces. You can learn more about the registerNamespace() method here: http://msdn.microsoft.com/en-us/library/bb397723.aspx Creating the Behavior The actual Popup behavior is created with the following code. MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; The code above has two parts. The first part of the code is used to define the constructor function for the PopupHelp behavior. This is a factory method which returns an instance of a PopupHelp behavior: MyACTControls.PopupHelpBehavior = function (element) { } The second part of the code modified the prototype for the PopupHelp behavior: MyACTControls.PopupHelpBehavior.prototype = { } Any code which is particular to a single instance of the PopupHelp behavior should be placed in the constructor function. For example, the default value of the _helpText field is assigned in the constructor function: this._helpText = "Help Text"; Any code which is shared among all instances of the PopupHelp behavior should be added to the PopupHelp behavior’s prototype. For example, the public HelpText property is added to the prototype: get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, Registering a JavaScript Class After you create the PopupHelp behavior, you must register the behavior as a class by using the Microsoft Ajax registerClass() method like this: MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); This call to registerClass() registers PopupHelp behavior as a class which derives from the base Sys.Extended.UI.BehaviorBase class. Like the ExtenderControlBase class on the server side, the BehaviorBase class on the client side contains method used by every behavior. The documentation for the BehaviorBase class can be found here: http://msdn.microsoft.com/en-us/library/bb311020.aspx The most important methods and properties of the BehaviorBase class are the following: dispose() – Use this method to clean up all resources used by your behavior. In the case of the PopupHelp behavior, the dispose() method is used to remote the event handlers created by the behavior and disposed the Popup behavior. get_element() -- Use this property to get the DOM element associated with the behavior. In other words, the DOM element which the behavior extends. get_id() – Use this property to the ID of the current behavior. initialize() – Use this method to initialize the behavior. This method is called after all of the properties are set by the $create() method. Creating Debug and Release Scripts You might have noticed that the PopupHelp behavior uses two scripts named PopupHelpBehavior.js and PopupHelpBehavior.debug.js. However, you never create these two scripts. Instead, you only create a single script named PopupHelpBehavior.pre.js. The pre in PopupHelpBehavior.pre.js stands for preprocessor. When you build the Ajax Control Toolkit (or the sample Visual Studio Solution at the end of this blog entry), a build task named JSBuild generates the PopupHelpBehavior.js release script and PopupHelpBehavior.debug.js debug script automatically. The JSBuild preprocessor supports the following directives: #IF #ELSE #ENDIF #INCLUDE #LOCALIZE #DEFINE #UNDEFINE The preprocessor directives are used to mark code which should only appear in the debug version of the script. The directives are used extensively in the Microsoft Ajax Library. For example, the Microsoft Ajax Library Array.contains() method is created like this: $type.contains = function Array$contains(array, item) { //#if DEBUG var e = Function._validateParams(arguments, [ {name: "array", type: Array, elementMayBeNull: true}, {name: "item", mayBeNull: true} ]); if (e) throw e; //#endif return (indexOf(array, item) >= 0); } Notice that you add each of the preprocessor directives inside a JavaScript comment. The comment prevents Visual Studio from getting confused with its Intellisense. The release version, but not the debug version, of the PopupHelpBehavior script is also minified automatically by the Microsoft Ajax Minifier. The minifier is invoked by a build step in the project file. Conclusion The goal of this blog entry was to explain how you can create custom AJAX Control Toolkit controls. In the first part of this blog entry, you learned how to create the server-side portion of an Ajax Control Toolkit control. You learned how to derive a new control from the ExtenderControlBase class and decorate its properties with the necessary attributes. Next, in the second part of this blog entry, you learned how to create the client-side portion of an Ajax Control Toolkit control by creating a client-side behavior with JavaScript. You learned how to use the methods of the Microsoft Ajax Library to extend your client behavior from the BehaviorBase class. Download the Custom ACT Starter Solution

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • Using the jQuery UI Library in a MVC 3 Application to Build a Dialog Form

    - by ChrisD
    Using a simulated dialog window is a nice way to handle inline data editing. The jQuery UI has a UI widget for a dialog window that makes it easy to get up and running with it in your application. With the release of ASP.NET MVC 3, Microsoft included the jQuery UI scripts and files in the MVC 3 project templates for Visual Studio. With the release of the MVC 3 Tools Update, Microsoft implemented the inclusion of those with NuGet as packages. That means we can get up and running using the latest version of the jQuery UI with minimal effort. To the code! Another that might interested you about JQuery Mobile and ASP.NET MVC 3 with C#. If you are starting with a new MVC 3 application and have the Tools Update then you are a NuGet update and a <link> and <script> tag away from adding the jQuery UI to your project. If you are using an existing MVC project you can still get the jQuery UI library added to your project via NuGet and then add the link and script tags. Assuming that you have pulled down the latest version (at the time of this publish it was 1.8.13) you can add the following link and script tags to your <head> tag: < link href = "@Url.Content(" ~ / Content / themes / base / jquery . ui . all . css ")" rel = "Stylesheet" type = "text/css" /> < script src = "@Url.Content(" ~ / Scripts / jquery-ui-1 . 8 . 13 . min . js ")" type = "text/javascript" ></ script > The jQuery UI library relies upon the CSS scripts and some image files to handle rendering of its widgets (you can choose a different theme or role your own if you like). Adding these to the stock _Layout.cshtml file results in the following markup: <!DOCTYPE html> < html > < head >     < meta charset = "utf-8" />     < title > @ViewBag.Title </ title >     < link href = "@Url.Content(" ~ / Content / Site . css ")" rel = "stylesheet" type = "text/css" />     <link href="@Url.Content("~/Content/themes/base/jquery.ui.all.css")" rel="Stylesheet" type="text/css" />     <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")" type="text/javascript"></script>     <script src="@Url.Content("~/Scripts/modernizr-1.7.min . js ")" type = "text/javascript" ></ script >     < script src = "@Url.Content(" ~ / Scripts / jquery-ui-1 . 8 . 13 . min . js ")" type = "text/javascript" ></ script > </ head > < body >     @RenderBody() </ body > </ html > Our example will involve building a list of notes with an id, title and description. Each note can be edited and new notes can be added. The user will never have to leave the single page of notes to manage the note data. The add and edit forms will be delivered in a jQuery UI dialog widget and the note list content will get reloaded via an AJAX call after each change to the list. To begin, we need to craft a model and a data management class. We will do this so we can simulate data storage and get a feel for the workflow of the user experience. The first class named Note will have properties to represent our data model. namespace Website . Models {     public class Note     {         public int Id { get ; set ; }         public string Title { get ; set ; }         public string Body { get ; set ; }     } } The second class named NoteManager will be used to set up our simulated data storage and provide methods for querying and updating the data. We will take a look at the class content as a whole and then walk through each method after. using System . Collections . ObjectModel ; using System . Linq ; using System . Web ; namespace Website . Models {     public class NoteManager     {         public Collection < Note > Notes         {             get             {                 if ( HttpRuntime . Cache [ "Notes" ] == null )                     this . loadInitialData ();                 return ( Collection < Note >) HttpRuntime . Cache [ "Notes" ];             }         }         private void loadInitialData ()         {             var notes = new Collection < Note >();             notes . Add ( new Note                           {                               Id = 1 ,                               Title = "Set DVR for Sunday" ,                               Body = "Don't forget to record Game of Thrones!"                           });             notes . Add ( new Note                           {                               Id = 2 ,                               Title = "Read MVC article" ,                               Body = "Check out the new iwantmymvc.com post"                           });             notes . Add ( new Note                           {                               Id = 3 ,                               Title = "Pick up kid" ,                               Body = "Daughter out of school at 1:30pm on Thursday. Don't forget!"                           });             notes . Add ( new Note                           {                               Id = 4 ,                               Title = "Paint" ,                               Body = "Finish the 2nd coat in the bathroom"                           });             HttpRuntime . Cache [ "Notes" ] = notes ;         }         public Collection < Note > GetAll ()         {             return Notes ;         }         public Note GetById ( int id )         {             return Notes . Where ( i => i . Id == id ). FirstOrDefault ();         }         public int Save ( Note item )         {             if ( item . Id <= 0 )                 return saveAsNew ( item );             var existingNote = Notes . Where ( i => i . Id == item . Id ). FirstOrDefault ();             existingNote . Title = item . Title ;             existingNote . Body = item . Body ;             return existingNote . Id ;         }         private int saveAsNew ( Note item )         {             item . Id = Notes . Count + 1 ;             Notes . Add ( item );             return item . Id ;         }     } } The class has a property named Notes that is read only and handles instantiating a collection of Note objects in the runtime cache if it doesn't exist, and then returns the collection from the cache. This property is there to give us a simulated storage so that we didn't have to add a full blown database (beyond the scope of this post). The private method loadInitialData handles pre-filling the collection of Note objects with some initial data and stuffs them into the cache. Both of these chunks of code would be refactored out with a move to a real means of data storage. The GetAll and GetById methods access our simulated data storage to return all of our notes or a specific note by id. The Save method takes in a Note object, checks to see if it has an Id less than or equal to zero (we assume that an Id that is not greater than zero represents a note that is new) and if so, calls the private method saveAsNew . If the Note item sent in has an Id , the code finds that Note in the simulated storage, updates the Title and Description , and returns the Id value. The saveAsNew method sets the Id , adds it to the simulated storage, and returns the Id value. The increment of the Id is simulated here by getting the current count of the note collection and adding 1 to it. The setting of the Id is the only other chunk of code that would be refactored out when moving to a different data storage approach. With our model and data manager code in place we can turn our attention to the controller and views. We can do all of our work in a single controller. If we use a HomeController , we can add an action method named Index that will return our main view. An action method named List will get all of our Note objects from our manager and return a partial view. We will use some jQuery to make an AJAX call to that action method and update our main view with the partial view content returned. Since the jQuery AJAX call will cache the call to the content in Internet Explorer by default (a setting in jQuery), we will decorate the List, Create and Edit action methods with the OutputCache attribute and a duration of 0. This will send the no-cache flag back in the header of the content to the browser and jQuery will pick that up and not cache the AJAX call. The Create action method instantiates a new Note model object and returns a partial view, specifying the NoteForm.cshtml view file and passing in the model. The NoteForm view is used for the add and edit functionality. The Edit action method takes in the Id of the note to be edited, loads the Note model object based on that Id , and does the same return of the partial view as the Create method. The Save method takes in the posted Note object and sends it to the manager to save. It is decorated with the HttpPost attribute to ensure that it will only be available via a POST. It returns a Json object with a property named Success that can be used by the UX to verify everything went well (we won't use that in our example). Both the add and edit actions in the UX will post to the Save action method, allowing us to reduce the amount of unique jQuery we need to write in our view. The contents of the HomeController.cs file: using System . Web . Mvc ; using Website . Models ; namespace Website . Controllers {     public class HomeController : Controller     {         public ActionResult Index ()         {             return View ();         }         [ OutputCache ( Duration = 0 )]         public ActionResult List ()         {             var manager = new NoteManager ();             var model = manager . GetAll ();             return PartialView ( model );         }         [ OutputCache ( Duration = 0 )]         public ActionResult Create ()         {             var model = new Note ();             return PartialView ( "NoteForm" , model );         }         [ OutputCache ( Duration = 0 )]         public ActionResult Edit ( int id )         {             var manager = new NoteManager ();             var model = manager . GetById ( id );             return PartialView ( "NoteForm" , model );         }         [ HttpPost ]         public JsonResult Save ( Note note )         {             var manager = new NoteManager ();             var noteId = manager . Save ( note );             return Json ( new { Success = noteId > 0 });         }     } } The view for the note form, NoteForm.cshtml , looks like so: @model Website . Models . Note @using ( Html . BeginForm ( "Save" , "Home" , FormMethod . Post , new { id = "NoteForm" })) { @Html . Hidden ( "Id" ) < label class = "Title" >     < span > Title < /span><br / >     @Html . TextBox ( "Title" ) < /label> <label class="Body">     <span>Body</ span >< br />     @Html . TextArea ( "Body" ) < /label> } It is a strongly typed view for our Note model class. We give the <form> element an id attribute so that we can reference it via jQuery. The <label> and <span> tags give our UX some structure that we can style with some CSS. The List.cshtml view is used to render out a <ul> element with all of our notes. @model IEnumerable < Website . Models . Note > < ul class = "NotesList" >     @foreach ( var note in Model )     {     < li >         @note . Title < br />         @note . Body < br />         < span class = "EditLink ButtonLink" noteid = "@note.Id" > Edit < /span>     </ li >     } < /ul> This view is strongly typed as well. It includes a <span> tag that we will use as an edit button. We add a custom attribute named noteid to the <span> tag that we can use in our jQuery to identify the Id of the note object we want to edit. The view, Index.cshtml , contains a bit of html block structure and all of our jQuery logic code. @ {     ViewBag . Title = "Index" ; } < h2 > Notes < /h2> <div id="NoteListBlock"></ div > < span class = "AddLink ButtonLink" > Add New Note < /span> <div id="NoteDialog" title="" class="Hidden"></ div > < script type = "text/javascript" >     $ ( function () {         $ ( "#NoteDialog" ). dialog ({             autoOpen : false , width : 400 , height : 330 , modal : true ,             buttons : {                 "Save" : function () {                     $ . post ( "/Home/Save" ,                         $ ( "#NoteForm" ). serialize (),                         function () {                             $ ( "#NoteDialog" ). dialog ( "close" );                             LoadList ();                         });                 },                 Cancel : function () { $ ( this ). dialog ( "close" ); }             }         });         $ ( ".EditLink" ). live ( "click" , function () {             var id = $ ( this ). attr ( "noteid" );             $ ( "#NoteDialog" ). html ( "" )                 . dialog ( "option" , "title" , "Edit Note" )                 . load ( "/Home/Edit/" + id , function () { $ ( "#NoteDialog" ). dialog ( "open" ); });         });         $ ( ".AddLink" ). click ( function () {             $ ( "#NoteDialog" ). html ( "" )                 . dialog ( "option" , "title" , "Add Note" )                 . load ( "/Home/Create" , function () { $ ( "#NoteDialog" ). dialog ( "open" ); });         });         LoadList ();     });     function LoadList () {         $ ( "#NoteListBlock" ). load ( "/Home/List" );     } < /script> The <div> tag with the id attribute of "NoteListBlock" is used as a container target for the load of the partial view content of our List action method. It starts out empty and will get loaded with content via jQuery once the DOM is loaded. The <div> tag with the id attribute of "NoteDialog" is the element for our dialog widget. The jQuery UI library will use the title attribute for the text in the dialog widget top header bar. We start out with it empty here and will dynamically change the text via jQuery based on the request to either add or edit a note. This <div> tag is given a CSS class named "Hidden" that will set the display:none style on the element. Since our call to the jQuery UI method to make the element a dialog widget will occur in the jQuery document ready code block, the end user will see the <div> element rendered in their browser as the page renders and then it will hide after that jQuery call. Adding the display:hidden to the <div> element via CSS will ensure that it is never rendered until the user triggers the request to open the dialog. The jQuery document load block contains the setup for the dialog node, click event bindings for the edit and add links, and a call to a JavaScript function called LoadList that handles the AJAX call to the List action method. The .dialog() method is called on the "NoteDialog" <div> element and the options are set for the dialog widget. The buttons option defines 2 buttons and their click actions. The first is the "Save" button (the text in quotations is used as the text for the button) that will do an AJAX post to our Save action method and send the serialized form data from the note form (targeted with the id attribute "NoteForm"). Upon completion it will close the dialog widget and call the LoadList to update the UX without a redirect. The "Cancel" button simply closes the dialog widget. The .live() method handles binding a function to the "click" event on all elements with the CSS class named EditLink . We use the .live() method because it will catch and bind our function to elements even as the DOM changes. Since we will be constantly changing the note list as we add and edit we want to ensure that the edit links get wired up with click events. The function for the click event on the edit links gets the noteid attribute and stores it in a local variable. Then it clears out the HTML in the dialog element (to ensure a fresh start), calls the .dialog() method and sets the "title" option (this sets the title attribute value), and then calls the .load() AJAX method to hit our Edit action method and inject the returned content into the "NoteDialog" <div> element. Once the .load() method is complete it opens the dialog widget. The click event binding for the add link is similar to the edit, only we don't need to get the id value and we load the Create action method. This binding is done via the .click() method because it will only be bound on the initial load of the page. The add button will always exist. Finally, we toss in some CSS in the Content/Site.css file to style our form and the add/edit links. . ButtonLink { color : Blue ; cursor : pointer ; } . ButtonLink : hover { text - decoration : underline ; } . Hidden { display : none ; } #NoteForm label { display:block; margin-bottom:6px; } #NoteForm label > span { font-weight:bold; } #NoteForm input[type=text] { width:350px; } #NoteForm textarea { width:350px; height:80px; } With all of our code in place we can do an F5 and see our list of notes: If we click on an edit link we will get the dialog widget with the correct note data loaded: And if we click on the add new note link we will get the dialog widget with the empty form: The end result of our solution tree for our sample:

    Read the article

  • Keyboard navigation for jQuery Tabs

    - by Binyamin
    How to make Keyboard navigation left/up/right/down (like for photo gallery) feature for jQury Tabs with History? Demo without Keyboard feature in http://dl.dropbox.com/u/6594481/tabs/index.html Needed functions: 1. on keyboardtop/down make select and CSS showactivenested ajax tabs from 1-st to last level 2. on keyboardleft/right changeback/forwardcontent ofactivenested ajax tabs tab 3. an extra option, makeactivenested ajax tab on 'cursor-on' on concrete nested ajax tabs level Read more detailed question with example pictures in http://stackoverflow.com/questions/2975003/jquery-tools-to-make-keyboard-and-cookies-feature-for-ajaxed-tabs-with-history /** * @license * jQuery Tools @VERSION Tabs- The basics of UI design. * * NO COPYRIGHTS OR LICENSES. DO WHAT YOU LIKE. * * http://flowplayer.org/tools/tabs/ * * Since: November 2008 * Date: @DATE */ (function($) { // static constructs $.tools = $.tools || {version: '@VERSION'}; $.tools.tabs = { conf: { tabs: 'a', current: 'current', onBeforeClick: null, onClick: null, effect: 'default', initialIndex: 0, event: 'click', rotate: false, // 1.2 history: false }, addEffect: function(name, fn) { effects[name] = fn; } }; var effects = { // simple "toggle" effect 'default': function(i, done) { this.getPanes().hide().eq(i).show(); done.call(); }, /* configuration: - fadeOutSpeed (positive value does "crossfading") - fadeInSpeed */ fade: function(i, done) { var conf = this.getConf(), speed = conf.fadeOutSpeed, panes = this.getPanes(); if (speed) { panes.fadeOut(speed); } else { panes.hide(); } panes.eq(i).fadeIn(conf.fadeInSpeed, done); }, // for basic accordions slide: function(i, done) { this.getPanes().slideUp(200); this.getPanes().eq(i).slideDown(400, done); }, /** * AJAX effect */ ajax: function(i, done) { this.getPanes().eq(0).load(this.getTabs().eq(i).attr("href"), done); } }; var w; /** * Horizontal accordion * * @deprecated will be replaced with a more robust implementation */ $.tools.tabs.addEffect("horizontal", function(i, done) { // store original width of a pane into memory if (!w) { w = this.getPanes().eq(0).width(); } // set current pane's width to zero this.getCurrentPane().animate({width: 0}, function() { $(this).hide(); }); // grow opened pane to it's original width this.getPanes().eq(i).animate({width: w}, function() { $(this).show(); done.call(); }); }); function Tabs(root, paneSelector, conf) { var self = this, trigger = root.add(this), tabs = root.find(conf.tabs), panes = paneSelector.jquery ? paneSelector : root.children(paneSelector), current; // make sure tabs and panes are found if (!tabs.length) { tabs = root.children(); } if (!panes.length) { panes = root.parent().find(paneSelector); } if (!panes.length) { panes = $(paneSelector); } // public methods $.extend(this, { click: function(i, e) { var tab = tabs.eq(i); if (typeof i == 'string' && i.replace("#", "")) { tab = tabs.filter("[href*=" + i.replace("#", "") + "]"); i = Math.max(tabs.index(tab), 0); } if (conf.rotate) { var last = tabs.length -1; if (i < 0) { return self.click(last, e); } if (i > last) { return self.click(0, e); } } if (!tab.length) { if (current >= 0) { return self; } i = conf.initialIndex; tab = tabs.eq(i); } // current tab is being clicked if (i === current) { return self; } // possibility to cancel click action e = e || $.Event(); e.type = "onBeforeClick"; trigger.trigger(e, [i]); if (e.isDefaultPrevented()) { return; } // call the effect effects[conf.effect].call(self, i, function() { // onClick callback e.type = "onClick"; trigger.trigger(e, [i]); }); // default behaviour current = i; tabs.removeClass(conf.current); tab.addClass(conf.current); return self; }, getConf: function() { return conf; }, getTabs: function() { return tabs; }, getPanes: function() { return panes; }, getCurrentPane: function() { return panes.eq(current); }, getCurrentTab: function() { return tabs.eq(current); }, getIndex: function() { return current; }, next: function() { return self.click(current + 1); }, prev: function() { return self.click(current - 1); } }); // callbacks $.each("onBeforeClick,onClick".split(","), function(i, name) { // configuration if ($.isFunction(conf[name])) { $(self).bind(name, conf[name]); } // API self[name] = function(fn) { $(self).bind(name, fn); return self; }; }); if (conf.history && $.fn.history) { $.tools.history.init(tabs); conf.event = 'history'; } // setup click actions for each tab tabs.each(function(i) { $(this).bind(conf.event, function(e) { self.click(i, e); return e.preventDefault(); }); }); // cross tab anchor link panes.find("a[href^=#]").click(function(e) { self.click($(this).attr("href"), e); }); // open initial tab if (location.hash) { self.click(location.hash); } else { if (conf.initialIndex === 0 || conf.initialIndex > 0) { self.click(conf.initialIndex); } } } // jQuery plugin implementation $.fn.tabs = function(paneSelector, conf) { // return existing instance var el = this.data("tabs"); if (el) { return el; } if ($.isFunction(conf)) { conf = {onBeforeClick: conf}; } // setup conf conf = $.extend({}, $.tools.tabs.conf, conf); this.each(function() { el = new Tabs($(this), paneSelector, conf); $(this).data("tabs", el); }); return conf.api ? el: this; }; }) (jQuery); /** * @license * jQuery Tools @VERSION History "Back button for AJAX apps" * * NO COPYRIGHTS OR LICENSES. DO WHAT YOU LIKE. * * http://flowplayer.org/tools/toolbox/history.html * * Since: Mar 2010 * Date: @DATE */ (function($) { var hash, iframe, links, inited; $.tools = $.tools || {version: '@VERSION'}; $.tools.history = { init: function(els) { if (inited) { return; } // IE if ($.browser.msie && $.browser.version < '8') { // create iframe that is constantly checked for hash changes if (!iframe) { iframe = $("<iframe/>").attr("src", "javascript:false;").hide().get(0); $("body").append(iframe); setInterval(function() { var idoc = iframe.contentWindow.document, h = idoc.location.hash; if (hash !== h) { $.event.trigger("hash", h); } }, 100); setIframeLocation(location.hash || '#'); } // other browsers scans for location.hash changes directly without iframe hack } else { setInterval(function() { var h = location.hash; if (h !== hash) { $.event.trigger("hash", h); } }, 100); } links = !links ? els : links.add(els); els.click(function(e) { var href = $(this).attr("href"); if (iframe) { setIframeLocation(href); } // handle non-anchor links if (href.slice(0, 1) != "#") { location.href = "#" + href; return e.preventDefault(); } }); inited = true; } }; function setIframeLocation(h) { if (h) { var doc = iframe.contentWindow.document; doc.open().close(); doc.location.hash = h; } } // global histroy change listener $(window).bind("hash", function(e, h) { if (h) { links.filter(function() { var href = $(this).attr("href"); return href == h || href == h.replace("#", ""); }).trigger("history", [h]); } else { links.eq(0).trigger("history", [h]); } hash = h; window.location.hash = hash; }); // jQuery plugin implementation $.fn.history = function(fn) { $.tools.history.init(this); // return jQuery return this.bind("history", fn); }; })(jQuery); $(function() { $("#list").tabs("#content > div", {effect: 'ajax', history: true}); });

    Read the article

  • Custom fail2ban Filter

    - by Michael Robinson
    In my quest to block excessive failed phpMyAdmin login attempts with fail2ban, I've created a script that logs said failed attempts to a file: /var/log/phpmyadmin_auth.log Custom log The format of the /var/log/phpmyadmin_auth.log file is: phpMyadmin login failed with username: root; ip: 192.168.1.50; url: http://somedomain.com/phpmyadmin/index.php phpMyadmin login failed with username: ; ip: 192.168.1.50; url: http://192.168.1.48/phpmyadmin/index.php Custom filter [Definition] # Count all bans in the logfile failregex = phpMyadmin login failed with username: .*; ip: <HOST>; phpMyAdmin jail [phpmyadmin] enabled = true port = http,https filter = phpmyadmin action = sendmail-whois[name=HTTP] logpath = /var/log/phpmyadmin_auth.log maxretry = 6 The fail2ban log contains: 2012-10-04 10:52:22,756 fail2ban.server : INFO Stopping all jails 2012-10-04 10:52:23,091 fail2ban.jail : INFO Jail 'ssh-iptables' stopped 2012-10-04 10:52:23,866 fail2ban.jail : INFO Jail 'fail2ban' stopped 2012-10-04 10:52:23,994 fail2ban.jail : INFO Jail 'ssh' stopped 2012-10-04 10:52:23,994 fail2ban.server : INFO Exiting Fail2ban 2012-10-04 10:52:24,253 fail2ban.server : INFO Changed logging target to /var/log/fail2ban.log for Fail2ban v0.8.6 2012-10-04 10:52:24,253 fail2ban.jail : INFO Creating new jail 'ssh' 2012-10-04 10:52:24,253 fail2ban.jail : INFO Jail 'ssh' uses poller 2012-10-04 10:52:24,260 fail2ban.filter : INFO Added logfile = /var/log/auth.log 2012-10-04 10:52:24,260 fail2ban.filter : INFO Set maxRetry = 6 2012-10-04 10:52:24,261 fail2ban.filter : INFO Set findtime = 600 2012-10-04 10:52:24,261 fail2ban.actions: INFO Set banTime = 600 2012-10-04 10:52:24,279 fail2ban.jail : INFO Creating new jail 'ssh-iptables' 2012-10-04 10:52:24,279 fail2ban.jail : INFO Jail 'ssh-iptables' uses poller 2012-10-04 10:52:24,279 fail2ban.filter : INFO Added logfile = /var/log/auth.log 2012-10-04 10:52:24,280 fail2ban.filter : INFO Set maxRetry = 5 2012-10-04 10:52:24,280 fail2ban.filter : INFO Set findtime = 600 2012-10-04 10:52:24,280 fail2ban.actions: INFO Set banTime = 600 2012-10-04 10:52:24,287 fail2ban.jail : INFO Creating new jail 'fail2ban' 2012-10-04 10:52:24,287 fail2ban.jail : INFO Jail 'fail2ban' uses poller 2012-10-04 10:52:24,287 fail2ban.filter : INFO Added logfile = /var/log/fail2ban.log 2012-10-04 10:52:24,287 fail2ban.filter : INFO Set maxRetry = 3 2012-10-04 10:52:24,288 fail2ban.filter : INFO Set findtime = 604800 2012-10-04 10:52:24,288 fail2ban.actions: INFO Set banTime = 604800 2012-10-04 10:52:24,292 fail2ban.jail : INFO Jail 'ssh' started 2012-10-04 10:52:24,293 fail2ban.jail : INFO Jail 'ssh-iptables' started 2012-10-04 10:52:24,297 fail2ban.jail : INFO Jail 'fail2ban' started When I issue: sudo service fail2ban restart fail2ban emails me to say ssh has restarted, but I receive no such email about my phpmyadmin jail. Repeated failed logins to phpMyAdmin does not cause an email to be sent. Have I missed some critical setup? Is my filter's regular expression wrong? Update: added changes from default installation Starting with a clean fail2ban installation: cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local Change email address to my own, action to: action = %(action_mwl)s Append the following to jail.local [phpmyadmin] enabled = true port = http,https filter = phpmyadmin action = sendmail-whois[name=HTTP] logpath = /var/log/phpmyadmin_auth.log maxretry = 4 Add the following to /etc/fail2ban/filter.d/phpmyadmin.conf # phpmyadmin configuration file # # Author: Michael Robinson # [Definition] # Option: failregex # Notes.: regex to match the password failures messages in the logfile. The # host must be matched by a group named "host". The tag "<HOST>" can # be used for standard IP/hostname matching and is only an alias for # (?:::f{4,6}:)?(?P<host>\S+) # Values: TEXT # # Count all bans in the logfile failregex = phpMyadmin login failed with username: .*; ip: <HOST>; # Option: ignoreregex # Notes.: regex to ignore. If this regex matches, the line is ignored. # Values: TEXT # # Ignore our own bans, to keep our counts exact. # In your config, name your jail 'fail2ban', or change this line! ignoreregex = Restart fail2ban sudo service fail2ban restart PS: I like eggs

    Read the article

  • nginx: problem configuring a proxy_pass

    - by Ofer Bar
    I'm converting a web app from apache to nginx. In apache's httpd.conf I have: ProxyPass /proxy/ http:// ProxyPassReverse /proxy/ http:// The idea is the client send this url: http://web-server-domain/proxy/login-server-addr/loginUrl.php?user=xxx&pass=yyy and the web server calls: http://login-server-addr/loginUrl.php?user=xxx&pass=yyy My nginx.conf is attached below and it is not working. At the moment it looks like it is calling the server, but returning an application error. This seems promising but any attempt to debug this failed! I can't trace any of the calls as nginx refuses to place them in the error file. Also, placing echo statement on the login server did not help either which is weird. The nginx documentation isn't very helpful about this. Any suggestion on how to configure a proxy_pass? Thanks! user nginx; worker_processes 1; #error_log /var/log/nginx/error.log; error_log /var/log/nginx/error.log notice; #error_log /var/log/nginx/error.log info; pid /var/run/nginx.pid; events { worker_connections 1024; } http { include /etc/nginx/mime.types; default_type application/octet-stream; log_format main '$remote_addr - $remote_user [$time_local] "$request" ' '$status $body_bytes_sent "$http_referer" ' '"$http_user_agent" "$http_x_forwarded_for"'; access_log /var/log/nginx/access.log main; sendfile on; #tcp_nopush on; #keepalive_timeout 0; keepalive_timeout 65; #gzip on; # # The default server # server { rewrite_log on; listen 80; server_name _; #charset koi8-r; #access_log logs/host.access.log main; #root /var/www/live/html; index index.php index.html index.htm; location ~ ^/proxy/(.*$) { #location /proxy/ { # rewrite ^/proxy(.*) http://$1 break; proxy_set_header X-Forwarded-Host $host; proxy_set_header X-Forwarded-Server $host; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_buffering off; proxy_pass http://$1; #proxy_pass "http://173.231.134.36/messages_2.7.0/loginUser.php?userID=ofer.fly%40gmail.com&password=y4HTD93vrshMNcy2Qr5ka7ia0xcaa389f4885f59c9"; break; } location / { root /var/www/live/html; #if ( $uri ~ ^/proxy/(.*) ) { # proxy_pass http://$1; # break; #} #try_files $uri $uri/ /index.php; } error_page 404 /404.html; #location = /404.html { # root /usr/share/nginx/html; #} # redirect server error pages to the static page /50x.html # #error_page 500 502 503 504 /50x.html; #location = /50x.html { # root /usr/share/nginx/html; #} # proxy the PHP scripts to Apache listening on 127.0.0.1:80 # #location ~ \.php$ { # proxy_pass http://127.0.0.1; #} # pass the PHP scripts to FastCGI server listening on 127.0.0.1:9000 # location ~ \.php$ { #root html; fastcgi_pass 127.0.0.1:9000; fastcgi_index index.php; #fastcgi_param SCRIPT_FILENAME /usr/share/nginx/html$fastcgi_script_name; fastcgi_param SCRIPT_FILENAME /var/www/live/html$fastcgi_script_name; include fastcgi_params; } # deny access to .htaccess files, if Apache's document root # concurs with nginx's one # #location ~ /\.ht { # deny all; #} } # Load config files from the /etc/nginx/conf.d directory include /etc/nginx/conf.d/*.conf; }

    Read the article

  • Custom fail2ban Filter for phpMyadmin bruteforce attempts

    - by Michael Robinson
    In my quest to block excessive failed phpMyAdmin login attempts with fail2ban, I've created a script that logs said failed attempts to a file: /var/log/phpmyadmin_auth.log Custom log The format of the /var/log/phpmyadmin_auth.log file is: phpMyadmin login failed with username: root; ip: 192.168.1.50; url: http://somedomain.com/phpmyadmin/index.php phpMyadmin login failed with username: ; ip: 192.168.1.50; url: http://192.168.1.48/phpmyadmin/index.php Custom filter [Definition] # Count all bans in the logfile failregex = phpMyadmin login failed with username: .*; ip: <HOST>; phpMyAdmin jail [phpmyadmin] enabled = true port = http,https filter = phpmyadmin action = sendmail-whois[name=HTTP] logpath = /var/log/phpmyadmin_auth.log maxretry = 6 The fail2ban log contains: 2012-10-04 10:52:22,756 fail2ban.server : INFO Stopping all jails 2012-10-04 10:52:23,091 fail2ban.jail : INFO Jail 'ssh-iptables' stopped 2012-10-04 10:52:23,866 fail2ban.jail : INFO Jail 'fail2ban' stopped 2012-10-04 10:52:23,994 fail2ban.jail : INFO Jail 'ssh' stopped 2012-10-04 10:52:23,994 fail2ban.server : INFO Exiting Fail2ban 2012-10-04 10:52:24,253 fail2ban.server : INFO Changed logging target to /var/log/fail2ban.log for Fail2ban v0.8.6 2012-10-04 10:52:24,253 fail2ban.jail : INFO Creating new jail 'ssh' 2012-10-04 10:52:24,253 fail2ban.jail : INFO Jail 'ssh' uses poller 2012-10-04 10:52:24,260 fail2ban.filter : INFO Added logfile = /var/log/auth.log 2012-10-04 10:52:24,260 fail2ban.filter : INFO Set maxRetry = 6 2012-10-04 10:52:24,261 fail2ban.filter : INFO Set findtime = 600 2012-10-04 10:52:24,261 fail2ban.actions: INFO Set banTime = 600 2012-10-04 10:52:24,279 fail2ban.jail : INFO Creating new jail 'ssh-iptables' 2012-10-04 10:52:24,279 fail2ban.jail : INFO Jail 'ssh-iptables' uses poller 2012-10-04 10:52:24,279 fail2ban.filter : INFO Added logfile = /var/log/auth.log 2012-10-04 10:52:24,280 fail2ban.filter : INFO Set maxRetry = 5 2012-10-04 10:52:24,280 fail2ban.filter : INFO Set findtime = 600 2012-10-04 10:52:24,280 fail2ban.actions: INFO Set banTime = 600 2012-10-04 10:52:24,287 fail2ban.jail : INFO Creating new jail 'fail2ban' 2012-10-04 10:52:24,287 fail2ban.jail : INFO Jail 'fail2ban' uses poller 2012-10-04 10:52:24,287 fail2ban.filter : INFO Added logfile = /var/log/fail2ban.log 2012-10-04 10:52:24,287 fail2ban.filter : INFO Set maxRetry = 3 2012-10-04 10:52:24,288 fail2ban.filter : INFO Set findtime = 604800 2012-10-04 10:52:24,288 fail2ban.actions: INFO Set banTime = 604800 2012-10-04 10:52:24,292 fail2ban.jail : INFO Jail 'ssh' started 2012-10-04 10:52:24,293 fail2ban.jail : INFO Jail 'ssh-iptables' started 2012-10-04 10:52:24,297 fail2ban.jail : INFO Jail 'fail2ban' started When I issue: sudo service fail2ban restart fail2ban emails me to say ssh has restarted, but I receive no such email about my phpmyadmin jail. Repeated failed logins to phpMyAdmin does not cause an email to be sent. Have I missed some critical setup? Is my filter's regular expression wrong? Update: added changes from default installation Starting with a clean fail2ban installation: cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local Change email address to my own, action to: action = %(action_mwl)s Append the following to jail.local [phpmyadmin] enabled = true port = http,https filter = phpmyadmin action = sendmail-whois[name=HTTP] logpath = /var/log/phpmyadmin_auth.log maxretry = 4 Add the following to /etc/fail2ban/filter.d/phpmyadmin.conf # phpmyadmin configuration file # # Author: Michael Robinson # [Definition] # Option: failregex # Notes.: regex to match the password failures messages in the logfile. The # host must be matched by a group named "host". The tag "<HOST>" can # be used for standard IP/hostname matching and is only an alias for # (?:::f{4,6}:)?(?P<host>\S+) # Values: TEXT # # Count all bans in the logfile failregex = phpMyadmin login failed with username: .*; ip: <HOST>; # Option: ignoreregex # Notes.: regex to ignore. If this regex matches, the line is ignored. # Values: TEXT # # Ignore our own bans, to keep our counts exact. # In your config, name your jail 'fail2ban', or change this line! ignoreregex = Restart fail2ban sudo service fail2ban restart PS: I like eggs

    Read the article

  • apache2.2 + php5 , process never die and stay blocked to LOCK_SH

    - by Givre
    Server version: Apache/2.2.22 (Unix) Server built: Mar 28 2012 16:31:45 Server's Module Magic Number: 20051115:30 Server loaded: APR 1.4.6, APR-Util 1.4.1 Compiled using: APR 1.4.6, APR-Util 1.4.1 Architecture: 64-bit Server MPM: Prefork threaded: no forked: yes (variable process count) Server compiled with.... -D APACHE_MPM_DIR="server/mpm/prefork" -D APR_HAS_SENDFILE -D APR_HAS_MMAP -D APR_HAVE_IPV6 (IPv4-mapped addresses enabled) -D APR_USE_SYSVSEM_SERIALIZE -D APR_USE_PTHREAD_SERIALIZE -D SINGLE_LISTEN_UNSERIALIZED_ACCEPT -D APR_HAS_OTHER_CHILD -D AP_HAVE_RELIABLE_PIPED_LOGS -D DYNAMIC_MODULE_LIMIT=128 -D HTTPD_ROOT="/opt/apache2" -D SUEXEC_BIN="/opt/apache2/bin/suexec" -D DEFAULT_PIDLOG="logs/httpd.pid" -D DEFAULT_SCOREBOARD="logs/apache_runtime_status" -D DEFAULT_LOCKFILE="logs/accept.lock" -D DEFAULT_ERRORLOG="logs/error_log" -D AP_TYPES_CONFIG_FILE="conf/mime.types" -D SERVER_CONFIG_FILE="conf/httpd.conf" Php5.2.17. Using mod_php5 as a DSO module compiled Problem: On shared webhosting, a lot of apache2 process never stop or die and they waiting as long as apache2 restart. Strace of one of theses process: access("tmp/meta_cache.txt", F_OK) = 0 getcwd("/home/exemple.com/htdocs"..., 4096) = 34 lstat("/var", {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0 lstat("/var/www", {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0 lstat("/home", {st_mode=S_IFDIR|0755, st_size=1715, ...}) = 0 lstat("/home/exemple.com", {st_mode=S_IFDIR|0755, st_size=16, ...}) = 0 lstat("/home/exemple.com/htdocs", {st_mode=S_IFDIR|0770, st_size=51, ...}) = 0 lstat("/home/exemple.com/htdocs/tmp", {st_mode=S_IFDIR|0777, st_size=51, ...}) = 0 lstat("/home/exemple.com/htdocs/tmp/meta_cache.txt", {st_mode=S_IFREG|0666, st_size=8901, ...}) = 0 lstat("/var", {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0 lstat("/var/www", {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0 lstat("/home", {st_mode=S_IFDIR|0755, st_size=1715, ...}) = 0 lstat("/home/exemple.com", {st_mode=S_IFDIR|0755, st_size=16, ...}) = 0 lstat("/home/exemple.com/htdocs", {st_mode=S_IFDIR|0770, st_size=51, ...}) = 0 lstat("/home/exemple.com/htdocs/tmp", {st_mode=S_IFDIR|0777, st_size=51, ...}) = 0 lstat("/home/exemple.com/htdocs/tmp/meta_cache.txt", {st_mode=S_IFREG|0666, st_size=8901, ...}) = 0 lstat("/var", {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0 lstat("/var/www", {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0 lstat("/home", {st_mode=S_IFDIR|0755, st_size=1715, ...}) = 0 lstat("/home/exemple.com", {st_mode=S_IFDIR|0755, st_size=16, ...}) = 0 getcwd("/home/exemple.com/htdocs"..., 4096) = 34 lstat("/var", {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0 lstat("/var/www", {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0 lstat("/home", {st_mode=S_IFDIR|0755, st_size=1715, ...}) = 0 lstat("/home/exemple.com", {st_mode=S_IFDIR|0755, st_size=16, ...}) = 0 lstat("/home/exemple.com/htdocs", {st_mode=S_IFDIR|0770, st_size=51, ...}) = 0 lstat("/home/exemple.com/htdocs/tmp", {st_mode=S_IFDIR|0777, st_size=51, ...}) = 0 lstat("/home/exemple.com/htdocs/tmp/meta_cache.txt", {st_mode=S_IFREG|0666, st_size=8901, ...}) = 0 open("/home/exemple.com/htdocs/tmp/meta_cache.txt", O_RDONLY) = 10905 fstat(10905, {st_mode=S_IFREG|0666, st_size=8901, ...}) = 0 lseek(10905, 0, SEEK_CUR) = 0 flock(10905, LOCK_SH) = The process never die, and stay like this. All files are on NFS V3 I'dont know how to solve this problem or find more informations. The effect is that all apache2 process become used and apache2 crash totaly . Thanks for you help.

    Read the article

  • ls hangs for a certain directory

    - by Jakobud
    There is a particular directory (/var/www), that when I run ls (with or without some options), the command hangs and never completes. There is only about 10-15 files and directories in /var/www. Mostly just text files. Here is some investigative info: [me@server www]$ df . Filesystem Size Used Avail Use% Mounted on /dev/mapper/vg_dev-lv_root 50G 19G 29G 40% / [me@server www]$ df -i . Filesystem Inodes IUsed IFree IUse% Mounted on /dev/mapper/vg_dev-lv_root 3.2M 435K 2.8M 14% / find works fine. Also I can type in cd /var/www/ and press TAB before pressing enter and it will successfully tab-completion list of all files/directories in there: [me@server www]$ cd /var/www/ cgi-bin/ create_vhost.sh html/ manual/ phpMyAdmin/ scripts/ usage/ conf/ error/ icons/ mediawiki/ rackspace sqlbuddy/ vhosts/ [me@server www]$ cd /var/www/ I have had to kill my terminal sessions several times because of the ls hanging: [me@server ~]$ ps | grep ls gdm 6215 0.0 0.0 488152 2488 ? S<sl Jan18 0:00 /usr/bin/pulseaudio --start --log-target=syslog root 23269 0.0 0.0 117724 1088 ? D 18:24 0:00 ls -Fh --color=always -l root 23477 0.0 0.0 117724 1088 ? D 18:34 0:00 ls -Fh --color=always -l root 23579 0.0 0.0 115592 820 ? D 18:36 0:00 ls -Fh --color=always root 23634 0.0 0.0 115592 816 ? D 18:38 0:00 ls -Fh --color=always root 23740 0.0 0.0 117724 1088 ? D 18:40 0:00 ls -Fh --color=always -l me 23770 0.0 0.0 103156 816 pts/6 S+ 18:41 0:00 grep ls kill doesn't seem to have any affect on the processes, even as sudo. What else should I do to investigate this problem? It just randomly started happening today. UPDATE dmesg is a big list of things, mostly related to an external USB HDD that I've mounted too many times and the max mount count has been reached, but that is an un-related problem I think. Near the bottom of dmesg I'm seeing this: INFO: task ls:23579 blocked for more than 120 seconds. "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. ls D ffff88041fc230c0 0 23579 23505 0x00000080 ffff8801688a1bb8 0000000000000086 0000000000000000 ffffffff8119d279 ffff880406d0ea20 ffff88007e2c2268 ffff880071fe80c8 00000003ae82967a ffff880407169ad8 ffff8801688a1fd8 0000000000010518 ffff880407169ad8 Call Trace: [<ffffffff8119d279>] ? __find_get_block+0xa9/0x200 [<ffffffff814c97ae>] __mutex_lock_slowpath+0x13e/0x180 [<ffffffff814c964b>] mutex_lock+0x2b/0x50 [<ffffffff8117a4d3>] do_lookup+0xd3/0x220 [<ffffffff8117b145>] __link_path_walk+0x6f5/0x1040 [<ffffffff8117a47d>] ? do_lookup+0x7d/0x220 [<ffffffff8117bd1a>] path_walk+0x6a/0xe0 [<ffffffff8117beeb>] do_path_lookup+0x5b/0xa0 [<ffffffff8117cb57>] user_path_at+0x57/0xa0 [<ffffffff81178986>] ? generic_readlink+0x76/0xc0 [<ffffffff8117cb62>] ? user_path_at+0x62/0xa0 [<ffffffff81171d3c>] vfs_fstatat+0x3c/0x80 [<ffffffff81258ae5>] ? _atomic_dec_and_lock+0x55/0x80 [<ffffffff81171eab>] vfs_stat+0x1b/0x20 [<ffffffff81171ed4>] sys_newstat+0x24/0x50 [<ffffffff810d40a2>] ? audit_syscall_entry+0x272/0x2a0 [<ffffffff81013172>] system_call_fastpath+0x16/0x1b And also, strace ls /var/www/ spits out a whole BUNCH of information. I don't know what is useful here... The last handful of lines: ioctl(1, SNDCTL_TMR_TIMEBASE or TCGETS, {B38400 opost isig icanon echo ...}) = 0 ioctl(1, TIOCGWINSZ, {ws_row=68, ws_col=145, ws_xpixel=0, ws_ypixel=0}) = 0 stat("/var/www/", {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0 open("/var/www/", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 3 fcntl(3, F_GETFD) = 0x1 (flags FD_CLOEXEC) getdents(3, /* 16 entries */, 32768) = 488 getdents(3, /* 0 entries */, 32768) = 0 close(3) = 0 fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 9), ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f3093b18000 write(1, "cgi-bin conf create_vhost.sh\te"..., 125cgi-bin conf create_vhost.sh error html icons manual mediawiki phpMyAdmin rackspace scripts sqlbuddy usage vhosts ) = 125 close(1) = 0 munmap(0x7f3093b18000, 4096) = 0 close(2) = 0 exit_group(0) = ?

    Read the article

  • Routing not working correctly using the laravel framework

    - by samayres1992
    I'm using the book wrote by one of the guys that created laravel, so I'd like to think for the most part this code isn't horribly wrong. My server is setup with nginx serving all static files and apache2 serving php. My config for each are the following: apache2: <VirtualHost *> # Host that will serve this project. ServerName litl.it # The location of our projects public directory. DocumentRoot /var/www/litl.it/laravel/public # Useful logs for debug. CustomLog /var/log/apache.access.log common ErrorLog /var/log/apache.error.log # Rewrites for pretty URLs, better not to rely on .htaccess. <Directory /var/www/litl.it/laravel/public> <IfModule mod_rewrite.c> Options -MultiViews RewriteEngine On RewriteCond %{REQUEST_FILENAME} !-f RewriteRule ^ index.php [L] </IfModule> </Directory> nginx: server { # Port that the web server will listen on. listen 80; # Host that will serve this project. server_name litl.it *.litl.it; # Useful logs for debug. access_log /var/log/nginx.access.log; error_log /var/log/nginx.error.log; rewrite_log on; # The location of our projects public directory. root /var/www/litl.it/laravel/public; # Point index to the Laravel front controller. index index.php; location / { # URLs to attempt, including pretty ones. try_files $uri $uri/ /index.php?$query_string; } # Remove trailing slash to please routing system. if (!-d $request_filename) { rewrite ^/(.+)/$ /$1 permanent; } # PHP FPM configuration. location ~* \.php$ { proxy_pass http://127.0.0.1:8080; include /etc/nginx/proxy_params; try_files index index.php $uri =404; include /etc/nginx/fastcgi_params; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME $document_root/php/$fastcgi_script_name; } # We don't need .ht files with nginx. location ~ /\.ht { deny all; } location @proxy { proxy_pass http://127.0.0.1:8080; include /etc/nginx/proxy_params; } error_page 403 /error/403.html; error_page 404 /error/404.html; error_page 405 /error/405.html; error_page 500 501 502 503 504 /error/5xx.html; location ^~ /error/ { internal; root /var/www/litl.it/lavarel/public/error; } } I'm including these server configs, as I feel this maybe the issue? Here is my incredibly basic routing file that should return "routing is working" on domain.com/test but instead it just returns the homepage. <?php Route::get('/', function() { return View::make('hello'); }); Route::get('/test', function() { return "routing is working"; }); Any ideas where I'm going wrong, I'm following this tutorial very closely and I'm confused why there is issue. Thanks!

    Read the article

  • Howto Nginx + git-http-backend + fcgiwrap (Debian Squeeze)

    - by brainsqueezer
    I am trying to setup git-http-backend with Nginx but after 24 hours wasting time and reading everything I could I think this config should work but doesn't. server { listen 80; server_name mydevserver; access_log /var/log/nginx/dev.access.log; error_log /var/log/nginx/dev.error.log; location / { root /var/repos; } location ~ /git(/.*) { gzip off; root /usr/lib/git-core; fastcgi_pass unix:/var/run/fcgiwrap.socket; include /etc/nginx/fastcgi_params2; fastcgi_param SCRIPT_FILENAME /usr/lib/git-core/git-http-backend; fastcgi_param DOCUMENT_ROOT /usr/lib/git-core/; fastcgi_param SCRIPT_NAME git-http-backend; fastcgi_param GIT_HTTP_EXPORT_ALL ""; fastcgi_param GIT_PROJECT_ROOT /var/repos; fastcgi_param PATH_INFO $1; #fastcgi_param PATH_TRANSLATED $document_root$fastcgi_path_info; } } Content of /etc/nginx/fastcgi_params2 fastcgi_param QUERY_STRING $query_string; fastcgi_param REQUEST_METHOD $request_method; fastcgi_param CONTENT_TYPE $content_type; fastcgi_param CONTENT_LENGTH $content_length; fastcgi_param SCRIPT_NAME $fastcgi_script_name; fastcgi_param REQUEST_URI $request_uri; fastcgi_param DOCUMENT_URI $document_uri; fastcgi_param DOCUMENT_ROOT $document_root; fastcgi_param SERVER_PROTOCOL $server_protocol; fastcgi_param GATEWAY_INTERFACE CGI/1.1; fastcgi_param SERVER_SOFTWARE nginx/$nginx_version; fastcgi_param REMOTE_ADDR $remote_addr; fastcgi_param REMOTE_PORT $remote_port; fastcgi_param SERVER_ADDR $server_addr; fastcgi_param SERVER_PORT $server_port; fastcgi_param SERVER_NAME $server_name; fastcgi_param REMOTE_USER $remote_user; # required if PHP was built with --enable-force-cgi-redirect fastcgi_param REDIRECT_STATUS 200; but config seems not working $ git clone http://mydevserver/git/myprojectname/ Cloning into myprojectname... warning: remote HEAD refers to nonexistent ref, unable to checkout. and I can request an unexistant project and I will get the same answer $ git clone http://mydevserver/git/thisprojectdoesntexist/ Cloning into thisprojectdoesntexist... warning: remote HEAD refers to nonexistent ref, unable to checkout. If I change root to /usr/lib I will get a 403 error and this will be reported to nginx error log: 2011/11/23 15:52:46 [error] 5224#0: *55 FastCGI sent in stderr: "Cannot get script name, is DOCUMENT_ROOT and SCRIPT_NAME set and is the script executable?" while reading response header from upstream, client: 198.168.0.4, server: mydevserver, request: "GET /git/myprojectname/info/refs HTTP/1.1", upstream: "fastcgi://unix:/var/run/fcgiwrap.socket:", host: "mydevserver" My main trouble is with the correct root value with this configuration. Maybe there are some permissions problems. Notes: /var/repos/ is owned by www-data and contains folders bit git bare repos. All this works perfectly using ssh. If I go with my browser to http://mydevserver/git/myproject/info/refs it is answered by git-http-backend asking me to send a command. /var/run/fcgiwrap.socket has 777 permissions.

    Read the article

  • Forwarding rsyslog to syslog-ng, with FQDN and facility separation

    - by Joshua Miller
    I'm attempting to configure my rsyslog clients to forward messages to my syslog-ng log repository systems. Forwarding messages works "out of the box", but my clients are logging short names, not FQDNs. As a result the messages on the syslog repo use short names as well, which is a problem because one can't determine which system the message originated from easily. My clients get their names through DHCP / DNS. I've tried a number of solutions trying to get this working, but without success. I'm using rsyslog 4.6.2 and syslog-ng 3.2.5. I've tried setting $PreserveFQDN on as the first directive in /etc/rsyslog.conf (and restarting rsyslog of course). It seems to have no effect. hostname --fqdn on the client returns the proper FQDN, so the problem isn't whether the system can actually figure out its own FQDN. $LocalHostName <fqdn> looked promising, but this directive isn't available in my version of rsyslog (Available since 4.7.4+, 5.7.3+, 6.1.3+). Upgrading isn't an option at the moment. Configuring the syslog-ng server to populate names based on reverse lookups via DNS isn't an option. There are complexities with reverse DNS and the public cloud. Specifying for the forwarder to use a custom template seems like a viable option at first glance. I can specify the following, which causes local logging to begin using the FQDN on the syslog-ng repo. $template MyTemplate, "%timestamp% <FQDN> %syslogtag%%msg%" $ActionForwardDefaultTemplate MyTemplate However, when I put this in place syslog-ng seems to be unable to categorize messages by facility or priority. Messages come in as FQDN, but everything is put in to user.log. When I don't use the custom template, messages are properly categorized under facility and priority, but with the short name. So, in summary, if I manually trick rsyslog into including the FQDN, priority and facility becomes lost details to syslog-ng. How can I get rsyslog to do FQDN logging which works properly going to a syslog-ng repository? rsyslog client config: $ModLoad imuxsock.so # provides support for local system logging (e.g. via logger command) $ModLoad imklog.so # provides kernel logging support (previously done by rklogd) $ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat *.info;mail.none;authpriv.none;cron.none /var/log/messages authpriv.* /var/log/secure mail.* -/var/log/maillog cron.* /var/log/cron *.emerg * uucp,news.crit /var/log/spooler local7.* /var/log/boot.log $WorkDirectory /var/spool/rsyslog # where to place spool files $ActionQueueFileName fwdRule1 # unique name prefix for spool files $ActionQueueMaxDiskSpace 1g # 1gb space limit (use as much as possible) $ActionQueueSaveOnShutdown on # save messages to disk on shutdown $ActionQueueType LinkedList # run asynchronously $ActionResumeRetryCount -1 # infinite retries if host is down *.* @syslog-ng1.example.com *.* @syslog-ng2.example.com syslog-ng configuration (abridged for brevity): options { flush_lines (0); time_reopen (10); log_fifo_size (1000); long_hostnames (off); use_dns (no); use_fqdn (yes); create_dirs (no); keep_hostname (yes); }; source src { unix-stream("/dev/log"); internal(); udp(ip(0.0.0.0) port(514)); }; destination per_host_destination { file( "/var/log/syslog-ng/devices/$HOST/$FACILITY.log" owner("root") group("root") perm(0644) dir_owner(root) dir_group(root) dir_perm(0775) create_dirs(yes)); }; log { source(src); destination(per_facility_destination); };

    Read the article

  • amplified reflected attack on dns

    - by Mike Janson
    The term is new to me. So I have a few questions about it. I've heard it mostly happens with DNS servers? How do you protect against it? How do you know if your servers can be used as a victim? This is a configuration issue right? my named conf file include "/etc/rndc.key"; controls { inet 127.0.0.1 allow { localhost; } keys { "rndc-key"; }; }; options { /* make named use port 53 for the source of all queries, to allow * firewalls to block all ports except 53: */ // query-source port 53; /* We no longer enable this by default as the dns posion exploit has forced many providers to open up their firewalls a bit */ // Put files that named is allowed to write in the data/ directory: directory "/var/named"; // the default pid-file "/var/run/named/named.pid"; dump-file "data/cache_dump.db"; statistics-file "data/named_stats.txt"; /* memstatistics-file "data/named_mem_stats.txt"; */ allow-transfer {"none";}; }; logging { /* If you want to enable debugging, eg. using the 'rndc trace' command, * named will try to write the 'named.run' file in the $directory (/var/named"). * By default, SELinux policy does not allow named to modify the /var/named" directory, * so put the default debug log file in data/ : */ channel default_debug { file "data/named.run"; severity dynamic; }; }; view "localhost_resolver" { /* This view sets up named to be a localhost resolver ( caching only nameserver ). * If all you want is a caching-only nameserver, then you need only define this view: */ match-clients { 127.0.0.0/24; }; match-destinations { localhost; }; recursion yes; zone "." IN { type hint; file "/var/named/named.ca"; }; /* these are zones that contain definitions for all the localhost * names and addresses, as recommended in RFC1912 - these names should * ONLY be served to localhost clients: */ include "/var/named/named.rfc1912.zones"; }; view "internal" { /* This view will contain zones you want to serve only to "internal" clients that connect via your directly attached LAN interfaces - "localnets" . */ match-clients { localnets; }; match-destinations { localnets; }; recursion yes; zone "." IN { type hint; file "/var/named/named.ca"; }; // include "/var/named/named.rfc1912.zones"; // you should not serve your rfc1912 names to non-localhost clients. // These are your "authoritative" internal zones, and would probably // also be included in the "localhost_resolver" view above :

    Read the article

  • Using JSON.NET for dynamic JSON parsing

    - by Rick Strahl
    With the release of ASP.NET Web API as part of .NET 4.5 and MVC 4.0, JSON.NET has effectively pushed out the .NET native serializers to become the default serializer for Web API. JSON.NET is vastly more flexible than the built in DataContractJsonSerializer or the older JavaScript serializer. The DataContractSerializer in particular has been very problematic in the past because it can't deal with untyped objects for serialization - like values of type object, or anonymous types which are quite common these days. The JavaScript Serializer that came before it actually does support non-typed objects for serialization but it can't do anything with untyped data coming in from JavaScript and it's overall model of extensibility was pretty limited (JavaScript Serializer is what MVC uses for JSON responses). JSON.NET provides a robust JSON serializer that has both high level and low level components, supports binary JSON, JSON contracts, Xml to JSON conversion, LINQ to JSON and many, many more features than either of the built in serializers. ASP.NET Web API now uses JSON.NET as its default serializer and is now pulled in as a NuGet dependency into Web API projects, which is great. Dynamic JSON Parsing One of the features that I think is getting ever more important is the ability to serialize and deserialize arbitrary JSON content dynamically - that is without mapping the JSON captured directly into a .NET type as DataContractSerializer or the JavaScript Serializers do. Sometimes it isn't possible to map types due to the differences in languages (think collections, dictionaries etc), and other times you simply don't have the structures in place or don't want to create them to actually import the data. If this topic sounds familiar - you're right! I wrote about dynamic JSON parsing a few months back before JSON.NET was added to Web API and when Web API and the System.Net HttpClient libraries included the System.Json classes like JsonObject and JsonArray. With the inclusion of JSON.NET in Web API these classes are now obsolete and didn't ship with Web API or the client libraries. I re-linked my original post to this one. In this post I'll discus JToken, JObject and JArray which are the dynamic JSON objects that make it very easy to create and retrieve JSON content on the fly without underlying types. Why Dynamic JSON? So, why Dynamic JSON parsing rather than strongly typed parsing? Since applications are interacting more and more with third party services it becomes ever more important to have easy access to those services with easy JSON parsing. Sometimes it just makes lot of sense to pull just a small amount of data out of large JSON document received from a service, because the third party service isn't directly related to your application's logic most of the time - and it makes little sense to map the entire service structure in your application. For example, recently I worked with the Google Maps Places API to return information about businesses close to me (or rather the app's) location. The Google API returns a ton of information that my application had no interest in - all I needed was few values out of the data. Dynamic JSON parsing makes it possible to map this data, without having to map the entire API to a C# data structure. Instead I could pull out the three or four values I needed from the API and directly store it on my business entities that needed to receive the data - no need to map the entire Maps API structure. Getting JSON.NET The easiest way to use JSON.NET is to grab it via NuGet and add it as a reference to your project. You can add it to your project with: PM> Install-Package Newtonsoft.Json From the Package Manager Console or by using Manage NuGet Packages in your project References. As mentioned if you're using ASP.NET Web API or MVC 4 JSON.NET will be automatically added to your project. Alternately you can also go to the CodePlex site and download the latest version including source code: http://json.codeplex.com/ Creating JSON on the fly with JObject and JArray Let's start with creating some JSON on the fly. It's super easy to create a dynamic object structure with any of the JToken derived JSON.NET objects. The most common JToken derived classes you are likely to use are JObject and JArray. JToken implements IDynamicMetaProvider and so uses the dynamic  keyword extensively to make it intuitive to create object structures and turn them into JSON via dynamic object syntax. Here's an example of creating a music album structure with child songs using JObject for the base object and songs and JArray for the actual collection of songs:[TestMethod] public void JObjectOutputTest() { // strong typed instance var jsonObject = new JObject(); // you can explicitly add values here using class interface jsonObject.Add("Entered", DateTime.Now); // or cast to dynamic to dynamically add/read properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; album.Artist = "AC/DC"; album.YearReleased = 1976; album.Songs = new JArray() as dynamic; dynamic song = new JObject(); song.SongName = "Dirty Deeds Done Dirt Cheap"; song.SongLength = "4:11"; album.Songs.Add(song); song = new JObject(); song.SongName = "Love at First Feel"; song.SongLength = "3:10"; album.Songs.Add(song); Console.WriteLine(album.ToString()); } This produces a complete JSON structure: { "Entered": "2012-08-18T13:26:37.7137482-10:00", "AlbumName": "Dirty Deeds Done Dirt Cheap", "Artist": "AC/DC", "YearReleased": 1976, "Songs": [ { "SongName": "Dirty Deeds Done Dirt Cheap", "SongLength": "4:11" }, { "SongName": "Love at First Feel", "SongLength": "3:10" } ] } Notice that JSON.NET does a nice job formatting the JSON, so it's easy to read and paste into blog posts :-). JSON.NET includes a bunch of configuration options that control how JSON is generated. Typically the defaults are just fine, but you can override with the JsonSettings object for most operations. The important thing about this code is that there's no explicit type used for holding the values to serialize to JSON. Rather the JSON.NET objects are the containers that receive the data as I build up my JSON structure dynamically, simply by adding properties. This means this code can be entirely driven at runtime without compile time restraints of structure for the JSON output. Here I use JObject to create a album 'object' and immediately cast it to dynamic. JObject() is kind of similar in behavior to ExpandoObject in that it allows you to add properties by simply assigning to them. Internally, JObject values are stored in pseudo collections of key value pairs that are exposed as properties through the IDynamicMetaObject interface exposed in JSON.NET's JToken base class. For objects the syntax is very clean - you add simple typed values as properties. For objects and arrays you have to explicitly create new JObject or JArray, cast them to dynamic and then add properties and items to them. Always remember though these values are dynamic - which means no Intellisense and no compiler type checking. It's up to you to ensure that the names and values you create are accessed consistently and without typos in your code. Note that you can also access the JObject instance directly (not as dynamic) and get access to the underlying JObject type. This means you can assign properties by string, which can be useful for fully data driven JSON generation from other structures. Below you can see both styles of access next to each other:// strong type instance var jsonObject = new JObject(); // you can explicitly add values here jsonObject.Add("Entered", DateTime.Now); // expando style instance you can just 'use' properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; JContainer (the base class for JObject and JArray) is a collection so you can also iterate over the properties at runtime easily:foreach (var item in jsonObject) { Console.WriteLine(item.Key + " " + item.Value.ToString()); } The functionality of the JSON objects are very similar to .NET's ExpandObject and if you used it before, you're already familiar with how the dynamic interfaces to the JSON objects works. Importing JSON with JObject.Parse() and JArray.Parse() The JValue structure supports importing JSON via the Parse() and Load() methods which can read JSON data from a string or various streams respectively. Essentially JValue includes the core JSON parsing to turn a JSON string into a collection of JsonValue objects that can be then referenced using familiar dynamic object syntax. Here's a simple example:public void JValueParsingTest() { var jsonString = @"{""Name"":""Rick"",""Company"":""West Wind"", ""Entered"":""2012-03-16T00:03:33.245-10:00""}"; dynamic json = JValue.Parse(jsonString); // values require casting string name = json.Name; string company = json.Company; DateTime entered = json.Entered; Assert.AreEqual(name, "Rick"); Assert.AreEqual(company, "West Wind"); } The JSON string represents an object with three properties which is parsed into a JObject class and cast to dynamic. Once cast to dynamic I can then go ahead and access the object using familiar object syntax. Note that the actual values - json.Name, json.Company, json.Entered - are actually of type JToken and I have to cast them to their appropriate types first before I can do type comparisons as in the Asserts at the end of the test method. This is required because of the way that dynamic types work which can't determine the type based on the method signature of the Assert.AreEqual(object,object) method. I have to either assign the dynamic value to a variable as I did above, or explicitly cast ( (string) json.Name) in the actual method call. The JSON structure can be much more complex than this simple example. Here's another example of an array of albums serialized to JSON and then parsed through with JsonValue():[TestMethod] public void JsonArrayParsingTest() { var jsonString = @"[ { ""Id"": ""b3ec4e5c"", ""AlbumName"": ""Dirty Deeds Done Dirt Cheap"", ""Artist"": ""AC/DC"", ""YearReleased"": 1976, ""Entered"": ""2012-03-16T00:13:12.2810521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/61kTaH-uZBL._AA115_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/gp/product/…ASIN=B00008BXJ4"", ""Songs"": [ { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Dirty Deeds Done Dirt Cheap"", ""SongLength"": ""4:11"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Love at First Feel"", ""SongLength"": ""3:10"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Big Balls"", ""SongLength"": ""2:38"" } ] }, { ""Id"": ""7b919432"", ""AlbumName"": ""End of the Silence"", ""Artist"": ""Henry Rollins Band"", ""YearReleased"": 1992, ""Entered"": ""2012-03-16T00:13:12.2800521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/51FO3rb1tuL._SL160_AA160_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/End-Silence-Rollins-Band/dp/B0000040OX/ref=sr_1_5?ie=UTF8&qid=1302232195&sr=8-5"", ""Songs"": [ { ""AlbumId"": ""7b919432"", ""SongName"": ""Low Self Opinion"", ""SongLength"": ""5:24"" }, { ""AlbumId"": ""7b919432"", ""SongName"": ""Grip"", ""SongLength"": ""4:51"" } ] } ]"; JArray jsonVal = JArray.Parse(jsonString) as JArray; dynamic albums = jsonVal; foreach (dynamic album in albums) { Console.WriteLine(album.AlbumName + " (" + album.YearReleased.ToString() + ")"); foreach (dynamic song in album.Songs) { Console.WriteLine("\t" + song.SongName); } } Console.WriteLine(albums[0].AlbumName); Console.WriteLine(albums[0].Songs[1].SongName); } JObject and JArray in ASP.NET Web API Of course these types also work in ASP.NET Web API controller methods. If you want you can accept parameters using these object or return them back to the server. The following contrived example receives dynamic JSON input, and then creates a new dynamic JSON object and returns it based on data from the first:[HttpPost] public JObject PostAlbumJObject(JObject jAlbum) { // dynamic input from inbound JSON dynamic album = jAlbum; // create a new JSON object to write out dynamic newAlbum = new JObject(); // Create properties on the new instance // with values from the first newAlbum.AlbumName = album.AlbumName + " New"; newAlbum.NewProperty = "something new"; newAlbum.Songs = new JArray(); foreach (dynamic song in album.Songs) { song.SongName = song.SongName + " New"; newAlbum.Songs.Add(song); } return newAlbum; } The raw POST request to the server looks something like this: POST http://localhost/aspnetwebapi/samples/PostAlbumJObject HTTP/1.1User-Agent: FiddlerContent-type: application/jsonHost: localhostContent-Length: 88 {AlbumName: "Dirty Deeds",Songs:[ { SongName: "Problem Child"},{ SongName: "Squealer"}]} and the output that comes back looks like this: {  "AlbumName": "Dirty Deeds New",  "NewProperty": "something new",  "Songs": [    {      "SongName": "Problem Child New"    },    {      "SongName": "Squealer New"    }  ]} The original values are echoed back with something extra appended to demonstrate that we're working with a new object. When you receive or return a JObject, JValue, JToken or JArray instance in a Web API method, Web API ignores normal content negotiation and assumes your content is going to be received and returned as JSON, so effectively the parameter and result type explicitly determines the input and output format which is nice. Dynamic to Strong Type Mapping You can also map JObject and JArray instances to a strongly typed object, so you can mix dynamic and static typing in the same piece of code. Using the 2 Album jsonString shown earlier, the code below takes an array of albums and picks out only a single album and casts that album to a static Album instance.[TestMethod] public void JsonParseToStrongTypeTest() { JArray albums = JArray.Parse(jsonString) as JArray; // pick out one album JObject jalbum = albums[0] as JObject; // Copy to a static Album instance Album album = jalbum.ToObject<Album>(); Assert.IsNotNull(album); Assert.AreEqual(album.AlbumName,jalbum.Value<string>("AlbumName")); Assert.IsTrue(album.Songs.Count > 0); } This is pretty damn useful for the scenario I mentioned earlier - you can read a large chunk of JSON and dynamically walk the property hierarchy down to the item you want to access, and then either access the specific item dynamically (as shown earlier) or map a part of the JSON to a strongly typed object. That's very powerful if you think about it - it leaves you in total control to decide what's dynamic and what's static. Strongly typed JSON Parsing With all this talk of dynamic let's not forget that JSON.NET of course also does strongly typed serialization which is drop dead easy. Here's a simple example on how to serialize and deserialize an object with JSON.NET:[TestMethod] public void StronglyTypedSerializationTest() { // Demonstrate deserialization from a raw string var album = new Album() { AlbumName = "Dirty Deeds Done Dirt Cheap", Artist = "AC/DC", Entered = DateTime.Now, YearReleased = 1976, Songs = new List<Song>() { new Song() { SongName = "Dirty Deeds Done Dirt Cheap", SongLength = "4:11" }, new Song() { SongName = "Love at First Feel", SongLength = "3:10" } } }; // serialize to string string json2 = JsonConvert.SerializeObject(album,Formatting.Indented); Console.WriteLine(json2); // make sure we can serialize back var album2 = JsonConvert.DeserializeObject<Album>(json2); Assert.IsNotNull(album2); Assert.IsTrue(album2.AlbumName == "Dirty Deeds Done Dirt Cheap"); Assert.IsTrue(album2.Songs.Count == 2); } JsonConvert is a high level static class that wraps lower level functionality, but you can also use the JsonSerializer class, which allows you to serialize/parse to and from streams. It's a little more work, but gives you a bit more control. The functionality available is easy to discover with Intellisense, and that's good because there's not a lot in the way of documentation that's actually useful. Summary JSON.NET is a pretty complete JSON implementation with lots of different choices for JSON parsing from dynamic parsing to static serialization, to complex querying of JSON objects using LINQ. It's good to see this open source library getting integrated into .NET, and pushing out the old and tired stock .NET parsers so that we finally have a bit more flexibility - and extensibility - in our JSON parsing. Good to go! Resources Sample Test Project http://json.codeplex.com/© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  Web Api  AJAX   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • NoSQL with MongoDB, NoRM and ASP.NET MVC

    - by shiju
     In this post, I will give an introduction to how to work on NoSQL and document database with MongoDB , NoRM and ASP.Net MVC 2. NoSQL and Document Database The NoSQL movement is getting big attention in this year and people are widely talking about document databases and NoSQL along with web application scalability. According to Wikipedia, "NoSQL is a movement promoting a loosely defined class of non-relational data stores that break with a long history of relational databases. These data stores may not require fixed table schemas, usually avoid join operations and typically scale horizontally. Academics and papers typically refer to these databases as structured storage". Document databases are schema free so that you can focus on the problem domain and don't have to worry about updating the schema when your domain is evolving. This enables truly a domain driven development. One key pain point of relational database is the synchronization of database schema with your domain entities when your domain is evolving.There are lots of NoSQL implementations are available and both CouchDB and MongoDB got my attention. While evaluating both CouchDB and MongoDB, I found that CouchDB can’t perform dynamic queries and later I picked MongoDB over CouchDB. There are many .Net drivers available for MongoDB document database. MongoDB MongoDB is an open source, scalable, high-performance, schema-free, document-oriented database written in the C++ programming language. It has been developed since October 2007 by 10gen. MongoDB stores your data as binary JSON (BSON) format . MongoDB has been getting a lot of attention and you can see the some of the list of production deployments from here - http://www.mongodb.org/display/DOCS/Production+Deployments NoRM – C# driver for MongoDB NoRM is a C# driver for MongoDB with LINQ support. NoRM project is available on Github at http://github.com/atheken/NoRM. Demo with ASP.NET MVC I will show a simple demo with MongoDB, NoRM and ASP.NET MVC. To work with MongoDB and  NoRM, do the following steps Download the MongoDB databse For Windows 32 bit, download from http://downloads.mongodb.org/win32/mongodb-win32-i386-1.4.1.zip  and for Windows 64 bit, download  from http://downloads.mongodb.org/win32/mongodb-win32-x86_64-1.4.1.zip . The zip contains the mongod.exe for run the server and mongo.exe for the client Download the NorM driver for MongoDB at http://github.com/atheken/NoRM Create a directory call C:\data\db. This is the default location of MongoDB database. You can override the behavior. Run C:\Mongo\bin\mongod.exe. This will start the MongoDb server Now I am going to demonstrate how to program with MongoDb and NoRM in an ASP.NET MVC application.Let’s write a domain class public class Category {            [MongoIdentifier]public ObjectId Id { get; set; } [Required(ErrorMessage = "Name Required")][StringLength(25, ErrorMessage = "Must be less than 25 characters")]public string Name { get; set;}public string Description { get; set; }}  ObjectId is a NoRM type that represents a MongoDB ObjectId. NoRM will automatically update the Id becasue it is decorated by the MongoIdentifier attribute. The next step is to create a mongosession class. This will do the all interactions to the MongoDB. internal class MongoSession<TEntity> : IDisposable{    private readonly MongoQueryProvider provider;     public MongoSession()    {        this.provider = new MongoQueryProvider("Expense");    }     public IQueryable<TEntity> Queryable    {        get { return new MongoQuery<TEntity>(this.provider); }    }     public MongoQueryProvider Provider    {        get { return this.provider; }    }     public void Add<T>(T item) where T : class, new()    {        this.provider.DB.GetCollection<T>().Insert(item);    }     public void Dispose()    {        this.provider.Server.Dispose();     }    public void Delete<T>(T item) where T : class, new()    {        this.provider.DB.GetCollection<T>().Delete(item);    }     public void Drop<T>()    {        this.provider.DB.DropCollection(typeof(T).Name);    }     public void Save<T>(T item) where T : class,new()    {        this.provider.DB.GetCollection<T>().Save(item);                }  }    The MongoSession constrcutor will create an instance of MongoQueryProvider that supports the LINQ expression and also create a database with name "Expense". If database is exists, it will use existing database, otherwise it will create a new databse with name  "Expense". The Save method can be used for both Insert and Update operations. If the object is new one, it will create a new record and otherwise it will update the document with given ObjectId.  Let’s create ASP.NET MVC controller actions for CRUD operations for the domain class Category public class CategoryController : Controller{ //Index - Get the category listpublic ActionResult Index(){    using (var session = new MongoSession<Category>())    {        var categories = session.Queryable.AsEnumerable<Category>();        return View(categories);    }} //edit a single category[HttpGet]public ActionResult Edit(ObjectId id) {     using (var session = new MongoSession<Category>())    {        var category = session.Queryable              .Where(c => c.Id == id)              .FirstOrDefault();         return View("Save",category);    } }// GET: /Category/Create[HttpGet]public ActionResult Create(){    var category = new Category();    return View("Save", category);}//insert or update a category[HttpPost]public ActionResult Save(Category category){    if (!ModelState.IsValid)    {        return View("Save", category);    }    using (var session = new MongoSession<Category>())    {        session.Save(category);        return RedirectToAction("Index");    } }//Delete category[HttpPost]public ActionResult Delete(ObjectId Id){    using (var session = new MongoSession<Category>())    {        var category = session.Queryable              .Where(c => c.Id == Id)              .FirstOrDefault();        session.Delete(category);        var categories = session.Queryable.AsEnumerable<Category>();        return PartialView("CategoryList", categories);    } }        }  You can easily work on MongoDB with NoRM and can use with ASP.NET MVC applications. I have created a repository on CodePlex at http://mongomvc.codeplex.com and you can download the source code of the ASP.NET MVC application from here

    Read the article

< Previous Page | 69 70 71 72 73 74 75 76 77 78 79 80  | Next Page >