Search Results

Search found 56854 results on 2275 pages for 'temporary internet files'.

Page 74/2275 | < Previous Page | 70 71 72 73 74 75 76 77 78 79 80 81  | Next Page >

  • Search text in list of files. Double search. Search files within a files

    - by wormhit
    I'm trying to execute double search within files and return file names. I'm using find ./ -iname '*txt' | xargs grep "searchtext" -sl to find file names with 'searchtext' in them. Command is returning a list of files. How can I find "othersearchtext" in those already found files and show them in the same fashion? #### EDITED Answer: grep -l "othersearchtext" $(find ./ -iname '*txt' | xargs grep "searchtext" -sl)

    Read the article

  • How to decouple development server from Internet?

    - by intoxicated.roamer
    I am working in a small set-up where there are 4 developers (might grow to 6 or 8 in cuople of years). I want to set-up an environment in which developers get an internet access but can not share any data from the company on internet. I have thought of the following plan: Set-up a centralized git server (Debian). The server will have an internet access. A developer will only have git account on that server, and won't have any other account on it. Do not give internet access to developer's individual machine (Windows XP/Windows 7). Run a virtual machine (any multi-user OS) on the centralized server (the same one on which git is hosted). Developer will have an account on this virtual machine. He/she can access internet via this virtual machine. Any data-movement between this virtual machine and underlying server, as well as any of the developer's machine, is prohibited. All developers require USB port on their local machine, so that they can burn their code into a microcontroller. This port will be made available only to associated software that dumps the code in a microcontroller (MPLAB in current case). All other softwares will be prohibited from accessing the port. As more developers get added, providing internet support for them will become difficult with this plan as it will slow down the virtual machine running on the server. Can anyone suggest an alternative ? Are there any obvious flaws in the above plan ? Some key details of the server are as below: 1) OS:Debian 2) RAM: 8GB 3) CPU: Intel Xeon E3-1220v2 4C/4T

    Read the article

  • How to block access to addresses outside network (internet)

    - by devnull
    I have a homeserver, that is now connected to the internet with an own network device (ath0 - 192.168.1.x). It also has one more network interface (eth0 - 192.168.0.x). Soon I will get a second internet line that will be connected the second network. The server then has both networks with different internet lines available, but i only want it to connect to the internet on the old ath0 interface - not the new eth0 (192.168.0.x). Background of that constellation is that the new line has a volume-limit in traffic - the old hasn't and i need the new line for all mobile devices and laptops. The devices should be able to use the new network to connect to the internet and the server. The homeserver is a debian 6 with iptables and some already written rules for it. I need now a rule to block all outgoing internet access on the eth0 interface - i guess it could be something with --target != 192.168.0.0 but i did not succeed in finding the proper solution. Edit: found the solution: iptables -A OUTPUT -o eth0 -d 192.168.0.0/24 -m state --state NEW,ESTABLISHED -j ACCEPT With that setting, all traffic that uses the eth0 interface is only allowed if the destination is inside the network 192.168.0.x - all other traffic is denied .

    Read the article

  • How do I get a Java to call data from the Internet? Where to even start??

    - by cdg
    Hello oh great wizards of all things android. I really need your help. Mostly because my little brain just doesn't know were to start. I am trying to pull data from the internet to make a widget for the home screen. I have the layout built: <?xml version="1.0" encoding="utf-8"?> <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" android:id="@+id/Layout" android:layout_width="fill_parent" android:layout_height="fill_parent" android:background="@drawable/widget_bg_normal" android:clipChildren="false" > <TextView android:id="@+id/text_view" android:layout_width="100px" android:layout_height="wrap_content" android:paddingTop="18px" android:layout_centerHorizontal="true" android:textSize="8px" android:text="158x154 Image downloaded from the internet goes here. Needs to be updated every evening at midnight or unless the button below is pressed. Now if I could only figure out exactly how to do this, life would be good." /> <Button android:id="@+id/new_button" android:layout_width="fill_parent" android:layout_height="wrap_content" android:text="Get New" android:layout_below="@+id/scroll_image" android:layout_centerHorizontal="true" android:padding="0px" android:textSize="10px" android:height="8px" android:includeFontPadding="false" /> </RelativeLayout> Got the provider xml bulit: <?xml version="1.0" encoding="utf-8"?> <appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android" android:minWidth="150dip" android:minHeight="150dip" android:updatePeriodMillis="10000" android:initialLayout="@layout/widget" /> The Manifest works great. <?xml version="1.0" encoding="utf-8"?> <manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com.dge.myandroid" android:versionCode="1" android:versionName="1.0"> <application android:icon="@drawable/icon" android:label="@string/app_name"> <activity android:name=".myactivty" android:label="@string/app_name"> <intent-filter> <action android:name="android.intent.action.MAIN" /> <category android:name="android.intent.category.LAUNCHER" /> </intent-filter> </activity> <!-- Widget --> <receiver android:name=".mywidget" android:label="@string/app_name" > <intent-filter> <action android:name="android.appwidget.action.APPWIDGET_UPDATE" /> </intent-filter> <meta-data android:name="android.appwidget.widgetprovider" android:resource="@xml/widgetprovider" /> </receiver> <!-- Widget End --> </application> <uses-permission android:name="android.permission.INTERNET" /> <uses-sdk android:minSdkVersion="7" /> </manifest> The data it is calling looks something like this when it is called. It basically goes to a website that uses php to random the image: <html><body bgcolor="#000000">center> <a href="http://www.website.com" target="_blank"> <img border="0" src="http://www.webiste.com//0.gif"></a> <img src="http://www.webiste.com" style="border:none;" /> </center></body></html> But here is were I am stuck. I just don't know where to start at all. The java is so far beyond my little head that I don't know what to do. package com.dge.myandroid; import android.appwidget.AppWidgetProvider; public class mywidget extends AppWidgetProvider { } The wiki example just confused me more. I just don't know where to begin. Please help.

    Read the article

  • Quickly Add Watermark To Multiple PDF Files Using “Batch PDF Watermark”

    - by Kavitha
    Want to add watermark to your PDF files with a single click? You can use the freeware Batch PDF Watermark. Batch PDF Watermark is super cool application that lets you add image or text watermarks to multiple files at a time. Office 2010 style ribbon user interface of the application is very easy to use and provides many options to configure watermark properties like – font styles, positioning, transparency levels, rotation of watermark image, scaling of watermark image and etc. Before running the watermark process, you can even preview it. To select multiple PDF files to watermark you can use “Add Files” option to hand pick required files or “Add Folder” option to choose all the PDF files available in the folder. Download Batch PDF Watermark [via liferocks] This article titled,Quickly Add Watermark To Multiple PDF Files Using “Batch PDF Watermark”, was originally published at Tech Dreams. Grab our rss feed or fan us on Facebook to get updates from us.

    Read the article

  • How to Upload Really Large Files to SkyDrive, Dropbox, or Email

    - by Matthew Guay
    Do you need to upload a very large file to store online or email to a friend? Unfortunately, whether you’re emailing a file or using online storage sites like SkyDrive, there’s a limit on the size of files you can use. Here’s how to get around the limits. Skydrive only lets you add files up to 50 MB, and while the Dropbox desktop client lets you add really large files, the web interface has a 300 MB limit, so if you were on another PC and wanted to add giant files to your Dropbox, you’d need to split them. This same technique also works for any file sharing service—even if you were sending files through email. There’s two ways that you can get around the limits—first, by just compressing the files if you’re close to the limit, but the second and more interesting way is to split up the files into smaller chunks. Keep reading for how to do both. Latest Features How-To Geek ETC The How-To Geek Guide to Learning Photoshop, Part 8: Filters Get the Complete Android Guide eBook for Only 99 Cents [Update: Expired] Improve Digital Photography by Calibrating Your Monitor The How-To Geek Guide to Learning Photoshop, Part 7: Design and Typography How to Choose What to Back Up on Your Linux Home Server How To Harmonize Your Dual-Boot Setup for Windows and Ubuntu Hang in There Scrat! – Ice Age Wallpaper How Do You Know When You’ve Passed Geek and Headed to Nerd? On The Tip – A Lamborghini Theme for Chrome and Iron What if Wile E. Coyote and the Road Runner were Human? [Video] Peaceful Winter Cabin Wallpaper Store Tabs for Later Viewing in Opera with Tab Vault

    Read the article

  • Tools for modelling data and workflows using structured text files

    - by Alexey
    Consider a case when I want to try some idea of an application. But I want to avoid investing a lot of effort in coding UI/work flows/database schema etc before I see that it's going to be useful to me (as example of potential user). My idea is stay lightweight and put all the data in text files. So the components could be following: Domain objects are represented by text files or their fragments Domain objects are grouped by their type using directories Structure the files using some both human- and machine-friendly format, e.g. YAML Use some smart text editor (e.g. vim, emacs, rubymine) to edit and navigate those files Use color schemes and macros/custom commands of the text editor to effectively manipulate those files Use scripts (or a lightweight web framework like Sinatra) to try some business logic ideas on top of the data model The question is: Are there tools or toolkits that support or can be adopted to this approach? Also any ideas, links to articles/other knowledge sources are very welcome. And more specific question: What is the simplest way to index and update index of files with YAML files?

    Read the article

  • Access Log Files

    - by Matt Watson
    Some of the simplest things in life make all the difference. For a software developer who is trying to solve an application problem, being able to access log files, windows event viewer, and other details is priceless. But ironically enough, most developers aren't even given access to them. Developers have to escalate the issue to their manager or a system admin to retrieve the needed information. Some companies create workarounds to solve the problem or use third party solutions.Home grown solution to access log filesSome companies roll their own solution to try and solve the problem. These solutions can be great but are not always real time, and don't account for the windows event viewer, config files, server health, and other information that is needed to fix bugs.VPN or FTP access to log file foldersCreate programs to collect log files and move them to a centralized serverModify code to write log files to a centralized placeExpensive solution to access log filesSome companies buy expensive solutions like Splunk or other log management tools. But in a lot of cases that is overkill when all the developers need is the ability to just look at log files, not do analytics on them.There has to be a better solution to access log filesStackify recently came up with a perfect solution to the problem. Their software gives developers remote visibility to all the production servers without allowing them to remote desktop in to the machines. They can get real time access to log files, windows event viewer, config files, and other things that developers need. This allows the entire development team to be more involved in the process of solving application defects.Check out their product to learn morehttp://www.Stackify.com

    Read the article

  • Formatting minified jQuery, JavaScript using the Internet Explorer 9 Developer Toolbar

    - by Harish Ranganathan
    Much has been talked about the F12 developer toolbar in IE and the support it provides for web developers.  Starting IE8, the Developer Toolbar is a menu item that helps you view the page source, scripts, profiling and many other details of the rendered page.  It even allows script debugging from within and that makes it a truly powerful web developer tool bar. With IE9, the developer toolbar got even better with the Networking Tab that allows you to inspect the traffic/time taken and drill down into the Request/Response headers and other specifics. The script tab allows you to view the scripts used in the page. One of the challenges of working with JavaScript / jQuery when they are minified, is that, it becomes really hard to read.  Minified JavaScript is a compression technique and also a best practice for delivering faster web pages.  However, when you would like to debug, minified JavaScript files become very hard since they aren't properly formatted.  Take the case of the above sample, which is a basic MVC 3 Web Application.  It uses the minified jQuery and modernizr files. Once we select the above scripts, the script source looks as follows:- But with the “Format JavaScript” option in the Configuration icon, Once you click on the “Format JavaScript”, you can see the formatted JavaScript as per screen below:- This makes the script readable and also easy for debugging.  Cheers !!!

    Read the article

  • In-House Generated Certificates Supported for Signing E-Business Suite JAR Files

    - by Elke Phelps (Oracle Development)
    The E-Business Suite uses Java Archive (JAR) files to deliver certain types of E-Business Suite content desktop clients.  Previously we announced the support of securing JAR files with 3072-bit certificates signed by a third-party Certificate Authority (CA).  We now support securing JAR files with in-house generated certificates.  The new steps to use an in-house Certificate Authority for securing JAR files are provided in: Enhanced Signing of Oracle E-Business Suite JAR Files (Note 1207184.1) This enhancement is great news for those of you familiar with the warning that is triggered when using a self-signed certificate.  As a result of supporting self-signed certificates, the following warning can be avoided: Oracle E-Business Suite Release 12 Certified Platforms Linux x86 (Oracle Linux 4, 5) Linux x86 (RHEL 3, 4, 5) Linux x86 (SLES 9, 10) Linux x86-64 (Oracle Linux 4, 5) Linux x86-64 (RHEL 4, 5) Linux x86-64 (SLES 9, 10)  Oracle Solaris on SPARC (64-bit) (8, 9, 10) IBM AIX on Power Systems (64-bit) (5.3, 6.1) IBM Linux on System z** (RHEL 5, SLES 9, SLES 10) HP-UX Itanium (11.23, 11.31) HP-UX PA-RISC (64-bit) (11.11, 11.23, 11.31) Microsoft Windows Server (32-bit) (2003, 2008 for EBS 12.1 only) Oracle E-Business Suite Release 11i Certified Platforms Linux x86 (Oracle Enterprise Linux 4, 5) Linux x86 (RHEL 3, 4, 5) Linux x86 (SLES 8, 9, 10) Linux x86 (Asianux 1.0) Oracle Solaris on SPARC (64-bit) (8, 9, 10) IBM AIX on Power Systems (64-bit) (5.3, 6.1) HP-UX PA-RISC (64-bit) (11.11, 11.23, 11.31) HP Tru64 (5.1b) Microsoft Windows Server (32-bit) (2000, 2003) References Enhanced Signing of Oracle E-Business Suite JAR Files (Note 1207184.1) Related Articles Two New Options for Signing E-Business Suite JAR Files Now Available What Are the Minimum Desktop Requirements for EBS? Internet Explorer 9 Certified with Oracle E-Business Suite

    Read the article

  • nautilus crash when merging/overwriting files

    - by sBlatt
    On my Ubuntu 10.10, whenever I want to copy some files/folders over some other files/folders, or when I try to empty the trash, nautilus crashes! Example: I have a folder with some files. Now I want to overwrite this folder with a folder with the same name, same files, but some additional files, the merge window comes up, I choose merge and nautilus crashes (does not respond, when I press the close button I can force close it). Some times it even does the copying/emptying (trash), but it always crashes! This happens when copying to the same partition/ntfs partition/netshares, but not when I make a new folder and copy the files/folders into that (without overwriting anything). On a netshare, it's even possible to merge these files afterwards with another computer! dmesg/syslog/messages does not show any entry related to that problem. Does anyone have a solution for this very annoying problem? EDIT: dpkg -l nautilus* (see output in pastebin) EDIT2: I found out, nautilus already crashes before clicking replace/merge (as soon as the question appeares. In the video it's not entirely clear, that i click the cross before the force-close dialog appeares. Video of problem nautilus-debug-log.txt EDIT3: Filed bugreport: https://bugs.launchpad.net/ubuntu/+source/nautilus/+bug/678233

    Read the article

  • Packing up files on my machine, sending it to a server, and unpacking it

    - by MxyL
    I am implementing a feature in my application that sends all files in a specified folder to a server. I have the basic FTP transaction set up using Apache Commons FTPClient: it sets up a connection and transfers a file from one place to another. So I can simply loop over the directory and use this connection to transfer all the files. However, this could be better. Rather than transferring each file one by one, it makes more sense to pack it up in a compressed archive and then send the whole file at once. Saves time and bandwidth, since these are just text files so they compress nicely. So I would like to add automatic archive packing and unpacking. This is the workflow I have planned out, using zip compression: Zip all files in the folder Send the file over Unzip the files at its destination 1 and 2 are easy since the files are on the local machine, but I'm not sure how to accomplish the last step, when the files are now on a remote server. What are my options? I have control over what I can put and run on the server. Perhaps it is not necessary to do the packing/unpacking myself?

    Read the article

  • How to undelete files in TFS

    - by Tarun Arora
    Have you accidently deleted files from TFS and are looking at a way to undelete the file? You don’t have to undo your previous check in to get the files back, there is a simpler way. 01 – View Deleted items in Team Explorer Have you been wondering how you can view deleted items in Team Explorer? Well, go to tools, options, Source Control. From Visual Studio Team Foundation check ‘show deleted items in the Source Control Explorer’.  02 – Undelete files from TFS Simply right click the deleted file or folder and from the context menu select ‘Undelete’. This will roll back the files to the version before the delete operation was committed on them.  The undeleted changes now show up as pending changes in your workspace. You need to right click the folder and select Check In Pending changes from the context menu to restore the files. Add a comment and check in the files back to TFS to undelete them Right click the folder and view history. You’ll see both the check in that deleted the file/folder and the check in that restored it. So, that’s how you can restoring deleted files in TFS… Nice and simple… Right?

    Read the article

  • Add Bookmarks and Notes to Delicious in IE 8

    - by Asian Angel
    Are you constantly adding bookmarks to your Delicious account while browsing but want to keep UI use to a minimum? Add bookmarks directly to your account from the context menu using the Share with Delicious accelerator. Share with Delicious in Action To add the accelerator click on Add to Internet Explorer and confirm the installation when the secondary window appears. This is going to be much better than having the Favorites Bar or a new toolbar taking up precious UI room. When you find a webpage that you would like to bookmark right click within the page, go to All Accelerators and select Share with Delicious. The form for the new bookmark will open in a new tab with the URL and title filled in. All that you need to do is add any desired notes/tags and save the bookmark. Suppose that you want notes from the page added to the bookmark. Highlight the desired text, right click on it, then go to All Accelerators and select Share with Delicious. As before the form will open in a new tab…you can see the highlighted text was entered into the notes section for the new bookmark. All that is left to do is add an appropriate tag and save. Once you save your new bookmark the tab will auto navigate to the webpage that you just saved. Returning to our account showed the new bookmark ready for future use along with a the notes for later reference. Conclusion If you add bookmarks to your Delicious account but want to save UI room, then the Share with Delicious accelerator will make a nice addition to Internet Explorer. Links Add the Share with Delicious accelerator to Internet Explorer 8 Similar Articles Productive Geek Tips Access and Manage Your Delicious Bookmarks the Easy WayQuickly Add Bookmarks to Delicious in FirefoxAutomate Adding Bookmarks to del.icio.usHow Many Times Has an Article Been Bookmarked on del.icio.us?Add Social Bookmarking (Digg This!) Links to your Wordpress Blog TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 Use ILovePDF To Split and Merge PDF Files TimeToMeet is a Simple Online Meeting Planning Tool Easily Create More Bookmark Toolbars in Firefox Filevo is a Cool File Hosting & Sharing Site Get a free copy of WinUtilities Pro 2010 World Cup Schedule

    Read the article

  • How to set-up DSL dialer for Ubuntu 12.04 LTS

    - by Mohammad Yaseen
    I have just installed Ubuntu 12.04 LTS and I'm unable to get my DSL dialer working properly. To set this up in Windows 7 I had to do following: Control Panel --- Network and Intertnet Network and sharing center --- Setup a new network or connection Connect to the internet --- Broadband PPPoE Enter username and Password.. CLick 'Connect' and Done. I am doing following steps in Ubuntu with no luck: Click on 'Two Arrows' (i don't know what they are called) on upper right corner. Configure VPN --- DSL tab --- Add Then I entered username, password, MAC address and Clone MAC address (copied from Auto Ethernet). Save The same set up used to work with Ubuntu 10.10 but it is not working here. Now whenever I click on DSL Connection 1 to connect dialer 'Auto Ethernet' gets disconneted and I end up with no Internet connection. I am new to Ubuntu, Please suggest some easy steps. I have installed ubuntu alongside windows. And dialer works fine in Windows environment, i am writing this in Windows .

    Read the article

  • Internet Explorer Warning when embedding Youtube on HTTPS site?

    - by pellepim
    Our application is run over HTTPS which rarely presents any problems for us. When it comes to youtube however, the fact that they do not present any content over SSL connections is giving us some head ache when trying to embed clips. Mostly because of Internet Explorers famous little warning message: "Do you want to view only the webpage content that was delivered securely? This page contains content that will not be delivered using a secure HTTPS ... etc" I've tried to solve this in several ways. The most promising one was to use the ProxyPass functionality in Apache to map to YouTube. Like this: ProxyPass: /youtube/ http://www.youtube.com ProxyPassReverse: /youtube/ http://www.youtube.com This gets rid of the annoying warning. However, the youtube SWF fails to start streaming The SWF i manage to load into the browser simply states : "An error occurred, please try again later". Potential solutions are perhaps: Download youtube FLV:s and serve them out of own domain (gah) Use custom FLV-player and stream only FLV:s from youtube over a https proxy? Update 10 March: I've tried to use Googles Youtube API for ActionScript to load a player. It looked promising at first and I was able to load a player through my https:// proxy. However, the SWF that is loaded contains loads of explicit calls to different non-ssl urls to create authentication links for the FLV-stream and for loading different crossdomain policies. It really seems like we're not supposed to access flv-streams directly. This makes it very hard to bypass the Internet Explorer warning, short of ripping out the FLV:s from youtube and serving them out of your own domain. There are solutions out there for downloading youtubes FLV:s. But that is not compliant with the Youtube terms of use and is really not an option for us.

    Read the article

  • The Internet of Things & Commerce: Part 3 -- Interview with Kristen J. Flanagan, Commerce Product Management

    - by Katrina Gosek, Director | Commerce Product Strategy-Oracle
    Internet of Things & Commerce Series: Part 3 (of 3) And now for the final installment my three part series on the Internet of Things & Commerce. Post one, “The Next 7,000 Days”, introduced the idea of the Internet of Things, followed by a second post interviewing one of our chief commerce innovation strategists, Brian Celenza.  This final post in the series is an interview with Kristen J. Flanagan, lead product manager for Oracle Commerce omnichannel strategy. She takes us through the past, present, and future of how our Commerce Solution is re-imagining the way physical and digital shopping come together. ------- QUESTION: It’s your job to stay on top of what our customers’ need to not only run their online businesses effectively, but also to make sure they have product capabilities they can innovate and grow on. What key trend has been top-of-mind for you and our customers around this collision of physical and digital shopping? Kristen: I’ll agree with Brian Celenza that hands down mobile has forced a major disruption in shopping and selling behavior. A few years ago, mobile exploded at a pace I don't think anyone was expecting. Early on, we saw our customers scrambling to establish a mobile presence---mostly through "screen scraping" technologies. As smartphones continued to advance (at lightening speed!), our customers started to investigate ways to truly tap in to their eCommerce capabilities to deliver the mobile experience. They started looking to us for a means of using the eCommerce services and capabilities to deliver a mobile experience that is tailored for mobile rather than the desktop experience on a smaller screen. In the future, I think we'll see customers starting to really understand what their shoppers need and expect from a mobile offering and how they can adapt their content and delivery of that content to meet those needs. And, mobile shopping doesn’t stop at the consumer / buyer. Because the in-store experience is compelling and has advantages that digital just can't offer, we're also starting to see the eCommerce services being leveraged for mobile for in-store sales associates. Brick-and-mortar retailers are interested in putting the omnichannel product catalog, promotions, and cart into the hands of knowledgeable associates. Retailers are now looking to connect and harness the eCommerce data in-store so that shoppers have a reason to walk-in. I think we'll be seeing a lot more customers thinking about melding the in-store and digital experiences to present a richer offering for shoppers.    QUESTION: What are some examples of what our customers are doing currently to bring these concepts to reality? Kristen: Well, without question, connecting digital and brick-and-mortar worlds is becoming tablestakes for selling experiences. If a brand has a foot in both worlds (i.e., isn’t a pureplay online retailer), they have to connect the dots because shoppers – whether consumers or B2B buyers –don't think in clearly defined channels anymore. The expectation is connectedness – for on- and offline experiences, promotions, products, and customer data. What does this mean practically for businesses selling goods on- and offline? It touches a lot of systems: inventory info on the eCommerce site, fulfillment options across channels (buy online/pickup in store), order information (representing various channels for a cohesive view of shopper order history), promotions across digital and store, etc.  A few years ago, the main link between store and digital was the smartphone. We all remember when “apps” became a thing and many of our customers were scrambling to get a native app out there. Now we're seeing more strategic thinking around the benefits of mobile web vs. native and how that ties in to the purpose and role of mobile within the digital channel. Put it more broadly, how these pieces fit together in the overall brand puzzle.  The same could be said for “showrooming.” Where it was a major concern (i.e., shoppers using stores to look at merchandise and then order online from Amazon), in recent months, it’s emerged that the inverse is now becoming a a reality as well. "Webrooming" (using digital sites to do research before making a purchase in the store) is a new behavior pure play retailers are challenged with. There are many technologies, behaviors, and information that need to tie together to offer a holistic omnichannel shopping experience. As a result, brands are looking for ways to connect the digital and in-store experiences to bridge the gaps: shared assortments across channels, assisted selling apps that arm associates with information about shoppers, shared promotions, inventory, etc. QUESTION: How has Oracle Commerce been built to help brands make the link between in-store and digital over the last few years? Kristen: Over the last seven years, the product has been in step with the changes in industry needs. Here is a brief history of the evolution: Prior to Oracle’s acquisition of ATG and Endeca, key investments were made to cross-channel functionality that we are still building on today. Commerce Service Center (v2007.1) ATG introduced the Commerce Service Center in 2007.1 and marked the first entry into what was then called “cross-channel.” The Commerce Service Center is a call-center-agent-facing application that enables agents to see shopper orders, online catalog, promotions, and pricing. It is tightly integrated with the eCommerce capabilities of the platform and commerce engine and provided a means of connecting data from the call center and online channels.  REST services framework (v9.1)  In v9.1 we introduced the REST services framework and interface in the Platform that enabled customers to use ATG web services in other applications. This framework has become the basis for our subsequent omni-channel features and functionality. Multisite Architecture (v10) With the v10 release, we introduced the Multisite Architecture, which enabled customers to manage multiple sites (and channels) within a single instance of the BCC. Customers could create site- and channel-specific catalogs, promotions, targeters, and scenarios. Endeca Page Builder (2.x) / Experience Manager (3.x) With the introduction of Endeca for Mobile (now part of the core platform, available through the reference store – see blow) on top of Page Builder (and then eventually Experience Manager), Endeca gave business users the tools to create and manage native and mobile web applications. And since the acquisition of both ATG (2011) and Endeca (2012), Oracle Commerce has leveraged the best of each leading technology’s capabilities for omnichannel commerce to continue to drive innovation for our customers. Service enablement of core Oracle Commerce capabilities (v10.1.1, 10.2, & 11) After the establishment of the REST services framework and interface, we followed up in subsequent releases with service enablement of core Oracle Commerce capabilities throughout the iOS native app and the enablement of the core Commerce Service Center features. The result is that customers can leverage these services for their integrations with other systems, as well as their omnichannel initiatives.  Mobile web reference application (v10.1) In 10.1 we introduced the shopper-facing mobile reference application that showed how to use Oracle Commerce to deliver a mobile web experience for shoppers. This included the use of Experience Manager and cartridges to drive those experiences on select pages.  Native (iOS) reference application (v10.1.1)  We came out with the 10.1.1 shopper-facing native iOS ref app that illustrated how to use the Commerce REST services to deliver an iOS app. Also included Experience Manager-driven pages.   Assisted Selling reference application (v10.2.1)  The Assisted Selling reference application is our first reference application designed for the in-store associate. This iOS app shows customers how they can use Oracle Commerce data and information to provide a high-touch, consultative sales environment as well as to put the endless aisle into hands of their associates. Shoppers can start a cart online, and in-store associates can access that cart via the application to provide more information or add products and then transact using the ATG engine. Support for Retail promotions (v11) As part of the v11 release, we worked with teams in the Oracle Retail Global Business Unit (RGBU) to assess which promotion types and capabilities are supported across our products. Those products included Oracle Commerce, Oracle Point of Service (ORPOS), and Oracle Retail Price Management (RPM). The result is that customers can now more easily support omnichannel use cases between the store and digital.  Making sure Oracle Commerce can help support the omnichannel needs of our customers is core to our product strategy. With 89% of consumers now use two or more channels to make a single purchase, ensuring that cross-channel interactions are linked is critical to a great customer experience – and to sales. As Oracle Commerce evolves, we want to make it simple for organizations to create, deliver, and scale experiences across touchpoints with our create once, deploy commerce anywhere framework. We have a flexible, services-oriented architecture that allows data, content, catalogs, cart, experiences, personalization, and merchandising to be shared across touchpoints and easily extended in to new environments like mobile, social, in-store, Call Center, and new Websites. [For the latest downloads and Oracle Commerce documentation, please visit the Oracle Technical Network.] ------ Thank you to both Brian and Kristen for their contributions and to this blog series and their continued thought leadership for Oracle Commerce. We are all looking forward to the coming years of months of new shopping behaviors and opportunities to innovate. Because – if the digital fabric of our everyday lives continues to change at the same pace – the next five years (that just under 2,000 days), will be dramatic. ---------- THIS DOCUMENT IS FOR INFORMATIONAL PURPOSES ONLY AND MAY NOT BE INCORPORATED INTO A CONTRACT OR AGREEMENT

    Read the article

  • Search and replace hundreds of strings in tens of thousands of files?

    - by C Johnson
    I am looking into changing the file name of hundreds of files in a (C/C++) project that I work on. The problem is our software has tens of thousands of files that including (i.e. #include) these hundreds of files that will get changed. This looks like a maintenance nightmare. If I do this I will be stuck in Ultra-Edit for weeks, rolling hundreds of regex's by hand like so: ^\#include.*["<\\/]stupid_name.*$ with #include <dir/new_name.h> Such drudgery would be worse than peeling hundreds of potatoes in a sunken submarine in the antarctic with a spoon. I think it would rather be ideal to put the inputs and outputs into a table like so: stupid_name.h <-> <dir/new_name.h> stupid_nameb.h <-> <dir/new_nameb.h> stupid_namec.h <-> <dir/new_namec.h> and feed this into a regular expression engine / tool / app / etc... My Ultimate Question: Is there a tool that will do that? Bonus Question: Is it multi-threaded? I looked at quite a few search and replace topics here on this website, and found lots of standard queries that asked a variant of the following question: standard question: Replace one term in N files. as opposed to: my question: Replace N terms in N files. Thanks in advance for any replies.

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Ask the Readers: How Do You Score Free Wi-Fi While Traveling?

    - by Jason Fitzpatrick
    The holiday season is in full swing and that means many of us will be traveling–and searching for Wi-Fi nodes in the process. Help your fellow readers out by sharing your best Wi-Fi finding tips and tricks. Internet access is a necessity for the modern traveler but finding it is a bit more difficult than simply plugging into your home Wi-Fi. This week we want to hear all about your tips, tricks, and methods for scoring free Wi-Fi service in your interstate (and even international) travels. How do you keep the bounty of the internet flowing to your laptops, netbooks, tablets, and smart phones as you traverse the world? Sound off in the comments with your best tips and then check back on Friday for the What You Said roundup. HTG Explains: Understanding Routers, Switches, and Network Hardware How to Use Offline Files in Windows to Cache Your Networked Files Offline How to See What Web Sites Your Computer is Secretly Connecting To

    Read the article

  • Using Linux as guest on vmware and sharing connection with windows vista

    - by mike
    I been trying for weeks with vmwware player, now d/l vmwware work station 7, Have a laptop with one built in modem and a usb modem I bought, It works great switching it over from host to use in ubuntu to connect to the net, now when I use that modem from the host to connect online I have no trouble getting ubuntu to share the internet connection, But tried with NAT bridge host and all to get it to work from ubuntu to share the internet connection to windows vista, the host, I know it should work if it works the other way around, I tried setting up my wlan0 eht0 and eth1 to the correct IP can get both systems to notice each other by name and ip, but cant get them to share the connection from guest to host, I've tried iptables and all as well, Can someone please help me out with this? I am sure It is something something I'm over looking, Thanks in advance

    Read the article

  • Ubuntu 12.10 not properply working on Asus u46E after Update

    - by John Oakland
    I recently installed the latest Ubuntu update on my laptop and since then, the alignment on the browser is messed up, the mouse is not working, and I can't connect to the internet. Before it was working perfectly. Any ideas on what to do? Thanks for any feedback FYI: I am right now using windows since I have both linux and windows on my laptop. Also, when booting I do have the option to boot previous ubuntu versions, when I boot the previous unbuntu version on my laptop, everything works accept except the internet. (the mouse works, alignment is proper)

    Read the article

< Previous Page | 70 71 72 73 74 75 76 77 78 79 80 81  | Next Page >