Search Results

Search found 12541 results on 502 pages for 'secure the world'.

Page 74/502 | < Previous Page | 70 71 72 73 74 75 76 77 78 79 80 81  | Next Page >

  • Why SEO Services Are Rising

    When we write www that means world wide website, the internet has connected the whole world through websites. Everything is available on internet, products, information, services and lot more. It does not matter where you are located but your address starts from www. These three alphabets have changed the lives of many people.

    Read the article

  • SEO Hosting Reseller

    There are a number of reasons why SEO Hosting Reseller Accounts have become the most sought after tools in the webmasters hosting world. Making the most of them is the basis of knowing where and when they can be manipulated in the world.

    Read the article

  • Circular file references not allowed

    - by Program.X
    Hi, I am having a problem in building my solution in VS2008. Normally, it compiles fine in the environment. Sometimes, it fails with: /xxx_WEB/secure/CMSManagedTargetPage.aspx(1): error ASPPARSE: Circular file references are not allowed. I rebuild and it works fine. Now, however, I am in the middle of setting up a CruiseControl.NET system and am testing my checked out code with MSBuild before I integrate the build into CC. Now, everytime I MSBuild, I get: "Q:\cc\xxx\checked out from svn\xxx.sln" (default target) (1) -> (xxx_WEB target) -> /xxx_WEB/secure/CMSManagedTargetPage.aspx(1): error ASPPARSE: Circular file references are not allowed. Problem is, I can't see where this reference is. I have searched for the reference across the entire solution and canf ind no references to the page itself (CMSManagedTargetPage) anywhere other than in the page or its codebehind, or within a string, eg: C:\dev2008\xxx\IWW.xxx.ASPNET\AspxHttpHandler.cs(82): inputFile = context.Server.MapPath("~/secure/CMSManagedTargetPage.aspx"); C:\dev2008\xxx\IWW.xxx.ASPNET\AspxHttpHandler.cs(83): virtualPath = "~/secure/CMSManagedTargetPage.aspx"; My assembly references are also fine (as far as I know). My Web Application is at the "top" of the dependencies, and nothing references it and therefore the faulting page so cannot cause a circular reference. Of course, the page itself may reference something such as a UserControl within the same assembly/web site, but as mentioned earlier, a search on CMSManagedTargetPage yielded no results so this is not happening. Changing the batch attribute in web.config had no effect on MSBuild. I find it very odd that it "sometimes" fails in VS and always fails in MSBuild. Am I missing some subtlety?

    Read the article

  • Manually start session with specific id / transitioning session cookie between domains

    - by deceze
    My host requires me to use a different domain for SSL secured access (shared SSL), so I need to transition the user session between two domains. One part of the page lives at http://example.com, while the SSL'd part is at https://example.hosting.com. As such I can't set a domain-spanning cookie. What I'm trying to do is to transition the session id over and re-set the cookie like this: http://example.com/normal/page, user clicks link to secure area and goes to: http://example.com/secure/page, which causes a redirect to: https://example.hosting.com/secure/page?sess=ikub..., which resurrects the session and sets a new cookie valid for the domain, then redirects to: https://example.hosting.com/secure/page This works up to the point where the session should be resurrected. I'm doing: function beforeFilter() { ... $this->Session->id($_GET['sess']); $this->Session->activate(); ... } As far as I can tell this should start the session with the given ID. It actually generates a new session ID though and this session is empty, the data is not restored. This is on CakePHP 1.2.4. Do I need to do something else, or is there a better way to do what I'm trying to do?

    Read the article

  • Cookie not renewing/overwriting in IE

    - by deceze
    I have a weird quirk with cookies in IE. When a user logs into the site, I'm generating a new session id and hence need to overwrite the cookie. The flow is basically: Client goes to https://secure.example.com/users/login page, automatically receiving a session id Client POSTs login credentials to same address Client receives the following headers together with a 302 redirect to https://secure.example.com/users/mypage: CAKEPHP=deleted; expires=Sun, 05-Apr-2009 04:50:35 GMT; path=/ CAKEPHP=98hnIO23...; expires=Mon, 12 Apr 2010 04:50:36 GMT; path=/; secure Client is supposed to visit https://secure.example.com/users/mypage, presenting the new session id. This works in all browsers, except IE (tested in 7 & 8). IE retains the old, unauthenticated session id, and is redirected back to the login page. It works on my local test environment (using a self-signed certificate at https://localhost:8443/...), but not on the live server. I'm using CakePHP and simply issue a $this->Session->renew(), which produces the above cookie headers. Any ideas how to get IE to accept the new cookie?

    Read the article

  • Javascript CS-PRNG - 64-bit random

    - by Jack
    Hi, I need to generate a cryptographically secure 64-bit unsigned random integer in Javascript. The first problem is that Javascript only allows 64-bit signed integers, so 9223372036854775808 is the biggest supported integer without going into floating point use I think? To fix this I can use a big number library, no problem. My Method: var randNum = SHA256( randBigInt(128, 0) ) % 2^64; Where SHA256() is a secure hash function and randBigInt() is defined below as a non-crypto PRNG, im giving it a 128bit seed so brute force shouldn't be a problem. randBigInt(n,s) //return an n-bit random BigInt (n>=1). If s=1, then the most significant of those n bits is set to 1. Is this a secure method to generate a cryptographically secure 64-bit random int? And importantly does taking the 2^64 mod guarantee 100% I have a 64-bit number? An abstract example, say this number is prime (it isn't i know), I will use it in the Galois Field [2^p], where p must be 64bits so that every possible 1-63bit number is a field element. In this query, my random int must be larger than any 63-bit number. And Im not sure im correct in taking the 2^64 mod of a 256bit hash output. Thanks (hope that makes sense)

    Read the article

  • Hosting images from unsecured servers (travelnow.com)

    - by i.am.not.aids
    Hi, My application needs to serve images hosted in travelnow.com (ie. this image) but the application only allow images hosted on a secured server (ie. https). What are my options? TravelNow's suggestion is as follows. How do I do this? Akamai image servers are not secure. Therefore you are unable to serve any of the image urls with a secure HTTPS URL. If you need to serve an image with HTTPS, you must temporarily save the image to your own secure server. This is suggested only for images to be saved as you use them or need them temporarily on the secure page. The hotel images file available from the Affiliate Center provides up to 1.5 million URLs at any time for all properties storing images in the Akamai system. It is not recommended or advised to store all files in advance on your own system since properties change and update images frequently. Although we are not responsible for the images each property stores on the Akamai system, YOU will be responsible for any customer issues arising from displaying outdated or saved image files on your own pages. Thanks! Adrian

    Read the article

  • Mysterious HttpSession and session-config dependency

    - by OneMoreVladimir
    Good day. I'm developing a Java web app with Servlets\JSP using Tomcat 7.0. During request from client I put and object into the session and use forward. After the forward processing the same request the object can be retreived if the secure parameter is false otherwise it is not stored in session. <session-config> <session-timeout>15</session-timeout> <cookie-config> <http-only>true</http-only> <secure>true</secure> </cookie-config> <tracking-mode>COOKIE</tracking-mode> </session-config> I've figured out that "...cookies can be created with the 'secure' flag, which ensures that the browser will never transmit the specified cookie over non-SSL...". I've configured Tomcat to use SSL, but that haven't helped. Changing the tracking mode to SSL haven't helped as well. How do session-config and HttpSession object correlate in this case? What could be the problem?

    Read the article

  • Elfsign Object Signing on Solaris

    - by danx
    Elfsign Object Signing on Solaris Don't let this happen to you—use elfsign! Solaris elfsign(1) is a command that signs and verifies ELF format executables. That includes not just executable programs (such as ls or cp), but other ELF format files including libraries (such as libnvpair.so) and kernel modules (such as autofs). Elfsign has been available since Solaris 10 and ELF format files distributed with Solaris, since Solaris 10, are signed by either Sun Microsystems or its successor, Oracle Corporation. When an ELF file is signed, elfsign adds a new section the ELF file, .SUNW_signature, that contains a RSA public key signature and other information about the signer. That is, the algorithm used, algorithm OID, signer CN/OU, and time stamp. The signature section can later be verified by elfsign or other software by matching the signature in the file agains the ELF file contents (excluding the signature). ELF executable files may also be signed by a 3rd-party or by the customer. This is useful for verifying the origin and authenticity of executable files installed on a system. The 3rd-party or customer public key certificate should be installed in /etc/certs/ to allow verification by elfsign. For currently-released versions of Solaris, only cryptographic framework plugin libraries are verified by Solaris. However, all ELF files may be verified by the elfsign command at any time. Elfsign Algorithms Elfsign signatures are created by taking a digest of the ELF section contents, then signing the digest with RSA. To verify, one takes a digest of ELF file and compares with the expected digest that's computed from the signature and RSA public key. Originally elfsign took a MD5 digest of a SHA-1 digest of the ELF file sections, then signed the resulting digest with RSA. In Solaris 11.1 then Solaris 11.1 SRU 7 (5/2013), the elfsign crypto algorithms available have been expanded to keep up with evolving cryptography. The following table shows the available elfsign algorithms: Elfsign Algorithm Solaris Release Comments elfsign sign -F rsa_md5_sha1   S10, S11.0, S11.1 Default for S10. Not recommended* elfsign sign -F rsa_sha1 S11.1 Default for S11.1. Not recommended elfsign sign -F rsa_sha256 S11.1 patch SRU7+   Recommended ___ *Most or all CAs do not accept MD5 CSRs and do not issue MD5 certs due to MD5 hash collision problems. RSA Key Length. I recommend using RSA-2048 key length with elfsign is RSA-2048 as the best balance between a long expected "life time", interoperability, and performance. RSA-2048 keys have an expected lifetime through 2030 (and probably beyond). For details, see Recommendation for Key Management: Part 1: General, NIST Publication SP 800-57 part 1 (rev. 3, 7/2012, PDF), tables 2 and 4 (pp. 64, 67). Step 1: create or obtain a key and cert The first step in using elfsign is to obtain a key and cert from a public Certificate Authority (CA), or create your own self-signed key and cert. I'll briefly explain both methods. Obtaining a Certificate from a CA To obtain a cert from a CA, such as Verisign, Thawte, or Go Daddy (to name a few random examples), you create a private key and a Certificate Signing Request (CSR) file and send it to the CA, following the instructions of the CA on their website. They send back a signed public key certificate. The public key cert, along with the private key you created is used by elfsign to sign an ELF file. The public key cert is distributed with the software and is used by elfsign to verify elfsign signatures in ELF files. You need to request a RSA "Class 3 public key certificate", which is used for servers and software signing. Elfsign uses RSA and we recommend RSA-2048 keys. The private key and CSR can be generated with openssl(1) or pktool(1) on Solaris. Here's a simple example that uses pktool to generate a private RSA_2048 key and a CSR for sending to a CA: $ pktool gencsr keystore=file format=pem outcsr=MYCSR.p10 \ subject="CN=canineswworks.com,OU=Canine SW object signing" \ outkey=MYPRIVATEKEY.key $ openssl rsa -noout -text -in MYPRIVATEKEY.key Private-Key: (2048 bit) modulus: 00:d2:ef:42:f2:0b:8c:96:9f:45:32:fc:fe:54:94: . . . [omitted for brevity] . . . c9:c7 publicExponent: 65537 (0x10001) privateExponent: 26:14:fc:49:26:bc:a3:14:ee:31:5e:6b:ac:69:83: . . . [omitted for brevity] . . . 81 prime1: 00:f6:b7:52:73:bc:26:57:26:c8:11:eb:6c:dc:cb: . . . [omitted for brevity] . . . bc:91:d0:40:d6:9d:ac:b5:69 prime2: 00:da:df:3f:56:b2:18:46:e1:89:5b:6c:f1:1a:41: . . . [omitted for brevity] . . . f3:b7:48:de:c3:d9:ce:af:af exponent1: 00:b9:a2:00:11:02:ed:9a:3f:9c:e4:16:ce:c7:67: . . . [omitted for brevity] . . . 55:50:25:70:d3:ca:b9:ab:99 exponent2: 00:c8:fc:f5:57:11:98:85:8e:9a:ea:1f:f2:8f:df: . . . [omitted for brevity] . . . 23:57:0e:4d:b2:a0:12:d2:f5 coefficient: 2f:60:21:cd:dc:52:76:67:1a:d8:75:3e:7f:b0:64: . . . [omitted for brevity] . . . 06:94:56:d8:9d:5c:8e:9b $ openssl req -noout -text -in MYCSR.p10 Certificate Request: Data: Version: 2 (0x2) Subject: OU=Canine SW object signing, CN=canineswworks.com Subject Public Key Info: Public Key Algorithm: rsaEncryption Public-Key: (2048 bit) Modulus: 00:d2:ef:42:f2:0b:8c:96:9f:45:32:fc:fe:54:94: . . . [omitted for brevity] . . . c9:c7 Exponent: 65537 (0x10001) Attributes: Signature Algorithm: sha1WithRSAEncryption b3:e8:30:5b:88:37:68:1c:26:6b:45:af:5e:de:ea:60:87:ea: . . . [omitted for brevity] . . . 06:f9:ed:b4 Secure storage of RSA private key. The private key needs to be protected if the key signing is used for production (as opposed to just testing). That is, protect the key to protect against unauthorized signatures by others. One method is to use a PIN-protected PKCS#11 keystore. The private key you generate should be stored in a secure manner, such as in a PKCS#11 keystore using pktool(1). Otherwise others can sign your signature. Other secure key storage mechanisms include a SCA-6000 crypto card, a USB thumb drive stored in a locked area, a dedicated server with restricted access, Oracle Key Manager (OKM), or some combination of these. I also recommend secure backup of the private key. Here's an example of generating a private key protected in the PKCS#11 keystore, and a CSR. $ pktool setpin # use if PIN not set yet Enter token passphrase: changeme Create new passphrase: Re-enter new passphrase: Passphrase changed. $ pktool gencsr keystore=pkcs11 label=MYPRIVATEKEY \ format=pem outcsr=MYCSR.p10 \ subject="CN=canineswworks.com,OU=Canine SW object signing" $ pktool list keystore=pkcs11 Enter PIN for Sun Software PKCS#11 softtoken: Found 1 asymmetric public keys. Key #1 - RSA public key: MYPRIVATEKEY Here's another example that uses openssl instead of pktool to generate a private key and CSR: $ openssl genrsa -out cert.key 2048 $ openssl req -new -key cert.key -out MYCSR.p10 Self-Signed Cert You can use openssl or pktool to create a private key and a self-signed public key certificate. A self-signed cert is useful for development, testing, and internal use. The private key created should be stored in a secure manner, as mentioned above. The following example creates a private key, MYSELFSIGNED.key, and a public key cert, MYSELFSIGNED.pem, using pktool and displays the contents with the openssl command. $ pktool gencert keystore=file format=pem serial=0xD06F00D lifetime=20-year \ keytype=rsa hash=sha256 outcert=MYSELFSIGNED.pem outkey=MYSELFSIGNED.key \ subject="O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com" $ pktool list keystore=file objtype=cert infile=MYSELFSIGNED.pem Found 1 certificates. 1. (X.509 certificate) Filename: MYSELFSIGNED.pem ID: c8:24:59:08:2b:ae:6e:5c:bc:26:bd:ef:0a:9c:54:de:dd:0f:60:46 Subject: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Issuer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Not Before: Oct 17 23:18:00 2013 GMT Not After: Oct 12 23:18:00 2033 GMT Serial: 0xD06F00D0 Signature Algorithm: sha256WithRSAEncryption $ openssl x509 -noout -text -in MYSELFSIGNED.pem Certificate: Data: Version: 3 (0x2) Serial Number: 3496935632 (0xd06f00d0) Signature Algorithm: sha256WithRSAEncryption Issuer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Validity Not Before: Oct 17 23:18:00 2013 GMT Not After : Oct 12 23:18:00 2033 GMT Subject: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Subject Public Key Info: Public Key Algorithm: rsaEncryption Public-Key: (2048 bit) Modulus: 00:bb:e8:11:21:d9:4b:88:53:8b:6c:5a:7a:38:8b: . . . [omitted for brevity] . . . bf:77 Exponent: 65537 (0x10001) Signature Algorithm: sha256WithRSAEncryption 9e:39:fe:c8:44:5c:87:2c:8f:f4:24:f6:0c:9a:2f:64:84:d1: . . . [omitted for brevity] . . . 5f:78:8e:e8 $ openssl rsa -noout -text -in MYSELFSIGNED.key Private-Key: (2048 bit) modulus: 00:bb:e8:11:21:d9:4b:88:53:8b:6c:5a:7a:38:8b: . . . [omitted for brevity] . . . bf:77 publicExponent: 65537 (0x10001) privateExponent: 0a:06:0f:23:e7:1b:88:62:2c:85:d3:2d:c1:e6:6e: . . . [omitted for brevity] . . . 9c:e1:e0:0a:52:77:29:4a:75:aa:02:d8:af:53:24: c1 prime1: 00:ea:12:02:bb:5a:0f:5a:d8:a9:95:b2:ba:30:15: . . . [omitted for brevity] . . . 5b:ca:9c:7c:19:48:77:1e:5d prime2: 00:cd:82:da:84:71:1d:18:52:cb:c6:4d:74:14:be: . . . [omitted for brevity] . . . 5f:db:d5:5e:47:89:a7:ef:e3 exponent1: 32:37:62:f6:a6:bf:9c:91:d6:f0:12:c3:f7:04:e9: . . . [omitted for brevity] . . . 97:3e:33:31:89:66:64:d1 exponent2: 00:88:a2:e8:90:47:f8:75:34:8f:41:50:3b:ce:93: . . . [omitted for brevity] . . . ff:74:d4:be:f3:47:45:bd:cb coefficient: 4d:7c:09:4c:34:73:c4:26:f0:58:f5:e1:45:3c:af: . . . [omitted for brevity] . . . af:01:5f:af:ad:6a:09:bf Step 2: Sign the ELF File object By now you should have your private key, and obtained, by hook or crook, a cert (either from a CA or use one you created (a self-signed cert). The next step is to sign one or more objects with your private key and cert. Here's a simple example that creates an object file, signs, verifies, and lists the contents of the ELF signature. $ echo '#include <stdio.h>\nint main(){printf("Hello\\n");}'>hello.c $ make hello cc -o hello hello.c $ elfsign verify -v -c MYSELFSIGNED.pem -e hello elfsign: no signature found in hello. $ elfsign sign -F rsa_sha256 -v -k MYSELFSIGNED.key -c MYSELFSIGNED.pem -e hello elfsign: hello signed successfully. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:22:49 PM PDT. $ elfsign list -f format -e hello rsa_sha256 $ elfsign list -f signer -e hello O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com $ elfsign list -f time -e hello October 17, 2013 04:22:49 PM PDT $ elfsign verify -v -c MYSELFSIGNED.key -e hello elfsign: verification of hello failed. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:22:49 PM PDT. Signing using the pkcs11 keystore To sign the ELF file using a private key in the secure pkcs11 keystore, replace "-K MYSELFSIGNED.key" in the "elfsign sign" command line with "-T MYPRIVATEKEY", where MYPRIVATKEY is the pkcs11 token label. Step 3: Install the cert and test on another system Just signing the object isn't enough. You need to copy or install the cert and the signed ELF file(s) on another system to test that the signature is OK. Your public key cert should be installed in /etc/certs. Use elfsign verify to verify the signature. Elfsign verify checks each cert in /etc/certs until it finds one that matches the elfsign signature in the file. If one isn't found, the verification fails. Here's an example: $ su Password: # rm /etc/certs/MYSELFSIGNED.key # cp MYSELFSIGNED.pem /etc/certs # exit $ elfsign verify -v hello elfsign: verification of hello passed. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:24:20 PM PDT. After testing, package your cert along with your ELF object to allow elfsign verification after your cert and object are installed or copied. Under the Hood: elfsign verification Here's the steps taken to verify a ELF file signed with elfsign. The steps to sign the file are similar except the private key exponent is used instead of the public key exponent and the .SUNW_signature section is written to the ELF file instead of being read from the file. Generate a digest (SHA-256) of the ELF file sections. This digest uses all ELF sections loaded in memory, but excludes the ELF header, the .SUNW_signature section, and the symbol table Extract the RSA signature (RSA-2048) from the .SUNW_signature section Extract the RSA public key modulus and public key exponent (65537) from the public key cert Calculate the expected digest as follows:     signaturepublicKeyExponent % publicKeyModulus Strip the PKCS#1 padding (most significant bytes) from the above. The padding is 0x00, 0x01, 0xff, 0xff, . . ., 0xff, 0x00. If the actual digest == expected digest, the ELF file is verified (OK). Further Information elfsign(1), pktool(1), and openssl(1) man pages. "Signed Solaris 10 Binaries?" blog by Darren Moffat (2005) shows how to use elfsign. "Simple CLI based CA on Solaris" blog by Darren Moffat (2008) shows how to set up a simple CA for use with self-signed certificates. "How to Create a Certificate by Using the pktool gencert Command" System Administration Guide: Security Services (available at docs.oracle.com)

    Read the article

  • 3D Graphics with XNA Game Studio 4.0 bug in light map?

    - by Eibis
    i'm following the tutorials on 3D Graphics with XNA Game Studio 4.0 and I came up with an horrible effect when I tried to implement the Light Map http://i.stack.imgur.com/BUWvU.jpg this effect shows up when I look towards the center of the house (and it moves with me). it has this shape because I'm using a sphere to represent light; using other light shapes gives different results. I'm using a class PreLightingRenderer: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using Dhpoware; using Microsoft.Xna.Framework.Content; namespace XNAFirstPersonCamera { public class PrelightingRenderer { // Normal, depth, and light map render targets RenderTarget2D depthTarg; RenderTarget2D normalTarg; RenderTarget2D lightTarg; // Depth/normal effect and light mapping effect Effect depthNormalEffect; Effect lightingEffect; // Point light (sphere) mesh Model lightMesh; // List of models, lights, and the camera public List<CModel> Models { get; set; } public List<PPPointLight> Lights { get; set; } public FirstPersonCamera Camera { get; set; } GraphicsDevice graphicsDevice; int viewWidth = 0, viewHeight = 0; public PrelightingRenderer(GraphicsDevice GraphicsDevice, ContentManager Content) { viewWidth = GraphicsDevice.Viewport.Width; viewHeight = GraphicsDevice.Viewport.Height; // Create the three render targets depthTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Single, DepthFormat.Depth24); normalTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24); lightTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24); // Load effects depthNormalEffect = Content.Load<Effect>(@"Effects\PPDepthNormal"); lightingEffect = Content.Load<Effect>(@"Effects\PPLight"); // Set effect parameters to light mapping effect lightingEffect.Parameters["viewportWidth"].SetValue(viewWidth); lightingEffect.Parameters["viewportHeight"].SetValue(viewHeight); // Load point light mesh and set light mapping effect to it lightMesh = Content.Load<Model>(@"Models\PPLightMesh"); lightMesh.Meshes[0].MeshParts[0].Effect = lightingEffect; this.graphicsDevice = GraphicsDevice; } public void Draw() { drawDepthNormalMap(); drawLightMap(); prepareMainPass(); } void drawDepthNormalMap() { // Set the render targets to 'slots' 1 and 2 graphicsDevice.SetRenderTargets(normalTarg, depthTarg); // Clear the render target to 1 (infinite depth) graphicsDevice.Clear(Color.White); // Draw each model with the PPDepthNormal effect foreach (CModel model in Models) { model.CacheEffects(); model.SetModelEffect(depthNormalEffect, false); model.Draw(Camera.ViewMatrix, Camera.ProjectionMatrix, Camera.Position); model.RestoreEffects(); } // Un-set the render targets graphicsDevice.SetRenderTargets(null); } void drawLightMap() { // Set the depth and normal map info to the effect lightingEffect.Parameters["DepthTexture"].SetValue(depthTarg); lightingEffect.Parameters["NormalTexture"].SetValue(normalTarg); // Calculate the view * projection matrix Matrix viewProjection = Camera.ViewMatrix * Camera.ProjectionMatrix; // Set the inverse of the view * projection matrix to the effect Matrix invViewProjection = Matrix.Invert(viewProjection); lightingEffect.Parameters["InvViewProjection"].SetValue(invViewProjection); // Set the render target to the graphics device graphicsDevice.SetRenderTarget(lightTarg); // Clear the render target to black (no light) graphicsDevice.Clear(Color.Black); // Set render states to additive (lights will add their influences) graphicsDevice.BlendState = BlendState.Additive; graphicsDevice.DepthStencilState = DepthStencilState.None; foreach (PPPointLight light in Lights) { // Set the light's parameters to the effect light.SetEffectParameters(lightingEffect); // Calculate the world * view * projection matrix and set it to // the effect Matrix wvp = (Matrix.CreateScale(light.Attenuation) * Matrix.CreateTranslation(light.Position)) * viewProjection; lightingEffect.Parameters["WorldViewProjection"].SetValue(wvp); // Determine the distance between the light and camera float dist = Vector3.Distance(Camera.Position, light.Position); // If the camera is inside the light-sphere, invert the cull mode // to draw the inside of the sphere instead of the outside if (dist < light.Attenuation) graphicsDevice.RasterizerState = RasterizerState.CullClockwise; // Draw the point-light-sphere lightMesh.Meshes[0].Draw(); // Revert the cull mode graphicsDevice.RasterizerState = RasterizerState.CullCounterClockwise; } // Revert the blending and depth render states graphicsDevice.BlendState = BlendState.Opaque; graphicsDevice.DepthStencilState = DepthStencilState.Default; // Un-set the render target graphicsDevice.SetRenderTarget(null); } void prepareMainPass() { foreach (CModel model in Models) foreach (ModelMesh mesh in model.Model.Meshes) foreach (ModelMeshPart part in mesh.MeshParts) { // Set the light map and viewport parameters to each model's effect if (part.Effect.Parameters["LightTexture"] != null) part.Effect.Parameters["LightTexture"].SetValue(lightTarg); if (part.Effect.Parameters["viewportWidth"] != null) part.Effect.Parameters["viewportWidth"].SetValue(viewWidth); if (part.Effect.Parameters["viewportHeight"] != null) part.Effect.Parameters["viewportHeight"].SetValue(viewHeight); } } } } that uses three effect: PPDepthNormal.fx float4x4 World; float4x4 View; float4x4 Projection; struct VertexShaderInput { float4 Position : POSITION0; float3 Normal : NORMAL0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 Depth : TEXCOORD0; float3 Normal : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4x4 viewProjection = mul(View, Projection); float4x4 worldViewProjection = mul(World, viewProjection); output.Position = mul(input.Position, worldViewProjection); output.Normal = mul(input.Normal, World); // Position's z and w components correspond to the distance // from camera and distance of the far plane respectively output.Depth.xy = output.Position.zw; return output; } // We render to two targets simultaneously, so we can't // simply return a float4 from the pixel shader struct PixelShaderOutput { float4 Normal : COLOR0; float4 Depth : COLOR1; }; PixelShaderOutput PixelShaderFunction(VertexShaderOutput input) { PixelShaderOutput output; // Depth is stored as distance from camera / far plane distance // to get value between 0 and 1 output.Depth = input.Depth.x / input.Depth.y; // Normal map simply stores X, Y and Z components of normal // shifted from (-1 to 1) range to (0 to 1) range output.Normal.xyz = (normalize(input.Normal).xyz / 2) + .5; // Other components must be initialized to compile output.Depth.a = 1; output.Normal.a = 1; return output; } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } PPLight.fx float4x4 WorldViewProjection; float4x4 InvViewProjection; texture2D DepthTexture; texture2D NormalTexture; sampler2D depthSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; sampler2D normalSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; float3 LightColor; float3 LightPosition; float LightAttenuation; // Include shared functions #include "PPShared.vsi" struct VertexShaderInput { float4 Position : POSITION0; }; struct VertexShaderOutput { float4 Position : POSITION0; float4 LightPosition : TEXCOORD0; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; output.Position = mul(input.Position, WorldViewProjection); output.LightPosition = output.Position; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { // Find the pixel coordinates of the input position in the depth // and normal textures float2 texCoord = postProjToScreen(input.LightPosition) + halfPixel(); // Extract the depth for this pixel from the depth map float4 depth = tex2D(depthSampler, texCoord); // Recreate the position with the UV coordinates and depth value float4 position; position.x = texCoord.x * 2 - 1; position.y = (1 - texCoord.y) * 2 - 1; position.z = depth.r; position.w = 1.0f; // Transform position from screen space to world space position = mul(position, InvViewProjection); position.xyz /= position.w; // Extract the normal from the normal map and move from // 0 to 1 range to -1 to 1 range float4 normal = (tex2D(normalSampler, texCoord) - .5) * 2; // Perform the lighting calculations for a point light float3 lightDirection = normalize(LightPosition - position); float lighting = clamp(dot(normal, lightDirection), 0, 1); // Attenuate the light to simulate a point light float d = distance(LightPosition, position); float att = 1 - pow(d / LightAttenuation, 6); return float4(LightColor * lighting * att, 1); } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } PPShared.vsi has some common functions: float viewportWidth; float viewportHeight; // Calculate the 2D screen position of a 3D position float2 postProjToScreen(float4 position) { float2 screenPos = position.xy / position.w; return 0.5f * (float2(screenPos.x, -screenPos.y) + 1); } // Calculate the size of one half of a pixel, to convert // between texels and pixels float2 halfPixel() { return 0.5f / float2(viewportWidth, viewportHeight); } and finally from the Game class I set up in LoadContent with: effect = Content.Load(@"Effects\PPModel"); models[0] = new CModel(Content.Load(@"Models\teapot"), new Vector3(-50, 80, 0), new Vector3(0, 0, 0), 1f, Content.Load(@"Textures\prova_texture_autocad"), GraphicsDevice); house = new CModel(Content.Load(@"Models\house"), new Vector3(0, 0, 0), new Vector3((float)-Math.PI / 2, 0, 0), 35.0f, Content.Load(@"Textures\prova_texture_autocad"), GraphicsDevice); models[0].SetModelEffect(effect, true); house.SetModelEffect(effect, true); renderer = new PrelightingRenderer(GraphicsDevice, Content); renderer.Models = new List(); renderer.Models.Add(house); renderer.Models.Add(models[0]); renderer.Lights = new List() { new PPPointLight(new Vector3(0, 120, 0), Color.White * .85f, 2000) }; where PPModel.fx is: float4x4 World; float4x4 View; float4x4 Projection; texture2D BasicTexture; sampler2D basicTextureSampler = sampler_state { texture = ; addressU = wrap; addressV = wrap; minfilter = anisotropic; magfilter = anisotropic; mipfilter = linear; }; bool TextureEnabled = true; texture2D LightTexture; sampler2D lightSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; float3 AmbientColor = float3(0.15, 0.15, 0.15); float3 DiffuseColor; #include "PPShared.vsi" struct VertexShaderInput { float4 Position : POSITION0; float2 UV : TEXCOORD0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 UV : TEXCOORD0; float4 PositionCopy : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4x4 worldViewProjection = mul(World, mul(View, Projection)); output.Position = mul(input.Position, worldViewProjection); output.PositionCopy = output.Position; output.UV = input.UV; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { // Sample model's texture float3 basicTexture = tex2D(basicTextureSampler, input.UV); if (!TextureEnabled) basicTexture = float4(1, 1, 1, 1); // Extract lighting value from light map float2 texCoord = postProjToScreen(input.PositionCopy) + halfPixel(); float3 light = tex2D(lightSampler, texCoord); light += AmbientColor; return float4(basicTexture * DiffuseColor * light, 1); } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } I don't have any idea on what's wrong... googling the web I found that this tutorial may have some bug but I don't know if it's the LightModel fault (the sphere) or in a shader or in the class PrelightingRenderer. Any help is very appreciated, thank you for reading!

    Read the article

  • SINGLE SIGN ON SECURITY THREAT! FACEBOOK access_token broadcast in the open/clear

    - by MOKANA
    Subsequent to my posting there was a remark made that this was not really a question but I thought I did indeed postulate one. So that there is no ambiquity here is the question with a lead in: Since there is no data sent from Facebook during the Canvas Load process that is not at some point divulged, including the access_token, session and other data that could uniquely identify a user, does any one see any other way other than adding one more layer, i.e., a password, sent over the wire via HTTPS along with the access_toekn, that will insure unique untampered with security by the user? Using Wireshark I captured the local broadcast while loading my Canvas Application page. I was hugely surprised to see the access_token broadcast in the open, viewable for any one to see. This access_token is appended to any https call to the Facebook OpenGraph API. Using facebook as a single click log on has now raised huge concerns for me. It is stored in a session object in memory and the cookie is cleared upon app termination and after reviewing the FB.Init calls I saw a lot of HTTPS calls so I assumed the access_token was always encrypted. But last night I saw in the status bar a call from what was simply an http call that included the App ID so I felt I should sniff the Application Canvas load sequence. Today I did sniff the broadcast and in the attached image you can see that there are http calls with the access_token being broadcast in the open and clear for anyone to gain access to. Am I missing something, is what I am seeing and my interpretation really correct. If any one can sniff and get the access_token they can theorically make calls to the Graph API via https, even though the call back would still need to be the site established in Facebook's application set up. But what is truly a security threat is anyone using the access_token for access to their own site. I do not see the value of a single sign on via Facebook if the only thing that was established as secure was the access_token - becuase for what I can see it clearly is not secure. Access tokens that never have an expire date do not change. Access_tokens are different for every user, to access to another site could be held tight to just a single user, but compromising even a single user's data is unacceptable. http://www.creatingstory.com/images/InTheOpen.png Went back and did more research on this: FINDINGS: Went back an re ran the canvas application to verify that it was not any of my code that was not broadcasting. In this call: HTTP GET /connect.php/en_US/js/CacheData HTTP/1.1 The USER ID is clearly visible in the cookie. So USER_ID's are fully visible, but they are already. Anyone can go to pretty much any ones page and hover over the image and see the USER ID. So no big threat. APP_ID are also easily obtainable - but . . . http://www.creatingstory.com/images/InTheOpen2.png The above file clearly shows the FULL ACCESS TOKEN clearly in the OPEN via a Facebook initiated call. Am I wrong. TELL ME I AM WRONG because I want to be wrong about this. I have since reset my app secret so I am showing the real sniff of the Canvas Page being loaded. Additional data 02/20/2011: @ifaour - I appreciate the time you took to compile your response. I am pretty familiar with the OAuth process and have a pretty solid understanding of the signed_request unpacking and utilization of the access_token. I perform a substantial amount of my processing on the server and my Facebook server side flows are all complete and function without any flaw that I know of. The application secret is secure and never passed to the front end application and is also changed regularly. I am being as fanatical about security as I can be, knowing there is so much I don’t know that could come back and bite me. Two huge access_token issues: The issues concern the possible utilization of the access_token from the USER AGENT (browser). During the FB.INIT() process of the Facebook JavaScript SDK, a cookie is created as well as an object in memory called a session object. This object, along with the cookie contain the access_token, session, a secret, and uid and status of the connection. The session object is structured such that is supports both the new OAuth and the legacy flows. With OAuth, the access_token and status are pretty much al that is used in the session object. The first issue is that the access_token is used to make HTTPS calls to the GRAPH API. If you had the access_token, you could do this from any browser: https://graph.facebook.com/220439?access_token=... and it will return a ton of information about the user. So any one with the access token can gain access to a Facebook account. You can also make additional calls to any info the user has granted access to the application tied to the access_token. At first I thought that a call into the GRAPH had to have a Callback to the URL established in the App Setup, but I tested it as mentioned below and it will return info back right into the browser. Adding that callback feature would be a good idea I think, tightens things up a bit. The second issue is utilization of some unique private secured data that identifies the user to the third party data base, i.e., like in my case, I would use a single sign on to populate user information into my database using this unique secured data item (i.e., access_token which contains the APP ID, the USER ID, and a hashed with secret sequence). None of this is a problem on the server side. You get a signed_request, you unpack it with secret, make HTTPS calls, get HTTPS responses back. When a user has information entered via the USER AGENT(browser) that must be stored via a POST, this unique secured data element would be sent via HTTPS such that they are validated prior to data base insertion. However, If there is NO secured piece of unique data that is supplied via the single sign on process, then there is no way to guarantee unauthorized access. The access_token is the one piece of data that is utilized by Facebook to make the HTTPS calls into the GRAPH API. it is considered unique in regards to BOTH the USER and the APPLICATION and is initially secure via the signed_request packaging. If however, it is subsequently transmitted in the clear and if I can sniff the wire and obtain the access_token, then I can pretend to be the application and gain the information they have authorized the application to see. I tried the above example from a Safari and IE browser and it returned all of my information to me in the browser. In conclusion, the access_token is part of the signed_request and that is how the application initially obtains it. After OAuth authentication and authorization, i.e., the USER has logged into Facebook and then runs your app, the access_token is stored as mentioned above and I have sniffed it such that I see it stored in a Cookie that is transmitted over the wire, resulting in there being NO UNIQUE SECURED IDENTIFIABLE piece of information that can be used to support interaction with the database, or in other words, unless there were one more piece of secure data sent along with the access_token to my database, i.e., a password, I would not be able to discern if it is a legitimate call. Luckily I utilized secure AJAX via POST and the call has to come from the same domain, but I am sure there is a way to hijack that. I am totally open to any ideas on this topic on how to uniquely identify my USERS other than adding another layer (password) via this single sign on process or if someone would just share with me that I read and analyzed my data incorrectly and that the access_token is always secure over the wire. Mahalo nui loa in advance.

    Read the article

  • Cannot run "Automation Anywhere" exe files from console (session 0) on Windows Server 2003 64 bit

    - by Tyler
    I have a simple exe created from an Automation Anywhere task that displays a message box saying hello world. I created this simple exe just for debugging the following issue. When I log in to the console (session 0), and run the Automation Anywhere created executable, it starts to run the task, it shows up in the applications and processes list in the task manager and it shows the two "loading..." windows briefly on the screen, just like normal. But after that, nothing happens... the "hello world" message does not show up. The exe is done and is removed from the application and process list in the task manager. The user I am logged in as, has admin rights and the machine uses "autologin" to automatically log in using this profile when it starts up. If I right click on the exe and "run as" another admin user, the exe runs properly, showing the "hello world" message. Also, if I log into the server in a new session, with the original user (the one that has the problems in session 0), and then run the exe, it runs properly and shows the "hello world". It works fine in any session other than the console session. There is something about the console session that is causing the exe not to run properly... even though it does appear to start running the exe. I should also mention that everything was working fine until Monday at midnight, after which none of the executables could be run successfully. Nothing was changed on the server and no updates were installed. I have since installed windows updates, but that didn't change anything. Looking for some advice on how to get these executables working in the console session again. Thanks!

    Read the article

  • How do I make rsync also check ctime?

    - by Benoît
    rsync detects files modification by comparing size and mtime. However, if for any reason, the mtime is unchanged, rsync won't detect the change, although it's possible to spot it by looking at the ctime. Of course, I can tell rsync do compare the whole files' contents, but that's very very expensive. Is there a way to make rsync smarter, for example by checking mtime+size are the same AND that ctime isn't newer than mtime (on both source and destination) ? Or should I open a feature request ? Here's an example: Create 2 files, same content and atime/mtime benoit@debian:~$ mkdir d1 && cd d1 benoit@debian:~/d1$ echo Hello > a benoit@debian:~/d1$ cp -a a b Rsync them to another (non-exisiting) directory: benoit@debian:~/d1$ cd .. benoit@debian:~$ rsync -av d1/ d2 sending incremental file list created directory d2 ./ a b sent 164 bytes received 53 bytes 434.00 bytes/sec total size is 12 speedup is 0.06 OK, everything is synced benoit@debian:~$ grep . d*/* d1/a:Hello d1/b:Hello d2/a:Hello d2/b:Hello Update file 'b', same size and then reset its atime/mtime benoit@debian:~$ echo World > d1/b benoit@debian:~$ touch -r d1/a d1/b Attempt to rsync again: benoit@debian:~$ rsync -av d1/ d2 sending incremental file list sent 63 bytes received 12 bytes 150.00 bytes/sec total size is 12 speedup is 0.16 Nope, rsync missed the change. benoit@debian:~$ grep . d*/* d1/a:Hello d1/b:World d2/a:Hello d2/b:Hello Tell rsync the compare the file content benoit@debian:~$ rsync -acv d1/ d2 sending incremental file list b sent 144 bytes received 31 bytes 350.00 bytes/sec total size is 12 speedup is 0.07 Gives the correct result: benoit@debian:~$ grep . d*/* d1/a:Hello d1/b:World d2/a:Hello d2/b:World

    Read the article

  • Performance-optimizing Oracle 10g on a server that is also a Tomcat JSP app server?

    - by PKHunter
    I have inherited a simple RedHat 5 - 64bit platform. It has SCSI disks on RAID1, with 16GB of RAM. Double Core CPU. Oracle 10g, Release 2. This would be a decent platform for running the DB only, perhaps, but the same server in an "A-A mode" clustering (very simple) also runs Tomcat and there are several Java servlets running on this. Sadly there is no caching platform etc. We only use an external CDN for some html caching. I am personally more familiar with web environments on the LAMPP platform (apache, php, mysql, postgresql). PROBLEM: Because the server has both Tomcat JSP/Java and Oracle 10g running on the same server, with no caching, I have some issues of the server going down. Often, sadly. QUESTION: What are my options in terms of improving performance of all these different apps? Connection Pooling? Example, in Postgresql world we have PgBouncer, which really helps things. Does Oracle have something similar? Or is there a famous Java-based external pooler that people use in production environments? (I'm not familiar with Java) Any "SQL cache" as in the MySQL and Postgresql world? Any other kind of application cache, as "APC" or "eAccelarator" in the PHP world? The "OSCache" stuff from the Java world (JSP thingie I found on Google: http://onjava.com/pub/a/onjava/2005/01/05/jspcache.html?page=2) ... What else? Sorry if this is a noob question. I have googled and googled, but problem is I don't know what to google for, other than the broad general concepts above. So if not full answers, I would even appreciate basic pointers and I am happy to JFGI myself. Thanks!

    Read the article

  • how to export bind and keyframe bone poses from blender to use in OpenGL

    - by SaldaVonSchwartz
    EDIT: I decided to reformulate the question in much simpler terms to see if someone can give me a hand with this. Basically, I'm exporting meshes, skeletons and actions from blender into an engine of sorts that I'm working on. But I'm getting the animations wrong. I can tell the basic motion paths are being followed but there's always an axis of translation or rotation which is wrong. I think the problem is most likely not in my engine code (OpenGL-based) but rather in either my misunderstanding of some part of the theory behind skeletal animation / skinning or the way I am exporting the appropriate joint matrices from blender in my exporter script. I'll explain the theory, the engine animation system and my blender export script, hoping someone might catch the error in either or all of these. The theory: (I'm using column-major ordering since that's what I use in the engine cause it's OpenGL-based) Assume I have a mesh made up of a single vertex v, along with a transformation matrix M which takes the vertex v from the mesh's local space to world space. That is, if I was to render the mesh without a skeleton, the final position would be gl_Position = ProjectionMatrix * M * v. Now assume I have a skeleton with a single joint j in bind / rest pose. j is actually another matrix. A transform from j's local space to its parent space which I'll denote Bj. if j was part of a joint hierarchy in the skeleton, Bj would take from j space to j-1 space (that is to its parent space). However, in this example j is the only joint, so Bj takes from j space to world space, like M does for v. Now further assume I have a a set of frames, each with a second transform Cj, which works the same as Bj only that for a different, arbitrary spatial configuration of join j. Cj still takes vertices from j space to world space but j is rotated and/or translated and/or scaled. Given the above, in order to skin vertex v at keyframe n. I need to: take v from world space to joint j space modify j (while v stays fixed in j space and is thus taken along in the transformation) take v back from the modified j space to world space So the mathematical implementation of the above would be: v' = Cj * Bj^-1 * v. Actually, I have one doubt here.. I said the mesh to which v belongs has a transform M which takes from model space to world space. And I've also read in a couple textbooks that it needs to be transformed from model space to joint space. But I also said in 1 that v needs to be transformed from world to joint space. So basically I'm not sure if I need to do v' = Cj * Bj^-1 * v or v' = Cj * Bj^-1 * M * v. Right now my implementation multiples v' by M and not v. But I've tried changing this and it just screws things up in a different way cause there's something else wrong. Finally, If we wanted to skin a vertex to a joint j1 which in turn is a child of a joint j0, Bj1 would be Bj0 * Bj1 and Cj1 would be Cj0 * Cj1. But Since skinning is defined as v' = Cj * Bj^-1 * v , Bj1^-1 would be the reverse concatenation of the inverses making up the original product. That is, v' = Cj0 * Cj1 * Bj1^-1 * Bj0^-1 * v Now on to the implementation (Blender side): Assume the following mesh made up of 1 cube, whose vertices are bound to a single joint in a single-joint skeleton: Assume also there's a 60-frame, 3-keyframe animation at 60 fps. The animation essentially is: keyframe 0: the joint is in bind / rest pose (the way you see it in the image). keyframe 30: the joint translates up (+z in blender) some amount and at the same time rotates pi/4 rad clockwise. keyframe 59: the joint goes back to the same configuration it was in keyframe 0. My first source of confusion on the blender side is its coordinate system (as opposed to OpenGL's default) and the different matrices accessible through the python api. Right now, this is what my export script does about translating blender's coordinate system to OpenGL's standard system: # World transform: Blender -> OpenGL worldTransform = Matrix().Identity(4) worldTransform *= Matrix.Scale(-1, 4, (0,0,1)) worldTransform *= Matrix.Rotation(radians(90), 4, "X") # Mesh (local) transform matrix file.write('Mesh Transform:\n') localTransform = mesh.matrix_local.copy() localTransform = worldTransform * localTransform for col in localTransform.col: file.write('{:9f} {:9f} {:9f} {:9f}\n'.format(col[0], col[1], col[2], col[3])) file.write('\n') So if you will, my "world" matrix is basically the act of changing blenders coordinate system to the default GL one with +y up, +x right and -z into the viewing volume. Then I also premultiply (in the sense that it's done by the time we reach the engine, not in the sense of post or pre in terms of matrix multiplication order) the mesh matrix M so that I don't need to multiply it again once per draw call in the engine. About the possible matrices to extract from Blender joints (bones in Blender parlance), I'm doing the following: For joint bind poses: def DFSJointTraversal(file, skeleton, jointList): for joint in jointList: bindPoseJoint = skeleton.data.bones[joint.name] bindPoseTransform = bindPoseJoint.matrix_local.inverted() file.write('Joint ' + joint.name + ' Transform {\n') translationV = bindPoseTransform.to_translation() rotationQ = bindPoseTransform.to_3x3().to_quaternion() scaleV = bindPoseTransform.to_scale() file.write('T {:9f} {:9f} {:9f}\n'.format(translationV[0], translationV[1], translationV[2])) file.write('Q {:9f} {:9f} {:9f} {:9f}\n'.format(rotationQ[1], rotationQ[2], rotationQ[3], rotationQ[0])) file.write('S {:9f} {:9f} {:9f}\n'.format(scaleV[0], scaleV[1], scaleV[2])) DFSJointTraversal(file, skeleton, joint.children) file.write('}\n') Note that I'm actually grabbing the inverse of what I think is the bind pose transform Bj. This is so I don't need to invert it in the engine. Also note I went for matrix_local, assuming this is Bj. The other option is plain "matrix", which as far as I can tell is the same only that not homogeneous. For joint current / keyframe poses: for kfIndex in keyframes: bpy.context.scene.frame_set(kfIndex) file.write('keyframe: {:d}\n'.format(int(kfIndex))) for i in range(0, len(skeleton.data.bones)): file.write('joint: {:d}\n'.format(i)) currentPoseJoint = skeleton.pose.bones[i] currentPoseTransform = currentPoseJoint.matrix translationV = currentPoseTransform.to_translation() rotationQ = currentPoseTransform.to_3x3().to_quaternion() scaleV = currentPoseTransform.to_scale() file.write('T {:9f} {:9f} {:9f}\n'.format(translationV[0], translationV[1], translationV[2])) file.write('Q {:9f} {:9f} {:9f} {:9f}\n'.format(rotationQ[1], rotationQ[2], rotationQ[3], rotationQ[0])) file.write('S {:9f} {:9f} {:9f}\n'.format(scaleV[0], scaleV[1], scaleV[2])) file.write('\n') Note that here I go for skeleton.pose.bones instead of data.bones and that I have a choice of 3 matrices: matrix, matrix_basis and matrix_channel. From the descriptions in the python API docs I'm not super clear which one I should choose, though I think it's the plain matrix. Also note I do not invert the matrix in this case. The implementation (Engine / OpenGL side): My animation subsystem does the following on each update (I'm omitting parts of the update loop where it's figured out which objects need update and time is hardcoded here for simplicity): static double time = 0; time = fmod((time + elapsedTime),1.); uint16_t LERPKeyframeNumber = 60 * time; uint16_t lkeyframeNumber = 0; uint16_t lkeyframeIndex = 0; uint16_t rkeyframeNumber = 0; uint16_t rkeyframeIndex = 0; for (int i = 0; i < aClip.keyframesCount; i++) { uint16_t keyframeNumber = aClip.keyframes[i].number; if (keyframeNumber <= LERPKeyframeNumber) { lkeyframeIndex = i; lkeyframeNumber = keyframeNumber; } else { rkeyframeIndex = i; rkeyframeNumber = keyframeNumber; break; } } double lTime = lkeyframeNumber / 60.; double rTime = rkeyframeNumber / 60.; double blendFactor = (time - lTime) / (rTime - lTime); GLKMatrix4 bindPosePalette[aSkeleton.jointsCount]; GLKMatrix4 currentPosePalette[aSkeleton.jointsCount]; for (int i = 0; i < aSkeleton.jointsCount; i++) { F3DETQSType& lPose = aClip.keyframes[lkeyframeIndex].skeletonPose.joints[i]; F3DETQSType& rPose = aClip.keyframes[rkeyframeIndex].skeletonPose.joints[i]; GLKVector3 LERPTranslation = GLKVector3Lerp(lPose.t, rPose.t, blendFactor); GLKQuaternion SLERPRotation = GLKQuaternionSlerp(lPose.q, rPose.q, blendFactor); GLKVector3 LERPScaling = GLKVector3Lerp(lPose.s, rPose.s, blendFactor); GLKMatrix4 currentTransform = GLKMatrix4MakeWithQuaternion(SLERPRotation); currentTransform = GLKMatrix4TranslateWithVector3(currentTransform, LERPTranslation); currentTransform = GLKMatrix4ScaleWithVector3(currentTransform, LERPScaling); GLKMatrix4 inverseBindTransform = GLKMatrix4MakeWithQuaternion(aSkeleton.joints[i].inverseBindTransform.q); inverseBindTransform = GLKMatrix4TranslateWithVector3(inverseBindTransform, aSkeleton.joints[i].inverseBindTransform.t); inverseBindTransform = GLKMatrix4ScaleWithVector3(inverseBindTransform, aSkeleton.joints[i].inverseBindTransform.s); if (aSkeleton.joints[i].parentIndex == -1) { bindPosePalette[i] = inverseBindTransform; currentPosePalette[i] = currentTransform; } else { bindPosePalette[i] = GLKMatrix4Multiply(inverseBindTransform, bindPosePalette[aSkeleton.joints[i].parentIndex]); currentPosePalette[i] = GLKMatrix4Multiply(currentPosePalette[aSkeleton.joints[i].parentIndex], currentTransform); } aSkeleton.skinningPalette[i] = GLKMatrix4Multiply(currentPosePalette[i], bindPosePalette[i]); } Finally, this is my vertex shader: #version 100 uniform mat4 modelMatrix; uniform mat3 normalMatrix; uniform mat4 projectionMatrix; uniform mat4 skinningPalette[6]; uniform lowp float skinningEnabled; attribute vec4 position; attribute vec3 normal; attribute vec2 tCoordinates; attribute vec4 jointsWeights; attribute vec4 jointsIndices; varying highp vec2 tCoordinatesVarying; varying highp float lIntensity; void main() { tCoordinatesVarying = tCoordinates; vec4 skinnedVertexPosition = vec4(0.); for (int i = 0; i < 4; i++) { skinnedVertexPosition += jointsWeights[i] * skinningPalette[int(jointsIndices[i])] * position; } vec4 skinnedNormal = vec4(0.); for (int i = 0; i < 4; i++) { skinnedNormal += jointsWeights[i] * skinningPalette[int(jointsIndices[i])] * vec4(normal, 0.); } vec4 finalPosition = mix(position, skinnedVertexPosition, skinningEnabled); vec4 finalNormal = mix(vec4(normal, 0.), skinnedNormal, skinningEnabled); vec3 eyeNormal = normalize(normalMatrix * finalNormal.xyz); vec3 lightPosition = vec3(0., 0., 2.); lIntensity = max(0.0, dot(eyeNormal, normalize(lightPosition))); gl_Position = projectionMatrix * modelMatrix * finalPosition; } The result is that the animation displays wrong in terms of orientation. That is, instead of bobbing up and down it bobs in and out (along what I think is the Z axis according to my transform in the export clip). And the rotation angle is counterclockwise instead of clockwise. If I try with a more than one joint, then it's almost as if the second joint rotates in it's own different coordinate space and does not follow 100% its parent's transform. Which I assume it should from my animation subsystem which I assume in turn follows the theory I explained for the case of more than one joint. Any thoughts?

    Read the article

  • SQL Authority News – Play by Play with Pinal Dave – A Birthday Gift

    - by Pinal Dave
    Today is my birthday. Personal Note When I was young, I was always looking forward to my birthday as on this day, I used to get gifts from everybody. Now when I am getting old on each of my birthday, I have almost same feeling but the direction is different. Now on each of my birthday, I feel like giving gifts to everybody. I have received lots of support, love and respect from everybody; and now I must return it back.Well, on this birthday, I have very unique gifts for everybody – my latest course on SQL Server. How I Tune Performance I often get questions where I am asked how do I work on a normal day. I am often asked that how do I work when I have performance tuning project is assigned to me. Lots of people have expressed their desire that they want me to explain and demonstrate my own method of solving performance problem when I am facing real world problem. It is a pretty difficult task as in the real world, nothing goes as planned and usually planned demonstrations have no place there. The real world, demands real solutions and in a timely fashion. If a consultant goes to industry and does not demonstrate his/her capabilities in very first few minutes, it does not matter how much fame he/she is, the door is shown to them eventually. It is true and in my early career, I have faced it quite commonly. I have learned the trick to be honest from the start and request absolutely transparent communication from the organization where I am to consult. Play by Play Play by Play is a very unique setup. It is not planned and it is a step by step course. It is like a reality show – a very real encounter to the problem and real problem solving approach. I had a great time doing this course. Geoffrey Grosenbach (VP of Pluralsight) sits down with me to see what a SQL Server Admin does in the real world. This Play-by-Play focuses on SQL Server performance tuning and I go over optimizing queries and fine-tuning the server. The table of content of this course is very simple. Introduction In the introduction I explained my basic strategies when I am approached by a customer for performance tuning. Basic Information Gathering In this module I explain how I do gather various information for performance tuning project. It is very crucial to demonstrate to customers for consultant his capability of solving problem. I attempt to resolve a small problem which gives a big positive impact on performance, consultant have to gather proper information from the start. I demonstrate in this module, how one can collect all the important performance tuning metrics. Removing Performance Bottleneck In this module, I build upon the previous module’s statistics collected. I analysis various performance tuning measures and immediately start implementing various tweaks on the performance, which will start improving the performance of my server. This is a very effective method and it gives immediate return of efforts. Index Optimization Indexes are considered as a silver bullet for performance tuning. However, it is not true always there are plenty of examples where indexes even performs worst after implemented. The key is to understand a few of the basic properties of the index and implement the right things at the right time. In this module, I describe in detail how to do index optimizations and what are right and wrong with Index. If you are a DBA or developer, and if your application is running slow – this is must attend module for you. I have some really interesting stories to tell as well. Optimize Query with Rewrite Every problem has more than one solution, in this module we will see another very famous, but hard to master skills for performance tuning – Query Rewrite. There are few do’s and don’ts for any query rewrites. I take a very simple example and demonstrate how query rewrite can improve the performance of the query at many folds. I also share some real world funny stories in this module. This course is hosted at Pluralsight. You will need a valid login for Pluralsight to watch  Play by Play: Pinal Dave course. You can also sign up for FREE Trial of Pluralsight to watch this course. As today is my birthday – I will give 10 people (randomly) who will express their desire to learn this course, a free code. Please leave your comment and I will send you free code to watch this course for free. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Training, SQLAuthority News, T SQL, Video

    Read the article

  • An issue with tessellation a model with DirectX11

    - by Paul Ske
    I took the hardware tessellation tutorial from Rastertek and implemended texturing instead of color. This is great, so I wanted to implemended the same techique to a model inside my game editor and I noticed it doesn't draw anything. I compared the detailed tessellation from DirectX SDK sample. Inside the shader file - if I replace the HullInputType with PixelInputType it draws. So, I think because when I compiled the shaders inside the program it compiles VertexShader, PixelShader, HullShader then DomainShader. Isn't it suppose to be VertexShader, HullSHader, DomainShader then PixelShader or does it really not matter? I am just curious why wouldn't the model even be drawn when HullInputType but renders fine with PixelInputType. Shader Code: [code] cbuffer ConstantBuffer { float4x4 WVP; float4x4 World; // the rotation matrix float3 lightvec; // the light's vector float4 lightcol; // the light's color float4 ambientcol; // the ambient light's color bool isSelected; } cbuffer cameraBuffer { float3 cameraDirection; float padding; } cbuffer TessellationBuffer { float tessellationAmount; float3 padding2; } struct ConstantOutputType { float edges[3] : SV_TessFactor; float inside : SV_InsideTessFactor; }; Texture2D Texture; Texture2D NormalTexture; SamplerState ss { MinLOD = 5.0f; MipLODBias = 0.0f; }; struct HullOutputType { float3 position : POSITION; float2 texcoord : TEXCOORD0; float3 normal : NORMAL; float3 tangent : TANGENT; }; struct HullInputType { float4 position : POSITION; float2 texcoord : TEXCOORD0; float3 normal : NORMAL; float3 tangent : TANGENT; }; struct VertexInputType { float4 position : POSITION; float2 texcoord : TEXCOORD; float3 normal : NORMAL; float3 tangent : TANGENT; uint uVertexID : SV_VERTEXID; }; struct PixelInputType { float4 position : SV_POSITION; float2 texcoord : TEXCOORD0; // texture coordinates float3 normal : NORMAL; float3 tangent : TANGENT; float4 color : COLOR; float3 viewDirection : TEXCOORD1; float4 depthBuffer : TEXTURE0; }; HullInputType VShader(VertexInputType input) { HullInputType output; output.position.w = 1.0f; output.position = mul(input.position,WVP); output.texcoord = input.texcoord; output.normal = input.normal; output.tangent = input.tangent; //output.normal = mul(normal,World); //output.tangent = mul(tangent,World); //output.color = output.color; //output.texcoord = texcoord; // set the texture coordinates, unmodified return output; } ConstantOutputType TexturePatchConstantFunction(InputPatch inputPatch,uint patchID : SV_PrimitiveID) { ConstantOutputType output; output.edges[0] = tessellationAmount; output.edges[1] = tessellationAmount; output.edges[2] = tessellationAmount; output.inside = tessellationAmount; return output; } [domain("tri")] [partitioning("integer")] [outputtopology("triangle_cw")] [outputcontrolpoints(3)] [patchconstantfunc("TexturePatchConstantFunction")] HullOutputType HShader(InputPatch patch, uint pointId : SV_OutputControlPointID, uint patchId : SV_PrimitiveID) { HullOutputType output; // Set the position for this control point as the output position. output.position = patch[pointId].position; // Set the input color as the output color. output.texcoord = patch[pointId].texcoord; output.normal = patch[pointId].normal; output.tangent = patch[pointId].tangent; return output; } [domain("tri")] PixelInputType DShader(ConstantOutputType input, float3 uvwCoord : SV_DomainLocation, const OutputPatch patch) { float3 vertexPosition; float2 uvPosition; float4 worldposition; PixelInputType output; // Interpolate world space position with barycentric coordinates float3 vWorldPos = uvwCoord.x * patch[0].position + uvwCoord.y * patch[1].position + uvwCoord.z * patch[2].position; // Determine the position of the new vertex. vertexPosition = vWorldPos; // Calculate the position of the new vertex against the world, view, and projection matrices. output.position = mul(float4(vertexPosition, 1.0f),WVP); // Send the input color into the pixel shader. output.texcoord = uvwCoord.x * patch[0].position + uvwCoord.y * patch[1].position + uvwCoord.z * patch[2].position; output.normal = uvwCoord.x * patch[0].position + uvwCoord.y * patch[1].position + uvwCoord.z * patch[2].position; output.tangent = uvwCoord.x * patch[0].position + uvwCoord.y * patch[1].position + uvwCoord.z * patch[2].position; //output.depthBuffer = output.position; //output.depthBuffer.w = 1.0f; //worldposition = mul(output.position,WVP); //output.viewDirection = cameraDirection.xyz - worldposition.xyz; //output.viewDirection = normalize(output.viewDirection); return output; } [/code] Somethings are commented out but will be in place when fixed. I'm probably not connecting something correctly.

    Read the article

  • BIP and Mapviewer Mash Up I

    - by Tim Dexter
    I was out in Yellowstone last week soaking up various wildlife and a bit too much rain ... good to be back until the 95F heat yesterday. Taking a little break from the Excel templates; the dev folks are planing an Excel patch in the next week or so that will add a mass of new functionality. At the risk of completely mis leading you I'm going to hang back a while. What I have written so far holds true and will continue to do so. This week, I have been mostly eating 'mapviewer' ... answers on a post card please, TV show and character. I had a request to show how BIP can call mapviewer and render a dynamic map in an output. So I hit the books and colleagues for some answers. Mapviewer is Oracle's geographic information system, hereby known as GIS. I use it a lot in our BIEE demos where the interaction with the maps is very impressive. Need a map of California and its congressional districts? I have contacts; Jerry and David with their little black box of maps. Once in my possession I can build highly interactive, clickable maps that allow the user to drill into more information using a very friendly interface driving BIEE content and navigation. But what about maps in BIP output? Bryan Wise, who has written some articles on this blog did some work a while back with the PL/SQL API interface. The extract for the report called a function that in turn called the mapviewer server, passing a set of mapping requirements, it then returned a URL to a cached copy of that map. Easy to then have BIP render that image. Thats still very doable. You need to install a couple of packages and then load the mapviewer java APIs into the database. Then you can write your function to the APIs. A little involved? Maybe, but the database is doing all the heavy lifting for you. I thought I would investigate another method for getting the maps back into BIP. There is a URL interface you can call, this involves building an XML message to be passed to the mapviewer server. It's pretty straightforward to use on the mapviewer side. On the BIP side things are little more tricksy. After some unexpected messing about I finally got the ubiquitous Hello World map to render using the URL method. Not the most exciting map in the world, lots of ocean and a rather long URL to get it to render. http://127.0.0.1:9704/mapviewer/omserver?xml_request=%3Cmap_request%20title=%22Hello%20World%22%20datasource=%22cagis%22%20format=%22GIF_STREAM%22/%3E Notice all of the encoding in the URL string to handle the spaces, quotes, etc. All necessary to get BIP to make the call to the mapviewer server correctly without truncating the URL if it hits a real space rather than a %20. With that in mind constructing the URL was pretty simple. I'm not going to get into the content of the URL too much, for that you need to bone up on the mapviewer XML API. Check out the home page here and the documentation here. To make the template portable I used the standard CURRENT_SERVER_URL parameter from the BIP server and declared that in my template. <?param@begin:CURRENT_SERVER_URL;'myserver'?> Ignore the 'myserver', that was just a dummy value for testing at runtime it will resolve to: 'http://yourserver:port/xmlpserver' Not quite what we need as mapviewer has its own server path, in my case I needed 'mapviewer/omserver?xml_request=' as the fixed path to the mapviewer request URL. A little concatenation and substringing later I came up with <?param@begin:mURL;concat(substring($CURRENT_SERVER_URL,1,22),'mapviewer/omserver?xml_request=')?> Thats the basic URL that I can then build on. To get the Hello World map I need to add the following: <map_request title="Hello World" datasource="cagis" format="GIF_STREAM"/> Those angle brackets were the source of my headache, BIPs XSLT engine was attempting to process them rather than just pass them. Hok Min to the rescue ... again. I owe him lunch when I get out to HQ again! To solve the problem, I needed to escape all the characters and white space and then use native XSL to assign the string to a parameter. <xsl:param xdofo:ctx="begin"name="pXML">%3Cmap_request%20title=%22Hello%20World%22 %20datasource=%22cagis%22%20format=%22GIF_STREAM%22/%3E</xsl:param> I did not need to assign it to a parameter but I felt that if I were going to do anything more serious than Hello World like plotting points of interest on the map. I would need to dynamically build the URL, so using a set of parameters or variables that I then concatenated would be easier. Now I had the initial server string and the request all I then did was combine the two using a concat: concat($mURL,$pXML) Embedding that into an image tag: <fo:external-graphic src="url({concat($mURL,$pXML)})"/> and I was done. Notice the curly braces to get the concat evaluated prior to the image call. As you will see next time, building the XML message to go onto the URL can get quite complex but I have used it with some data. Ultimately, it would be easier to build an extension to BIP to handle the data to be plotted, it would then build the XML message, call mapviewer and return a URL to the map image for BIP to render. More on that next time ...

    Read the article

  • 2D OBB collision detection, resolving collisions?

    - by Milo
    I currently use OBBs and I have a vehicle that is a rigid body and some buildings. Here is my update() private void update() { camera.setPosition((vehicle.getPosition().x * camera.getScale()) - ((getWidth() ) / 2.0f), (vehicle.getPosition().y * camera.getScale()) - ((getHeight() ) / 2.0f)); //camera.move(input.getAnalogStick().getStickValueX() * 15.0f, input.getAnalogStick().getStickValueY() * 15.0f); if(input.isPressed(ControlButton.BUTTON_GAS)) { vehicle.setThrottle(1.0f, false); } if(input.isPressed(ControlButton.BUTTON_BRAKE)) { vehicle.setBrakes(1.0f); } vehicle.setSteering(input.getAnalogStick().getStickValueX()); vehicle.update(16.6666f / 1000.0f); ArrayList<Building> buildings = city.getBuildings(); for(Building b : buildings) { if(vehicle.getRect().overlaps(b.getRect())) { vehicle.update(-17.0f / 1000.0f); break; } } } The collision detection works well. What doesn't is how they are dealt with. My goal is simple. If the vehicle hits a building, it should stop, and never go into the building. When I apply negative torque to reverse the car should not feel buggy and move away from the building. I don't want this to look buggy. This is my rigid body class: class RigidBody extends Entity { //linear private Vector2D velocity = new Vector2D(); private Vector2D forces = new Vector2D(); private float mass; //angular private float angularVelocity; private float torque; private float inertia; //graphical private Vector2D halfSize = new Vector2D(); private Bitmap image; public RigidBody() { //set these defaults so we don't get divide by zeros mass = 1.0f; inertia = 1.0f; } //intialize out parameters public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //store physical parameters this.halfSize = halfSize; this.mass = mass; image = bitmap; inertia = (1.0f / 20.0f) * (halfSize.x * halfSize.x) * (halfSize.y * halfSize.y) * mass; RectF rect = new RectF(); float scalar = 10.0f; rect.left = (int)-halfSize.x * scalar; rect.top = (int)-halfSize.y * scalar; rect.right = rect.left + (int)(halfSize.x * 2.0f * scalar); rect.bottom = rect.top + (int)(halfSize.y * 2.0f * scalar); setRect(rect); } public void setLocation(Vector2D position, float angle) { getRect().set(position, getWidth(), getHeight(), angle); } public Vector2D getPosition() { return getRect().getCenter(); } @Override public void update(float timeStep) { //integrate physics //linear Vector2D acceleration = Vector2D.scalarDivide(forces, mass); velocity = Vector2D.add(velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); c = Vector2D.add(getRect().getCenter(), Vector2D.scalarMultiply(velocity , timeStep)); setCenter(c.x, c.y); forces = new Vector2D(0,0); //clear forces //angular float angAcc = torque / inertia; angularVelocity += angAcc * timeStep; setAngle(getAngle() + angularVelocity * timeStep); torque = 0; //clear torque } //take a relative Vector2D and make it a world Vector2D public Vector2D relativeToWorld(Vector2D relative) { Matrix mat = new Matrix(); float[] Vector2Ds = new float[2]; Vector2Ds[0] = relative.x; Vector2Ds[1] = relative.y; mat.postRotate(JMath.radToDeg(getAngle())); mat.mapVectors(Vector2Ds); return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //take a world Vector2D and make it a relative Vector2D public Vector2D worldToRelative(Vector2D world) { Matrix mat = new Matrix(); float[] Vectors = new float[2]; Vectors[0] = world.x; Vectors[1] = world.y; mat.postRotate(JMath.radToDeg(-getAngle())); mat.mapVectors(Vectors); return new Vector2D(Vectors[0], Vectors[1]); } //velocity of a point on body public Vector2D pointVelocity(Vector2D worldOffset) { Vector2D tangent = new Vector2D(-worldOffset.y, worldOffset.x); return Vector2D.add( Vector2D.scalarMultiply(tangent, angularVelocity) , velocity); } public void applyForce(Vector2D worldForce, Vector2D worldOffset) { //add linear force forces = Vector2D.add(forces ,worldForce); //add associated torque torque += Vector2D.cross(worldOffset, worldForce); } @Override public void draw( GraphicsContext c) { c.drawRotatedScaledBitmap(image, getPosition().x, getPosition().y, getWidth(), getHeight(), getAngle()); } } Essentially, when any rigid body hits a building it should exhibit the same behavior. How is collision solving usually done? Thanks

    Read the article

  • Opposite Force to Apply to a Collided Rigid Body?

    - by Milo
    I'm working on the physics for my GTA2-like game so I can learn more about game physics. The collision detection and resolution are working great. I'm now just unsure how to compute the force to apply to a body after it collides with a wall. My rigid body looks like this: /our simulation object class RigidBody extends Entity { //linear private Vector2D velocity = new Vector2D(); private Vector2D forces = new Vector2D(); private float mass; private Vector2D v = new Vector2D(); //angular private float angularVelocity; private float torque; private float inertia; //graphical private Vector2D halfSize = new Vector2D(); private Bitmap image; private Matrix mat = new Matrix(); private float[] Vector2Ds = new float[2]; private Vector2D tangent = new Vector2D(); private static Vector2D worldRelVec = new Vector2D(); private static Vector2D relWorldVec = new Vector2D(); private static Vector2D pointVelVec = new Vector2D(); private static Vector2D acceleration = new Vector2D(); public RigidBody() { //set these defaults so we don't get divide by zeros mass = 1.0f; inertia = 1.0f; setLayer(LAYER_OBJECTS); } protected void rectChanged() { if(getWorld() != null) { getWorld().updateDynamic(this); } } //intialize out parameters public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //store physical parameters this.halfSize = halfSize; this.mass = mass; image = bitmap; inertia = (1.0f / 20.0f) * (halfSize.x * halfSize.x) * (halfSize.y * halfSize.y) * mass; RectF rect = new RectF(); float scalar = 10.0f; rect.left = (int)-halfSize.x * scalar; rect.top = (int)-halfSize.y * scalar; rect.right = rect.left + (int)(halfSize.x * 2.0f * scalar); rect.bottom = rect.top + (int)(halfSize.y * 2.0f * scalar); setRect(rect); } public void setLocation(Vector2D position, float angle) { getRect().set(position.x,position.y, getWidth(), getHeight(), angle); rectChanged(); } public Vector2D getPosition() { return getRect().getCenter(); } @Override public void update(float timeStep) { doUpdate(timeStep); } public void doUpdate(float timeStep) { //integrate physics //linear acceleration.x = forces.x / mass; acceleration.y = forces.y / mass; velocity.x += (acceleration.x * timeStep); velocity.y += (acceleration.y * timeStep); //velocity = Vector2D.add(velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); v.x = getRect().getCenter().getX() + (velocity.x * timeStep); v.y = getRect().getCenter().getY() + (velocity.y * timeStep); setCenter(v.x, v.y); forces.x = 0; //clear forces forces.y = 0; //angular float angAcc = torque / inertia; angularVelocity += angAcc * timeStep; setAngle(getAngle() + angularVelocity * timeStep); torque = 0; //clear torque } //take a relative Vector2D and make it a world Vector2D public Vector2D relativeToWorld(Vector2D relative) { mat.reset(); Vector2Ds[0] = relative.x; Vector2Ds[1] = relative.y; mat.postRotate(JMath.radToDeg(getAngle())); mat.mapVectors(Vector2Ds); relWorldVec.x = Vector2Ds[0]; relWorldVec.y = Vector2Ds[1]; return relWorldVec; } //take a world Vector2D and make it a relative Vector2D public Vector2D worldToRelative(Vector2D world) { mat.reset(); Vector2Ds[0] = world.x; Vector2Ds[1] = world.y; mat.postRotate(JMath.radToDeg(-getAngle())); mat.mapVectors(Vector2Ds); worldRelVec.x = Vector2Ds[0]; worldRelVec.y = Vector2Ds[1]; return worldRelVec; } //velocity of a point on body public Vector2D pointVelocity(Vector2D worldOffset) { tangent.x = -worldOffset.y; tangent.y = worldOffset.x; pointVelVec.x = (tangent.x * angularVelocity) + velocity.x; pointVelVec.y = (tangent.y * angularVelocity) + velocity.y; return pointVelVec; } public void applyForce(Vector2D worldForce, Vector2D worldOffset) { //add linear force forces.x += worldForce.x; forces.y += worldForce.y; //add associated torque torque += Vector2D.cross(worldOffset, worldForce); } @Override public void draw( GraphicsContext c) { c.drawRotatedScaledBitmap(image, getPosition().x, getPosition().y, getWidth(), getHeight(), getAngle()); } public Vector2D getVelocity() { return velocity; } public void setVelocity(Vector2D velocity) { this.velocity = velocity; } } The way it is given force is by the applyForce method, this method considers angular torque. I'm just not sure how to come up with the vectors in the case where: RigidBody hits static entity RigidBody hits other RigidBody that may or may not be in motion. Would anyone know a way (without too complex math) that I could figure out the opposite force I need to apply to the car? I know the normal it is colliding with and how deep it collided. My main goal is so that say I hit a building from the side, well the car should not just stay there, it should slowly rotate out of it if I'm more than 45 degrees. Right now when I hit a wall I only change the velocity directly which does not consider angular force. Thanks!

    Read the article

< Previous Page | 70 71 72 73 74 75 76 77 78 79 80 81  | Next Page >