Search Results

Search found 13696 results on 548 pages for 'world editor'.

Page 75/548 | < Previous Page | 71 72 73 74 75 76 77 78 79 80 81 82  | Next Page >

  • Can builds be hidden or stepped through in Apple´s Keynote editor so they don't obstruct other objec

    - by meeeee
    I'm new to keynote and as such have not figured out the correct workflow yet. While the transitions (builds) and actions are nice, how are you supposed to work with several objects if the previously edited objects are still being displayed in the original state, thus obstructing the view on new elements that I would like to display later? Is there a way to step through the builds like in presentation mode?

    Read the article

  • How to 'code collapse' wiki syntax on Notepad++ (or any other text editor)?

    - by meiryo
    I'm familiar with Notepad++'s code collapse for certain programming languages but recently I've been working with a plain text file that uses with Wiki syntax. For example: ==Heading1== Content ===Heading2=== Content ===Heading3=== Content ==Heading1.1== into (when I collapse Heading1): ==Heading1== ==Heading1.1== I want to be able to collapse these headings and all their contents down at different levels, much like how Notepad++ can collapse tags in HTML, hiding all other tags inside it. I think that's as clear as I explain it any suggestions?

    Read the article

  • What is a Windows text editor that will make it easy for me to have four text files open onscreen at once?

    - by Ascendant
    When brainstorming / planning I like to have four text files open onscreen at once: One for notes/stream of consciousness, one for action items to follow up on, one for a rough outline, etc.... What I'm looking for is an easy way to create / save four text files in this manner in Windows. Most importantly, I need the lines to wrap based on the width of the actual window itself. Not based on a ruler or document size (a la Word or WordPad) and not wrapping "manually only" (like Windows' built in Notepad application.) Also, I need the windows to have no, or at least, little, fluff at the top of each document (menubars, ribbons, etc.) On my Mac, I've found that the built-in TextEdit application is almost perfect for this. There's no header or ribbon taking up space for each document, and lines wrap when they hit the end of the window. I haven't had any luck finding a Windows application that works the same way.

    Read the article

  • Change Win7 taskbar position (overriding GPO, Registry Editor, Admin. Rights)

    - by diegocavazos53
    I run the computer center of my Faculty and the problem is that users manage to change the Win7 taskbar position. I don't really know how they do this as far as I have applied many group policies that are specific to the taskbar (like locking it). I have also disallowed users from entering new registry keys or executing the command prompt (or employing scripts). They have regular user rights and many Win7 tweaking programs need administrator rights to make changes to the GUI. So in other words, the taskbar is locked, there is a policy that sets its position to the lower part of the screen, users can't see the control panel, add registry keys, use the command prompt and don't have admin. rights. How do they keep moving the taskbar position to the upper part of the screen? Any ideas would be greatly appreciated. Thank you.

    Read the article

  • Visual Studio 2010: Is it possible to force editor to use ANSI rather than UTF-8?

    - by Mark Redman
    I am having issues with some files in automated processes, specifically with batch files and sql files. Visual Studio seems to create these as UTF-8 rather than ansi and adds some kind of special characters to the beginning of the file (I think this is a called a pre-amble) This breaks running batch files and running swl files through osql.exe. I have had issues myself in the past in creating text files using C#, but can get around that through encoding. However its seems a bit strange I cant use Visual studio to create batch files and sql files in a database project for automation.

    Read the article

  • Need text editor that can save locally AND via FTP for Linux - switching from EditPlus on windows

    - by Cyrcle
    I just switched from Windows to Linux. I've been using EditPlus for many years mainly because of it's ability to save locally, and then send the file via FTP, with easy keyboard shortcuts (ctrl-s to save, ctrl-alt-s to ftp). I also need syntax highlighting and basic code editing features. Is there anything for Linux that can do this? I don't want to run EditPlus via Wine

    Read the article

  • What editor/viewer to use to inspect large text based files?

    - by Turismo
    Are there any text editors/viewers (preferably on windows but other platforms are also ok) that can handle files of 500 MB or more? The editors I checked so far (Notepad++, Notepad, Eclipse) all choked on files of that size. Edit: Many thanks for the great suggestions. I tried gvim as it was the top voted and was available on Windows. I opened the file in a reasonable time. After that scrolling and searching was very smooth as long as syntax highlighting was turned off. From the other editors mentioned TextPad and EmEditor both claim to be able to handle large files very well. EmEditor seems to be built exactly for editing large files. I'll probably try both and report back.

    Read the article

  • Microsoft&rsquo;s new technical computing initiative

    - by Randy Walker
    I made a mental note from earlier in the year.  Microsoft literally buys computers by the truckload.  From what I understand, it’s a typical practice amongst large software vendors.  You plug a few wires in, you test it, and you instantly have mega tera tera flops (don’t hold me to that number).  Microsoft has been trying to plug away at their cloud services (named Azure).  Which, for the layman, means Microsoft runs your software on their computers, and as demand increases you can allocate more computing power on the fly. With this in mind, it doesn’t surprise me that I was recently sent an executive email concerning Microsoft’s new technical computing initiative.  I find it to be a great marketing idea with actual substance behind their real work.  From the programmer academic perspective, in college we dreamed about this type of processing power.  This has decades of computer science theory behind it. A copy of the email received.  (note that I almost deleted this email, thinking it was spam due to it’s length) We don't often think about how complex life really is. Take the relatively simple task of commuting to and from work: it is, in fact, a complicated interplay of variables such as weather, train delays, accidents, traffic patterns, road construction, etc. You can however, take steps to shorten your commute - using a good, predictive understanding of a few of these variables. In fact, you probably are already taking these inputs and instinctively building a predictive model that you act on daily to get to your destination more quickly. Now, when we apply the same method to very complex tasks, this modeling approach becomes much more challenging. Recent world events clearly demonstrated our inability to process vast amounts of information and variables that would have helped to more accurately predict the behavior of global financial markets or the occurrence and impact of a volcano eruption in Iceland. To make sense of issues like these, researchers, engineers and analysts create computer models of the almost infinite number of possible interactions in complex systems. But, they need increasingly more sophisticated computer models to better understand how the world behaves and to make fact-based predictions about the future. And, to do this, it requires a tremendous amount of computing power to process and examine the massive data deluge from cameras, digital sensors and precision instruments of all kinds. This is the key to creating more accurate and realistic models that expose the hidden meaning of data, which gives us the kind of insight we need to solve a myriad of challenges. We have made great strides in our ability to build these kinds of computer models, and yet they are still too difficult, expensive and time consuming to manage. Today, even the most complicated data-rich simulations cannot fully capture all of the intricacies and dependencies of the systems they are trying to model. That is why, across the scientific and engineering world, it is so hard to say with any certainty when or where the next volcano will erupt and what flight patterns it might affect, or to more accurately predict something like a global flu pandemic. So far, we just cannot collect, correlate and compute enough data to create an accurate forecast of the real world. But this is about to change. Innovations in technology are transforming our ability to measure, monitor and model how the world behaves. The implication for scientific research is profound, and it will transform the way we tackle global challenges like health care and climate change. It will also have a huge impact on engineering and business, delivering breakthroughs that could lead to the creation of new products, new businesses and even new industries. Because you are a subscriber to executive e-mails from Microsoft, I want you to be the first to know about a new effort focused specifically on empowering millions of the world's smartest problem solvers. Today, I am happy to introduce Microsoft's Technical Computing initiative. Our goal is to unleash the power of pervasive, accurate, real-time modeling to help people and organizations achieve their objectives and realize their potential. We are bringing together some of the brightest minds in the technical computing community across industry, academia and science at www.modelingtheworld.com to discuss trends, challenges and shared opportunities. New advances provide the foundation for tools and applications that will make technical computing more affordable and accessible where mathematical and computational principles are applied to solve practical problems. One day soon, complicated tasks like building a sophisticated computer model that would typically take a team of advanced software programmers months to build and days to run, will be accomplished in a single afternoon by a scientist, engineer or analyst working at the PC on their desktop. And as technology continues to advance, these models will become more complete and accurate in the way they represent the world. This will speed our ability to test new ideas, improve processes and advance our understanding of systems. Our technical computing initiative reflects the best of Microsoft's heritage. Ever since Bill Gates articulated the then far-fetched vision of "a computer on every desktop" in the early 1980's, Microsoft has been at the forefront of expanding the power and reach of computing to benefit the world. As someone who worked closely with Bill for many years at Microsoft, I am happy to share with you that the passion behind that vision is fully alive at Microsoft and is carried out in the creation of our new Technical Computing group. Enabling more people to make better predictions We have seen the impact of making greater computing power more available firsthand through our investments in high performance computing (HPC) over the past five years. Scientists, engineers and analysts in organizations of all sizes and sectors are finding that using distributed computational power creates societal impact, fuels scientific breakthroughs and delivers competitive advantages. For example, we have seen remarkable results from some of our current customers: Malaria strikes 300,000 to 500,000 people around the world each year. To help in the effort to eradicate malaria worldwide, scientists at Intellectual Ventures use software that simulates how the disease spreads and would respond to prevention and control methods, such as vaccines and the use of bed nets. Technical computing allows researchers to model more detailed parameters for more accurate results and receive those results in less than an hour, rather than waiting a full day. Aerospace engineering firm, a.i. solutions, Inc., needed a more powerful computing platform to keep up with the increasingly complex computational needs of its customers: NASA, the Department of Defense and other government agencies planning space flights. To meet that need, it adopted technical computing. Now, a.i. solutions can produce detailed predictions and analysis of the flight dynamics of a given spacecraft, from optimal launch times and orbit determination to attitude control and navigation, up to eight times faster. This enables them to avoid mistakes in any areas that can cause a space mission to fail and potentially result in the loss of life and millions of dollars. Western & Southern Financial Group faced the challenge of running ever larger and more complex actuarial models as its number of policyholders and products grew and regulatory requirements changed. The company chose an actuarial solution that runs on technical computing technology. The solution is easy for the company's IT staff to manage and adjust to meet business needs. The new solution helps the company reduce modeling time by up to 99 percent - letting the team fine-tune its models for more accurate product pricing and financial projections. Our Technical Computing direction Collaborating closely with partners across industry and academia, we must now extend the reach of technical computing even further to help predictive modelers and data explorers make faster, more accurate predictions. As we build the Technical Computing initiative, we will invest in three core areas: Technical computing to the cloud: Microsoft will play a leading role in bringing technical computing power to scientists, engineers and analysts through the cloud. Existing high- performance computing users will benefit from the ability to augment their on-premises systems with cloud resources that enable 'just-in-time' processing. This platform will help ensure processing resources are available whenever they are needed-reliably, consistently and quickly. Simplify parallel development: Today, computers are shipping with more processing power than ever, including multiple cores, but most modern software only uses a small amount of the available processing power. Parallel programs are extremely difficult to write, test and trouble shoot. However, a consistent model for parallel programming can help more developers unlock the tremendous power in today's modern computers and enable a new generation of technical computing. We are delivering new tools to automate and simplify writing software through parallel processing from the desktop... to the cluster... to the cloud. Develop powerful new technical computing tools and applications: We know scientists, engineers and analysts are pushing common tools (i.e., spreadsheets and databases) to the limits with complex, data-intensive models. They need easy access to more computing power and simplified tools to increase the speed of their work. We are building a platform to do this. Our development efforts will yield new, easy-to-use tools and applications that automate data acquisition, modeling, simulation, visualization, workflow and collaboration. This will allow them to spend more time on their work and less time wrestling with complicated technology. Thinking bigger There is so much left to be discovered and so many questions yet to be answered in the fascinating world around us. We believe the technical computing community will show us that we have not seen anything yet. Imagine just some of the breakthroughs this community could make possible: Better predictions to help improve the understanding of pandemics, contagion and global health trends. Climate change models that predict environmental, economic and human impact, accessible in real-time during key discussions and debates. More accurate prediction of natural disasters and their impact to develop more effective emergency response plans. With an ambitious charter in hand, this new team is ready to build on our progress to-date and execute Microsoft's technical computing vision over the months and years ahead. We will steadily invest in the right technologies, tools and talent, and work to bring together the technical computing community. I invite you to visit www.modelingtheworld.com today. We welcome your ideas and feedback. I look forward to making this journey with you and others who want to answer the world's biggest questions, discover solutions to problems that seem impossible and uncover a host of new opportunities to change the world we live in for the better. Bob

    Read the article

  • Two things I learned this week...

    - by noreply(at)blogger.com (Thomas Kyte)
    I often say "I learn something new about Oracle every day".  It really is true - there is so much to know about it, it is hard to keep up sometimes.Here are the two new things I learned - the first is regarding temporary tablespaces.  In the past - when people have asked "how can I shrink my temporary tablespace" I've said "create a new one that is smaller, alter your database/users to use this new one by default, wait a bit, drop the old one".  Actually I usually said first - "don't, it'll just grow again" but some people really wanted to make it smaller.Now, there is an easier way:http://docs.oracle.com/cd/E11882_01/server.112/e26088/statements_3002.htm#SQLRF53578Using alter tablespace temp shrink space .The second thing is just a little sqlplus quirk that I probably knew at one point but totally forgot.  People run into problems with &'s in sqlplus all of the time as sqlplus tries to substitute in for an &variable.  So, if they try to select '&hello world' from dual - they'll get:ops$tkyte%ORA11GR2> select '&hello world' from dual;Enter value for hello: old   1: select '&hello world' from dualnew   1: select ' world' from dual'WORLD------ worldops$tkyte%ORA11GR2> One solution is to "set define off" to disable the substitution (or set define to some other character).  Another oft quoted solution is to use chr(38) - select chr(38)||'hello world' from dual.  I never liked that one personally.  Today - I was shown another wayhttps://asktom.oracle.com/pls/apex/f?p=100:11:0::::P11_QUESTION_ID:4549764300346084350#4573022300346189787 ops$tkyte%ORA11GR2> select '&' || 'hello world' from dual;'&'||'HELLOW------------&hello worldops$tkyte%ORA11GR2>just concatenate '&' to the string, sqlplus doesn't touch that one!  I like that better than chr(38) (but a little less than set define off....)

    Read the article

  • Software design of a browser-based strategic MMO game

    - by Mehran
    I wonder if there are any known tested software designs for Travian-like browser-based strategic MMO games? I mean how would they implement the server of such games or what is stored in database and what is stored in RAM? Is the state of the world stored in one piece or is it distributed among a number of storage? Does anyone know a resource to study the problems and solutions of creating such games? [UPDATE] Suggested in comments, I'm going to give an example how would I design such a project. Even though I'm not sure if I'm proposing the right one. Having stored the world state in a MongoDB, I would implement an event collection in which all the changes to the world will register. Changes that are meant to happen in the future will come with an action date set to the future and those that are to be carried out immediately will be set to now. Having this datastore as the central point of the system, players will issue their actions as events inserted in datastore. At the other end of the system, I'll have a constant-running software taking out events out of the datastore which are due to be carried out and not done yet. Executing an event means apply some update on the world's state and thus the datastore. As scalable as this design sounds, I'm not sure if it will be worth implementing. For one, it is pointless to cache the datastore as most of updates happen once without any follow ups. For instance if you have the growth of resources in your game, you'll be updating the whole world state periodically in which case, having incorporated a cache, you are keeping the whole world in RAM (which most likely is impossible). So can someone come up with a better design?

    Read the article

  • Relative encapsulation design

    - by taher1992
    Let's say I am doing a 2D application with the following design: There is the Level object that manages the world, and there are world objects which are entities inside the Level object. A world object has a location and velocity, as well as size and a texture. However, a world object only exposes get properties. The set properties are private (or protected) and are only available to inherited classes. But of course, Level is responsible for these world objects, and must somehow be able to manipulate at least some of its private setters. But as of now, Level has no access, meaning world objects must change its private setters to public (violating encapsulation). How to tackle this problem? Should I just make everything public? Currently what I'm doing is having a inner class inside game object that does the set work. So when Level needs to update an objects location it goes something like this: void ChangeObject(GameObject targetObject, int newX, int newY){ // targetObject.SetX and targetObject.SetY cannot be set directly var setter = new GameObject.Setter(targetObject); setter.SetX(newX); setter.SetY(newY); } This code feels like overkill, but it doesn't feel right to have everything public so that anything can change an objects location for example.

    Read the article

  • HLSL How to flip geometry horizontally

    - by cubrman
    I want to flip my asymmetric 3d model horizontally in the vertex shader alongside an arbitrary plane parallel to the YZ plane. This should switch everything for the model from the left hand side to the right hand side (like flipping it in Photoshop). Doing it in pixel shader would be a huge computational cost (extra RT, more fullscreen samples...), so it must be done in the vertex shader. Once more: this is NOT reflection, i need to flip THE WHOLE MODEL. I thought I could simply do the following: Turn off culling. Run the following code in the vertex shader: input.Position = mul(input.Position, World); // World[3][0] holds x value of the model's pivot in the World. if (input.Position.x <= World[3][0]) input.Position.x += World[3][0] - input.Position.x; else input.Position.x -= input.Position.x - World[3][0]; ... The model is never drawn. Where am I wrong? I presume that messes up the index buffer. Can something be done about it? P.S. it's INSANELY HARD to format code here. Thanks to Panda I found my problem. SOLUTION: // Do thins before anything else in the vertex shader. Position.x *= -1; // To invert alongside the object's YZ plane.

    Read the article

  • EXC_BAD_ACCESS error when box2d joint is destroyed

    - by colilo
    When I destroy the weldJoint in the update method (see below) I get an EXC_BAD_ACCESS error pointing to the line world->DestroyJoint(weldJoint); in the update method below: -(void) update: (ccTime) dt { int32 velocityIterations = 8; int32 positionIterations = 1; // Instruct the world to perform a single step of simulation. It is // generally best to keep the time step and iterations fixed. world->Step(dt, velocityIterations, positionIterations); // using the iterator pos over the set std::set<BodyPair *>::iterator pos; for(pos = bodiesForJoints.begin(); pos != bodiesForJoints.end(); ++pos) { b2WeldJointDef weldJointDef; BodyPair *bodyPair = *pos; b2Body *bodyA = bodyPair->bodyA; b2Body *bodyB = bodyPair->bodyB; weldJointDef.Initialize(bodyA, bodyB, bodyA->GetWorldCenter()); weldJointDef.collideConnected = false; weldJoint = (b2WeldJoint*) world->CreateJoint(&weldJointDef); // Free the structure we allocated earlier. free(bodyPair); // Remove the entry from the set. bodiesForJoints.erase(pos); } for(b2Body *b = world->GetBodyList(); b; b=b->GetNext()) { if (b->GetUserData() != NULL) { CCSprite *mainSprite = (CCSprite*)b->GetUserData(); if (mainSprite.tag == 1) { mainSprite.position = CGPointMake( b->GetPosition().x * PTM_RATIO, b->GetPosition().y * PTM_RATIO); CGPoint mainSpritePosition = mainSprite.position; if (mainSprite.isMoved) { world->DestroyJoint(weldJoint); } } } } } In the HelloWorldLayer.h I set the weldJoint with the assign property. Am I destroying the joint in the wrong way? I would really appreciate any help. Thanks

    Read the article

  • Which source control paradigm and solution to embed in a custom editor application?

    - by Greg Harman
    I am building an application that manages a number of custom objects, which may be edited concurrently by multiple users (using different instances of the application). These objects have an underlying serialized representation, and my plan is to persist them (through my application UI) in an external source control system. Of course this implies that my application can check the current version of an object for updates, a merging interface for each object, etc. My question is what source control paradigm(s) and specific solution(s) to support and why. The way I (perhaps naively) see the source control world is three general paradigms: Single-repository, locked access (MS SourceSafe) Single-repository, concurrent access (CVS/SVN) Distributed (Mercurial, Git) I haven't heard of anyone using #1 for quite a number of years, so I am planning to disregard this case altogether (unless I get a compelling argument otherwise). However, I'm at a loss as to whether to support #2 or #3, and which specific implementations. I'm concerned that the use paradigms are subtly different enough that I can't adequately capture basic operations in a single UI. The last bit of information I should convey is that this application is intended to be deployed in a commercial setting, where a source control system may already be in use. I would prefer not to support more than one solution unless it's really a deal-breaker, so wide adoption in a corporate setting is a plus.

    Read the article

  • Box Selection and Multi-Line Editing with VS 2010

    - by ScottGu
    This is the twenty-second in a series of blog posts I’m doing on the VS 2010 and .NET 4 release. I’ve already covered some of the code editor improvements in the VS 2010 release.  In particular, I’ve blogged about the Code Intellisense Improvements, new Code Searching and Navigating Features, HTML, ASP.NET and JavaScript Snippet Support, and improved JavaScript Intellisense.  Today’s blog post covers a small, but nice, editor improvement with VS 2010 – the ability to use “Box Selection” when performing multi-line editing.  This can eliminate keystrokes and enables some slick editing scenarios. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] Box Selection Box selection is a feature that has been in Visual Studio for awhile (although not many people knew about it).  It allows you to select a rectangular region of text within the code editor by holding down the Alt key while selecting the text region with the mouse.  With VS 2008 you could then copy or delete the selected text. VS 2010 now enables several more capabilities with box selection including: Text Insertion: Typing with box selection now allows you to insert new text into every selected line Paste/Replace: You can now paste the contents of one box selection into another and have the content flow correctly Zero-Length Boxes: You can now make a vertical selection zero characters wide to create a multi-line insert point for new or copied text These capabilities can be very useful in a variety of scenarios.  Some example scenarios: change access modifiers (private->public), adding comments to multiple lines, setting fields, or grouping multiple statements together. Great 3 Minute Box-Selection Video Demo Brittany Behrens from the Visual Studio Editor Team has an excellent 3 minute video that shows off a few cool VS 2010 multi-line code editing scenarios with box selection:   Watch it to learn a few ways you can use this new box selection capability to optimize your typing in VS 2010 even further: Hope this helps, Scott P.S. You can learn more about the VS Editor by following the Visual Studio Team Blog or by following @VSEditor on Twitter.

    Read the article

  • ASP.NET MVC File Upload Error - "The input is not a valid Base-64 string"

    - by Justin
    Hey all, I'm trying to add a file upload control to my ASP.NET MVC 2 form but after I select a jpg and click Save, it gives the following error: The input is not a valid Base-64 string as it contains a non-base 64 character, more than two padding characters, or a non-white space character among the padding characters. Here's the view: <% using (Html.BeginForm("Save", "Developers", FormMethod.Post, new {enctype = "multipart/form-data"})) { %> <%: Html.ValidationSummary(true) %> <fieldset> <legend>Fields</legend> <div class="editor-label"> Login Name </div> <div class="editor-field"> <%: Html.TextBoxFor(model => model.LoginName) %> <%: Html.ValidationMessageFor(model => model.LoginName) %> </div> <div class="editor-label"> Password </div> <div class="editor-field"> <%: Html.Password("Password") %> <%: Html.ValidationMessageFor(model => model.Password) %> </div> <div class="editor-label"> First Name </div> <div class="editor-field"> <%: Html.TextBoxFor(model => model.FirstName) %> <%: Html.ValidationMessageFor(model => model.FirstName) %> </div> <div class="editor-label"> Last Name </div> <div class="editor-field"> <%: Html.TextBoxFor(model => model.LastName) %> <%: Html.ValidationMessageFor(model => model.LastName) %> </div> <div class="editor-label"> Photo </div> <div class="editor-field"> <input id="Photo" name="Photo" type="file" /> </div> <p> <%: Html.Hidden("DeveloperID") %> <%: Html.Hidden("CreateDate") %> <input type="submit" value="Save" /> </p> </fieldset> <% } %> And the controller: //POST: /Secure/Developers/Save/ [AcceptVerbs(HttpVerbs.Post)] public ActionResult Save(Developer developer) { //get profile photo. var upload = Request.Files["Photo"]; if (upload.ContentLength > 0) { string savedFileName = Path.Combine( ConfigurationManager.AppSettings["FileUploadDirectory"], "Developer_" + developer.FirstName + "_" + developer.LastName + ".jpg"); upload.SaveAs(savedFileName); } developer.UpdateDate = DateTime.Now; if (developer.DeveloperID == 0) {//inserting new developer. DataContext.DeveloperData.Insert(developer); } else {//attaching existing developer. DataContext.DeveloperData.Attach(developer); } //save changes. DataContext.SaveChanges(); //redirect to developer list. return RedirectToAction("Index"); } Thanks, Justin

    Read the article

  • How to Add a Business Card, or vCard (.vcf) File, to a Signature in Outlook 2013 Without Displaying an Image

    - by Lori Kaufman
    Whenever you add a Business Card to your signature in Outlook 2013, the Signature Editor automatically generates a picture of it and includes that in the signature as well as attaching the .vcf file. However, there is a way to leave out the image. To remove the business card image from your signature but maintain the attached .vcf file, you must make a change to the registry. NOTE: Before making changes to the registry, be sure you back it up. We also recommend creating a restore point you can use to restore your system if something goes wrong. Before changing the registry, we must add the Business Card to the signature and save it so a .vcf file of the contact is created in the Signatures folder. To do this, click the File tab. Click Options in the menu list on the left side of the Account Information screen. On the Outlook Options dialog box, click Mail in the list of options on the left side of the dialog box. On the Mail screen, click Signatures in the Compose messages section. For this example, we will create a new signature to include the .vcf file for your business card without the image. Click New below the Select signature to edit box. Enter a name for the new signature, such as Business Card, and click OK. Enter text in the signature editor and format it the way you want or insert a different image or logo. Click Business Card above the signature editor. Select the contact you want to include in the signature on the Insert Business Card dialog box and click OK. Click Save below the Select signature to edit box. This creates a .vcf file for the business card in the Signatures folder. Click on the business card image in the signature and delete it. You should only see your formatted text or other image or logo in the signature editor. Click OK to save your new signature and close the signature editor. Close Outlook as well. Now, we will open the Registry Editor to add a key and value to indicate where to find the .vcf to include in the signature we just created. If you’re running Windows 8, press the Windows Key + X to open the command menu and select Run. You can also press the Windows Key + R to directly access the Run dialog box. NOTE: In Windows 7, select Run from the Start menu. In the Open edit box on the Run dialog box, enter “regedit” (without the quotes) and click OK. If the User Account Control dialog box displays, click Yes to continue. NOTE: You may not see this dialog box, depending on your User Account Control settings. Navigate to the following registry key: HKEY_CURRENT_USER\Software\Microsoft\Office\15.0\Outlook\Signatures Make sure the Signatures key is selected. Select New | String Value from the Edit menu. NOTE: You can also right-click in the empty space in the right pane and select New | String Value from the popup menu. Rename the new value to the name of the Signature you created. For this example, we named the value Business Card. Double-click on the new value. In the Value data edit box on the Edit String dialog box, enter the value indicating the location of the .vcf file to include in the signature. The format is: <signature name>_files\<name of .vcf file> For our example, the Value data should be as follows: Business Card_files\Lori Kaufman The name of the .vcf file is generally the contact name. If you’re not sure of what to enter for the Value data for the new key value, you can check the location and name of the .vcf file. To do this, open the Outlook Options dialog box and access the Mail screen as instructed earlier in this article. However, press and hold the Ctrl key while clicking the Signatures button. The Signatures folder opens in Windows Explorer. There should be a folder in the Signatures folder named after the signature you created with “_files” added to the end. For our example, the folder is named Business Card_files. Open this folder. In this folder, you should see a .vcf file with the name of your contact as the name of the file. For our contact, the file is named Lori Kaufman.vcf. The path to the .vcf file should be the name of the folder for the signature (Business Card_files), followed by a “\”, and the name of the .vcf file without the extension (Lori Kaufman). Putting these names together, you get the path that should be entered as the Value data in the new key you created in the Registry Editor. Business Card_files\Lori Kaufman Once you’ve entered the Value data for the new key, select Exit from the File menu to close the Registry Editor. Open Outlook and click New Email on the Home tab. Click Signature in the Include section of the New Mail Message tab and select your new signature from the drop-down menu. NOTE: If you made the new signature the default signature, it will be automatically inserted into the new mail message. The .vcf file is attached to the email message, but the business card image is not included. All you will see in the body of the email message is the text or other image you included in the signature. You can also choose to include an image of your business card in a signature with no .vcf file attached.     

    Read the article

  • ASP.NET Frameworks and Raw Throughput Performance

    - by Rick Strahl
    A few days ago I had a curious thought: With all these different technologies that the ASP.NET stack has to offer, what's the most efficient technology overall to return data for a server request? When I started this it was mere curiosity rather than a real practical need or result. Different tools are used for different problems and so performance differences are to be expected. But still I was curious to see how the various technologies performed relative to each just for raw throughput of the request getting to the endpoint and back out to the client with as little processing in the actual endpoint logic as possible (aka Hello World!). I want to clarify that this is merely an informal test for my own curiosity and I'm sharing the results and process here because I thought it was interesting. It's been a long while since I've done any sort of perf testing on ASP.NET, mainly because I've not had extremely heavy load requirements and because overall ASP.NET performs very well even for fairly high loads so that often it's not that critical to test load performance. This post is not meant to make a point  or even come to a conclusion which tech is better, but just to act as a reference to help understand some of the differences in perf and give a starting point to play around with this yourself. I've included the code for this simple project, so you can play with it and maybe add a few additional tests for different things if you like. Source Code on GitHub I looked at this data for these technologies: ASP.NET Web API ASP.NET MVC WebForms ASP.NET WebPages ASMX AJAX Services  (couldn't get AJAX/JSON to run on IIS8 ) WCF Rest Raw ASP.NET HttpHandlers It's quite a mixed bag, of course and the technologies target different types of development. What started out as mere curiosity turned into a bit of a head scratcher as the results were sometimes surprising. What I describe here is more to satisfy my curiosity more than anything and I thought it interesting enough to discuss on the blog :-) First test: Raw Throughput The first thing I did is test raw throughput for the various technologies. This is the least practical test of course since you're unlikely to ever create the equivalent of a 'Hello World' request in a real life application. The idea here is to measure how much time a 'NOP' request takes to return data to the client. So for this request I create the simplest Hello World request that I could come up for each tech. Http Handler The first is the lowest level approach which is an HTTP handler. public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public bool IsReusable { get { return true; } } } WebForms Next I added a couple of ASPX pages - one using CodeBehind and one using only a markup page. The CodeBehind page simple does this in CodeBehind without any markup in the ASPX page: public partial class HelloWorld_CodeBehind : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { Response.Write("Hello World. Time is: " + DateTime.Now.ToString() ); Response.End(); } } while the Markup page only contains some static output via an expression:<%@ Page Language="C#" AutoEventWireup="false" CodeBehind="HelloWorld_Markup.aspx.cs" Inherits="AspNetFrameworksPerformance.HelloWorld_Markup" %> Hello World. Time is <%= DateTime.Now %> ASP.NET WebPages WebPages is the freestanding Razor implementation of ASP.NET. Here's the simple HelloWorld.cshtml page:Hello World @DateTime.Now WCF REST WCF REST was the token REST implementation for ASP.NET before WebAPI and the inbetween step from ASP.NET AJAX. I'd like to forget that this technology was ever considered for production use, but I'll include it here. Here's an OperationContract class: [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World" + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } } WCF REST can return arbitrary results by returning a Stream object and a content type. The code above turns the string result into a stream and returns that back to the client. ASP.NET AJAX (ASMX Services) I also wanted to test ASP.NET AJAX services because prior to WebAPI this is probably still the most widely used AJAX technology for the ASP.NET stack today. Unfortunately I was completely unable to get this running on my Windows 8 machine. Visual Studio 2012  removed adding of ASP.NET AJAX services, and when I tried to manually add the service and configure the script handler references it simply did not work - I always got a SOAP response for GET and POST operations. No matter what I tried I always ended up getting XML results even when explicitly adding the ScriptHandler. So, I didn't test this (but the code is there - you might be able to test this on a Windows 7 box). ASP.NET MVC Next up is probably the most popular ASP.NET technology at the moment: MVC. Here's the small controller: public class MvcPerformanceController : Controller { public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } } ASP.NET WebAPI Next up is WebAPI which looks kind of similar to MVC. Except here I have to use a StringContent result to return the response: public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } } Testing Take a minute to think about each of the technologies… and take a guess which you think is most efficient in raw throughput. The fastest should be pretty obvious, but the others - maybe not so much. The testing I did is pretty informal since it was mainly to satisfy my curiosity - here's how I did this: I used Apache Bench (ab.exe) from a full Apache HTTP installation to run and log the test results of hitting the server. ab.exe is a small executable that lets you hit a URL repeatedly and provides counter information about the number of requests, requests per second etc. ab.exe and the batch file are located in the \LoadTests folder of the project. An ab.exe command line  looks like this: ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld which hits the specified URL 100,000 times with a load factor of 20 concurrent requests. This results in output like this:   It's a great way to get a quick and dirty performance summary. Run it a few times to make sure there's not a large amount of varience. You might also want to do an IISRESET to clear the Web Server. Just make sure you do a short test run to warm up the server first - otherwise your first run is likely to be skewed downwards. ab.exe also allows you to specify headers and provide POST data and many other things if you want to get a little more fancy. Here all tests are GET requests to keep it simple. I ran each test: 100,000 iterations Load factor of 20 concurrent connections IISReset before starting A short warm up run for API and MVC to make sure startup cost is mitigated Here is the batch file I used for the test: IISRESET REM make sure you add REM C:\Program Files (x86)\Apache Software Foundation\Apache2.2\bin REM to your path so ab.exe can be found REM Warm up ab.exe -n100 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJsonab.exe -n100 -c20 http://localhost/aspnetperf/api/HelloWorldJson ab.exe -n100 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld ab.exe -n100000 -c20 http://localhost/aspnetperf/handler.ashx > handler.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_CodeBehind.aspx > AspxCodeBehind.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_Markup.aspx > AspxMarkup.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld > Wcf.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldCode > Mvc.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld > WebApi.txt I ran each of these tests 3 times and took the average score for Requests/second, with the machine otherwise idle. I did see a bit of variance when running many tests but the values used here are the medians. Part of this has to do with the fact I ran the tests on my local machine - result would probably more consistent running the load test on a separate machine hitting across the network. I ran these tests locally on my laptop which is a Dell XPS with quad core Sandibridge I7-2720QM @ 2.20ghz and a fast SSD drive on Windows 8. CPU load during tests ran to about 70% max across all 4 cores (IOW, it wasn't overloading the machine). Ideally you can try running these tests on a separate machine hitting the local machine. If I remember correctly IIS 7 and 8 on client OSs don't throttle so the performance here should be Results Ok, let's cut straight to the chase. Below are the results from the tests… It's not surprising that the handler was fastest. But it was a bit surprising to me that the next fastest was WebForms and especially Web Forms with markup over a CodeBehind page. WebPages also fared fairly well. MVC and WebAPI are a little slower and the slowest by far is WCF REST (which again I find surprising). As mentioned at the start the raw throughput tests are not overly practical as they don't test scripting performance for the HTML generation engines or serialization performances of the data engines. All it really does is give you an idea of the raw throughput for the technology from time of request to reaching the endpoint and returning minimal text data back to the client which indicates full round trip performance. But it's still interesting to see that Web Forms performs better in throughput than either MVC, WebAPI or WebPages. It'd be interesting to try this with a few pages that actually have some parsing logic on it, but that's beyond the scope of this throughput test. But what's also amazing about this test is the sheer amount of traffic that a laptop computer is handling. Even the slowest tech managed 5700 requests a second, which is one hell of a lot of requests if you extrapolate that out over a 24 hour period. Remember these are not static pages, but dynamic requests that are being served. Another test - JSON Data Service Results The second test I used a JSON result from several of the technologies. I didn't bother running WebForms and WebPages through this test since that doesn't make a ton of sense to return data from the them (OTOH, returning text from the APIs didn't make a ton of sense either :-) In these tests I have a small Person class that gets serialized and then returned to the client. The Person class looks like this: public class Person { public Person() { Id = 10; Name = "Rick"; Entered = DateTime.Now; } public int Id { get; set; } public string Name { get; set; } public DateTime Entered { get; set; } } Here are the updated handler classes that use Person: Handler public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { var action = context.Request.QueryString["action"]; if (action == "json") JsonRequest(context); else TextRequest(context); } public void TextRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public void JsonRequest(HttpContext context) { var json = JsonConvert.SerializeObject(new Person(), Formatting.None); context.Response.ContentType = "application/json"; context.Response.Write(json); } public bool IsReusable { get { return true; } } } This code adds a little logic to check for a action query string and route the request to an optional JSON result method. To generate JSON, I'm using the same JSON.NET serializer (JsonConvert.SerializeObject) used in Web API to create the JSON response. WCF REST   [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World " + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } [OperationContract] [WebGet(ResponseFormat=WebMessageFormat.Json,BodyStyle=WebMessageBodyStyle.WrappedRequest)] public Person HelloWorldJson() { // Add your operation implementation here return new Person(); } } For WCF REST all I have to do is add a method with the Person result type.   ASP.NET MVC public class MvcPerformanceController : Controller { // // GET: /MvcPerformance/ public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } public JsonResult HelloWorldJson() { return Json(new Person(), JsonRequestBehavior.AllowGet); } } For MVC all I have to do for a JSON response is return a JSON result. ASP.NET internally uses JavaScriptSerializer. ASP.NET WebAPI public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } [HttpGet] public Person HelloWorldJson() { return new Person(); } [HttpGet] public HttpResponseMessage HelloWorldJson2() { var response = new HttpResponseMessage(HttpStatusCode.OK); response.Content = new ObjectContent<Person>(new Person(), GlobalConfiguration.Configuration.Formatters.JsonFormatter); return response; } } Testing and Results To run these data requests I used the following ab.exe commands:REM JSON RESPONSES ab.exe -n100000 -c20 http://localhost/aspnetperf/Handler.ashx?action=json > HandlerJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJson > MvcJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorldJson > WebApiJson.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorldJson > WcfJson.txt The results from this test run are a bit interesting in that the WebAPI test improved performance significantly over returning plain string content. Here are the results:   The performance for each technology drops a little bit except for WebAPI which is up quite a bit! From this test it appears that WebAPI is actually significantly better performing returning a JSON response, rather than a plain string response. Snag with Apache Benchmark and 'Length Failures' I ran into a little snag with Apache Benchmark, which was reporting failures for my Web API requests when serializing. As the graph shows performance improved significantly from with JSON results from 5580 to 6530 or so which is a 15% improvement (while all others slowed down by 3-8%). However, I was skeptical at first because the WebAPI test reports showed a bunch of errors on about 10% of the requests. Check out this report: Notice the Failed Request count. What the hey? Is WebAPI failing on roughly 10% of requests when sending JSON? Turns out: No it's not! But it took some sleuthing to figure out why it reports these failures. At first I thought that Web API was failing, and so to make sure I re-ran the test with Fiddler attached and runiisning the ab.exe test by using the -X switch: ab.exe -n100 -c10 -X localhost:8888 http://localhost/aspnetperf/api/HelloWorldJson which showed that indeed all requests where returning proper HTTP 200 results with full content. However ab.exe was reporting the errors. After some closer inspection it turned out that the dates varying in size altered the response length in dynamic output. For example: these two results: {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.841926-10:00"} {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.8519262-10:00"} are different in length for the number which results in 68 and 69 bytes respectively. The same URL produces different result lengths which is what ab.exe reports. I didn't notice at first bit the same is happening when running the ASHX handler with JSON.NET result since it uses the same serializer that varies the milliseconds. Moral: You can typically ignore Length failures in Apache Benchmark and when in doubt check the actual output with Fiddler. Note that the other failure values are accurate though. Another interesting Side Note: Perf drops over Time As I was running these tests repeatedly I was finding that performance steadily dropped from a startup peak to a 10-15% lower stable level. IOW, with Web API I'd start out with around 6500 req/sec and in subsequent runs it keeps dropping until it would stabalize somewhere around 5900 req/sec occasionally jumping lower. For these tests this is why I did the IIS RESET and warm up for individual tests. This is a little puzzling. Looking at Process Monitor while the test are running memory very quickly levels out as do handles and threads, on the first test run. Subsequent runs everything stays stable, but the performance starts going downwards. This applies to all the technologies - Handlers, Web Forms, MVC, Web API - curious to see if others test this and see similar results. Doing an IISRESET then resets everything and performance starts off at peak again… Summary As I stated at the outset, these were informal to satiate my curiosity not to prove that any technology is better or even faster than another. While there clearly are differences in performance the differences (other than WCF REST which was by far the slowest and the raw handler which was by far the highest) are relatively minor, so there is no need to feel that any one technology is a runaway standout in raw performance. Choosing a technology is about more than pure performance but also about the adequateness for the job and the easy of implementation. The strengths of each technology will make for any minor performance difference we see in these tests. However, to me it's important to get an occasional reality check and compare where new technologies are heading. Often times old stuff that's been optimized and designed for a time of less horse power can utterly blow the doors off newer tech and simple checks like this let you compare. Luckily we're seeing that much of the new stuff performs well even in V1.0 which is great. To me it was very interesting to see Web API perform relatively badly with plain string content, which originally led me to think that Web API might not be properly optimized just yet. For those that caught my Tweets late last week regarding WebAPI's slow responses was with String content which is in fact considerably slower. Luckily where it counts with serialized JSON and XML WebAPI actually performs better. But I do wonder what would make generic string content slower than serialized code? This stresses another point: Don't take a single test as the final gospel and don't extrapolate out from a single set of tests. Certainly Twitter can make you feel like a fool when you post something immediate that hasn't been fleshed out a little more <blush>. Egg on my face. As a result I ended up screwing around with this for a few hours today to compare different scenarios. Well worth the time… I hope you found this useful, if not for the results, maybe for the process of quickly testing a few requests for performance and charting out a comparison. Now onwards with more serious stuff… Resources Source Code on GitHub Apache HTTP Server Project (ab.exe is part of the binary distribution)© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Download PowerCommands for VS 2008

    - by Editor
    PowerCommands for Visual Studio 2008 is now available for free download, along with source code and a readme document. PowerCommands, is a set of useful extensions for the Visual Studio 2008 adding additional functionality to various areas of the IDE. The source code, which requires the VS SDK for VS 2008 [...]

    Read the article

  • Download PowerCommands for VS 2008

    - by Editor
    PowerCommands is a set of useful extensions for the Visual Studio 2008 adding additional functionality to various areas of the IDE. The source code is included and requires the VS SDK for VS 2008 to allow modification of functionality or as a reference to create additional custom PowerCommand extensions. Visit the [...]

    Read the article

  • Architecture for a farmville/yoville/cafe world type game?

    - by Joff
    I'm thinking of building a game along the lines of Farmville - items, events, time management system etc. Options I am thinking of: 1) Flash UI frontend that uses AMFPHP to get all data for the view from a PHP powered backend. 2) Actionscript to power the whole game Any input is appreciated. My concern with Actionscript is scaling, my concern with PHP is having to build an update system that would need a lot of back and forth xmlhttprequests which might get complicated. If there's a better way to build something like this, I'm all ears :)

    Read the article

  • Connmand Equivalent

    - by CurtisS
    What's the connmand equivalent on Fedora 15? I'm trying to connect to the Internet with Fedora 15 but I'm having problems. It can't see my network connection and when I try to run nm-connection-editor I get: (nm-connection-editor:9816): WARNING: **get_all_cb: couldn't retrivew system settings properties ... (nm-connection-editor: 9816): WARNING **: fetch_connections_done: error fetching connections: (32) ... (nm-connection-editor: 9816): GVFS-RemoteVolumneMonitor-WARNING ** cannot connect to the session bus: (nm-connection-editor: 9816) GVFS-RemoteVolumeMonitor-WARNING **: cannot connect to the session bus ... g_dbus_connection_real_closed: Remote peer vanished with error: Underlying GIOSStream returned 0 bytes onan async read (g-io-error-quark, 0). Exiting.

    Read the article

< Previous Page | 71 72 73 74 75 76 77 78 79 80 81 82  | Next Page >