Search Results

Search found 10101 results on 405 pages for 'temporary tables'.

Page 78/405 | < Previous Page | 74 75 76 77 78 79 80 81 82 83 84 85  | Next Page >

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Database Table Prefixes

    - by DoctorMick
    We're having a few discussions at work around the naming of our database tables. We're working on a large application with approx 100 database tables (ok, so it isn't that large), most of which can be categorized in to different functional area, and we're trying to work out the best way of naming/organizing these within an Oracle database. The three current options are: Create the different functional areas in separate schemas. Create everything in the same schema but prefix the tables with the functional area Create everything in the same schema with no prefixes We have various pro's and con's around each one but I'd be interested to hear everyone's opinions on what the best solution is.

    Read the article

  • SQL SERVER – SSMS: Memory Usage By Memory Optimized Objects Report

    - by Pinal Dave
    At conferences and at speaking engagements at the local UG, there is one question that keeps on coming which I wish were never asked. The question around, “Why is SQL Server using up all the memory and not releasing even when idle?” Well, the answer can be long and with the release of SQL Server 2014, this got even more complicated. This release of SQL Server 2014 has the option of introducing In-Memory OLTP which is completely new concept and our dependency on memory has increased multifold. In reality, nothing much changes but we have memory optimized objects (Tables and Stored Procedures) additional which are residing completely in memory and improving performance. As a DBA, it is humanly impossible to get a hang of all the innovations and the new features introduced in the next version. So today’s blog is around the report added to SSMS which gives a high level view of this new feature addition. This reports is available only from SQL Server 2014 onwards because the feature was introduced in SQL Server 2014. Earlier versions of SQL Server Management Studio would not show the report in the list. If we try to launch the report on the database which is not having In-Memory File group defined, then we would see the message in report. To demonstrate, I have created new fresh database called MemoryOptimizedDB with no special file group. Here is the query used to identify whether a database has memory-optimized file group or not. SELECT TOP(1) 1 FROM sys.filegroups FG WHERE FG.[type] = 'FX' Once we add filegroup using below command, we would see different version of report. USE [master] GO ALTER DATABASE [MemoryOptimizedDB] ADD FILEGROUP [IMO_FG] CONTAINS MEMORY_OPTIMIZED_DATA GO The report is still empty because we have not defined any Memory Optimized table in the database.  Total allocated size is shown as 0 MB. Now, let’s add the folder location into the filegroup and also created few in-memory tables. We have used the nomenclature of IMO to denote “InMemory Optimized” objects. USE [master] GO ALTER DATABASE [MemoryOptimizedDB] ADD FILE ( NAME = N'MemoryOptimizedDB_IMO', FILENAME = N'E:\Program Files\Microsoft SQL Server\MSSQL12.SQL2014\MSSQL\DATA\MemoryOptimizedDB_IMO') TO FILEGROUP [IMO_FG] GO You may have to change the path based on your SQL Server configuration. Below is the script to create the table. USE MemoryOptimizedDB GO --Drop table if it already exists. IF OBJECT_ID('dbo.SQLAuthority','U') IS NOT NULL DROP TABLE dbo.SQLAuthority GO CREATE TABLE dbo.SQLAuthority ( ID INT IDENTITY NOT NULL, Name CHAR(500)  COLLATE Latin1_General_100_BIN2 NOT NULL DEFAULT 'Pinal', CONSTRAINT PK_SQLAuthority_ID PRIMARY KEY NONCLUSTERED (ID), INDEX hash_index_sample_memoryoptimizedtable_c2 HASH (Name) WITH (BUCKET_COUNT = 131072) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA) GO As soon as above script is executed, table and index both are created. If we run the report again, we would see something like below. Notice that table memory is zero but index is using memory. This is due to the fact that hash index needs memory to manage the buckets created. So even if table is empty, index would consume memory. More about the internals of how In-Memory indexes and tables work will be reserved for future posts. Now, use below script to populate the table with 10000 rows INSERT INTO SQLAuthority VALUES (DEFAULT) GO 10000 Here is the same report after inserting 1000 rows into our InMemory table.    There are total three sections in the whole report. Total Memory consumed by In-Memory Objects Pie chart showing memory distribution based on type of consumer – table, index and system. Details of memory usage by each table. The information about all three is taken from one single DMV, sys.dm_db_xtp_table_memory_stats This DMV contains memory usage statistics for both user and system In-Memory tables. If we query the DMV and look at data, we can easily notice that the system tables have negative object IDs.  So, to look at user table memory usage, below is the over-simplified version of query. USE MemoryOptimizedDB GO SELECT OBJECT_NAME(OBJECT_ID), * FROM sys.dm_db_xtp_table_memory_stats WHERE OBJECT_ID > 0 GO This report would help DBA to identify which in-memory object taking lot of memory which can be used as a pointer for designing solution. I am sure in future we will discuss at lengths the whole concept of In-Memory tables in detail over this blog. To read more about In-Memory OLTP, have a look at In-Memory OLTP Series at Balmukund’s Blog. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL Tagged: SQL Memory, SQL Reports

    Read the article

  • CakePHP Missing Database Table Error

    - by BRADINO
    I am baking a new project management application at work and added a couple new tables to the database today. When I went into the console to bake the new models, they were not in the list... php /path/cake/console/cake.php bake all -app /path/app/ So I manually typed in the model name and I got a missing database table for model error. I checked and double-checked and the database table was named properly. Turns out that some files inside the /app/tmp/cache/ folder were causing Cake not to recognize that I had added new tables to my database. Once I deleted the cache files cake instantly recognized my new database tables and I was baking away! rm -Rf /path/app/tmp/cache/cake*

    Read the article

  • How to structure classes in the filesystem?

    - by da_b0uncer
    I have a few (view) classes. Table, Tree, PagingColumn, SelectionColumn, SparkLineColumn, TimeColumn. currently they're flat under app/view like this: app/view/Table app/view/Tree app/view/PagingColumn ... I thought about restructuring it, because the Trees and Tables use the columns, but there are some columns, which only work in a tree, some who work in trees and tables and in the future there are probably some who only work in tables, I don't know. My first idea was like this: app/view/Table app/view/Tree app/view/column/PagingColumn app/view/column/SelectionColumn app/view/column/SparkLineColumn app/view/column/TimeColumn But since the SelectionColumn is explicitly for trees, I have the fear that future developers could get the idea of missuse them. But how to restructure it probably? Like this: app/view/table/panel/Table app/view/tree/panel/Tree app/view/tree/column/PagingColumn app/view/tree/column/SelectionColumn app/view/column/SparkLineColumn app/view/column/TimeColumn Or like this: app/view/Table app/view/Tree app/view/column/SparkLineColumn app/view/column/TimeColumn app/view/column/tree/PagingColumn app/view/column/tree/SelectionColumn

    Read the article

  • DBCC CHECKDB (BatmanDb, REPAIR_ALLOW_DATA_LOSS) &ndash; Are you Feeling Lucky?

    - by David Totzke
    I’m currently working for a client on a PowerBuilder to WPF migration.  It’s one of those “I could tell you, but I’d have to kill you” kind of clients and the quick-lime pits are currently occupied by the EMC tech…but I’ve said too much already. At approximately 3 or 4 pm that day users of the Batman[1] application here in Gotham[1] started to experience problems accessing the application.  Batman[2] is a document management system here that also integrates with the ERP system.  Very little goes on here that doesn’t involve Batman in some way.  The errors being received seemed to point to network issues (TCP protocol error, connection forcibly closed by the remote host etc…) but the real issue was much more insidious. Connecting to the database via SSMS and performing selects on certain tables underlying the application areas that were having problems started to reveal the issue.  You couldn’t do a SELECT * FROM MyTable without it bombing and giving the same error noted above.  A run of DBCC CHECKDB revealed 14 tables with corruption.  One of the tables with issues was the Document table.  Pretty central to a “document management” system.  Information was obtained from IT that a single drive in the SAN went bad in the night.  A new drive was in place and was working fine.  The partition that held the Batman database is configured for RAID Level 5 so a single drive failure shouldn’t have caused any trouble and yet, the database is corrupted.  They do hourly incremental backups here so the first thing done was to try a restore.  A restore of the most recent backup failed so they worked backwards until they hit a good point.  This successful restore was for a backup at 3AM – a full day behind.  This time also roughly corresponds with the time the SAN started to report the drive failure.  The plot thickens… I got my hands on the output from DBCC CHECKDB and noticed a pattern.  What’s sad is that nobody that should have noticed the pattern in the DBCC output did notice.  There was a rush to do things to try and recover the data before anybody really understood what was wrong with it in the first place.  Cooler heads must prevail in these circumstances and some investigation should be done and a plan of action laid out or you could end up making things worse[3].  DBCC CHECKDB also told us that: repair_allow_data_loss is the minimum repair level for the errors found by DBCC CHECKDB Yikes.  That means that the database is so messed up that you’re definitely going to lose some stuff when you repair it to get it back to a consistent state.  All the more reason to do a little more investigation into the problem.  Rescuing this database is preferable to having to export all of the data possible from this database into a new one.  This is a fifteen year old application with about seven hundred tables.  There are TRIGGERS everywhere not to mention the referential integrity constraints to deal with.  Only fourteen of the tables have an issue.  We have a good backup that is missing the last 24 hours of business which means we could have a “do-over” of yesterday but that’s not a very palatable option either. All of the affected tables had TEXT columns and all of the errors were about LOB data types and orphaned off-row data which basically means TEXT, IMAGE or NTEXT columns.  If we did a SELECT on an affected table and excluded those columns, we got all of the rows.  We exported that data into a separate database.  Things are looking up.  Working on a copy of the production database we then ran DBCC CHECKDB with REPAIR_ALLOW_DATA_LOSS and that “fixed” everything up.   The allow data loss option will delete the bad rows.  This isn’t too horrible as we have all of those rows minus the text fields from out earlier export.  Now I could LEFT JOIN to the exported data to find the missing rows and INSERT them minus the TEXT column data. We had the restored data from the good 3AM backup that we could now JOIN to and, with fingers crossed, recover the missing TEXT column information.  We got lucky in that all of the affected rows were old and in the end we didn’t lose anything.  :O  All of the row counts along the way worked out and it looks like we dodged a major bullet here. We’ve heard back from EMC and it turns out the SAN firmware that they were running here is apparently buggy.  This thing is only a couple of months old.  Grrr…. They dispatched a technician that night to come and update it .  That explains why RAID didn’t save us. All-in-all this could have been a lot worse.  Given the root cause here, they basically won the lottery in not losing anything. Here are a few links to some helpful posts on the SQL Server Engine blog.  I love the title of the first one: Which part of 'REPAIR_ALLOW_DATA_LOSS' isn't clear? CHECKDB (Part 8): Can repair fix everything? (in fact, read the whole series) Ta da! Emergency mode repair (we didn’t have to resort to this one thank goodness)   Dave Just because I can…   [1] Names have been changed to protect the guilty. [2] I'm Batman. [3] And if I'm the coolest head in the room, you've got even bigger problems...

    Read the article

  • ASP.NET C# Session Variable

    - by SAMIR BHOGAYTA
    You can make changes in the web.config. You can give the location path i.e the pages to whom u want to apply the security. Ex. 1) In first case the page can be accessed by everyone. // Allow ALL users to visit the CreatingUserAccounts.aspx // location path="CreatingUserAccounts.aspx" system.web authorization allow users="*" / /authorization /system.web /location 2) in this case only admin can access the page // Allow ADMIN users to visit the hello.aspx location path="hello.aspx" system.web authorization allow roles="ADMIN' / deny users="*" / /authorization /system.web /location OR On the every page you need to check the authorization according to the page logic ex: On every page call this if (session[loggeduser] !=null) { DataSet dsUser=(DataSet)session[loggeduser]; if (dsUser !=null && dsUser.Tables.Count0 && dsUser.Tables[0] !=null && dsUser.Tables[0].Rows.Count0) { if (dsUser.Table[0].Rows[0]["UserType"]=="SuperAdmin") { //your page logic here } if (dsUser.Table[0].Rows[0]["UserType"]=="Admin") { //your page logic here } } }

    Read the article

  • SQL SERVER – Curious Case of Disappearing Rows – ON UPDATE CASCADE and ON DELETE CASCADE – Part 1 of 2

    - by pinaldave
    Social media has created an Always Connected World for us. Recently I enrolled myself to learn new technologies as a student. I had decided to focus on learning and decided not to stay connected on the internet while I am in the learning session. On the second day of the event after the learning was over, I noticed lots of notification from my friend on my various social media handle. He had connected with me on Twitter, Facebook, Google+, LinkedIn, YouTube as well SMS, WhatsApp on the phone, Skype messages and not to forget with a few emails. I right away called him up. The problem was very unique – let us hear the problem in his own words. “Pinal – we are in big trouble we are not able to figure out what is going on. Our product details table is continuously loosing rows. Lots of rows have disappeared since morning and we are unable to find why the rows are getting deleted. We have made sure that there is no DELETE command executed on the table as well. The matter of the fact, we have removed every single place the code which is referencing the table. We have done so many crazy things out of desperation but no luck. The rows are continuously deleted in a random pattern. Do you think we have problems with intrusion or virus?” After describing the problems he had pasted few rants about why I was not available during the day. I think it will be not smart to post those exact words here (due to many reasons). Well, my immediate reaction was to get online with him. His problem was unique to him and his team was all out to fix the issue since morning. As he said he has done quite a lot out in desperation. I started asking questions from audit, policy management and profiling the data. Very soon I realize that I think this problem was not as advanced as it looked. There was no intrusion, SQL Injection or virus issue. Well, long story short first - It was a very simple issue of foreign key created with ON UPDATE CASCADE and ON DELETE CASCADE.  CASCADE allows deletions or updates of key values to cascade through the tables defined to have foreign key relationships that can be traced back to the table on which the modification is performed. ON DELETE CASCADE specifies that if an attempt is made to delete a row with a key referenced by foreign keys in existing rows in other tables, all rows containing those foreign keys are also deleted. ON UPDATE CASCADE specifies that if an attempt is made to update a key value in a row, where the key value is referenced by foreign keys in existing rows in other tables, all of the foreign key values are also updated to the new value specified for the key. (Reference: BOL) In simple words – due to ON DELETE CASCASE whenever is specified when the data from Table A is deleted and if it is referenced in another table using foreign key it will be deleted as well. In my friend’s case, they had two tables, Products and ProductDetails. They had created foreign key referential integrity of the product id between the table. Now the as fall was up they were updating their catalogue. When they were updating the catalogue they were deleting products which are no more available. As the changes were cascading the corresponding rows were also deleted from another table. This is CORRECT. The matter of the fact, there is no error or anything and SQL Server is behaving how it should be behaving. The problem was in the understanding and inappropriate implementations of business logic.  What they needed was Product Master Table, Current Product Catalogue, and Product Order Details History tables. However, they were using only two tables and without proper understanding the relation between them was build using foreign keys. If there were only two table, they should have used soft delete which will not actually delete the record but just hide it from the original product table. This workaround could have got them saved from cascading delete issues. I will be writing a detailed post on the design implications etc in my future post as in above three lines I cannot cover every issue related to designing and it is also not the scope of the blog post. More about designing in future blog posts. Once they learn their mistake, they were happy as there was no intrusion but trust me sometime we are our own enemy and this is a great example of it. In tomorrow’s blog post we will go over their code and workarounds. Feel free to share your opinions, experiences and comments. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Is Query Performance different for different versions of SQL Server?

    - by Ronak Mathia
    I have fired 3 update queries in my stored procedure for 3 different tables. Each table contains almost 2,00,000 records and all records have to be updated. I am using indexing to speed up the performance. It quite working well with SQL Server 2008. stored procedure takes only 12 to 15 minutes to execute. (updates almost 1000 rows in 1 second in all three tables) But when I run same scenario with SQL Server 2008 R2 then stored procedure takes more time to complete execution. its about 55 to 60 minutes. (updates almost 100 rows in 1 second in all three tables). I couldn't find any reason or solution for that. I have also tested same scenario with SQL Server 2012. but result is same as above. Please give suggestions.

    Read the article

  • MERGE gives better OUTPUT options

    - by Rob Farley
    MERGE is very cool. There are a ton of useful things about it – mostly around the fact that you can implement a ton of change against a table all at once. This is great for data warehousing, handling changes made to relational databases by applications, all kinds of things. One of the more subtle things about MERGE is the power of the OUTPUT clause. Useful for logging.   If you’re not familiar with the OUTPUT clause, you really should be – it basically makes your DML (INSERT/DELETE/UPDATE/MERGE) statement return data back to you. This is a great way of returning identity values from INSERT commands (so much better than SCOPE_IDENTITY() or the older (and worse) @@IDENTITY, because you can get lots of rows back). You can even use it to grab default values that are set using non-deterministic functions like NEWID() – things you couldn’t normally get back without running another query (or with a trigger, I guess, but that’s not pretty). That inserted table I referenced – that’s part of the ‘behind-the-scenes’ work that goes on with all DML changes. When you insert data, this internal table called inserted gets populated with rows, and then used to inflict the appropriate inserts on the various structures that store data (HoBTs – the Heaps or B-Trees used to store data as tables and indexes). When deleting, the deleted table gets populated. Updates get a matching row in both tables (although this doesn’t mean that an update is a delete followed by an inserted, it’s just the way it’s handled with these tables). These tables can be referenced by the OUTPUT clause, which can show you the before and after for any DML statement. Useful stuff. MERGE is slightly different though. With MERGE, you get a mix of entries. Your MERGE statement might be doing some INSERTs, some UPDATEs and some DELETEs. One of the most common examples of MERGE is to perform an UPSERT command, where data is updated if it already exists, or inserted if it’s new. And in a single operation too. Here, you can see the usefulness of the deleted and inserted tables, which clearly reflect the type of operation (but then again, MERGE lets you use an extra column called $action to show this). (Don’t worry about the fact that I turned on IDENTITY_INSERT, that’s just so that I could insert the values) One of the things I love about MERGE is that it feels almost cursor-like – the UPDATE bit feels like “WHERE CURRENT OF …”, and the INSERT bit feels like a single-row insert. And it is – but into the inserted and deleted tables. The operations to maintain the HoBTs are still done using the whole set of changes, which is very cool. And $action – very convenient. But as cool as $action is, that’s not the point of my post. If it were, I hope you’d all be disappointed, as you can’t really go near the MERGE statement without learning about it. The subtle thing that I love about MERGE with OUTPUT is that you can hook into more than just inserted and deleted. Did you notice in my earlier query that my source table had a ‘src’ field, that wasn’t used in the insert? Normally, this would be somewhat pointless to include in my source query. But with MERGE, I can put that in the OUTPUT clause. This is useful stuff, particularly when you’re needing to audit the changes. Suppose your query involved consolidating data from a number of sources, but you didn’t need to insert that into the actual table, just into a table for audit. This is now very doable, either using the INTO clause of OUTPUT, or surrounding the whole MERGE statement in brackets (parentheses if you’re American) and using a regular INSERT statement. This is also doable if you’re using MERGE to just do INSERTs. In case you hadn’t realised, you can use MERGE in place of an INSERT statement. It’s just like the UPSERT-style statement we’ve just seen, except that we want nothing to match. That’s easy to do, we just use ON 1=2. This is obviously more convoluted than a straight INSERT. And it’s slightly more effort for the database engine too. But, if you want the extra audit capabilities, the ability to hook into the other source columns is definitely useful. Oh, and before people ask if you can also hook into the target table’s columns... Yes, of course. That’s what deleted and inserted give you.

    Read the article

  • JavaOne 2012: JDBC Community Discussion

    - by sowmya
    At JavaOne2012, Mark Biamonte of DataDirect Technologies and Lance Andersen of Oracle organized a discussion about JDBC. To learn more about using JDBC to develop database applications, see the JDBC trail in the Java Tutorials. You will know how to use the basic JDBC API to * create tables * insert values into them * query the tables * retrieve the results of the queries * update the tables In this process, you will learn how to use simple statements and prepared statements, and see an example of a stored procedure. You will also learn how to perform transactions and how to catch exceptions and warnings. - Sowmya

    Read the article

  • Setting Up and Running Summary Advisor on an Exalytics Machine (Oracle-by-Example)

    - by Saresh
    If you are running Oracle BI on an Exalytics machine, you can use Summary Advisor to identify the aggregates that will increase query performance. Summary Advisor intelligently recommends an optimal list of aggregate tables based on query patterns that will achieve maximum query performance gain while meeting specific resource constraints. Summary Advisor then generates an aggregate creation script that can be run to create the recommended aggregate tables. Aggregate tables reduce query times by storing precomputed results for queries that include rolled-up data. This tutorial covers steps to set up, configure, and run Summary Advisor on an Exalytics machine using TimesTen database as a target for storing aggregates. You can find the Oracle By Example (OBE) in the Oracle Learning Library (OLL). The content in OLL is available to all customers, partners, and employees.

    Read the article

  • Organizing your Data Access Layer

    - by nighthawk457
    I am using Entity Framework as my ORM in an ASP.Net application. I have my database already created so ended up generating the entity model from it. What is a good way to organize files/classes in the data access layer. My entity framework model is in a class library and I was planning on adding additional classes per Entity(i.e per database table) and putting all the queries related to those tables in their respective classes. I am not sure if this is a right approach and if it is then where do the queries requiring data from multiple tables go? Am I completely wrong in organizing my files based on entities/tables and should I organize them based on functional areas instead.

    Read the article

  • MDA BindingFailure detected

    - by Vnuk
    WebForms web site upon first launch from VS2008 throws this exception on my dev machine, after clicking continue everything works. Also, everything works on server when deployed. What is this VJSharpCodeProvider, why is it being loaded in vb.net project and why did it start happening all of a sudden? The assembly with display name 'VJSharpCodeProvider' failed to load in the 'LoadFrom' binding context of the AppDomain with ID 2. The cause of the failure was: System.IO.FileNotFoundException: Could not load file or assembly 'VJSharpCodeProvider, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a' or one of its dependencies. The system cannot find the file specified. File name: 'VJSharpCodeProvider, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a' === Pre-bind state information === LOG: User = quad7\devuser LOG: DisplayName = VJSharpCodeProvider, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a (Fully-specified) LOG: Appbase = file:///C:/dev/ins/ LOG: Initial PrivatePath = C:\dev\ins\bin Calling assembly : (Unknown). === LOG: This bind starts in default load context. LOG: Using application configuration file: C:\dev\ins\web.config LOG: Using machine configuration file from C:\Windows\Microsoft.NET\Framework\v2.0.50727\config\machine.config. LOG: Post-policy reference: VJSharpCodeProvider, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a LOG: Attempting download of new URL file:///C:/Windows/Microsoft.NET/Framework/v2.0.50727/Temporary ASP.NET Files/root/f645d80b/bb4d1cdf/VJSharpCodeProvider.DLL. LOG: Attempting download of new URL file:///C:/Windows/Microsoft.NET/Framework/v2.0.50727/Temporary ASP.NET Files/root/f645d80b/bb4d1cdf/VJSharpCodeProvider/VJSharpCodeProvider.DLL. LOG: Attempting download of new URL file:///C:/dev/ins/bin/VJSharpCodeProvider.DLL. LOG: Attempting download of new URL file:///C:/dev/ins/fakturaTest/bin/VJSharpCodeProvider/VJSharpCodeProvider.DLL. LOG: Attempting download of new URL file:///C:/Windows/Microsoft.NET/Framework/v2.0.50727/Temporary ASP.NET Files/root/f645d80b/bb4d1cdf/VJSharpCodeProvider.EXE. LOG: Attempting download of new URL file:///C:/Windows/Microsoft.NET/Framework/v2.0.50727/Temporary ASP.NET Files/root/f645d80b/bb4d1cdf/VJSharpCodeProvider/VJSharpCodeProvider.EXE. LOG: Attempting download of new URL file:///C:/dev/ins/bin/VJSharpCodeProvider.EXE. LOG: Attempting download of new URL file:///C:/dev/ins/bin/VJSharpCodeProvider/VJSharpCodeProvider.EXE.

    Read the article

  • No long-running conversations - IllegalArgumentException: Stack must not be null

    - by Markos Fragkakis
    Hi all, I have a very simple application with just 2 pages on WebLogic 10.3.2 (11g), Seam 2.2.0.GA. I have a command button in each, which makes a redirect-after-post to the other. This works well, as I see the URL of the current page I am seeing in the address bar. BUT, even though I have no long-running conversations defined, after a random number of clicks, and - I think - after a random number of seconds (~10s - 60s) I get the lovely exception at the end of this post. Now, if I have understood how temporary conversations work when redirecting this happens: When I first see my application, the url is http://localhost:7001/myapp When I click the button in pageA.xhtml, I end up in "pageB.xhtml?cid=26". This is normal because Seam extends the temporary conversation of the first request to last until the renderResponse phase of the redirect. So, it uses the cid (Conversation Id) of the extended temporary conversation to find any propagated parameters. When I click the button in pageB.xhtml, I end up in pageA.xhtml?cid=26 The same cid was given to the new extended temporary conversation. This is normal because the conversation ended at the end of the previous redirect-after-post, and not the number 26 is free to use as a cid. Is this all correct? If yes, why does this happen: If I re-type the applications home address (showing pageA) and re-click, I end up in pageB.xhtml?cid=29, which is a different number than 26. But 26 has ended after the previous RenderResponse phase, befire I re-types the url. Why is it not used instead of 29? So, to sup up, 2 questions: Why do I get the exception, even though I have not started any long-running conversations? What happens exactly with the cid? On what basis does it change? Cheers,

    Read the article

  • SQL Server Multi-statement UDF - way to store data temporarily required

    - by Kharlos Dominguez
    Hello, I have a relatively complex query, with several self joins, which works on a rather large table. For that query to perform faster, I thus need to only work with a subset of the data. Said subset of data can range between 12 000 and 120 000 rows depending on the parameters passed. More details can be found here: http://stackoverflow.com/questions/3054843/sql-server-cte-referred-in-self-joins-slow As you can see, I was using a CTE to return the data subset before, which caused some performance problems as SQL Server was re-running the Select statement in the CTE for every join instead of simply being run once and reusing its data set. The alternative, using temporary tables worked much faster (while testing the query in a separate window outside the UDF body). However, when I tried to implement this in a multi-statement UDF, I was harshly reminded by SQL Server that multi-statement UDFs do not support temporary tables for some reason... UDFs do allow table variables however, so I tried that, but the performance is absolutely horrible as it takes 1m40 for my query to complete whereas the the CTE version only took 40minutes. I believe the table variables is slow for reasons listed in this thread: http://stackoverflow.com/questions/1643687/table-variable-poor-performance-on-insert-in-sql-server-stored-procedure Temporary table version takes around 1 seconds, but I can't make it into a function due to the SQL Server restrictions, and I have to return a table back to the caller. Considering that CTE and table variables are both too slow, and that temporary tables are rejected in UDFs, What are my options in order for my UDF to perform quickly? Thanks a lot in advance.

    Read the article

  • Reoccurring error "The current identity (NT AUTHORITY\NETWORK SERVICE) does not have write access to

    - by tuseau
    Hi, I keep receiving this error in my ASP.NET web app (below). I give the Network Service account rights to the specified folder, it runs fine for a while, but then within a day or two the error reoccurs, as the Network Service account has been removed from the rights for the folder. Adding it again fixes it, but why does it keep reocurring? Could it be anything to do with using Interop components (such as WMI)? Here's the full error: Server Error in '/DriveMonitor' Application. The current identity (NT AUTHORITY\NETWORK SERVICE) does not have write access to 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files'. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.Web.HttpException: The current identity (NT AUTHORITY\NETWORK SERVICE) does not have write access to 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files'. Source Error: An unhandled exception was generated during the execution of the current web request. Information regarding the origin and location of the exception can be identified using the exception stack trace below. Stack Trace: [HttpException (0x80004005): The current identity (NT AUTHORITY\NETWORK SERVICE) does not have write access to 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files'.] System.Web.HttpRuntime.SetUpCodegenDirectory(CompilationSection compilationSection) +8918190 System.Web.HttpRuntime.HostingInit(HostingEnvironmentFlags hostingFlags) +152 [HttpException (0x80004005): The current identity (NT AUTHORITY\NETWORK SERVICE) does not have write access to 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files'.] System.Web.HttpRuntime.FirstRequestInit(HttpContext context) +8890735 System.Web.HttpRuntime.EnsureFirstRequestInit(HttpContext context) +85 System.Web.HttpRuntime.ProcessRequestInternal(HttpWorkerRequest wr) +259

    Read the article

  • threading in c#

    - by I__
    i am using this code: private void Form1_Load(object sender, EventArgs e) { } private void serialPort1_DataReceived(object sender, System.IO.Ports.SerialDataReceivedEventArgs e) { string response = serialPort1.ReadLine(); this.BeginInvoke(new MethodInvoker( () => textBox1.AppendText(response + "\r\n") )); } ThreadStart myThreadDelegate = new ThreadStart(ThreadWork.DoWork); Thread myThread = new Thread(myThreadDelegate); myThread.Start(); but am getting lots of errors: Error 2 The type or namespace name 'ThreadStart' could not be found (are you missing a using directive or an assembly reference?) C:\Users\alexluvsdanielle\AppData\Local\Temporary Projects\WindowsFormsApplication1\Form1.cs 31 44 WindowsFormsApplication1 Error 3 The name 'ThreadWork' does not exist in the current context C:\Users\alexluvsdanielle\AppData\Local\Temporary Projects\WindowsFormsApplication1\Form1.cs 31 56 WindowsFormsApplication1 Error 4 The type or namespace name 'Thread' could not be found (are you missing a using directive or an assembly reference?) C:\Users\alexluvsdanielle\AppData\Local\Temporary Projects\WindowsFormsApplication1\Form1.cs 32 31 WindowsFormsApplication1 Error 5 A field initializer cannot reference the non-static field, method, or property 'WindowsFormsApplication1.Form1.myThreadDelegate' C:\Users\alexluvsdanielle\AppData\Local\Temporary Projects\WindowsFormsApplication1\Form1.cs 32 38 WindowsFormsApplication1 what am i doing wrong?

    Read the article

  • BizTalk Cross Reference Data Management Strategy

    - by charlie.mott
    Article Source: http://geekswithblogs.net/charliemott This article describes an approach to the management of cross reference data for BizTalk.  Some articles about the BizTalk Cross Referencing features can be found here: http://home.comcast.net/~sdwoodgate/xrefseed.zip http://geekswithblogs.net/michaelstephenson/archive/2006/12/24/101995.aspx http://geekswithblogs.net/charliemott/archive/2009/04/20/value-vs.id-cross-referencing-in-biztalk.aspx Options Current options to managing this data include: Maintaining xml files in the format that can be used by the out-of-the-box BTSXRefImport.exe utility. Use of user interfaces that have been developed to manage this data: BizTalk Cross Referencing Tool XRef XML Creation Tool However, there are the following issues with the above options: The 'BizTalk Cross Referencing Tool' requires a separate database to manage.  The 'XRef XML Creation' tool has no means of persisting the data settings. The 'BizTalk Cross Referencing tool' generates integers in the common id field. I prefer to use a string (e.g. acme.country.uk). This is more readable. (see naming conventions below). Both UI tools continue to use BTSXRefImport.exe.  This utility replaces all xref data. This can be a problem in continuous integration environments that support multiple clients or BizTalk target instances.  If you upload the data for one client it would destroy the data for another client.  Yet in TFS where builds run concurrently, this would break unit tests. Alternative Approach In response to these issues, I instead use simple SQL scripts to directly populate the BizTalkMgmtDb xref tables combined with a data namepacing strategy to isolate client data. Naming Conventions All data keys use namespace prefixing.  The pattern will be <companyName>.<data Type>.  The naming conventions will be to use lower casing for all items.  The data must follow this pattern to isolate it from other company cross-reference data.  The table below shows some sample data. (Note: this data uses the 'ID' cross-reference tables.  the same principles apply for the 'value' cross-referencing tables). Table.Field Description Sample Data xref_AppType.appType Application Types acme.erp acme.portal acme.assetmanagement xref_AppInstance.appInstance Application Instances (each will have a corresponding application type). acme.dynamics.ax acme.dynamics.crm acme.sharepoint acme.maximo xref_IDXRef.idXRef Holds the cross reference data types. acme.taxcode acme.country xref_IDXRefData.CommonID Holds each cross reference type value used by the canonical schemas. acme.vatcode.exmpt acme.vatcode.std acme.country.usa acme.country.uk xref_IDXRefData.AppID This holds the value for each application instance and each xref type. GBP USD SQL Scripts The data to be stored in the BizTalkMgmtDb xref tables will be managed by SQL scripts stored in a database project in the visual studio solution. File(s) Description Build.cmd A sqlcmd script to deploy data by running the SQL scripts below.  (This can be run as part of the MSBuild process).   acme.purgexref.sql SQL script to clear acme.* data from the xref tables.  As such, this will not impact data for any other company. acme.applicationInstances.sql   SQL script to insert application type and application instance data.   acme.vatcode.sql acme.country.sql etc ...  There will be a separate SQL script to insert each cross-reference data type and application specific values for these types.

    Read the article

  • SQL SERVER – Integrate Your Data with Skyvia – Cloud ETL Solution

    - by Pinal Dave
    In our days data integration often becomes a key aspect of business success. For business analysts it’s very important to get integrated data from various sources, such as relational databases, cloud CRMs, etc. to make correct and successful decisions. There are various data integration solutions on market, and today I will tell about one of them – Skyvia. Skyvia is a cloud data integration service, which allows integrating data in cloud CRMs and different relational databases. It is a completely online solution and does not require anything except for a browser. Skyvia provides powerful etl tools for data import, export, replication, and synchronization for SQL Server and other databases and cloud CRMs. You can use Skyvia data import tools to load data from various sources to SQL Server (and SQL Azure). Skyvia supports such cloud CRMs as Salesforce and Microsoft Dynamics CRM and such databases as MySQL and PostgreSQL. You even can migrate data from SQL Server to SQL Server, or from SQL Server to other databases and cloud CRMs. Additionally Skyvia supports import of CSV files, either uploaded manually or stored on cloud file storage services, such as Dropbox, Box, Google Drive, or FTP servers. When data import is not enough, Skyvia offers bidirectional data synchronization. With this tool, you can synchronize SQL Server data with other databases and cloud CRMs. After performing the first synchronization, Skyvia tracks data changes in the synchronized data storages. In SQL Server databases (and other relational databases) it creates additional tracking tables and triggers. This allows synchronizing only the changed data. Skyvia also maps records by their primary key values to each other, so it does not require different sources to have the same primary key structure. It still can match the corresponding records without having to add any additional columns or changing data structure. The only requirement for synchronization is that primary keys must be autogenerated. With Skyvia it’s not necessary for data to have the same structure in integrated data storages. Skyvia supports powerful mapping mechanisms that allow synchronizing data with completely different structure. It provides support for complex mathematical and string expressions when mapping data, using lookups, etc. You may use data splitting – loading data from a single CSV file or source table to multiple related target tables. Or you may load data from several source CSV files or tables to several related target tables. In each case Skyvia preserves data relations. It builds corresponding relations between the target data automatically. When you often work with cloud CRM data, native CRM data reporting and analysis tools may be not enough for you. And there is a vast set of professional data analysis and reporting tools available for SQL Server. With Skyvia you can quickly copy your cloud CRM data to an SQL Server database and apply corresponding SQL Server tools to the data. In such case you can use Skyvia data replication tools. It allows you to quickly copy cloud CRM data to SQL Server or other databases without customizing any mapping. You need just to specify columns to copy data from. Target database tables will be created automatically. Skyvia offers powerful filtering settings to replicate only the records you need. Skyvia also provides capability to export data from SQL Server (including SQL Azure) and other databases and cloud CRMs to CSV files. These files can be either downloadable manually or loaded to cloud file storages or FTP server. You can use export, for example, to backup SQL Azure data to Dropbox. Any data integration operation can be scheduled for automatic execution. Thus, you can automate your SQL Azure data backup or data synchronization – just configure it once, then schedule it, and benefit from automatic data integration with Skyvia. Currently registration and using Skyvia is completely free, so you can try it yourself and find out whether its data migration and integration tools suits for you. Visit this link to register on Skyvia: https://app.skyvia.com/register Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Cloud Computing

    Read the article

  • Can I move the Flash temp folder/buffer (Win64)

    - by xciter
    I need to move the folder in which the Flash plugin saves its temporary files (so NOT the browser cache folder). Normally, the plugin saves its buffered content in the default temporary folder of the operating system. However, I do not want to move that folder. In other words, I only need to change the folder which flash uses. My operating system is Windows 7 64-bit. I am using the latest version of the flash plugin.

    Read the article

  • Multidimensional Thinking–24 Hours of Pass: Celebrating Women in Technology

    - by smisner
    It’s Day 1 of #24HOP and it’s been great to participate in this event with so many women from all over the world in one long training-fest. The SQL community has been abuzz on Twitter with running commentary which is fun to watch while listening to the current speaker. If you missed the fun today because you’re busy with all that work you’ve got to do – don’t despair. All sessions are recorded and will be available soon. Keep an eye on the 24 Hours of Pass page for details. And the fun’s not over today. Rather than run 24 hours consecutively, #24HOP is now broken down into 12-hours over two days, so check out the schedule to see if there’s a session that interests you and fits your schedule. I’m pleased to announce that my business colleague Erika Bakse ( Blog | Twitter) will be presenting on Day 2 – her debut presentation for a PASS event. (And I’m also pleased to say she’s my daughter!) Multidimensional Thinking: The Presentation My contribution to this lineup of terrific speakers was Multidimensional Thinking. Here’s the abstract: “Whether you’re developing Analysis Services cubes or creating PowerPivot workbooks, you need to get into a multidimensional frame of mind to produce a model that best enables users to answer their business questions on their own. Many database professionals struggle initially with multidimensional models because the data modeling process is much different than the one they use to produce traditional, third normal form databases. In this session, I’ll introduce you to the terminology of multidimensional modeling and step through the process of translating business requirements into a viable model.” If you watched the presentation and want a copy of the slides, you can download a copy here. And you’re welcome to download the slides even if you didn’t watch the presentation, but they’ll make more sense if you did! Kimball All the Way There’s only so much I can cover in the time allotted, but I hope that I succeeded in my attempt to build a foundation that prepares you for starting out in business intelligence. One of my favorite resources that will get into much more detail about all kinds of scenarios (well beyond the basics!) is The Data Warehouse Toolkit (Second Edition) by Ralph Kimball. Anything from Kimball or the Kimball Group is worth reading. Kimball material might take reading and re-reading a few times before it makes sense. From my own experience, I found that I actually had to just build my first data warehouse using dimensional modeling on faith that I was going the right direction because it just didn’t click with me initially. I’ve had years of practice since then and I can say it does get easier with practice. The most important thing, in my opinion, is that you simply must prototype a lot and solicit user feedback, because ultimately the model needs to make sense to them. They will definitely make sure you get it right! Schema Generation One question came up after the presentation about whether we use SQL Server Management Studio or Business Intelligence Development Studio (BIDS) to build the tables for the dimensional model. My answer? It really doesn’t matter how you create the tables. Use whatever method that you’re comfortable with. But just so happens that it IS possible to set up your design in BIDS as part of an Analysis Services project and to have BIDS generate the relational schema for you. I did a Webcast last year called Building a Data Mart with Integration Services that demonstrated how to do this. Yes, the subject was Integration Services, but as part of that presentation, I showed how to leverage Analysis Services to build the tables, and then I showed how to use Integration Services to load those tables. I blogged about this presentation in September 2010 and included downloads of the project that I used. In the blog post, I explained that I missed a step in the demonstration. Oops. Just as an FYI, there were two more Webcasts to finish the story begun with the data – Accelerating Answers with Analysis Services and Delivering Information with Reporting Services. If you want to just cut to the chase and learn how to use Analysis Services to build the tables, you can see the Using the Schema Generation Wizard topic in Books Online.

    Read the article

  • Where opera store cookies set by expire after restart (time 0)

    - by marc
    Welcome, I'm looking for information where opera store temporary cookies with time expire (0), what's mean - cookie should be deleted after restart browser. Do opera create temporary file for these cookies and delete after restart (if yes what file), or store them in memory (RAM). I'm tested file "cookies4.dat" by hex-editor and it don't have that "temp" 0 cookies stored inside. regards

    Read the article

  • SQL SERVER – Curious Case of Disappearing Rows – ON UPDATE CASCADE and ON DELETE CASCADE – T-SQL Example – Part 2 of 2

    - by pinaldave
    Yesterday I wrote a real world story of how a friend who thought they have an issue with intrusion or virus whereas the issue was really in the code. I strongly suggest you read my earlier blog post Curious Case of Disappearing Rows – ON UPDATE CASCADE and ON DELETE CASCADE – Part 1 of 2 before continuing this blog post as this is second part of the first blog post. Let me reproduce the simple scenario in T-SQL. Building Sample Data USE [TestDB] GO -- Creating Table Products CREATE TABLE [dbo].[Products]( [ProductID] [int] NOT NULL, [ProductDesc] [varchar](50) NOT NULL, CONSTRAINT [PK_Products] PRIMARY KEY CLUSTERED ( [ProductID] ASC )) ON [PRIMARY] GO -- Creating Table ProductDetails CREATE TABLE [dbo].[ProductDetails]( [ProductDetailID] [int] NOT NULL, [ProductID] [int] NOT NULL, [Total] [int] NOT NULL, CONSTRAINT [PK_ProductDetails] PRIMARY KEY CLUSTERED ( [ProductDetailID] ASC )) ON [PRIMARY] GO ALTER TABLE [dbo].[ProductDetails] WITH CHECK ADD CONSTRAINT [FK_ProductDetails_Products] FOREIGN KEY([ProductID]) REFERENCES [dbo].[Products] ([ProductID]) ON UPDATE CASCADE ON DELETE CASCADE GO -- Insert Data into Table USE TestDB GO INSERT INTO Products (ProductID, ProductDesc) SELECT 1, 'Bike' UNION ALL SELECT 2, 'Car' UNION ALL SELECT 3, 'Books' GO INSERT INTO ProductDetails ([ProductDetailID],[ProductID],[Total]) SELECT 1, 1, 200 UNION ALL SELECT 2, 1, 100 UNION ALL SELECT 3, 1, 111 UNION ALL SELECT 4, 2, 200 UNION ALL SELECT 5, 3, 100 UNION ALL SELECT 6, 3, 100 UNION ALL SELECT 7, 3, 200 GO Select Data from Tables -- Selecting Data SELECT * FROM Products SELECT * FROM ProductDetails GO Delete Data from Products Table -- Deleting Data DELETE FROM Products WHERE ProductID = 1 GO Select Data from Tables Again -- Selecting Data SELECT * FROM Products SELECT * FROM ProductDetails GO Clean up Data -- Clean up DROP TABLE ProductDetails DROP TABLE Products GO My friend was confused as there was no delete was firing over ProductsDetails Table still there was a delete happening. The reason was because there is a foreign key created between Products and ProductsDetails Table with the keywords ON DELETE CASCADE. Due to ON DELETE CASCADE whenever is specified when the data from Table A is deleted and if it is referenced in another table using foreign key it will be deleted as well. Workaround 1: Design Changes – 3 Tables Change the design to have more than two tables. Create One Product Mater Table with all the products. It should historically store all the products list in it. No products should be ever removed from it. Add another table called Current Product and it should contain only the table which should be visible in the product catalogue. Another table should be called as ProductHistory table. There should be no use of CASCADE keyword among them. Workaround 2: Design Changes - Column IsVisible You can keep the same two tables. 1) Products and 2) ProductsDetails. Add a column with BIT datatype to it and name it as a IsVisible. Now change your application code to display the catalogue based on this column. There should be no need to delete anything. Workaround 3: Bad Advices (Bad advises begins here) The reason I have said bad advices because these are going to be bad advices for sure. You should make necessary design changes and not use poor workarounds which can damage the system and database integrity further. Here are the examples 1) Do not delete the data – well, this is not a real solution but can give time to implement design changes. 2) Do not have ON CASCADE DELETE – in this case, you will have entry in productsdetails which will have no corresponding product id and later on there will be lots of confusion. 3) Duplicate Data – you can have all the data of the product table move to the product details table and repeat them at each row. Now remove CASCADE code. This will let you delete the product table rows without any issue. There are so many things wrong this suggestion, that I will not even start here. (Bad advises ends here)  Well, did I miss anything? Please help me with your suggestions. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • alternative to download them all extension for firefox

    - by Nrew
    Do you know of any good alternative for the firefox extension download them all. Because when I try to download the second time(after the first has been downloaded) in megaupload. There would be a temporary error, which is not really temporary. Because it will last until you clean the cache/history.

    Read the article

< Previous Page | 74 75 76 77 78 79 80 81 82 83 84 85  | Next Page >