Search Results

Search found 18598 results on 744 pages for 'result of'.

Page 76/744 | < Previous Page | 72 73 74 75 76 77 78 79 80 81 82 83  | Next Page >

  • The Evolution of Internet Marketing and Search Engine Optimization

    Search Engine Optimization (SEO) is a process of increasing the quality and volume of traffic to a website via a search engine result which is purely organic and not paid. The higher the website appears on a search result, the greater the chance of traffic going to the website. Therefore not only does it create a web presence for a website but has spawned a global industry of advertising and search engine optimization.

    Read the article

  • Search Engine Optimization Can Make Your Website Successful

    In the world of internet marketing, it is very important for a website to appear at the top in search result list. The reason is that the top website in search result receives more visitors from a search engine and so have high traffic. To achieve this higher position, website owners hire SEOs to optimize their website.

    Read the article

  • X11 performance problem after upgrading from Centos3 to Centos5 with an ATI Rage XL

    - by Marcelo Santos
    After upgrading a computer from Centos3 to Centos5 an application that does a lot of scrolling took a very high performance hit. top tells me that X is using a lot of CPU and that was not happening before. The machine has an ATI Rage XL with 8MB and X is using the ati driver as there is no proprietary ATI driver for this board on linux. The xorg.conf: Section "Device" Identifier "Videocard0" Driver "ati" EndSection Section "Screen" Identifier "Screen0" Device "Videocard0" DefaultDepth 24 SubSection "Display" Viewport 0 0 Depth 24 Modes "1024x768" "800x600" "640x480" EndSubSection EndSection Section "DRI" Group 0 Mode 0666 EndSection A similar machine that still has Centos3 installed is able to start DRI on the X server while this one is not, this is the Xorg.0.log for the Centos5 machine: drmOpenDevice: node name is /dev/dri/card0 drmOpenDevice: open result is -1, (No such device or address) drmOpenDevice: open result is -1, (No such device or address) drmOpenDevice: Open failed drmOpenDevice: node name is /dev/dri/card0 drmOpenDevice: open result is -1, (No such device or address) drmOpenDevice: open result is -1, (No such device or address) drmOpenDevice: Open failed [drm] failed to load kernel module "mach64" (II) ATI(0): [drm] drmOpen failed (EE) ATI(0): [dri] DRIScreenInit Failed (II) ATI(0): Largest offscreen areas (with overlaps): (II) ATI(0): 1024 x 1279 rectangle at 0,768 (II) ATI(0): 768 x 1280 rectangle at 0,768 (II) ATI(0): Using XFree86 Acceleration Architecture (XAA) Screen to screen bit blits Solid filled rectangles 8x8 mono pattern filled rectangles Indirect CPU to Screen color expansion Solid Lines Offscreen Pixmaps Setting up tile and stipple cache: 32 128x128 slots 10 256x256 slots (==) ATI(0): Backing store disabled (==) ATI(0): Silken mouse enabled (II) ATI(0): Direct rendering disabled (==) RandR enabled I also tried using EXA instead of XAA and setting: Option "AccelMethod" "XAA" Option "XAANoOffscreenPixmaps" "true" uname -a Linux sir5.erg.inpe.br 2.6.18-128.7.1.el5 #1 SMP Mon Aug 24 08:20:55 EDT 2009 i686 i686 i386 GNU/Linux rpm -qa | grep xorg-x11-server xorg-x11-server-utils-7.1-4.fc6 xorg-x11-server-sdk-1.1.1-48.52.el5 xorg-x11-server-Xvfb-1.1.1-48.52.el5 xorg-x11-server-Xnest-1.1.1-48.52.el5 xorg-x11-server-Xorg-1.1.1-48.52.el5 The drmOpenDevice error continues when using the suggested Option "AIGLX" "true".

    Read the article

  • Is there a fix to display 0 when arithmetic underflow occurs on the Windows 7 calculator?

    - by Pascal Qyy
    I have a problem that exasperates me: When I take the Windows 7 calculator in standard mode, if I do 4, then v (square root), the result is 2 Fine. But, at this point, if I do - (minus), then 2, the result is -1,068281969439142e-19 instead of 0! OK, I know about ? (machine epsilon), and yes, -1,068281969439142e-19 is less than the 64 bits ? (1.11e-16), so, we have an arithmetic underflow, in other words in this case: 0. Great, my computer is able to represent subnormal numbers instead of just flush to zero when this happens, and it seems that it is an improvement! Subnormal values fill the underflow gap with values where the absolute distance between them are the same as for adjacent values just outside of the underflow gap. This is an improvement over the older practice to just have zero in the underflow gap, and where underflowing results were replaced by zero (flush to zero). BUT: this result is false! when you try to explain the concept of the square root to a child and you end up with this kind of result, it only complicates your task... what is the point to represent subnormal numbers in a standard, non scientific calculator? So, is there a way to fix this?

    Read the article

  • Emails going to Junk for Hotmail recipients

    - by David George
    We send daily mass emails to our customers (~30,000+ emails per day). We have problems with Hotmail users receiving our emails. Sometimes the email goes to the Junk folder, but often it will got to their inbox, but the content is blocked so the user sees a message saying "This email was blocked and may be dangerous". If an email is sent to GMAIL it is usually not blocked, but it does show up as from "Uknown" instead of the company. Please be advised I've done the following: 1. No RBLs Checked on - http://multirbl.valli.org/ 2. We do have SPF records published 3. We do have reverse DNS setup 4. Our company even signed up for the Junk Mail Reports Program at Hotmail Here is a sample header, I've noticed the X-SID-Result and the X-AUTH-Result both FAIL every time at Hotmail: X-Message-Delivery: Vj0xLjE7dXM9MDtsPTA7YT0wO0Q9MTtTQ0w9MQ== X-Message-Status: n:0 X-SID-Result: Fail X-AUTH-Result: FAIL X-Message-Info: JGTYoYF78jFqAaC29fBlDlD/ZI36+S6WoFmkQN10UxWFe1xLHhP+rDthGRZM87uHYM926hUBS+s0q46Yx9y6jdurhN6fx0bK Received: from privatecompany.com ([WanIPAddress]) by col0-mc3-f30.Col0.hotmail.com with Microsoft SMTPSVC(6.0.3790.4675); Wed, 5 May 2010 08:41:27 -0700 X-AuditID: ac10fe93-000013bc00000534-46-4be191a1618e Received: from INTERNAL-Email-SERVER([InternalIPAddress]) by privatecompany.com with Microsoft SMTPSVC(6.0.3790.4675); Wed, 5 May 2010 11:41:21 -0400 From: Private Company, Inc.<[email protected]> To: [email protected] Message-Id: <[email protected]> Subject: Date: Wed, 5 May 2010 11:42:46 -0400 MIME-Version: 1.0 Reply-To: [email protected] Content-Type: text/plain; charset="ISO-8859-1" Content-Transfer-Encoding: 8bit X-Brightmail-Tracker: AAAAAA== Return-Path: [email protected] X-OriginalArrivalTime: 05 May 2010 15:41:27.0837 (UTC) FILETIME=[6D06E4D0:01CAEC69]

    Read the article

  • Improving abysmal 802.11n wireless network

    - by concept
    I am in desperate need of help to improve the abysmal performance of my 802.11n wireless network. At best I get 30Mbs (this is an internet download) from a technology that boasts 300Mbs, even worse is the LAN where to date best i have ever gotten is 1Mbs. It is literally quicker to copy the file to a USB and walk it to the other computer. Infrastructure is this AP 802.11n only broadcasting at both 2.4GHz and 5GHz Mac with 802.11a/b/g/n card is connected to the AP via 5GHz Linux with 802.11a/b/g/n card is connected to AP via 2.4GHz I have conducted the following tests (results at end of post) Internet based speed test wired and wireless LAN file copy wired and wireless I have read: http://nutsaboutnets.com/troubleshooting-wi-fi-problems/ http://www.smallnetbuilder.com/wireless/wireless-basics/30664-5-ways-to-fix-slow-80211n-- speed http colon //www.wi-fiplanet dot com/tutorials/7-tips-to-increase-wi-fi-performance.html Slow file transfer on network between two 802.11n laptops (connected directly together via access point) Wireless Network Performance Issues Slower than expected 802.11n wireless network speeds I have made the following optimizations AP broadcasts only 802.11n on both 2.4GHz and 5GHz frequencies 2.4GHz is on a channel with least interference (live in an apartment with lots of APs), this did make a 10Mb/sec improvement Our AP is the only one transmitting on the 5GHz freq. Security: WPA Personal WPA2 AES encryption Bandwidth: 20MHz / 40MHz (i assume this to be channel bonding) I have tried the following with 0 improvement Dropped the Fragment Threshold to 512 Dropped the Request To Send (RTS) Threshold to 512 and 1 Even thought of buying a frequency spectrum analyzer, until i saw the cost of them!!! Speed test results Linux Wired: DOWNLOAD 128.40Mb/s UPLOAD 10.62Mb/s www dot speedtest dot net/my-result/2948381853 Mac Wired: DOWNLOAD 118.02Mb/s UPLOAD 10.56Mb/s www dot speedtest dot net/my-result/2948384406 Linux Wireless: DOWNLOAD 23.99Mb/s UPLOAD 10.31Mb/s www.speedtest dot net/my-result/2948394990 Mac Wireless: DOWNLOAD 22.55Mb/s UPLOAD 10.36Mb/s www.speedtest dot net/my-result/2948396489 LAN NFS 53,345,087 bytes (51Mb) file Linux Mac NFS Wired: 65.6959 Mb/sec Linux Mac NFS Wireless: .9443 Mb/sec All help is appreciated, even testing methods will be accepted.

    Read the article

  • Cisco ASA5505 won't sync with NTP

    - by Martijn Heemels
    Today I noticed that the clock my Cisco ASA 5505 firewall was running about 15 minutes late, which surprised me since I've set up the NTP client. My two NTP servers 10.10.0.1 and 10.10.0.2 are virtualized Windows Server 2008 R2 domain controllers, and both have the correct time. As shown below, the ASA knows about the two servers, can ping them and seems to poll them periodically, so I suppose it can reach them both. The ASA claims its time source is NTP, however the clock is unsynchronized. Neither host is marked as synced. Result of the command: "ping 10.10.0.1" Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 10.10.0.1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms Result of the command: "sh ntp ass" address ref clock st when poll reach delay offset disp ~10.10.0.1 .LOCL. 1 78 1024 377 0.5 643.69 17.0 ~10.10.0.2 10.10.0.1 2 190 1024 377 0.9 655.91 58.4 * master (synced), # master (unsynced), + selected, - candidate, ~ configured Result of the command: "sh ntp stat" Clock is unsynchronized, stratum 16, no reference clock nominal freq is 99.9984 Hz, actual freq is 99.9984 Hz, precision is 2**6 reference time is 00000000.00000000 (07:28:16.000 CEST Thu Feb 7 2036) clock offset is 0.0000 msec, root delay is 0.00 msec root dispersion is 0.00 msec, peer dispersion is 0.00 msec Result of the command: "sh clock detail" 10:33:23.769 CEDT Tue Jun 26 2012 Time source is NTP UTC time is: 08:33:23 UTC Tue Jun 26 2012 Summer time starts 02:00:00 CEST Sun Mar 25 2012 Summer time ends 03:00:00 CEDT Sun Oct 28 2012 I've tried the basic steps of manually setting the time and removing and adding the timeservers, to no avail. My ASA's ntp config is simply: ntp server 10.10.0.1 ntp server 10.10.0.2 Do I need to enable authentication to use a Windows NTP server? Any thoughts?

    Read the article

  • X11 performance problem after upgrading from Centos3 to Centos5 with an ATI Rage XL

    - by Marcelo Santos
    After upgrading a computer from Centos3 to Centos5 an application that does a lot of scrolling took a very high performance hit. top tells me that X is using a lot of CPU and that was not happening before. The machine has an ATI Rage XL with 8MB and X is using the ati driver as there is no proprietary ATI driver for this board on linux. The xorg.conf: Section "Device" Identifier "Videocard0" Driver "ati" EndSection Section "Screen" Identifier "Screen0" Device "Videocard0" DefaultDepth 24 SubSection "Display" Viewport 0 0 Depth 24 Modes "1024x768" "800x600" "640x480" EndSubSection EndSection Section "DRI" Group 0 Mode 0666 EndSection A similar machine that still has Centos3 installed is able to start DRI on the X server while this one is not, this is the Xorg.0.log for the Centos5 machine: drmOpenDevice: node name is /dev/dri/card0 drmOpenDevice: open result is -1, (No such device or address) drmOpenDevice: open result is -1, (No such device or address) drmOpenDevice: Open failed drmOpenDevice: node name is /dev/dri/card0 drmOpenDevice: open result is -1, (No such device or address) drmOpenDevice: open result is -1, (No such device or address) drmOpenDevice: Open failed [drm] failed to load kernel module "mach64" (II) ATI(0): [drm] drmOpen failed (EE) ATI(0): [dri] DRIScreenInit Failed (II) ATI(0): Largest offscreen areas (with overlaps): (II) ATI(0): 1024 x 1279 rectangle at 0,768 (II) ATI(0): 768 x 1280 rectangle at 0,768 (II) ATI(0): Using XFree86 Acceleration Architecture (XAA) Screen to screen bit blits Solid filled rectangles 8x8 mono pattern filled rectangles Indirect CPU to Screen color expansion Solid Lines Offscreen Pixmaps Setting up tile and stipple cache: 32 128x128 slots 10 256x256 slots (==) ATI(0): Backing store disabled (==) ATI(0): Silken mouse enabled (II) ATI(0): Direct rendering disabled (==) RandR enabled I also tried using EXA instead of XAA and setting: Option "AccelMethod" "XAA" Option "XAANoOffscreenPixmaps" "true" uname -a Linux sir5.erg.inpe.br 2.6.18-128.7.1.el5 #1 SMP Mon Aug 24 08:20:55 EDT 2009 i686 i686 i386 GNU/Linux rpm -qa | grep xorg-x11-server xorg-x11-server-utils-7.1-4.fc6 xorg-x11-server-sdk-1.1.1-48.52.el5 xorg-x11-server-Xvfb-1.1.1-48.52.el5 xorg-x11-server-Xnest-1.1.1-48.52.el5 xorg-x11-server-Xorg-1.1.1-48.52.el5 The drmOpenDevice error continues when using the suggested Option "AIGLX" "true".

    Read the article

  • Resize Win2003 system+boot partitions to bigger disks & different controller?

    - by ane
    Have an old Win2003 server with 1 SCSI hard drive partitioned as follows: D: boot (includes D:\ntldr, boot.ini, etc.) C: system (includes C:\WINDOWS) Want to move the whole system to new hardware with bigger drives and different controllers. Specifically, C: to a 300GB SAS drive, and D: to a 2TB SATA drive. Tried: VMWare Converter - VMWare Server - Diskpart Result: Diskpart refuses to resize system or boot disks VMWare Converter - VMWare Server - GParted Result: Will not boot (see http://serverfault.com/questions/219868/resize-ntfs-system-partitions-with-gparted ) Attach original VMWare disk to a duplicate VMWare install - Diskpart Result: Will not boot (goes to Directory Services Restore mode) Backup Exec System Recovery Server Edition 2010 with Restore Anywhere (tried restoring both to VMWare and to the bare system, without VMWare) Result: Windows Boot error: Could not read from the selected boot disk. Check boot path. Supposedly this is a boot.ini problem, so I try bootcfg /rebuild from the recovery console. Says it can't find windows partition so it can't rebuild. Thought about Ghost but it's completely different hardware/controllers that we're restoring to, so I doubt it would boot. Reinstalling Windows from scratch is not an option due to critical custom software heavily embedded on the original machine. Has anyone been in a similar situation (with unusual boot/system partitions) before and figured out how to resize onto different disks?

    Read the article

  • Hotmail mail delivery issue (spam)

    - by chaochito
    Hello, I am running a Postfix server in a dedicated server in a Linux environment (centOS 5.3) for a social networking web application and are experiencing deliverability issues with Hotmail (I can send mails to Gmail, Yahoo, Aol in inbox). I only send legit mails for registered users (notifications). I have SPF, DK and DKIM setup. I pass the Sender ID test when mailing to [email protected] but we have "X-Auth-Result : None" only in Hotmail headers and no X-SID-Result:Pass. We have been enrolled in their program for more than 2 weeks and normally when you apply to their Sender ID program you are supposed to have X-SID-Result:Pass and X-Auth-Result:Pass. I contacted Hotmail about the issue and they told me that my domain looks like added to Sender ID in their system this is beyond their support and asked me to contact my ISP. As you can imagine, my ISP has no clue about that either. I don't really know what could be wrong... Mails are currently filtered as spam and we would like to be able to have them landing in inbox.

    Read the article

  • How to create a new background process in a KSH "while read" loop?

    - by yael
    The following test script has a problem. When I add the line (sleep 5 ) & in the script then the "while read" loop does not read all lines from the file, but only prints the first line. But when I remove the ( sleep 5 ) & from the script, then the script prints all lines as defined in the file. Why the ( sleep 5 ) & causes this? And how to solve the problem? I want to create a new process (for which the sleep is just an example) in the while loop: $ more test #!/bin/ksh while read -r line ; do echo Read a line: echo $line ( sleep 5 )& RESULT=$! echo Started background sleep with process id $RESULT sleep 1 echo Slept for a second kill $RESULT echo Killed background sleep with process id $RESULT done < file echo Completed On my Linux, when using the following contents of file: $ more file 123 aaa 234 bbb 556 ccc ...running ./test just gives me: Read a line: 123 aaa Started background sleep with process id 4181 Slept for a second Killed background sleep with process id 4181 Completed

    Read the article

  • Setting umask for all users

    - by Yarin
    I'm trying to set the default umask to 002 for all users including root on my CentOS box. According to this and other answers, this can be achieved by editing /etc/profile. However the comments at the top of that file say: It's NOT a good idea to change this file unless you know what you are doing. It's much better to create a custom.sh shell script in /etc/profile.d/ to make custom changes to your environment, as this will prevent the need for merging in future updates. So I went ahead and created the following file: /etc/profile.d/myapp.sh with the single line: umask 002 Now, when I create a file logged in as root, the file is born with 664 permissions, the way I had hoped. But files created by my Apache wsgi application, or files created with sudo, still default to 644 permissions... $ touch newfile (as root): Result = 664 (Works) $ sudo touch newfile: Result = 644 (Doesn't work) Files created by Apache wsgi app: Result = 644 (Doesn't work) Files created by Python's RotatingFileHandler: Result = 644 (Doesn't work) Why is this happening, and how can I ensure 664 file permissions system wide, no matter what creates the file? UPDATE: I ended up finding a cleaner solution to this on a per-directory basis using ACLs, which I describe here.

    Read the article

  • Why Are SPF Records Failing?

    - by robobobobo
    Ok I've been going through various different sites, resources and topics here trying to figure out what is wrong with my SPF records but no matter what I do they don't seem to pass. Here's what I have "v=spf1 +a +mx +ip4:217.78.0.92 +ip4:217.78.0.95 -all" I've tried multiple different tools to check my spf records, some give me a pass, some don't. But I can't send mail to certain google app accounts, they just bounce back all the time which is very annoying. Anyone got any ideas? I have noticed that the source IP address is not the IPV4 addresses I've defined, but Cpanel wouldn't let me add that address into it.. And here's the result of tests I'm getting back from port25.com. I'm running WHM by the way and have enabled spf and dkim. Summary of Results SPF check: fail DomainKeys check: neutral DKIM check: pass Sender-ID check: fail SpamAssassin check: ham Details: HELO hostname: server1.viralbamboo.com Source IP: 2a01:258:f000:6:216:3eff:fe87:9379 mail-from: ###@viralbamboo.com SPF check details: Result: fail (not permitted) ID(s) verified: smtp.mailfrom=###@viralbamboo.com DNS record(s): viralbamboo.com. SPF (no records) viralbamboo.com. 13180 IN TXT "v=spf1 +a +mx +ip4:217.78.0.92 +ip4:217.78.0.95 -all" viralbamboo.com. AAAA (no records) viralbamboo.com. 13180 IN MX 0 viralbamboo.com. viralbamboo.com. AAAA (no records) DomainKeys check details: Result: neutral (message not signed) ID(s) verified: header.From=###@viralbamboo.com DNS record(s): DKIM check details: Result: pass (matches From: ###@viralbamboo.com). ID(s) verified: header.d=viralbamboo.com Canonicalized Headers: content-type:multipart/alternative;'20'boundary="4783D1BE-5685-41CF-B91B-1F15E91DD1E3"'0D''0A' date:Mon,'20'1'20'Jul'20'2013'20'21:30:47'20'+0000'0D''0A' subject:=?utf-8?Q?test?='0D''0A' to:"[email protected]?="'20''0D''0A' from:=?utf-8?Q?Rob_Boland_-_Viralbamboo?='20'<###@viralbamboo.com'0D''0A' mime-version:1.0'0D''0A' dkim-signature:v=1;'20'a=rsa-sha256;'20'q=dns/txt;'20'c=relaxed/relaxed;'20'd=viralbamboo.com;'20's=default;'20'h=Content-Type:Date:Subject:To:From:MIME-Version;'20'bh=CJMO7HYeyNVGvxttf/JspIMoLUiWNE6nlQUg5WjTGZQ=;'20'b=;

    Read the article

  • cisco asa + action drop issue

    - by ghp
    Have created a tunnel between 10.x.y.z network and 122.a.b.c ..the tunnel is up and active, but when I try the packet tracer output ..I get the ACTION as drop. I have also enabled same-security-traffic permit intra-interface. Can someone help me what does this drop mean? Result: input-interface: inside input-status: up input-line-status: up output-interface: outside output-status: up output-line-status: up Action: drop Drop-reason: (acl-drop) Flow is denied by configured rule Packet Tracer output @Shane Madden: please find below the packet tracer output. CASA5K-A# CASA5K-A# config t CASA5K-A(config)# packet-tracer input inside tcp 10.x.y.112 0 122.a.b.c 0 Phase: 1 Type: ROUTE-LOOKUP Subtype: input Result: ALLOW Config: Additional Information: in 0.0.0.0 0.0.0.0 outside Phase: 2 Type: ACCESS-LIST Subtype: Result: DROP Config: Implicit Rule Additional Information: Result: input-interface: inside input-status: up input-line-status: up output-interface: outside output-status: up output-line-status: up Action: drop Drop-reason: (acl-drop) Flow is denied by configured rule CASA5K-A(config)# ======================================================================== The access-group are as follows : access-group acl-inbound in interface outside access-group acl-outbound in interface inside and the access-list's are access-list acl-inbound extended permit tcp any any gt 1023 access-list acl-outbound extended permit ip object-group net-Source object net-dest

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • Why do I get a connection error / timeout when using python suds to connect to Microsoft CRM?

    - by Chris R
    When I try to connect to an MS CRM web service using suds/python-ntlm, I am getting a timeout on requests. However, the code that I'm trying to replace -- which calls out to the cURL command line app to do the same call -- succeeds. Clearly something is different in the way that cURL is sending the command data, but I'll be damned if I know what the difference is. Below are the full details of the various calls. Anyone got any tips? Here's the code that is making the request, followed by the output. The cURL command code is below that, and its response follows. Hosts, users, and passwords have been changed to protect the innocent, of course. wsdl_url = 'https://client.service.host/MSCrmServices/2007/MetadataService.asmx?WSDL' username = r'domain\user.name' password = 'userpass' from suds.transport.https import WindowsHttpAuthenticated from suds.client import Client import logging logging.basicConfig(level=logging.INFO) logging.getLogger('suds.client').setLevel(logging.DEBUG) logging.getLogger('suds.transport').setLevel(logging.DEBUG) ntlmTransport = WindowsHttpAuthenticated(username=username, password=password) metadata_client = Client(wsdl_url, transport=ntlmTransport) request = metadata_client.factory.create('RetrieveAttributeRequest') request.MetadataId = '00000000-0000-0000-0000-000000000000' request.EntityLogicalName = 'opportunity' request.LogicalName = 'new_typeofcontact' request.RetrieveAsIfPublished = 'false' attr = metadata_client.service.Execute(request) print attr Here's the output: DEBUG:suds.client:sending to (http://client.service.host/MSCrmServices/2007/MetadataService.asmx) message: <SOAP-ENV:Envelope xmlns:ns0="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ns1="http://schemas.microsoft.com/crm/2007/WebServices" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"> <SOAP-ENV:Header/> <ns0:Body> <ns1:Execute> <ns1:Request xsi:type="ns1:RetrieveAttributeRequest"> <ns1:MetadataId>00000000-0000-0000-0000-000000000000</ns1:MetadataId> <ns1:EntityLogicalName>opportunity</ns1:EntityLogicalName> <ns1:LogicalName>new_typeofcontact</ns1:LogicalName> <ns1:RetrieveAsIfPublished>false</ns1:RetrieveAsIfPublished> </ns1:Request> </ns1:Execute> </ns0:Body> </SOAP-ENV:Envelope> DEBUG:suds.client:headers = {'SOAPAction': u'"http://schemas.microsoft.com/crm/2007/WebServices/Execute"', 'Content-Type': 'text/xml'} DEBUG:suds.transport.http:sending: URL:http://client.service.host/MSCrmServices/2007/MetadataService.asmx HEADERS: {'SOAPAction': u'"http://schemas.microsoft.com/crm/2007/WebServices/Execute"', 'Content-Type': 'text/xml', 'Content-type': 'text/xml', 'Soapaction': u'"http://schemas.microsoft.com/crm/2007/WebServices/Execute"'} MESSAGE: <SOAP-ENV:Envelope xmlns:ns0="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ns1="http://schemas.microsoft.com/crm/2007/WebServices" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"> <SOAP-ENV:Header/> <ns0:Body> <ns1:Execute> <ns1:Request xsi:type="ns1:RetrieveAttributeRequest"> <ns1:MetadataId>00000000-0000-0000-0000-000000000000</ns1:MetadataId> <ns1:EntityLogicalName>opportunity</ns1:EntityLogicalName> <ns1:LogicalName>new_typeofcontact</ns1:LogicalName> <ns1:RetrieveAsIfPublished>false</ns1:RetrieveAsIfPublished> </ns1:Request> </ns1:Execute> </ns0:Body> </SOAP-ENV:Envelope> ERROR: An unexpected error occurred while tokenizing input The following traceback may be corrupted or invalid The error message is: ('EOF in multi-line statement', (16, 0)) --------------------------------------------------------------------------- URLError Traceback (most recent call last) /Users/crose/projects/2366/crm/<ipython console> in <module>() /var/folders/nb/nbJAzxR1HbOppPcs6xO+dE+++TY/-Tmp-/python-67186icm.py in <module>() 19 request.LogicalName = 'new_typeofcontact' 20 request.RetrieveAsIfPublished = 'false' 21 ---> 22 attr = metadata_client.service.Execute(request) 23 print attr /Users/crose/virtualenv/advanis/lib/python2.6/site-packages/suds/client.pyc in __call__(self, *args, **kwargs) 537 return (500, e) 538 else: --> 539 return client.invoke(args, kwargs) 540 541 def faults(self): /Users/crose/virtualenv/advanis/lib/python2.6/site-packages/suds/client.pyc in invoke(self, args, kwargs) 596 self.method.name, timer) 597 timer.start() --> 598 result = self.send(msg) 599 timer.stop() 600 metrics.log.debug( /Users/crose/virtualenv/advanis/lib/python2.6/site-packages/suds/client.pyc in send(self, msg) 621 request = Request(location, str(msg)) 622 request.headers = self.headers() --> 623 reply = transport.send(request) 624 if retxml: 625 result = reply.message /Users/crose/virtualenv/advanis/lib/python2.6/site-packages/suds/transport/https.pyc in send(self, request) 62 def send(self, request): 63 self.addcredentials(request) ---> 64 return HttpTransport.send(self, request) 65 66 def addcredentials(self, request): /Users/crose/virtualenv/advanis/lib/python2.6/site-packages/suds/transport/http.pyc in send(self, request) 75 request.headers.update(u2request.headers) 76 log.debug('sending:\n%s', request) ---> 77 fp = self.u2open(u2request) 78 self.getcookies(fp, u2request) 79 result = Reply(200, fp.headers.dict, fp.read()) /Users/crose/virtualenv/advanis/lib/python2.6/site-packages/suds/transport/http.pyc in u2open(self, u2request) 116 return url.open(u2request) 117 else: --> 118 return url.open(u2request, timeout=tm) 119 120 def u2opener(self): /System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/urllib2.pyc in open(self, fullurl, data, timeout) 381 req = meth(req) 382 --> 383 response = self._open(req, data) 384 385 # post-process response /System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/urllib2.pyc in _open(self, req, data) 399 protocol = req.get_type() 400 result = self._call_chain(self.handle_open, protocol, protocol + --> 401 '_open', req) 402 if result: 403 return result /System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/urllib2.pyc in _call_chain(self, chain, kind, meth_name, *args) 359 func = getattr(handler, meth_name) 360 --> 361 result = func(*args) 362 if result is not None: 363 return result /System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/urllib2.pyc in http_open(self, req) 1128 1129 def http_open(self, req): -> 1130 return self.do_open(httplib.HTTPConnection, req) 1131 1132 http_request = AbstractHTTPHandler.do_request_ /System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/urllib2.pyc in do_open(self, http_class, req) 1103 r = h.getresponse() 1104 except socket.error, err: # XXX what error? -> 1105 raise URLError(err) 1106 1107 # Pick apart the HTTPResponse object to get the addinfourl URLError: <urlopen error [Errno 60] Operation timed out> The cURL command is: /opt/local/bin/curl --ntlm -u "domain\user.name:userpass" -k -d @- -A "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.2; SV1; .NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.04506.648; .NET CLR 3.5.21022; InfoPath.1)" -H "Connection: Keep-Alive" -H "Content-Type: text/xml; charset=utf-8" -H "SOAPAction: http://schemas.microsoft.com/crm/2007/WebServices/Execute" https://client.service.host/MSCrmServices/2007/MetadataService.asmx The data that is piped to that cURL command: <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <soap:Header> <CrmAuthenticationToken xmlns="http://schemas.microsoft.com/crm/2007/WebServices"> <AuthenticationType xmlns="http://schemas.microsoft.com/crm/2007/CoreTypes">0</AuthenticationType> <CrmTicket xmlns="http://schemas.microsoft.com/crm/2007/CoreTypes"></CrmTicket> <OrganizationName xmlns="http://schemas.microsoft.com/crm/2007/CoreTypes">CMIFS</OrganizationName> <CallerId xmlns="http://schemas.microsoft.com/crm/2007/CoreTypes">00000000-0000-0000-0000-000000000000</CallerId> </CrmAuthenticationToken> </soap:Header> <soap:Body> <Execute xmlns="http://schemas.microsoft.com/crm/2007/WebServices"> <Request xsi:type="RetrieveAttributeRequest"> <MetadataId>00000000-0000-0000-0000-000000000000</MetadataId> <EntityLogicalName>opportunity</EntityLogicalName> <LogicalName>new_typeofcontact</LogicalName> <RetrieveAsIfPublished>false</RetrieveAsIfPublished> </Request> </Execute> </soap:Body> </soap:Envelope> Here's the response: <?xml version="1.0" encoding="utf-8"?> <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <soap:Body> <ExecuteResponse xmlns="http://schemas.microsoft.com/crm/2007/WebServices"> <Response xsi:type="RetrieveAttributeResponse"> <AttributeMetadata xsi:type="PicklistAttributeMetadata"> <MetadataId>101346cf-a6af-4eb4-a4bf-9c3c6bbd6582</MetadataId> <SchemaName>New_TypeofContact</SchemaName> <LogicalName>new_typeofcontact</LogicalName> <EntityLogicalName>opportunity</EntityLogicalName> <AttributeType> <Value>Picklist</Value> </AttributeType> <!-- stuff here --> </AttributeMetadata> </Response> </ExecuteResponse> </soap:Body> </soap:Envelope>

    Read the article

  • Conflict between two Javascripts (MailChimp validation etc. scripts & jQuery hSlides.js)

    - by Brian
    I have two scripts running on the same page, one is the jQuery.hSlides.js script http://www.jesuscarrera.info/demos/hslides/ and the other is a custom script that is used for MailChimp list signup integration. The hSlides panel can be seen in effect here: http://theatricalbellydance.com. I've turned off the MailChimp script because it was conflicting with the hSlides script, causing it not to to fail completely (as seen here http://theatricalbellydance.com/home2/). Can someone tell me what could be done to the hSlides script to stop the conflict with the MailChimp script? The MailChimp Script var fnames = new Array(); var ftypes = new Array(); fnames[0] = 'EMAIL'; ftypes[0] = 'email'; fnames[3] = 'MMERGE3'; ftypes[3] = 'text'; fnames[1] = 'FNAME'; ftypes[1] = 'text'; fnames[2] = 'LNAME'; ftypes[2] = 'text'; fnames[4] = 'MMERGE4'; ftypes[4] = 'address'; fnames[6] = 'MMERGE6'; ftypes[6] = 'number'; fnames[9] = 'MMERGE9'; ftypes[9] = 'text'; fnames[5] = 'MMERGE5'; ftypes[5] = 'text'; fnames[7] = 'MMERGE7'; ftypes[7] = 'text'; fnames[8] = 'MMERGE8'; ftypes[8] = 'text'; fnames[10] = 'MMERGE10'; ftypes[10] = 'text'; fnames[11] = 'MMERGE11'; ftypes[11] = 'text'; fnames[12] = 'MMERGE12'; ftypes[12] = 'text'; var err_style = ''; try { err_style = mc_custom_error_style; } catch (e) { err_style = 'margin: 1em 0 0 0; padding: 1em 0.5em 0.5em 0.5em; background: rgb(255, 238, 238) none repeat scroll 0% 0%; font-weight: bold; float: left; z-index: 1; width: 80%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; color: rgb(255, 0, 0);'; } var mce_jQuery = jQuery.noConflict(); mce_jQuery(document).ready(function ($) { var options = { errorClass: 'mce_inline_error', errorElement: 'div', errorStyle: err_style, onkeyup: function () {}, onfocusout: function () {}, onblur: function () {} }; var mce_validator = mce_jQuery("#mc-embedded-subscribe-form").validate(options); options = { url: 'http://theatricalbellydance.us1.list-manage.com/subscribe/post-json?u=1d127e7630ced825cb1a8b5a9&id=9f12d2a6bb&c=?', type: 'GET', dataType: 'json', contentType: "application/json; charset=utf-8", beforeSubmit: function () { mce_jQuery('#mce_tmp_error_msg').remove(); mce_jQuery('.datefield', '#mc_embed_signup').each(function () { var txt = 'filled'; var fields = new Array(); var i = 0; mce_jQuery(':text', this).each(function () { fields[i] = this; i++; }); mce_jQuery(':hidden', this).each(function () { if (fields[0].value == 'MM' && fields[1].value == 'DD' && fields[2].value == 'YYYY') { this.value = ''; } else if (fields[0].value == '' && fields[1].value == '' && fields[2].value == '') { this.value = ''; } else { this.value = fields[0].value + '/' + fields[1].value + '/' + fields[2].value; } }); }); return mce_validator.form(); }, success: mce_success_cb }; mce_jQuery('#mc-embedded-subscribe-form').ajaxForm(options); }); function mce_success_cb(resp) { mce_jQuery('#mce-success-response').hide(); mce_jQuery('#mce-error-response').hide(); if (resp.result == "success") { mce_jQuery('#mce-' + resp.result + '-response').show(); mce_jQuery('#mce-' + resp.result + '-response').html(resp.msg); mce_jQuery('#mc-embedded-subscribe-form').each(function () { this.reset(); }); } else { var index = -1; var msg; try { var parts = resp.msg.split(' - ', 2); if (parts[1] == undefined) { msg = resp.msg; } else { i = parseInt(parts[0]); if (i.toString() == parts[0]) { index = parts[0]; msg = parts[1]; } else { index = -1; msg = resp.msg; } } } catch (e) { index = -1; msg = resp.msg; } try { if (index == -1) { mce_jQuery('#mce-' + resp.result + '-response').show(); mce_jQuery('#mce-' + resp.result + '-response').html(msg); } else { err_id = 'mce_tmp_error_msg'; html = '<div id="' + err_id + '" style="' + err_style + '"> ' + msg + '</div>'; var input_id = '#mc_embed_signup'; var f = mce_jQuery(input_id); if (ftypes[index] == 'address') { input_id = '#mce-' + fnames[index] + '-addr1'; f = mce_jQuery(input_id).parent().parent().get(0); } else if (ftypes[index] == 'date') { input_id = '#mce-' + fnames[index] + '-month'; f = mce_jQuery(input_id).parent().parent().get(0); } else { input_id = '#mce-' + fnames[index]; f = mce_jQuery().parent(input_id).get(0); } if (f) { mce_jQuery(f).append(html); mce_jQuery(input_id).focus(); } else { mce_jQuery('#mce-' + resp.result + '-response').show(); mce_jQuery('#mce-' + resp.result + '-response').html(msg); } } } catch (e) { mce_jQuery('#mce-' + resp.result + '-response').show(); mce_jQuery('#mce-' + resp.result + '-response').html(msg); } } } The hslides script: /* * hSlides (1.0) // 2008.02.25 // <http://plugins.jquery.com/project/hslides> * * REQUIRES jQuery 1.2.3+ <http://jquery.com/> * * Copyright (c) 2008 TrafficBroker <http://www.trafficbroker.co.uk> * Licensed under GPL and MIT licenses * * hSlides is an horizontal accordion navigation, sliding the panels around to reveal one of interest. * * Sample Configuration: * // this is the minimum configuration needed * $('#accordion').hSlides({ * totalWidth: 730, * totalHeight: 140, * minPanelWidth: 87, * maxPanelWidth: 425 * }); * * Config Options: * // Required configuration * totalWidth: Total width of the accordion // default: 0 * totalHeight: Total height of the accordion // default: 0 * minPanelWidth: Minimum width of the panel (closed) // default: 0 * maxPanelWidth: Maximum width of the panel (opened) // default: 0 * // Optional configuration * midPanelWidth: Middle width of the panel (centered) // default: 0 * speed: Speed for the animation // default: 500 * easing: Easing effect for the animation. Other than 'swing' or 'linear' must be provided by plugin // default: 'swing' * sensitivity: Sensitivity threshold (must be 1 or higher) // default: 3 * interval: Milliseconds for onMouseOver polling interval // default: 100 * timeout: Milliseconds delay before onMouseOut // default: 300 * eventHandler: Event to open panels: click or hover. For the hover option requires hoverIntent plugin <http://cherne.net/brian/resources/jquery.hoverIntent.html> // default: 'click' * panelSelector: HTML element storing the panels // default: 'li' * activeClass: CSS class for the active panel // default: none * panelPositioning: Accordion panelPositioning: top -> first panel on the bottom and next on the top, other value -> first panel on the top and next to the bottom // default: 'top' * // Callback funtctions. Inside them, we can refer the panel with $(this). * onEnter: Funtion raised when the panel is activated. // default: none * onLeave: Funtion raised when the panel is deactivated. // default: none * * We can override the defaults with: * $.fn.hSlides.defaults.easing = 'easeOutCubic'; * * @param settings An object with configuration options * @author Jesus Carrera <[email protected]> */ (function($) { $.fn.hSlides = function(settings) { // override default configuration settings = $.extend({}, $.fn.hSlides.defaults, settings); // for each accordion return this.each(function(){ var wrapper = this; var panelLeft = 0; var panels = $(settings.panelSelector, wrapper); var panelPositioning = 1; if (settings.panelPositioning != 'top'){ panelLeft = ($(settings.panelSelector, wrapper).length - 1) * settings.minPanelWidth; panels = $(settings.panelSelector, wrapper).reverse(); panelPositioning = -1; } // necessary styles for the wrapper $(this).css('position', 'relative').css('overflow', 'hidden').css('width', settings.totalWidth).css('height', settings.totalHeight); // set the initial position of the panels var zIndex = 0; panels.each(function(){ // necessary styles for the panels $(this).css('position', 'absolute').css('left', panelLeft).css('zIndex', zIndex).css('height', settings.totalHeight).css('width', settings.maxPanelWidth); zIndex ++; // if this panel is the activated by default, set it as active and move the next (to show this one) if ($(this).hasClass(settings.activeClass)){ $.data($(this)[0], 'active', true); if (settings.panelPositioning != 'top'){ panelLeft = ($(settings.panelSelector, wrapper).index(this) + 1) * settings.minPanelWidth - settings.maxPanelWidth; }else{ panelLeft = panelLeft + settings.maxPanelWidth; } }else{ // check if we are centering and some panel is active // this is why we can't add/remove the active class in the callbacks: positioning the panels if we have one active if (settings.midPanelWidth && $(settings.panelSelector, wrapper).hasClass(settings.activeClass) == false){ panelLeft = panelLeft + settings.midPanelWidth * panelPositioning; }else{ panelLeft = panelLeft + settings.minPanelWidth * panelPositioning; } } }); // iterates through the panels setting the active and changing the position var movePanels = function(){ // index of the new active panel var activeIndex = $(settings.panelSelector, wrapper).index(this); // iterate all panels panels.each(function(){ // deactivate if is the active if ( $.data($(this)[0], 'active') == true ){ $.data($(this)[0], 'active', false); $(this).removeClass(settings.activeClass).each(settings.onLeave); } // set position of current panel var currentIndex = $(settings.panelSelector, wrapper).index(this); panelLeft = settings.minPanelWidth * currentIndex; // if the panel is next to the active, we need to add the opened width if ( (currentIndex * panelPositioning) > (activeIndex * panelPositioning)){ panelLeft = panelLeft + (settings.maxPanelWidth - settings.minPanelWidth) * panelPositioning; } // animate $(this).animate({left: panelLeft}, settings.speed, settings.easing); }); // activate the new active panel $.data($(this)[0], 'active', true); $(this).addClass(settings.activeClass).each(settings.onEnter); }; // center the panels if configured var centerPanels = function(){ var panelLeft = 0; if (settings.panelPositioning != 'top'){ panelLeft = ($(settings.panelSelector, wrapper).length - 1) * settings.minPanelWidth; } panels.each(function(){ $(this).removeClass(settings.activeClass).animate({left: panelLeft}, settings.speed, settings.easing); if ($.data($(this)[0], 'active') == true){ $.data($(this)[0], 'active', false); $(this).each(settings.onLeave); } panelLeft = panelLeft + settings.midPanelWidth * panelPositioning ; }); }; // event handling if(settings.eventHandler == 'click'){ $(settings.panelSelector, wrapper).click(movePanels); }else{ var configHoverPanel = { sensitivity: settings.sensitivity, interval: settings.interval, over: movePanels, timeout: settings.timeout, out: function() {} } var configHoverWrapper = { sensitivity: settings.sensitivity, interval: settings.interval, over: function() {}, timeout: settings.timeout, out: centerPanels } $(settings.panelSelector, wrapper).hoverIntent(configHoverPanel); if (settings.midPanelWidth != 0){ $(wrapper).hoverIntent(configHoverWrapper); } } }); }; // invert the order of the jQuery elements $.fn.reverse = function(){ return this.pushStack(this.get().reverse(), arguments); }; // default settings $.fn.hSlides.defaults = { totalWidth: 0, totalHeight: 0, minPanelWidth: 0, maxPanelWidth: 0, midPanelWidth: 0, speed: 500, easing: 'swing', sensitivity: 3, interval: 100, timeout: 300, eventHandler: 'click', panelSelector: 'li', activeClass: false, panelPositioning: 'top', onEnter: function() {}, onLeave: function() {} }; })(jQuery);

    Read the article

  • Why can I query with an int but not a string here? PHP MySQL Datatypes

    - by CT
    I am working on an Asset Database problem. I receive $id from $_GET["id"]; I then query the database and display the results. This works if my id is an integer like "93650" but if it has other characters like "wci1001", it displays this MySQL error: Unknown column 'text' in 'where clause' All fields in tables are of type: VARCHAR(50) What would I need to do to be able to use this query to search by id that includes other characters? Thank you. <?php <?php /* * ASSET DB FUNCTIONS SCRIPT * */ # connect to database function ConnectDB(){ mysql_connect("localhost", "asset_db", "asset_db") or die(mysql_error()); mysql_select_db("asset_db") or die(mysql_error()); } # find asset type returns $type function GetAssetType($id){ $sql = "SELECT asset.type From asset WHERE asset.id = $id"; $result = mysql_query($sql) or die(mysql_error()); $row = mysql_fetch_assoc($result); $type = $row['type']; return $type; } # query server returns $result (sql query array) function QueryServer($id){ $sql = " SELECT asset.id ,asset.company ,asset.location ,asset.purchaseDate ,asset.purchaseOrder ,asset.value ,asset.type ,asset.notes ,server.manufacturer ,server.model ,server.serialNumber ,server.esc ,server.warranty ,server.user ,server.prevUser ,server.cpu ,server.memory ,server.hardDrive FROM asset LEFT JOIN server ON server.id = asset.id WHERE asset.id = $id "; $result = mysql_query($sql); return $result; } # get server data returns $serverArray function GetServerData($result){ while($row = mysql_fetch_assoc($result)) { $id = $row['id']; $company = $row['company']; $location = $row['location']; $purchaseDate = $row['purchaseDate']; $purchaseOrder = $row['purchaseOrder']; $value = $row['value']; $type = $row['type']; $notes = $row['notes']; $manufacturer = $row['manufacturer']; $model = $row['model']; $serialNumber = $row['serialNumber']; $esc = $row['esc']; $warranty = $row['warranty']; $user = $row['user']; $prevUser = $row['prevUser']; $cpu = $row['cpu']; $memory = $row['memory']; $hardDrive = $row['hardDrive']; $serverArray = array($id, $company, $location, $purchaseDate, $purchaseOrder, $value, $type, $notes, $manufacturer, $model, $serialNumber, $esc, $warranty, $user, $prevUser, $cpu, $memory, $hardDrive); } return $serverArray; } # print server table function PrintServerTable($serverArray){ $id = $serverArray[0]; $company = $serverArray[1]; $location = $serverArray[2]; $purchaseDate = $serverArray[3]; $purchaseOrder = $serverArray[4]; $value = $serverArray[5]; $type = $serverArray[6]; $notes = $serverArray[7]; $manufacturer = $serverArray[8]; $model = $serverArray[9]; $serialNumber = $serverArray[10]; $esc = $serverArray[11]; $warranty = $serverArray[12]; $user = $serverArray[13]; $prevUser = $serverArray[14]; $cpu = $serverArray[15]; $memory = $serverArray[16]; $hardDrive = $serverArray[17]; echo "<table width=\"100%\" border=\"0\"><tr><td style=\"vertical-align:top\"><table width=\"100%\" border=\"0\"><tr><td colspan=\"2\"><h2>General Info</h2></td></tr><tr id=\"hightlight\"><td>Asset ID:</td><td>"; echo $id; echo "</td></tr><tr><td>Company:</td><td>"; echo $company; echo "</td></tr><tr id=\"hightlight\"><td>Location:</td><td>"; echo $location; echo "</td></tr><tr><td>Purchase Date:</td><td>"; echo $purchaseDate; echo "</td></tr><tr id=\"hightlight\"><td>Purchase Order #:</td><td>"; echo $purchaseOrder; echo "</td></tr><tr><td>Value:</td><td>"; echo $value; echo "</td></tr><tr id=\"hightlight\"><td>Type:</td><td>"; echo $type; echo "</td></tr><tr><td>Notes:</td><td>"; echo $notes; echo "</td></tr></table></td><td style=\"vertical-align:top\"><table width=\"100%\" border=\"0\"><tr><td colspan=\"2\"><h2>Server Info</h2></td></tr><tr id=\"hightlight\"><td>Manufacturer:</td><td>"; echo $manufacturer; echo "</td></tr><tr><td>Model:</td><td>"; echo $model; echo "</td></tr><tr id=\"hightlight\"><td>Serial Number:</td><td>"; echo $serialNumber; echo "</td></tr><tr><td>ESC:</td><td>"; echo $esc; echo "</td></tr><tr id=\"hightlight\"><td>Warranty:</td><td>"; echo $warranty; echo "</td></tr><tr><td colspan=\"2\">&nbsp;</td></tr><tr><td colspan=\"2\"><h2>User Info</h2></td></tr><tr id=\"hightlight\"><td>User:</td><td>"; echo $user; echo "</td></tr><tr><td>Previous User:</td><td>"; echo $prevUser; echo "</td></tr></table></td><td style=\"vertical-align:top\"><table width=\"100%\" border=\"0\"><tr><td colspan=\"2\"><h2>Specs</h2></td></tr><tr id=\"hightlight\"><td>CPU:</td><td>"; echo $cpu; echo "</td></tr><tr><td>Memory:</td><td>"; echo $memory; echo "</td></tr><tr id=\"hightlight\"><td>Hard Drive:</td><td>"; echo $hardDrive; echo "</td></tr><tr><td colspan=\"2\">&nbsp;</td></tr><tr><td colspan=\"2\">&nbsp;</td></tr><tr><td colspan=\"2\"><h2>Options</h2></td></tr><tr><td colspan=\"2\"><a href=\"#\">Edit Asset</a></td></tr><tr><td colspan=\"2\"><a href=\"#\">Delete Asset</a></td></tr></table></td></tr></table>"; } ?> __ /* * View Asset * */ # include functions script include "functions.php"; $id = $_GET["id"]; if (empty($id)):$id="000"; endif; ConnectDB(); $type = GetAssetType($id); ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="stylesheet" type="text/css" href="style.css" /> <title>Wagman IT Asset</title> </head> <body> <div id="page"> <div id="header"> <img src="images/logo.png" /> </div> </div> <div id="content"> <div id="container"> <div id="main"> <div id="menu"> <ul> <table width="100%" border="0"> <tr> <td width="15%"></td> <td width="30%%"><li><a href="index.php">Search Assets</a></li></td> <td width="30%"><li><a href="addAsset.php">Add Asset</a></li></td> <td width="25%"></td> </tr> </table> </ul> </div> <div id="text"> <ul> <li> <h1>View Asset</h1> </li> </ul> <?php if (empty($type)):echo "<ul><li><h2>Asset ID does not match any database entries.</h2></li></ul>"; else: switch ($type){ case "Server": $result = QueryServer($id); $ServerArray = GetServerData($result); PrintServerTable($ServerArray); break; case "Desktop"; break; case "Laptop"; break; } endif; ?> </div> </div> </div> <div class="clear"></div> <div id="footer" align="center"> <p>&nbsp;</p> </div> </div> <div id="tagline"> Wagman Construction - Bridging Generations since 1902 </div> </body> </html>

    Read the article

  • PHP Facebook Cronjob with offline access

    - by Mohamed Salem
    1:the code to greet the user, ask for his permission and store his session data so that we can use a cronjob with his session data afterwards. <?php $db_server = "localhost"; $db_username = "username"; $db_password = "password"; $db_name = "databasename"; #go to line 85, the script actually starts there mysql_connect($db_server,$db_username,$db_password); mysql_select_db($db_name); #you have to create a database to store session values. #if you do not know what columns there should be look at line 76 to see column names. #make them all varchars # Now lets load the FB GRAPH API require './facebook.php'; // Create our Application instance. global $facebook; $facebook = new Facebook(array( 'appId' => '121036530138', 'secret' => '9bbec378147064', 'cookie' => false,)); # Lets set up the permissions we need and set the login url in case we need it. $par['req_perms'] = "friends_about_me,friends_education_history,friends_likes, friends_interests,friends_location,friends_religion_politics, friends_work_history,publish_stream,friends_activities, friends_events, friends_hometown,friends_location ,user_interests,user_likes,user_events, user_about_me,user_status,user_work_history,read_requests, read_stream,offline_access,user_religion_politics,email,user_groups"; $loginUrl = $facebook->getLoginUrl($par); function save_session($session){ global $facebook; # OK lets go to the database and see if we have a session stored $sid=mysql_query("Select access_token from facebook_user WHERE uid =".$session['uid']); $session_id=mysql_fetch_row($sid); if (is_array($session_id)) { # We have a stored session, but is it valid? echo " We have a session, but is it valid?"; try { $attachment = array('access_token' => $session_id[0]); $ret_code=$facebook->api('/me', 'GET', $attachment); } catch (Exception $e) { # We don't have a good session so echo " our old session is not valid, let's delete saved invalid session data "; $res = mysql_query("delete from facebook_user WHERE uid =".$session['uid']); #save new good session #to see what is our session data: print_r($session); if (is_array($session)) { $sql="insert into facebook_user (session_key,uid,expires,secret,access_token,sig) VALUES ('".$session['session_key']."','".$session['uid']."','". $session['expires']."','". $session['secret'] ."','" . $session['access_token']."','". $session['sig']."');"; $res = mysql_query($sql); return $session['access_token']; } # this should never ever happen echo " Something is terribly wrong: Our old session was bad, and now we cannot get the new session"; return; } echo " Our old stored session is valid "; return $session_id[0]; } else { echo " no stored session, this means the user never subscribed to our application before. "; # let's store the session $session = $facebook->getSession(); if (is_array($session)) { # Yes we have a session! so lets store it! $sql="insert into facebook_user (session_key,uid,expires,secret,access_token,sig) VALUES ('".$session['session_key']."','".$session['uid']."','". $session['expires']."','". $session['secret'] ."','". $session['access_token']."','". $session['sig']."');"; $res = mysql_query($sql); return $session['access_token']; } } } #this is the first meaningful line of this script. $session = $facebook->getSession(); # Is the user already subscribed to our application? if ( is_null($session) ) { # no he is not #send him to permissions page header( "Location: $loginUrl" ); } else { #yes, he is already subscribed, or subscribed just now #in case he just subscribed now, save his session information $access_token=save_session($session); echo " everything is ok"; # write your code here to do something afterwards } ?> error Warning: session_start() [function.session-start]: Cannot send session cache limiter - headers already sent (output started at /home/content/28/9687528/html/ss/src/indexx.php:1) in /home/content/28/9687528/html/ss/src/facebook.php on line 49 Fatal error: Call to undefined method Facebook::getSession() in /home/content/28/9687528/html/ss/src/indexx.php on line 86 2:A cronjob template that reads the stored session of a user from database, uses his session data to work on his behalf, like reading status posts or publishing posts etc. <?php $db_server = "localhost"; $db_username = "username"; $db_password = "pass"; $db_name = "database"; # Lets connect to the Database and set up the table $link = mysql_connect($db_server,$db_username,$db_password); mysql_select_db($db_name); # Now lets load the FB GRAPH API require './facebook.php'; // Create our Application instance. global $facebook; $facebook = new Facebook(array( 'appId' => 'appid', 'secret' => 'secret', 'cookie' => false, )); function get_check_session($uidCheck){ global $facebook; # This function basically checks for a stored session and if we have one it returns it # OK lets go to the database and see if we have a session stored $sid=mysql_query("Select access_token from facebook_user WHERE uid =".$uidCheck); $session_id=mysql_fetch_row($sid); if (is_array($session_id)) { # We have a session # but, is it valid? try { $attachment = array('access_token' => $session_id[0],); $ret_code=$facebook->api('/me', 'GET', $attachment); } catch (Exception $e) { # We don't have a good session so echo " User ".$uidCheck." removed the application, or there is some other access problem. "; # let's delete stored data $res = mysql_query("delete from facebook_user where WHERE uid =".$uidCheck); return; } return $session_id[0]; } else { # "no stored session"; echo " error:newsFeedcrontab.php No stored sessions. This should not have happened "; } } # get all users that have given us offline access $users = getUsers(); foreach($users as $user){ # now for each user, check if they are still subscribed to our application echo " Checking user".$user; $access_token=get_check_session($user); # If we've not got an access_token we actually need to login. # but in the crontab, we just log the error, there is no way we can find the user to give us permission here. if ( is_null($access_token) ) { echo " error: newsFeedcrontab.php There is no access token for the user ".$user." "; } else { #we are going to read the newsfeed of user. There are user's friends' posts in this newsfeed try{ $attachment = array('access_token' => $access_token); $result=$facebook->api('/me/home', 'GET', $attachment); }catch(Exception $e){ echo " error: newsfeedcrontab.php, cannot get feed of ".$user.$e; } #do something with the result here #but what does the result look like? #go to http://developers.facebook.com/docs/reference/api/user/ and click on the "home" link under connections #we can also read the home of user. Home is the wall of the user who has given us offline access. try{ $attachment = array('access_token' => $access_token); $result=$facebook->api('/me/feed', 'GET', $attachment); }catch(Exception $e){ echo " error: newsfeedcrontab.php, cannot get wall of ".$user.$e; } #do something with the result here # #but what does the result look like? #go to http://developers.facebook.com/docs/reference/api/user/ and click on the "feed" link under connections } } function getUsers(){ $sql = "SELECT distinct(uid) from facebook_user Where 1"; $result = mysql_query($sql); while($row = mysql_fetch_array($result)){ $rows [] = $row['uid']; } print_r($rows); return $rows; } mysql_close($link); ?> error Warning: session_start() [function.session-start]: Cannot send session cache limiter - headers already sent (output started at /home/content/28/9687528/html/ss/src/cron.php:1) in /home/content/28/9687528/html/ss/src/facebook.php on line 49 Warning: mysql_fetch_array(): supplied argument is not a valid MySQL result resource in /home/content/28/9687528/html/ss/src/cron.php on line 110 Warning: Invalid argument supplied for foreach() in /home/content/28/9687528/html/ss/src/cron.php on line 64

    Read the article

  • Sun Fire X4800 M2 Delivers World Record TPC-C for x86 Systems

    - by Brian
    Oracle's Sun Fire X4800 M2 server equipped with eight 2.4 GHz Intel Xeon Processor E7-8870 chips obtained a result of 5,055,888 tpmC on the TPC-C benchmark. This result is a world record for x86 servers. Oracle demonstrated this world record database performance running Oracle Database 11g Release 2 Enterprise Edition with Partitioning. The Sun Fire X4800 M2 server delivered a new x86 TPC-C world record of 5,055,888 tpmC with a price performance of $0.89/tpmC using Oracle Database 11g Release 2. This configuration is available 06/26/12. The Sun Fire X4800 M2 server delivers 3.0x times better performance than the next 8-processor result, an IBM System p 570 equipped with POWER6 processors. The Sun Fire X4800 M2 server has 3.1x times better price/performance than the 8-processor 4.7GHz POWER6 IBM System p 570. The Sun Fire X4800 M2 server has 1.6x times better performance than the 4-processor IBM x3850 X5 system equipped with Intel Xeon processors. This is the first TPC-C result on any system using eight Intel Xeon Processor E7-8800 Series chips. The Sun Fire X4800 M2 server is the first x86 system to get over 5 million tpmC. The Oracle solution utilized Oracle Linux operating system and Oracle Database 11g Enterprise Edition Release 2 with Partitioning to produce the x86 world record TPC-C benchmark performance. Performance Landscape Select TPC-C results (sorted by tpmC, bigger is better) System p/c/t tpmC Price/tpmC Avail Database MemorySize Sun Fire X4800 M2 8/80/160 5,055,888 0.89 USD 6/26/2012 Oracle 11g R2 4 TB IBM x3850 X5 4/40/80 3,014,684 0.59 USD 7/11/2011 DB2 ESE 9.7 3 TB IBM x3850 X5 4/32/64 2,308,099 0.60 USD 5/20/2011 DB2 ESE 9.7 1.5 TB IBM System p 570 8/16/32 1,616,162 3.54 USD 11/21/2007 DB2 9.0 2 TB p/c/t - processors, cores, threads Avail - availability date Oracle and IBM TPC-C Response times System tpmC Response Time (sec) New Order 90th% Response Time (sec) New Order Average Sun Fire X4800 M2 5,055,888 0.210 0.166 IBM x3850 X5 3,014,684 0.500 0.272 Ratios - Oracle Better 1.6x 1.4x 1.3x Oracle uses average new order response time for comparison between Oracle and IBM. Graphs of Oracle's and IBM's response times for New-Order can be found in the full disclosure reports on TPC's website TPC-C Official Result Page. Configuration Summary and Results Hardware Configuration: Server Sun Fire X4800 M2 server 8 x 2.4 GHz Intel Xeon Processor E7-8870 4 TB memory 8 x 300 GB 10K RPM SAS internal disks 8 x Dual port 8 Gbs FC HBA Data Storage 10 x Sun Fire X4270 M2 servers configured as COMSTAR heads, each with 1 x 3.06 GHz Intel Xeon X5675 processor 8 GB memory 10 x 2 TB 7.2K RPM 3.5" SAS disks 2 x Sun Storage F5100 Flash Array storage (1.92 TB each) 1 x Brocade 5300 switches Redo Storage 2 x Sun Fire X4270 M2 servers configured as COMSTAR heads, each with 1 x 3.06 GHz Intel Xeon X5675 processor 8 GB memory 11 x 2 TB 7.2K RPM 3.5" SAS disks Clients 8 x Sun Fire X4170 M2 servers, each with 2 x 3.06 GHz Intel Xeon X5675 processors 48 GB memory 2 x 300 GB 10K RPM SAS disks Software Configuration: Oracle Linux (Sun Fire 4800 M2) Oracle Solaris 11 Express (COMSTAR for Sun Fire X4270 M2) Oracle Solaris 10 9/10 (Sun Fire X4170 M2) Oracle Database 11g Release 2 Enterprise Edition with Partitioning Oracle iPlanet Web Server 7.0 U5 Tuxedo CFS-R Tier 1 Results: System: Sun Fire X4800 M2 tpmC: 5,055,888 Price/tpmC: 0.89 USD Available: 6/26/2012 Database: Oracle Database 11g Cluster: no New Order Average Response: 0.166 seconds Benchmark Description TPC-C is an OLTP system benchmark. It simulates a complete environment where a population of terminal operators executes transactions against a database. The benchmark is centered around the principal activities (transactions) of an order-entry environment. These transactions include entering and delivering orders, recording payments, checking the status of orders, and monitoring the level of stock at the warehouses. Key Points and Best Practices Oracle Database 11g Release 2 Enterprise Edition with Partitioning scales easily to this high level of performance. COMSTAR (Common Multiprotocol SCSI Target) is the software framework that enables an Oracle Solaris host to serve as a SCSI Target platform. COMSTAR uses a modular approach to break the huge task of handling all the different pieces in a SCSI target subsystem into independent functional modules which are glued together by the SCSI Target Mode Framework (STMF). The modules implementing functionality at SCSI level (disk, tape, medium changer etc.) are not required to know about the underlying transport. And the modules implementing the transport protocol (FC, iSCSI, etc.) are not aware of the SCSI-level functionality of the packets they are transporting. The framework hides the details of allocation providing execution context and cleanup of SCSI commands and associated resources and simplifies the task of writing the SCSI or transport modules. Oracle iPlanet Web Server middleware is used for the client tier of the benchmark. Each web server instance supports more than a quarter-million users while satisfying the response time requirement from the TPC-C benchmark. See Also Oracle Press Release -- Sun Fire X4800 M2 TPC-C Executive Summary tpc.org Complete Sun Fire X4800 M2 TPC-C Full Disclosure Report tpc.org Transaction Processing Performance Council (TPC) Home Page Ideas International Benchmark Page Sun Fire X4800 M2 Server oracle.com OTN Oracle Linux oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Sun Storage F5100 Flash Array oracle.com OTN Disclosure Statement TPC Benchmark C, tpmC, and TPC-C are trademarks of the Transaction Processing Performance Council (TPC). Sun Fire X4800 M2 (8/80/160) with Oracle Database 11g Release 2 Enterprise Edition with Partitioning, 5,055,888 tpmC, $0.89 USD/tpmC, available 6/26/2012. IBM x3850 X5 (4/40/80) with DB2 ESE 9.7, 3,014,684 tpmC, $0.59 USD/tpmC, available 7/11/2011. IBM x3850 X5 (4/32/64) with DB2 ESE 9.7, 2,308,099 tpmC, $0.60 USD/tpmC, available 5/20/2011. IBM System p 570 (8/16/32) with DB2 9.0, 1,616,162 tpmC, $3.54 USD/tpmC, available 11/21/2007. Source: http://www.tpc.org/tpcc, results as of 7/15/2011.

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #005

    - by pinaldave
    Here is the list of curetted articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2006 SQL SERVER – Cursor to Kill All Process in Database I indeed wrote this cursor and when I often look back, I wonder how naive I was to write this. The reason for writing this cursor was to free up my database from any existing connection so I can do database operation. This worked fine but there can be a potentially big issue if there was any important transaction was killed by this process. There is another way to to achieve the same thing where we can use ALTER syntax to take database in single user mode. Read more about that over here and here. 2007 Rules of Third Normal Form and Normalization Advantage – 3NF The rules of 3NF are mentioned here Make a separate table for each set of related attributes, and give each table a primary key. If an attribute depends on only part of a multi-valued key, remove it to a separate table If attributes do not contribute to a description of the key, remove them to a separate table. Correct Syntax for Stored Procedure SP Sometime a simple question is the most important question. I often see in industry incorrectly written Stored Procedure. Few writes code after the most outer BEGIN…END and few writes code after the GO Statement. In this brief blog post, I have attempted to explain the same. 2008 Switch Between Result Pan and Query Pan – SQL Shortcut Many times when I am writing query I have to scroll the result displayed in the result set. Most of the developer uses the mouse to switch between and Query Pane and Result Pane. There are few developers who are crazy about Keyboard shortcuts. F6 is the keyword which can be used to switch between query pane and tabs of the result pane. Interesting Observation – Use of Index and Execution Plan Query Optimization is a complex game and it has its own rules. From the example in the article we have discovered that Query Optimizer does not use clustered index to retrieve data, sometime non clustered index provides optimal performance for retrieving Primary Key. When all the rows and columns are selected Primary Key should be used to select data as it provides optimal performance. 2009 Interesting Observation – TOP 100 PERCENT and ORDER BY If you pull up any application or system where there are more than 100 SQL Server Views are created – I am very confident that at one or two places you will notice the scenario wherein View the ORDER BY clause is used with TOP 100 PERCENT. SQL Server 2008 VIEW with ORDER BY clause does not throw an error; moreover, it does not acknowledge the presence of it as well. In this article we have taken three perfect examples and demonstrated which clause we should use when. Comma Separated Values (CSV) from Table Column A Very common question – How to create comma separated values from a table in the database? The answer is also very common if we use XML. Check out this article for quick learning on the same subject. Azure Start Guide – Step by Step Installation Guide Though Azure portal has changed a quite bit since I wrote this article, the concept used in this article are not old. They are still valid and many of the functions are still working as mentioned in the article. I believe this one article will put you on the track to use Azure! Size of Index Table for Each Index – Solution Earlier I have posted a small question on this blog and requested help from readers to participate here and provide a solution. The puzzle was to write a query that will return the size for each index that is on any particular table. We need a query that will return an additional column in the above listed query and it should contain the size of the index. This article presents two of the best solutions from the puzzle. 2010 Well, this week in 2010 was the week of puzzles as I posted three interesting puzzles. Till today I am noticing pretty good interesting in the puzzles. They are tricky but for sure brings a great value if you are a database developer for a long time. I suggest you go over this puzzles and their answers. Did you really know all of the answers? I am confident that reading following three blog post will for sure help you enhance the experience with T-SQL. SQL SERVER – Challenge – Puzzle – Usage of FAST Hint SQL SERVER – Puzzle – Challenge – Error While Converting Money to Decimal SQL SERVER – Challenge – Puzzle – Why does RIGHT JOIN Exists 2011 DVM sys.dm_os_sys_info Column Name Changed in SQL Server 2012 Have you ever faced a situation where something does not work? When you try to fix it - you enjoy fixing it and started to appreciate the breaking changes. Well, this was exactly I felt yesterday. Before I begin my story, I want to candidly state that I do not encourage anybody to use * in the SELECT statement. Now the disclaimer is over – I suggest you read the original story – you will love it! Get Directory Structure using Extended Stored Procedure xp_dirtree Here is the question to you – why would you do something in SQL Server where you can do the same task in command prompt much easily. Well, the answer is sometime there are real use cases when we have to do such thing. This is a similar example where I have demonstrated how in SQL Server 2012 we can use extended stored procedure to retrieve directory structure. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Connection Pooling is Busted

    - by MightyZot
    A few weeks ago we started getting complaints about performance in an application that has performed very well for many years.  The application is a n-tier application that uses ADODB with the SQLOLEDB provider to talk to a SQL Server database.  Our object model is written in such a way that each public method validates security before performing requested actions, so there is a significant number of queries executed to get information about file cabinets, retrieve images, create workflows, etc.  (PaperWise is a document management and workflow system.)  A common factor for these customers is that they have remote offices connected via MPLS networks. Naturally, the first thing we looked at was the query performance in SQL Profiler.  All of the queries were executing within expected timeframes, most of them were so fast that the duration in SQL Profiler was zero.  After getting nowhere with SQL Profiler, the situation was escalated to me.  I decided to take a peek with Process Monitor.  Procmon revealed some “gaps” in the TCP/IP traffic.  There were notable delays between send and receive pairs.  The send and receive pairs themselves were quite snappy, but quite often there was a notable delay between a receive and the next send.  You might expect some delay because, presumably, the application is doing some thinking in-between the pairs.  But, comparing the procmon data at the remote locations with the procmon data for workstations on the local network showed that the remote workstations were significantly delayed.  Procmon also showed a high number of disconnects. Wireshark traces showed that connections to the database were taking between 75ms and 150ms.  Not only that, but connections to a file share containing images were taking 2 seconds!  So, I asked about a trust.  Sure enough there was a trust between two domains and the file share was on the second domain.  Joining a remote workstation to the domain hosting the share containing images alleviated the time delay in accessing the file share.  Removing the trust had no affect on the connections to the database. Microsoft Network Monitor includes filters that parse TDS packets.  TDS is the protocol that SQL Server uses to communicate.  There is a certificate exchange and some SSL that occurs during authentication.  All of this was evident in the network traffic.  After staring at the network traffic for a while, and examining packets, I decided to call it a night.  On the way home that night, something about the traffic kept nagging at me.  Then it dawned on me…at the beginning of the dance of packets between the client and the server all was well.  Connection pooling was working and I could see multiple queries getting executed on the same connection and ethereal port.  After a particular query, connecting to two different servers, I noticed that ADODB and SQLOLEDB started making repeated connections to the database on different ethereal ports.  SQL Server would execute a single query and respond on a port, then open a new port and execute the next query.  Connection pooling appeared to be broken. The next morning I wrote a test to confirm my hypothesis.  Turns out that the sequence causing the connection nastiness goes something like this: Make a connection to the database. Open a result set that returns enough records to require multiple roundtrips to the server. For each result, query for some other data in the database (this will open a new implicit connection.) Close the inner result set and repeat for every item in the original result set. Close the original connection. Provided that the first result set returns enough data to require multiple roundtrips to the server, ADODB and SQLOLEDB will start making new connections to the database for each query executed in the loop.  Originally, I thought this might be due to Microsoft’s denial of service (ddos) attack protection.  After turning those features off to no avail, I eventually thought to switch my queries to client-side cursors instead of server-side cursors.  Server-side cursors are the default, by the way.  Voila!  After switching to client-side cursors, the disconnects were gone and the above sequence yielded two connections as expected. While the real problem is the amount of time it takes to make connections over these MPLS networks (100ms on average), switching to client-side cursors made the problem go away.  Believe it or not, this is actually documented by Microsoft, and rather difficult to find.  (At least it was while we were trying to troubleshoot the problem!)  So, if you’re noticing performance issues on slower networks, or networks with slower switching, take a look at the traffic in a tool like Microsoft Network Monitor.  If you notice a high number of disconnects, and you’re using fire-hose or server-side cursors, then try switching to client-side cursors and you may see the problem go away. Most likely, Microsoft believes this to be appropriate behavior, because ADODB can’t guarantee that all of the data has been retrieved when you execute the inner queries.  I’m not convinced, though, because the problem remains even after replacing all of the implicit connections with explicit connections and closing those connections in-between each of the inner queries.  In that case, there doesn’t seem to be a reason why ADODB can’t use a single connection from the connection pool to make the additional queries, bringing the total number of connections to two.  Instead ADO appears to make an assumption about the state of the connection. I’ve reported the behavior to Microsoft and am awaiting to hear from the appropriate team, so that I can demonstrate the problem.  Maybe they can explain to us why this is appropriate behavior.  :)

    Read the article

  • The Benefits of Smart Grid Business Software

    - by Sylvie MacKenzie, PMP
    Smart Grid Background What Are Smart Grids?Smart Grids use computer hardware and software, sensors, controls, and telecommunications equipment and services to: Link customers to information that helps them manage consumption and use electricity wisely. Enable customers to respond to utility notices in ways that help minimize the duration of overloads, bottlenecks, and outages. Provide utilities with information that helps them improve performance and control costs. What Is Driving Smart Grid Development? Environmental ImpactSmart Grid development is picking up speed because of the widespread interest in reducing the negative impact that energy use has on the environment. Smart Grids use technology to drive efficiencies in transmission, distribution, and consumption. As a result, utilities can serve customers’ power needs with fewer generating plants, fewer transmission and distribution assets,and lower overall generation. With the possible exception of wind farm sprawl, landscape preservation is one obvious benefit. And because most generation today results in greenhouse gas emissions, Smart Grids reduce air pollution and the potential for global climate change.Smart Grids also more easily accommodate the technical difficulties of integrating intermittent renewable resources like wind and solar into the grid, providing further greenhouse gas reductions. CostsThe ability to defer the cost of plant and grid expansion is a major benefit to both utilities and customers. Utilities do not need to use as many internal resources for traditional infrastructure project planning and management. Large T&D infrastructure expansion costs are not passed on to customers.Smart Grids will not eliminate capital expansion, of course. Transmission corridors to connect renewable generation with customers will require major near-term expenditures. Additionally, in the future, electricity to satisfy the needs of population growth and additional applications will exceed the capacity reductions available through the Smart Grid. At that point, expansion will resume—but with greater overall T&D efficiency based on demand response, load control, and many other Smart Grid technologies and business processes. Energy efficiency is a second area of Smart Grid cost saving of particular relevance to customers. The timely and detailed information Smart Grids provide encourages customers to limit waste, adopt energy-efficient building codes and standards, and invest in energy efficient appliances. Efficiency may or may not lower customer bills because customer efficiency savings may be offset by higher costs in generation fuels or carbon taxes. It is clear, however, that bills will be lower with efficiency than without it. Utility Operations Smart Grids can serve as the central focus of utility initiatives to improve business processes. Many utilities have long “wish lists” of projects and applications they would like to fund in order to improve customer service or ease staff’s burden of repetitious work, but they have difficulty cost-justifying the changes, especially in the short term. Adding Smart Grid benefits to the cost/benefit analysis frequently tips the scales in favor of the change and can also significantly reduce payback periods.Mobile workforce applications and asset management applications work together to deploy assets and then to maintain, repair, and replace them. Many additional benefits result—for instance, increased productivity and fuel savings from better routing. Similarly, customer portals that provide customers with near-real-time information can also encourage online payments, thus lowering billing costs. Utilities can and should include these cost and service improvements in the list of Smart Grid benefits. What Is Smart Grid Business Software? Smart Grid business software gathers data from a Smart Grid and uses it improve a utility’s business processes. Smart Grid business software also helps utilities provide relevant information to customers who can then use it to reduce their own consumption and improve their environmental profiles. Smart Grid Business Software Minimizes the Impact of Peak Demand Utilities must size their assets to accommodate their highest peak demand. The higher the peak rises above base demand: The more assets a utility must build that are used only for brief periods—an inefficient use of capital. The higher the utility’s risk profile rises given the uncertainties surrounding the time needed for permitting, building, and recouping costs. The higher the costs for utilities to purchase supply, because generators can charge more for contracts and spot supply during high-demand periods. Smart Grids enable a variety of programs that reduce peak demand, including: Time-of-use pricing and critical peak pricing—programs that charge customers more when they consume electricity during peak periods. Pilot projects indicate that these programs are successful in flattening peaks, thus ensuring better use of existing T&D and generation assets. Direct load control, which lets utilities reduce or eliminate electricity flow to customer equipment (such as air conditioners). Contracts govern the terms and conditions of these turn-offs. Indirect load control, which signals customers to reduce the use of on-premises equipment for contractually agreed-on time periods. Smart Grid business software enables utilities to impose penalties on customers who do not comply with their contracts. Smart Grids also help utilities manage peaks with existing assets by enabling: Real-time asset monitoring and control. In this application, advanced sensors safely enable dynamic capacity load limits, ensuring that all grid assets can be used to their maximum capacity during peak demand periods. Real-time asset monitoring and control applications also detect the location of excessive losses and pinpoint need for mitigation and asset replacements. As a result, utilities reduce outage risk and guard against excess capacity or “over-build”. Better peak demand analysis. As a result: Distribution planners can better size equipment (e.g. transformers) to avoid over-building. Operations engineers can identify and resolve bottlenecks and other inefficiencies that may cause or exacerbate peaks. As above, the result is a reduction in the tendency to over-build. Supply managers can more closely match procurement with delivery. As a result, they can fine-tune supply portfolios, reducing the tendency to over-contract for peak supply and reducing the need to resort to spot market purchases during high peaks. Smart Grids can help lower the cost of remaining peaks by: Standardizing interconnections for new distributed resources (such as electricity storage devices). Placing the interconnections where needed to support anticipated grid congestion. Smart Grid Business Software Lowers the Cost of Field Services By processing Smart Grid data through their business software, utilities can reduce such field costs as: Vegetation management. Smart Grids can pinpoint momentary interruptions and tree-caused outages. Spatial mash-up tools leverage GIS models of tree growth for targeted vegetation management. This reduces the cost of unnecessary tree trimming. Service vehicle fuel. Many utility service calls are “false alarms.” Checking meter status before dispatching crews prevents many unnecessary “truck rolls.” Similarly, crews use far less fuel when Smart Grid sensors can pinpoint a problem and mobile workforce applications can then route them directly to it. Smart Grid Business Software Ensures Regulatory Compliance Smart Grids can ensure compliance with private contracts and with regional, national, or international requirements by: Monitoring fulfillment of contract terms. Utilities can use one-hour interval meters to ensure that interruptible (“non-core”) customers actually reduce or eliminate deliveries as required. They can use the information to levy fines against contract violators. Monitoring regulations imposed on customers, such as maximum use during specific time periods. Using accurate time-stamped event history derived from intelligent devices distributed throughout the smart grid to monitor and report reliability statistics and risk compliance. Automating business processes and activities that ensure compliance with security and reliability measures (e.g. NERC-CIP 2-9). Grid Business Software Strengthens Utilities’ Connection to Customers While Reducing Customer Service Costs During outages, Smart Grid business software can: Identify outages more quickly. Software uses sensors to pinpoint outages and nested outage locations. They also permit utilities to ensure outage resolution at every meter location. Size outages more accurately, permitting utilities to dispatch crews that have the skills needed, in appropriate numbers. Provide updates on outage location and expected duration. This information helps call centers inform customers about the timing of service restoration. Smart Grids also facilitates display of outage maps for customer and public-service use. Smart Grids can significantly reduce the cost to: Connect and disconnect customers. Meters capable of remote disconnect can virtually eliminate the costs of field crews and vehicles previously required to change service from the old to the new residents of a metered property or disconnect customers for nonpayment. Resolve reports of voltage fluctuation. Smart Grids gather and report voltage and power quality data from meters and grid sensors, enabling utilities to pinpoint reported problems or resolve them before customers complain. Detect and resolve non-technical losses (e.g. theft). Smart Grids can identify illegal attempts to reconnect meters or to use electricity in supposedly vacant premises. They can also detect theft by comparing flows through delivery assets with billed consumption. Smart Grids also facilitate outreach to customers. By monitoring and analyzing consumption over time, utilities can: Identify customers with unusually high usage and contact them before they receive a bill. They can also suggest conservation techniques that might help to limit consumption. This can head off “high bill” complaints to the contact center. Note that such “high usage” or “additional charges apply because you are out of range” notices—frequently via text messaging—are already common among mobile phone providers. Help customers identify appropriate bill payment alternatives (budget billing, prepayment, etc.). Help customers find and reduce causes of over-consumption. There’s no waiting for bills in the mail before they even understand there is a problem. Utilities benefit not just through improved customer relations but also through limiting the size of bills from customers who might struggle to pay them. Where permitted, Smart Grids can open the doors to such new utility service offerings as: Monitoring properties. Landlords reduce costs of vacant properties when utilities notify them of unexpected energy or water consumption. Utilities can perform similar services for owners of vacation properties or the adult children of aging parents. Monitoring equipment. Power-use patterns can reveal a need for equipment maintenance. Smart Grids permit utilities to alert owners or managers to a need for maintenance or replacement. Facilitating home and small-business networks. Smart Grids can provide a gateway to equipment networks that automate control or let owners access equipment remotely. They also facilitate net metering, offering some utilities a path toward involvement in small-scale solar or wind generation. Prepayment plans that do not need special meters. Smart Grid Business Software Helps Customers Control Energy Costs There is no end to the ways Smart Grids help both small and large customers control energy costs. For instance: Multi-premises customers appreciate having all meters read on the same day so that they can more easily compare consumption at various sites. Customers in competitive regions can match their consumption profile (detailed via Smart Grid data) with specific offerings from competitive suppliers. Customers seeing inexplicable consumption patterns and power quality problems may investigate further. The result can be discovery of electrical problems that can be resolved through rewiring or maintenance—before more serious fires or accidents happen. Smart Grid Business Software Facilitates Use of Renewables Generation from wind and solar resources is a popular alternative to fossil fuel generation, which emits greenhouse gases. Wind and solar generation may also increase energy security in regions that currently import fossil fuel for use in generation. Utilities face many technical issues as they attempt to integrate intermittent resource generation into traditional grids, which traditionally handle only fully dispatchable generation. Smart Grid business software helps solves many of these issues by: Detecting sudden drops in production from renewables-generated electricity (wind and solar) and automatically triggering electricity storage and smart appliance response to compensate as needed. Supporting industry-standard distributed generation interconnection processes to reduce interconnection costs and avoid adding renewable supplies to locations already subject to grid congestion. Facilitating modeling and monitoring of locally generated supply from renewables and thus helping to maximize their use. Increasing the efficiency of “net metering” (through which utilities can use electricity generated by customers) by: Providing data for analysis. Integrating the production and consumption aspects of customer accounts. During non-peak periods, such techniques enable utilities to increase the percent of renewable generation in their supply mix. During peak periods, Smart Grid business software controls circuit reconfiguration to maximize available capacity. Conclusion Utility missions are changing. Yesterday, they focused on delivery of reasonably priced energy and water. Tomorrow, their missions will expand to encompass sustainable use and environmental improvement.Smart Grids are key to helping utilities achieve this expanded mission. But they come at a relatively high price. Utilities will need to invest heavily in new hardware, software, business process development, and staff training. Customer investments in home area networks and smart appliances will be large. Learning to change the energy and water consumption habits of a lifetime could ultimately prove even more formidable tasks.Smart Grid business software can ease the cost and difficulties inherent in a needed transition to a more flexible, reliable, responsive electricity grid. Justifying its implementation, however, requires a full understanding of the benefits it brings—benefits that can ultimately help customers, utilities, communities, and the world address global issues like energy security and climate change while minimizing costs and maximizing customer convenience. This white paper is available for download here. For further information about Oracle's Primavera Solutions for Utilities, please read our Utilities e-book.

    Read the article

  • Monitoring almost anything with BizTalk 360

    - by Michael Stephenson
    When you work in an integration environment it is common that you will find yourself in a situation where you integrate with some unusual applications or have some unusual dependencies. That is the nature of integration. When you work with BizTalk one of the common problems is that BizTalk often is the place where problems with applications you integrate with are highlighted and these external applications may have poor monitoring solutions. Fortunately if you are a working with a customer who uses BizTalk 360 then it contains a feature called the "Web Endpoint Manager". Typically the web endpoint manager is used to monitor web services that you integrate with and will ping them at appropriate times to make sure they return the expected HTTP status code. When you have an usual situation where you want to monitor something which is key to the success to your solution but you find yourself having to consider a significant custom solution to monitor the external dependency then the Web Endpoint Manager could be your friend. The endpoint manager monitors a url and checks for a certain status code. This means that you can create your own aspx web page and then make BizTalk 360 monitor this web page. Behind the web page you could write any code you wished. An example of this is architecture is shown in the below diagram.     In the custom web page you would implement some custom code to do whatever it is that you want to monitor. In the below code snippet you can see how the Page_Load default method is doing some kind of check then depending on the result of the check it returns a certain HTTP code. protected void Page_Load(object sender, EventArgs e) { var result = CheckSomething();   if (result == "Success") Response.StatusCode = 202; else if (result == "DatabaseError") Response.StatusCode = 510; else if (result == "SystemError") Response.StatusCode = 512; else Response.StatusCode = 513;   }   In BizTalk 360 you would go into the Monitor and Notify tab and then to BizTalk Environment which gives you access to the Web Endpoint Manager. You need an alarm setup which configures how the endpoint will be checked. I'm not going to go through the details of creating the alarm as this is already documented in the BizTalk 360 documentation. One point to note is that in the example I am using I setup a threshold alarm which means that the url is checked about every minute and if there is an error that persists for a period of time then the alarm will raise the alert notification. In my example I configured the alarm to fire if the error persisted for 3 minutes. The below picture shows accessing the endpoint manager.   In the web endpoint manager you would then configure your endpoint to monitor and the HTTP response code which indicates all is working fine. The below picture shows this. I now have my endpoint monitoring setup and BizTalk 360 should be checking my custom endpoint to see that it is available. If I wanted to manually sanity check that the endpoints I have registered are working fine then clicking the Refresh button will show if they are all good or not. If my custom ASP.net page which is checking my dependency gets a problem you will see in the endpoint manager that the status code does not match the expected return code and your endpoints will display in red and you can see the problem. The below picture shows this. If I use specific HTTP response codes for the errors the custom ASP.net page might encounter I can easily interpret these to know what the problem is. Using the alarms and notifications with BizTalk 360 it means when your endpoint goes into an error state you can easily configure email or SMS notifications from BizTalk 360 to tell you that your endpoint is having problems and you can use BizTalk 360 to help correlate what the problem is to allow you to investigate further. Below you can see the email which tells me my endpoint is not working.   When everything returns to normal you will see the status is now fixed and you will see a situation like below where you can see the WebEndpoints are now green and the return code matches what is expected.   Conclusion As you can see it is really easy to plug your own custom ASP.net page into the BizTalk 360 web endpoint monitoring feature. This extension then gives you the power to really extend the monitoring to almost anything you want as long as you can write some .net code to check that the dependency is available and working. It would be interesting to hear of any ideas people have around things they would monitor with this extension. More details on the end point monitor can be found on the following link: http://www.biztalk360.com/tour/monitoring_notifications

    Read the article

  • Talend Enterprise Data Integration overperforms on Oracle SPARC T4

    - by Amir Javanshir
    The SPARC T microprocessor, released in 2005 by Sun Microsystems, and now continued at Oracle, has a good track record in parallel execution and multi-threaded performance. However it was less suited for pure single-threaded workloads. The new SPARC T4 processor is now filling that gap by offering a 5x better single-thread performance over previous generations. Following our long-term relationship with Talend, a fast growing ISV positioned by Gartner in the “Visionaries” quadrant of the “Magic Quadrant for Data Integration Tools”, we decided to test some of their integration components with the T4 chip, more precisely on a T4-1 system, in order to verify first hand if this new processor stands up to its promises. Several tests were performed, mainly focused on: Single-thread performance of the new SPARC T4 processor compared to an older SPARC T2+ processor Overall throughput of the SPARC T4-1 server using multiple threads The tests consisted in reading large amounts of data --ten's of gigabytes--, processing and writing them back to a file or an Oracle 11gR2 database table. They are CPU, memory and IO bound tests. Given the main focus of this project --CPU performance--, bottlenecks were removed as much as possible on the memory and IO sub-systems. When possible, the data to process was put into the ZFS filesystem cache, for instance. Also, two external storage devices were directly attached to the servers under test, each one divided in two ZFS pools for read and write operations. Multi-thread: Testing throughput on the Oracle T4-1 The tests were performed with different number of simultaneous threads (1, 2, 4, 8, 12, 16, 32, 48 and 64) and using different storage devices: Flash, Fibre Channel storage, two stripped internal disks and one single internal disk. All storage devices used ZFS as filesystem and volume management. Each thread read a dedicated 1GB-large file containing 12.5M lines with the following structure: customerID;FirstName;LastName;StreetAddress;City;State;Zip;Cust_Status;Since_DT;Status_DT 1;Ronald;Reagan;South Highway;Santa Fe;Montana;98756;A;04-06-2006;09-08-2008 2;Theodore;Roosevelt;Timberlane Drive;Columbus;Louisiana;75677;A;10-05-2009;27-05-2008 3;Andrew;Madison;S Rustle St;Santa Fe;Arkansas;75677;A;29-04-2005;09-02-2008 4;Dwight;Adams;South Roosevelt Drive;Baton Rouge;Vermont;75677;A;15-02-2004;26-01-2007 […] The following graphs present the results of our tests: Unsurprisingly up to 16 threads, all files fit in the ZFS cache a.k.a L2ARC : once the cache is hot there is no performance difference depending on the underlying storage. From 16 threads upwards however, it is clear that IO becomes a bottleneck, having a good IO subsystem is thus key. Single-disk performance collapses whereas the Sun F5100 and ST6180 arrays allow the T4-1 to scale quite seamlessly. From 32 to 64 threads, the performance is almost constant with just a slow decline. For the database load tests, only the best IO configuration --using external storage devices-- were used, hosting the Oracle table spaces and redo log files. Using the Sun Storage F5100 array allows the T4-1 server to scale up to 48 parallel JVM processes before saturating the CPU. The final result is a staggering 646K lines per second insertion in an Oracle table using 48 parallel threads. Single-thread: Testing the single thread performance Seven different tests were performed on both servers. Given the fact that only one thread, thus one file was read, no IO bottleneck was involved, all data being served from the ZFS cache. Read File ? Filter ? Write File: Read file, filter data, write the filtered data in a new file. The filter is set on the “Status” column: only lines with status set to “A” are selected. This limits each output file to about 500 MB. Read File ? Load Database Table: Read file, insert into a single Oracle table. Average: Read file, compute the average of a numeric column, write the result in a new file. Division & Square Root: Read file, perform a division and square root on a numeric column, write the result data in a new file. Oracle DB Dump: Dump the content of an Oracle table (12.5M rows) into a CSV file. Transform: Read file, transform, write the result data in a new file. The transformations applied are: set the address column to upper case and add an extra column at the end, which is the concatenation of two columns. Sort: Read file, sort a numeric and alpha numeric column, write the result data in a new file. The following table and graph present the final results of the tests: Throughput unit is thousand lines per second processed (K lines/second). Improvement is the % of improvement between the T5140 and T4-1. Test T4-1 (Time s.) T5140 (Time s.) Improvement T4-1 (Throughput) T5140 (Throughput) Read/Filter/Write 125 806 645% 100 16 Read/Load Database 195 1111 570% 64 11 Average 96 557 580% 130 22 Division & Square Root 161 1054 655% 78 12 Oracle DB Dump 164 945 576% 76 13 Transform 159 1124 707% 79 11 Sort 251 1336 532% 50 9 The improvement of single-thread performance is quite dramatic: depending on the tests, the T4 is between 5.4 to 7 times faster than the T2+. It seems clear that the SPARC T4 processor has gone a long way filling the gap in single-thread performance, without sacrifying the multi-threaded capability as it still shows a very impressive scaling on heavy-duty multi-threaded jobs. Finally, as always at Oracle ISV Engineering, we are happy to help our ISV partners test their own applications on our platforms, so don't hesitate to contact us and let's see what the SPARC T4-based systems can do for your application! "As describe in this benchmark, Talend Enterprise Data Integration has overperformed on T4. I was generally happy to see that the T4 gave scaling opportunities for many scenarios like complex aggregations. Row by row insertion in Oracle DB is faster with more than 650,000 rows per seconds without using any bulk Oracle capabilities !" Cedric Carbone, Talend CTO.

    Read the article

< Previous Page | 72 73 74 75 76 77 78 79 80 81 82 83  | Next Page >