Search Results

Search found 7738 results on 310 pages for 'calling convention'.

Page 79/310 | < Previous Page | 75 76 77 78 79 80 81 82 83 84 85 86  | Next Page >

  • Back to Basics: When does a .NET Assembly Dependency get loaded

    - by Rick Strahl
    When we work on typical day to day applications, it's easy to forget some of the core features of the .NET framework. For me personally it's been a long time since I've learned about some of the underlying CLR system level services even though I rely on them on a daily basis. I often think only about high level application constructs and/or high level framework functionality, but the low level stuff is often just taken for granted. Over the last week at DevConnections I had all sorts of low level discussions with other developers about the inner workings of this or that technology (especially in light of my Low Level ASP.NET Architecture talk and the Razor Hosting talk). One topic that came up a couple of times and ended up a point of confusion even amongst some seasoned developers (including some folks from Microsoft <snicker>) is when assemblies actually load into a .NET process. There are a number of different ways that assemblies are loaded in .NET. When you create a typical project assemblies usually come from: The Assembly reference list of the top level 'executable' project The Assembly references of referenced projects Dynamically loaded at runtime via AppDomain/Reflection loading In addition .NET automatically loads mscorlib (most of the System namespace) the boot process that hosts the .NET runtime in EXE apps, or some other kind of runtime hosting environment (runtime hosting in servers like IIS, SQL Server or COM Interop). In hosting environments the runtime host may also pre-load a bunch of assemblies on its own (for example the ASP.NET host requires all sorts of assemblies just to run itself, before ever routing into your user specific code). Assembly Loading The most obvious source of loaded assemblies is the top level application's assembly reference list. You can add assembly references to a top level application and those assembly references are then available to the application. In a nutshell, referenced assemblies are not immediately loaded - they are loaded on the fly as needed. So regardless of whether you have an assembly reference in a top level project, or a dependent assembly assemblies typically load on an as needed basis, unless explicitly loaded by user code. The same is true of dependent assemblies. To check this out I ran a simple test: I have a utility assembly Westwind.Utilities which is a general purpose library that can work in any type of project. Due to a couple of small requirements for encoding and a logging piece that allows logging Web content (dependency on HttpContext.Current) this utility library has a dependency on System.Web. Now System.Web is a pretty large assembly and generally you'd want to avoid adding it to a non-Web project if it can be helped. So I created a Console Application that loads my utility library: You can see that the top level Console app a reference to Westwind.Utilities and System.Data (beyond the core .NET libs). The Westwind.Utilities project on the other hand has quite a few dependencies including System.Web. I then add a main program that accesses only a simple utillity method in the Westwind.Utilities library that doesn't require any of the classes that access System.Web: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); } StringUtils.NewStringId() calls into Westwind.Utilities, but it doesn't rely on System.Web. Any guesses what the assembly list looks like when I stop the code on the ReadLine() command? I'll wait here while you think about it… … … So, when I stop on ReadLine() and then fire up Process Explorer and check the assembly list I get: We can see here that .NET has not actually loaded any of the dependencies of the Westwind.Utilities assembly. Also not loaded is the top level System.Data reference even though it's in the dependent assembly list of the top level project. Since this particular function I called only uses core System functionality (contained in mscorlib) there's in fact nothing else loaded beyond the main application and my Westwind.Utilities assembly that contains the method accessed. None of the dependencies of Westwind.Utilities loaded. If you were to open the assembly in a disassembler like Reflector or ILSpy, you would however see all the compiled in dependencies. The referenced assemblies are in the dependency list and they are loadable, but they are not immediately loaded by the application. In other words the C# compiler and .NET linker are smart enough to figure out the dependencies based on the code that actually is referenced from your application and any dependencies cascading down into the dependencies from your top level application into the referenced assemblies. In the example above the usage requirement is pretty obvious since I'm only calling a single static method and then exiting the app, but in more complex applications these dependency relationships become very complicated - however it's all taken care of by the compiler and linker figuring out what types and members are actually referenced and including only those assemblies that are in fact referenced in your code or required by any of your dependencies. The good news here is: That if you are referencing an assembly that has a dependency on something like System.Web in a few places that are not actually accessed by any of your code or any dependent assembly code that you are calling, that assembly is never loaded into memory! Some Hosting Environments pre-load Assemblies The load behavior can vary however. In Console and desktop applications we have full control over assembly loading so we see the core CLR behavior. However other environments like ASP.NET for example will preload referenced assemblies explicitly as part of the startup process - primarily to minimize load conflicts. Specifically ASP.NET pre-loads all assemblies referenced in the assembly list and the /bin folder. So in Web applications it definitely pays to minimize your top level assemblies if they are not used. Understanding when Assemblies Load To clarify and see it actually happen what I described in the first example , let's look at a couple of other scenarios. To see assemblies loading at runtime in real time lets create a utility function to print out loaded assemblies to the console: public static void PrintAssemblies() { var assemblies = AppDomain.CurrentDomain.GetAssemblies(); foreach (var assembly in assemblies) { Console.WriteLine(assembly.GetName()); } } Now let's look at the first scenario where I have class method that references internally uses System.Web. In the first scenario lets add a method to my main program like this: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); PrintAssemblies(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } UpdateFromWebRequest() internally accesses HttpContext.Current to read some information of the ASP.NET Request object so it clearly needs a reference System.Web to work. In this first example, the method that holds the calling code is never called, but exists as a static method that can potentially be called externally at some point. What do you think will happen here with the assembly loading? Will System.Web load in this example? No - it doesn't. Because the WebLogEntry() method is never called by the mainline application (or anywhere else) System.Web is not loaded. .NET dynamically loads assemblies as code that needs it is called. No code references the WebLogEntry() method and so System.Web is never loaded. Next, let's add the call to this method, which should trigger System.Web to be loaded because a dependency exists. Let's change the code to: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.WriteLine("--- Before:"); PrintAssemblies(); WebLogEntry(); Console.WriteLine("--- After:"); PrintAssemblies(); Console.ReadLine(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } Looking at the code now, when do you think System.Web will be loaded? Will the before list include it? Yup System.Web gets loaded, but only after it's actually referenced. In fact, just until before the call to UpdateFromRequest() System.Web is not loaded - it only loads when the method is actually called and requires the reference in the executing code. Moral of the Story So what have we learned - or maybe remembered again? Dependent Assembly References are not pre-loaded when an application starts (by default) Dependent Assemblies that are not referenced by executing code are never loaded Dependent Assemblies are just in time loaded when first referenced in code All of this is nothing new - .NET has always worked like this. But it's good to have a refresher now and then and go through the exercise of seeing it work in action. It's not one of those things we think about everyday, and as I found out last week, I couldn't remember exactly how it worked since it's been so long since I've learned about this. And apparently I'm not the only one as several other people I had discussions with in relation to loaded assemblies also didn't recall exactly what should happen or assumed incorrectly that just having a reference automatically loads the assembly. The moral of the story for me is: Trying at all costs to eliminate an assembly reference from a component is not quite as important as it's often made out to be. For example, the Westwind.Utilities module described above has a logging component, including a Web specific logging entry that supports pulling information from the active HTTP Context. Adding that feature requires a reference to System.Web. Should I worry about this in the scope of this library? Probably not, because if I don't use that one class of nearly a hundred, System.Web never gets pulled into the parent process. IOW, System.Web only loads when I use that specific feature and if I am, well I clearly have to be running in a Web environment anyway to use it realistically. The alternative would be considerably uglier: Pulling out the WebLogEntry class and sticking it into another assembly and breaking up the logging code. In this case - definitely not worth it. So, .NET definitely goes through some pretty nifty optimizations to ensure that it loads only what it needs and in most cases you can just rely on .NET to do the right thing. Sometimes though assembly loading can go wrong (especially when signed and versioned local assemblies are involved), but that's subject for a whole other post…© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Solaris X86 64-bit Assembly Programming

    - by danx
    Solaris X86 64-bit Assembly Programming This is a simple example on writing, compiling, and debugging Solaris 64-bit x86 assembly language with a C program. This is also referred to as "AMD64" assembly. The term "AMD64" is used in an inclusive sense to refer to all X86 64-bit processors, whether AMD Opteron family or Intel 64 processor family. Both run Solaris x86. I'm keeping this example simple mainly to illustrate how everything comes together—compiler, assembler, linker, and debugger when using assembly language. The example I'm using here is a C program that calls an assembly language program passing a C string. The assembly language program takes the C string and calls printf() with it to print the string. AMD64 Register Usage But first let's review the use of AMD64 registers. AMD64 has several 64-bit registers, some special purpose (such as the stack pointer) and others general purpose. By convention, Solaris follows the AMD64 ABI in register usage, which is the same used by Linux, but different from Microsoft Windows in usage (such as which registers are used to pass parameters). This blog will only discuss conventions for Linux and Solaris. The following chart shows how AMD64 registers are used. The first six parameters to a function are passed through registers. If there's more than six parameters, parameter 7 and above are pushed on the stack before calling the function. The stack is also used to save temporary "stack" variables for use by a function. 64-bit Register Usage %rip Instruction Pointer points to the current instruction %rsp Stack Pointer %rbp Frame Pointer (saved stack pointer pointing to parameters on stack) %rdi Function Parameter 1 %rsi Function Parameter 2 %rdx Function Parameter 3 %rcx Function Parameter 4 %r8 Function Parameter 5 %r9 Function Parameter 6 %rax Function return value %r10, %r11 Temporary registers (need not be saved before used) %rbx, %r12, %r13, %r14, %r15 Temporary registers, but must be saved before use and restored before returning from the current function (usually with the push and pop instructions). 32-, 16-, and 8-bit registers To access the lower 32-, 16-, or 8-bits of a 64-bit register use the following: 64-bit register Least significant 32-bits Least significant 16-bits Least significant 8-bits %rax%eax%ax%al %rbx%ebx%bx%bl %rcx%ecx%cx%cl %rdx%edx%dx%dl %rsi%esi%si%sil %rdi%edi%di%axl %rbp%ebp%bp%bp %rsp%esp%sp%spl %r9%r9d%r9w%r9b %r10%r10d%r10w%r10b %r11%r11d%r11w%r11b %r12%r12d%r12w%r12b %r13%r13d%r13w%r13b %r14%r14d%r14w%r14b %r15%r15d%r15w%r15b %r16%r16d%r16w%r16b There's other registers present, such as the 64-bit %mm registers, 128-bit %xmm registers, 256-bit %ymm registers, and 512-bit %zmm registers. Except for %mm registers, these registers may not present on older AMD64 processors. Assembly Source The following is the source for a C program, helloas1.c, that calls an assembly function, hello_asm(). $ cat helloas1.c extern void hello_asm(char *s); int main(void) { hello_asm("Hello, World!"); } The assembly function called above, hello_asm(), is defined below. $ cat helloas2.s /* * helloas2.s * To build: * cc -m64 -o helloas2-cpp.s -D_ASM -E helloas2.s * cc -m64 -c -o helloas2.o helloas2-cpp.s */ #if defined(lint) || defined(__lint) /* ARGSUSED */ void hello_asm(char *s) { } #else /* lint */ #include <sys/asm_linkage.h> .extern printf ENTRY_NP(hello_asm) // Setup printf parameters on stack mov %rdi, %rsi // P2 (%rsi) is string variable lea .printf_string, %rdi // P1 (%rdi) is printf format string call printf ret SET_SIZE(hello_asm) // Read-only data .text .align 16 .type .printf_string, @object .printf_string: .ascii "The string is: %s.\n\0" #endif /* lint || __lint */ In the assembly source above, the C skeleton code under "#if defined(lint)" is optionally used for lint to check the interfaces with your C program--very useful to catch nasty interface bugs. The "asm_linkage.h" file includes some handy macros useful for assembly, such as ENTRY_NP(), used to define a program entry point, and SET_SIZE(), used to set the function size in the symbol table. The function hello_asm calls C function printf() by passing two parameters, Parameter 1 (P1) is a printf format string, and P2 is a string variable. The function begins by moving %rdi, which contains Parameter 1 (P1) passed hello_asm, to printf()'s P2, %rsi. Then it sets printf's P1, the format string, by loading the address the address of the format string in %rdi, P1. Finally it calls printf. After returning from printf, the hello_asm function returns itself. Larger, more complex assembly functions usually do more setup than the example above. If a function is returning a value, it would set %rax to the return value. Also, it's typical for a function to save the %rbp and %rsp registers of the calling function and to restore these registers before returning. %rsp contains the stack pointer and %rbp contains the frame pointer. Here is the typical function setup and return sequence for a function: ENTRY_NP(sample_assembly_function) push %rbp // save frame pointer on stack mov %rsp, %rbp // save stack pointer in frame pointer xor %rax, %r4ax // set function return value to 0. mov %rbp, %rsp // restore stack pointer pop %rbp // restore frame pointer ret // return to calling function SET_SIZE(sample_assembly_function) Compiling and Running Assembly Use the Solaris cc command to compile both C and assembly source, and to pre-process assembly source. You can also use GNU gcc instead of cc to compile, if you prefer. The "-m64" option tells the compiler to compile in 64-bit address mode (instead of 32-bit). $ cc -m64 -o helloas2-cpp.s -D_ASM -E helloas2.s $ cc -m64 -c -o helloas2.o helloas2-cpp.s $ cc -m64 -c helloas1.c $ cc -m64 -o hello-asm helloas1.o helloas2.o $ file hello-asm helloas1.o helloas2.o hello-asm: ELF 64-bit LSB executable AMD64 Version 1 [SSE FXSR FPU], dynamically linked, not stripped helloas1.o: ELF 64-bit LSB relocatable AMD64 Version 1 helloas2.o: ELF 64-bit LSB relocatable AMD64 Version 1 $ hello-asm The string is: Hello, World!. Debugging Assembly with MDB MDB is the Solaris system debugger. It can also be used to debug user programs, including assembly and C. The following example runs the above program, hello-asm, under control of the debugger. In the example below I load the program, set a breakpoint at the assembly function hello_asm, display the registers and the first parameter, step through the assembly function, and continue execution. $ mdb hello-asm # Start the debugger > hello_asm:b # Set a breakpoint > ::run # Run the program under the debugger mdb: stop at hello_asm mdb: target stopped at: hello_asm: movq %rdi,%rsi > $C # display function stack ffff80ffbffff6e0 hello_asm() ffff80ffbffff6f0 0x400adc() > $r # display registers %rax = 0x0000000000000000 %r8 = 0x0000000000000000 %rbx = 0xffff80ffbf7f8e70 %r9 = 0x0000000000000000 %rcx = 0x0000000000000000 %r10 = 0x0000000000000000 %rdx = 0xffff80ffbffff718 %r11 = 0xffff80ffbf537db8 %rsi = 0xffff80ffbffff708 %r12 = 0x0000000000000000 %rdi = 0x0000000000400cf8 %r13 = 0x0000000000000000 %r14 = 0x0000000000000000 %r15 = 0x0000000000000000 %cs = 0x0053 %fs = 0x0000 %gs = 0x0000 %ds = 0x0000 %es = 0x0000 %ss = 0x004b %rip = 0x0000000000400c70 hello_asm %rbp = 0xffff80ffbffff6e0 %rsp = 0xffff80ffbffff6c8 %rflags = 0x00000282 id=0 vip=0 vif=0 ac=0 vm=0 rf=0 nt=0 iopl=0x0 status=<of,df,IF,tf,SF,zf,af,pf,cf> %gsbase = 0x0000000000000000 %fsbase = 0xffff80ffbf782a40 %trapno = 0x3 %err = 0x0 > ::dis # disassemble the current instructions hello_asm: movq %rdi,%rsi hello_asm+3: leaq 0x400c90,%rdi hello_asm+0xb: call -0x220 <PLT:printf> hello_asm+0x10: ret 0x400c81: nop 0x400c85: nop 0x400c88: nop 0x400c8c: nop 0x400c90: pushq %rsp 0x400c91: pushq $0x74732065 0x400c96: jb +0x69 <0x400d01> > 0x0000000000400cf8/S # %rdi contains Parameter 1 0x400cf8: Hello, World! > [ # Step and execute 1 instruction mdb: target stopped at: hello_asm+3: leaq 0x400c90,%rdi > [ mdb: target stopped at: hello_asm+0xb: call -0x220 <PLT:printf> > [ The string is: Hello, World!. mdb: target stopped at: hello_asm+0x10: ret > [ mdb: target stopped at: main+0x19: movl $0x0,-0x4(%rbp) > :c # continue program execution mdb: target has terminated > $q # quit the MDB debugger $ In the example above, at the start of function hello_asm(), I display the stack contents with "$C", display the registers contents with "$r", then disassemble the current function with "::dis". The first function parameter, which is a C string, is passed by reference with the string address in %rdi (see the register usage chart above). The address is 0x400cf8, so I print the value of the string with the "/S" MDB command: "0x0000000000400cf8/S". I can also print the contents at an address in several other formats. Here's a few popular formats. For more, see the mdb(1) man page for details. address/S C string address/C ASCII character (1 byte) address/E unsigned decimal (8 bytes) address/U unsigned decimal (4 bytes) address/D signed decimal (4 bytes) address/J hexadecimal (8 bytes) address/X hexadecimal (4 bytes) address/B hexadecimal (1 bytes) address/K pointer in hexadecimal (4 or 8 bytes) address/I disassembled instruction Finally, I step through each machine instruction with the "[" command, which steps over functions. If I wanted to enter a function, I would use the "]" command. Then I continue program execution with ":c", which continues until the program terminates. MDB Basic Cheat Sheet Here's a brief cheat sheet of some of the more common MDB commands useful for assembly debugging. There's an entire set of macros and more powerful commands, especially some for debugging the Solaris kernel, but that's beyond the scope of this example. $C Display function stack with pointers $c Display function stack $e Display external function names $v Display non-zero variables and registers $r Display registers ::fpregs Display floating point (or "media" registers). Includes %st, %xmm, and %ymm registers. ::status Display program status ::run Run the program (followed by optional command line parameters) $q Quit the debugger address:b Set a breakpoint address:d Delete a breakpoint $b Display breakpoints :c Continue program execution after a breakpoint [ Step 1 instruction, but step over function calls ] Step 1 instruction address::dis Disassemble instructions at an address ::events Display events Further Information "Assembly Language Techniques for Oracle Solaris on x86 Platforms" by Paul Lowik (2004). Good tutorial on Solaris x86 optimization with assembly. The Solaris Operating System on x86 Platforms An excellent, detailed tutorial on X86 architecture, with Solaris specifics. By an ex-Sun employee, Frank Hofmann (2005). "AMD64 ABI Features", Solaris 64-bit Developer's Guide contains rules on data types and register usage for Intel 64/AMD64-class processors. (available at docs.oracle.com) Solaris X86 Assembly Language Reference Manual (available at docs.oracle.com) SPARC Assembly Language Reference Manual (available at docs.oracle.com) System V Application Binary Interface (2003) defines the AMD64 ABI for UNIX-class operating systems, including Solaris, Linux, and BSD. Google for it—the original website is gone. cc(1), gcc(1), and mdb(1) man pages.

    Read the article

  • Constant game speed independent of variable FPS in OpenGL with GLUT?

    - by Nazgulled
    I've been reading Koen Witters detailed article about different game loop solutions but I'm having some problems implementing the last one with GLUT, which is the recommended one. After reading a couple of articles, tutorials and code from other people on how to achieve a constant game speed, I think that what I currently have implemented (I'll post the code below) is what Koen Witters called Game Speed dependent on Variable FPS, the second on his article. First, through my searching experience, there's a couple of people that probably have the knowledge to help out on this but don't know what GLUT is and I'm going to try and explain (feel free to correct me) the relevant functions for my problem of this OpenGL toolkit. Skip this section if you know what GLUT is and how to play with it. GLUT Toolkit: GLUT is an OpenGL toolkit and helps with common tasks in OpenGL. The glutDisplayFunc(renderScene) takes a pointer to a renderScene() function callback, which will be responsible for rendering everything. The renderScene() function will only be called once after the callback registration. The glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0) takes the number of milliseconds to pass before calling the callback processAnimationTimer(). The last argument is just a value to pass to the timer callback. The processAnimationTimer() will not be called each TIMER_MILLISECONDS but just once. The glutPostRedisplay() function requests GLUT to render a new frame so we need call this every time we change something in the scene. The glutIdleFunc(renderScene) could be used to register a callback to renderScene() (this does not make glutDisplayFunc() irrelevant) but this function should be avoided because the idle callback is continuously called when events are not being received, increasing the CPU load. The glutGet(GLUT_ELAPSED_TIME) function returns the number of milliseconds since glutInit was called (or first call to glutGet(GLUT_ELAPSED_TIME)). That's the timer we have with GLUT. I know there are better alternatives for high resolution timers, but let's keep with this one for now. I think this is enough information on how GLUT renders frames so people that didn't know about it could also pitch in this question to try and help if they fell like it. Current Implementation: Now, I'm not sure I have correctly implemented the second solution proposed by Koen, Game Speed dependent on Variable FPS. The relevant code for that goes like this: #define TICKS_PER_SECOND 30 #define MOVEMENT_SPEED 2.0f const int TIMER_MILLISECONDS = 1000 / TICKS_PER_SECOND; int previousTime; int currentTime; int elapsedTime; void renderScene(void) { (...) // Setup the camera position and looking point SceneCamera.LookAt(); // Do all drawing below... (...) } void processAnimationTimer(int value) { // setups the timer to be called again glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0); // Get the time when the previous frame was rendered previousTime = currentTime; // Get the current time (in milliseconds) and calculate the elapsed time currentTime = glutGet(GLUT_ELAPSED_TIME); elapsedTime = currentTime - previousTime; /* Multiply the camera direction vector by constant speed then by the elapsed time (in seconds) and then move the camera */ SceneCamera.Move(cameraDirection * MOVEMENT_SPEED * (elapsedTime / 1000.0f)); // Requests to render a new frame (this will call my renderScene() once) glutPostRedisplay(); } void main(int argc, char **argv) { glutInit(&argc, argv); (...) glutDisplayFunc(renderScene); (...) // Setup the timer to be called one first time glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0); // Read the current time since glutInit was called currentTime = glutGet(GLUT_ELAPSED_TIME); glutMainLoop(); } This implementation doesn't fell right. It works in the sense that helps the game speed to be constant dependent on the FPS. So that moving from point A to point B takes the same time no matter the high/low framerate. However, I believe I'm limiting the game framerate with this approach. Each frame will only be rendered when the time callback is called, that means the framerate will be roughly around TICKS_PER_SECOND frames per second. This doesn't feel right, you shouldn't limit your powerful hardware, it's wrong. It's my understanding though, that I still need to calculate the elapsedTime. Just because I'm telling GLUT to call the timer callback every TIMER_MILLISECONDS, it doesn't mean it will always do that on time. I'm not sure how can I fix this and to be completely honest, I have no idea what is the game loop in GLUT, you know, the while( game_is_running ) loop in Koen's article. But it's my understanding that GLUT is event-driven and that game loop starts when I call glutMainLoop() (which never returns), yes? I thought I could register an idle callback with glutIdleFunc() and use that as replacement of glutTimerFunc(), only rendering when necessary (instead of all the time as usual) but when I tested this with an empty callback (like void gameLoop() {}) and it was basically doing nothing, only a black screen, the CPU spiked to 25% and remained there until I killed the game and it went back to normal. So I don't think that's the path to follow. Using glutTimerFunc() is definitely not a good approach to perform all movements/animations based on that, as I'm limiting my game to a constant FPS, not cool. Or maybe I'm using it wrong and my implementation is not right? How exactly can I have a constant game speed with variable FPS? More exactly, how do I correctly implement Koen's Constant Game Speed with Maximum FPS solution (the fourth one on his article) with GLUT? Maybe this is not possible at all with GLUT? If not, what are my alternatives? What is the best approach to this problem (constant game speed) with GLUT? I originally posted this question on Stack Overflow before being pointed out about this site. The following is a different approach I tried after creating the question in SO, so I'm posting it here too. Another Approach: I've been experimenting and here's what I was able to achieve now. Instead of calculating the elapsed time on a timed function (which limits my game's framerate) I'm now doing it in renderScene(). Whenever changes to the scene happen I call glutPostRedisplay() (ie: camera moving, some object animation, etc...) which will make a call to renderScene(). I can use the elapsed time in this function to move my camera for instance. My code has now turned into this: int previousTime; int currentTime; int elapsedTime; void renderScene(void) { (...) // Setup the camera position and looking point SceneCamera.LookAt(); // Do all drawing below... (...) } void renderScene(void) { (...) // Get the time when the previous frame was rendered previousTime = currentTime; // Get the current time (in milliseconds) and calculate the elapsed time currentTime = glutGet(GLUT_ELAPSED_TIME); elapsedTime = currentTime - previousTime; /* Multiply the camera direction vector by constant speed then by the elapsed time (in seconds) and then move the camera */ SceneCamera.Move(cameraDirection * MOVEMENT_SPEED * (elapsedTime / 1000.0f)); // Setup the camera position and looking point SceneCamera.LookAt(); // All drawing code goes inside this function drawCompleteScene(); glutSwapBuffers(); /* Redraw the frame ONLY if the user is moving the camera (similar code will be needed to redraw the frame for other events) */ if(!IsTupleEmpty(cameraDirection)) { glutPostRedisplay(); } } void main(int argc, char **argv) { glutInit(&argc, argv); (...) glutDisplayFunc(renderScene); (...) currentTime = glutGet(GLUT_ELAPSED_TIME); glutMainLoop(); } Conclusion, it's working, or so it seems. If I don't move the camera, the CPU usage is low, nothing is being rendered (for testing purposes I only have a grid extending for 4000.0f, while zFar is set to 1000.0f). When I start moving the camera the scene starts redrawing itself. If I keep pressing the move keys, the CPU usage will increase; this is normal behavior. It drops back when I stop moving. Unless I'm missing something, it seems like a good approach for now. I did find this interesting article on iDevGames and this implementation is probably affected by the problem described on that article. What's your thoughts on that? Please note that I'm just doing this for fun, I have no intentions of creating some game to distribute or something like that, not in the near future at least. If I did, I would probably go with something else besides GLUT. But since I'm using GLUT, and other than the problem described on iDevGames, do you think this latest implementation is sufficient for GLUT? The only real issue I can think of right now is that I'll need to keep calling glutPostRedisplay() every time the scene changes something and keep calling it until there's nothing new to redraw. A little complexity added to the code for a better cause, I think. What do you think?

    Read the article

  • Timeout Considerations for Solicit Response

    - by Michael Stephenson
    Background One of the clients I work with had been experiencing some issues for a while surrounding web service timeouts.  It's been a little challenging to work through the problems due to limitations in the diagnostic information available from one of the applications, but I learned some interesting things while troubleshooting the problem which don't seem to have been discussed much in the community so I thought I'd share my findings. In the scenario we have BizTalk trying to make calls to a .net web service which was exposed as a WSE 2 endpoint.  In the process BizTalk will try to make a large number of concurrent web service calls to the application, and the backend application has more than enough infrastructure and capability to handle the load. We have configured the <ConnectionManagement> section of the BizTalk configuration file to support up to 100 concurrent connections from each of our 2 BizTalk send servers to the web servers of the application. The problem we were facing was that the BizTalk side was reporting a significant number of timeouts when calling the web service.   One of the biggest issues was the challenge of being able to correlate a message from BizTalk to the IIS log in the .net application and the custom logs in the application especially when there was a fairly large number of servers hosting the web services.  However the key moment came when we were able to identify a specific call which had taken 40 seconds to execute on the server (yes a long time I know but that's a different story!).  Anyway we were able to identify that this had timed out on the BizTalk side.  Based on the normal 2 minute timeout we knew something unexpected was going on. From here I decided to do some experimentation and I wanted to start outside of BizTalk because my hunch was this was not a BizTalk behaviour but something which was being highlighted by BizTalk because of our large load.     Server-side - Sample Web Service To begin with I created a sample web service.  Nothing special just a vanilla asmx web service hosted in IIS6 on Windows 2003 Standard Edition.  The web service is just a hello world style web service as shown in the below picture.  The only key feature is that the server side web method has a 30 second sleep in it and will trace out some information before and after the thread is set to sleep.      In the configuration for this web service there again is nothing special it's pretty much the most plain simple web service you could build. Client-Side To begin looking at what was happening with our example I created a number of different ways to consume the web service. SoapHttpClientProtocol Example I created a small application which would use a normal proxy generated to call the web service.  It would iterate around a loop and make calls using the begin/end methods so I can do this asynchronously.  I would do a loop of 20 calls with the ConnectionManager configuration section supporting only 5 concurrent connections to the server.     <connectionManagement> <remove address="*"/> <add address = "*" maxconnection = "12" /> <add address = "http://<ServerName>" maxconnection = "5" />                         </connectionManagement> </system.net>     The below picture shows an example of the service calling code, key points are: I have configured the timeout of 40 seconds for the proxy I am using the asynchronous methods on the proxy to call the web service         The Test I would run the client and execute 21 calls to the web service.   The Results  Below is the client side trace showing what's happening on the client. In the below diagram is the web service side trace showing what's happening on the server Some observations on the results are: All of the calls were successful from the clients perspective You could see the next call starting on the server as soon as the previous one had completed Calls took significantly longer than 40 seconds from the start of our call to the return. In fact call 20 took 2 minutes and 30 seconds from the perspective of my code to execute even though I had set the timeout to 40 seconds     WSE 2 Sample In the second example I used the exact same code to call the web service again with a single exception that I modified the web service proxy to derive from WebServiceClient protocol which is part of WSE 2 (using SP3).  The below picture shows the basic code and the key points are: I have configured the timeout of 40 seconds for the proxy I am using the asynchronous methods on the proxy to call the web service        The Test This test would execute 21 calls from the client to the web service.   The Results  The below trace is from the client side: The below trace is from the server side:   Some observations on the trace results for this scenario are: With call 4 if you look at the server side trace it did not start executing on the server for a number of seconds after the other 4 initial calls which were accepted by the server. I re-ran the test and this happened a couple of times and not on most others so at this point I'm just putting this down to something unexpected happening on the development machine and we will leave this observation out of scope of this article. You can see that the client side trace statement executed almost immediately in all cases All calls after the initial few calls would timeout On the client side the calls that did timeout; timed out in a longer duration than the 40 seconds we set as the timeout You can see that as calls were completing on the server the next calls were starting to come through The calls that timed out on the client did actually connect to the server and their server side execution completed successfully     Elaboration on the findings Based on the above observations I have drawn the below sequence diagram to illustrate conceptually what is happening.  Everything except the final web service object is on the client side of the call. In the diagram below I've put two notes on the Web Service Proxy to show the two different places where the different base classes seem to start their timeout counters. From the earlier samples we can work out that the timeout counter for the WSE web service proxy starts before the one for the SoapHttpClientProtocol proxy and the WSE one includes the time to get a connection from the pool; whereas the Soap proxy timeout just covers the method execution. One interesting observation is if we rerun the above sample and increase the number of calls from 21 to 100,000 then for the WSE sample we will see a similar pattern where everything after the first few calls will timeout on the client as soon as it makes a connection to the server whereas the soap proxy will happily plug away and process all of the calls without a single timeout. I have actually set the sample running overnight and this did happen. At this point you are probably thinking the same thoughts I was at the time about the differences in behaviour and which is right and why are they different? I'm not sure there is a definitive answer to this in the documentation, or at least not that I could find! I think you just have to consider that they are different and they could have different effects depending on your messaging solution. In lots of situations this is just not an issue as your concurrent requests doesn't get to the situation where you end up throttling the web service calls on the client side, however this is definitely more common with an integration broker such as BizTalk where you often have high throughput requirements.  Some of the considerations you should make Based on this behaviour you should be aware of the following: In a .net application if you are making lots of concurrent web service calls from an application in an asynchronous manner your user may thing they are experiencing poor performance but you think your web service is working well. The problem could be that the client will have a default of 2 connections to remote servers so you should bear this in mind When you are developing a BizTalk solution or a .net solution with the WSE 2 stack you may experience timeouts under load and throttling the number of connections using the max connections element in the configuration file will not help you For an application using WSE2 or SoapHttpClientProtocol an expired timeout will not throw an error until after a connection to the server has been made so you should consider this in your transaction and durability patterns     Our Work Around In the short term for our specific scenario we know that we can handle this by just increasing our timeout value.  There is only a specific small window when we get lots of concurrent traffic that causes this scenario so we should be able to increase the timeout to take into consideration the additional client side wait, and on the odd occasion where we do get a timeout the BizTalk send port retry will handle this. What was causing our original problem was that for that short window we were getting a lot of retries which significantly increased the load on our send servers and highlighted the issue.  Longer Term Solution As a longer term solution this really gives us more ammunition to argue a migration to WCF. The application we are calling has some factors which limit the protocols we can use but with WCF we would have more control on the various timeout options because in WCF you can configure specific parts of the timeout. Summary I've had this blog post on my to do list for ages but hopefully it will be useful to some people to just understand this behaviour and to possibly help you with some performance issues you may have. I do not believe there is too much in the way of documentation particularly around WSE2 and ASMX in this area so again another bit of ammunition for migrating to WCF. I'll try to do a follow up post with the sample for WCF to show how this changes things.

    Read the article

  • Executing legacy MSBuild scripts in TFS 2010 Build

    - by Jakob Ehn
    When upgrading from TFS 2008 to TFS 2010, all builds are “upgraded” in the sense that a build definition with the same name is created, and it uses the UpgradeTemplate  build process template to execute the build. This template basically just runs MSBuild on the existing TFSBuild.proj file. The build definition contains a property called ConfigurationFolderPath that points to the TFSBuild.proj file. So, existing builds will run just fine after upgrade. But what if you want to use the new workflow functionality in TFS 2010 Build, but still have a lot of MSBuild scripts that maybe call custom MSBuild tasks that you don’t have the time to rewrite? Then one option is to keep these MSBuild scrips and call them from a TFS 2010 Build workflow. This can be done using the MSBuild workflow activity that is avaiable in the toolbox in the Team Foundation Build Activities section: This activity wraps the call to MSBuild.exe and has the following parameters: Most of these properties are only relevant when actually compiling projects, for example C# project files. When calling custom MSBuild project files, you should focus on these properties: Property Meaning Example CommandLineArguments Use this to send in/override MSBuild properties in your project “/p:MyProperty=SomeValue” or MSBuildArguments (this will let you define the arguments in the build definition or when queuing the build) LogFile Name of the log file where MSbuild will log the output “MyBuild.log” LogFileDropLocation Location of the log file BuildDetail.DropLocation + “\log” Project The project to execute SourcesDirectory + “\BuildExtensions.targets” ResponseFile The name of the MSBuild response file SourcesDirectory + “\BuildExtensions.rsp” Targets The target(s) to execute New String() {“Target1”, “Target2”} Verbosity Logging verbosity Microsoft.TeamFoundation.Build.Workflow.BuildVerbosity.Normal Integrating with Team Build   If your MSBuild scripts tries to use Team Build tasks, they will most likely fail with the above approach. For example, the following MSBuild project file tries to add a build step using the BuildStep task:   <?xml version="1.0" encoding="utf-8"?> <Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003"> <Import Project="$(MSBuildExtensionsPath)\Microsoft\VisualStudio\TeamBuild\Microsoft.TeamFoundation.Build.targets" /> <Target Name="MyTarget"> <BuildStep TeamFoundationServerUrl="$(TeamFoundationServerUrl)" BuildUri="$(BuildUri)" Name="MyBuildStep" Message="My build step executed" Status="Succeeded"></BuildStep> </Target> </Project> When executing this file using the MSBuild activity, calling the MyTarget, it will fail with the following message: The "Microsoft.TeamFoundation.Build.Tasks.BuildStep" task could not be loaded from the assembly \PrivateAssemblies\Microsoft.TeamFoundation.Build.ProcessComponents.dll. Could not load file or assembly 'file:///D:\PrivateAssemblies\Microsoft.TeamFoundation.Build.ProcessComponents.dll' or one of its dependencies. The system cannot find the file specified. Confirm that the <UsingTask> declaration is correct, that the assembly and all its dependencies are available, and that the task contains a public class that implements Microsoft.Build.Framework.ITask. You can see that the path to the ProcessComponents.dll is incomplete. This is because in the Microsoft.TeamFoundation.Build.targets file the task is referenced using the $(TeamBuildRegPath) property. Also note that the task needs the TeamFounationServerUrl and BuildUri properties. One solution here is to pass these properties in using the Command Line Arguments parameter:   Here we pass in the parameters with the corresponding values from the curent build. The build log shows that the build step has in fact been inserted:   The problem as you probably spted is that the build step is insert at the top of the build log, instead of next to the MSBuild activity call. This is because we are using a legacy team build task (BuildStep), and that is how these are handled in TFS 2010. You can see the same behaviour when running builds that are using the UpgradeTemplate, that cutom build steps shows up at the top of the build log.

    Read the article

  • AutoMapper MappingFunction from Source Type of NameValueCollection

    - by REA_ANDREW
    I have had a situation arise today where I need to construct a complex type from a source of a NameValueCollection.  A little while back I submitted a patch for the Agatha Project to include REST (JSON and XML) support for the service contract.  I realized today that as useful as it is, it did not actually support true REST conformance, as REST should support GET so that you can use JSONP from JavaScript directly meaning you can query cross domain services.  My original implementation for POX and JSON used the POST method and this immediately rules out JSONP as from reading, JSONP only works with GET Requests. This then raised another issue.  The current operation contract of Agatha and one of its main benefits is that you can supply an array of Request objects in a single request, limiting the about of server requests you need to make.  Now, at the present time I am thinking that this will not be the case for the REST imlementation but will yield the benefits of the fact that : The same Request objects can be used for SOAP and RST (POX, JSON) The construct of the JavaScript functions will be simpler and more readable It will enable the use of JSONP for cross domain REST Services The current contract for the Agatha WcfRequestProcessor is at time of writing the following: [ServiceContract] public interface IWcfRequestProcessor { [OperationContract(Name = "ProcessRequests")] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] [TransactionFlow(TransactionFlowOption.Allowed)] Response[] Process(params Request[] requests); [OperationContract(Name = "ProcessOneWayRequests", IsOneWay = true)] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] void ProcessOneWayRequests(params OneWayRequest[] requests); }   My current proposed solution, and at the very early stages of my concept is as follows: [ServiceContract] public interface IWcfRestJsonRequestProcessor { [OperationContract(Name="process")] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] [TransactionFlow(TransactionFlowOption.Allowed)] [WebGet(UriTemplate = "process/{name}/{*parameters}", BodyStyle = WebMessageBodyStyle.WrappedResponse, ResponseFormat = WebMessageFormat.Json)] Response[] Process(string name, NameValueCollection parameters); [OperationContract(Name="processoneway",IsOneWay = true)] [ServiceKnownType("GetKnownTypes", typeof(KnownTypeProvider))] [WebGet(UriTemplate = "process-one-way/{name}/{*parameters}", BodyStyle = WebMessageBodyStyle.WrappedResponse, ResponseFormat = WebMessageFormat.Json)] void ProcessOneWayRequests(string name, NameValueCollection parameters); }   Now this part I have not yet implemented, it is the preliminart step which I have developed which will allow me to take the name of the Request Type and the NameValueCollection and construct the complex type which is that of the Request which I can then supply to a nested instance of the original IWcfRequestProcessor  and work as it should normally.  To give an example of some of the urls which you I envisage with this method are: http://www.url.com/service.svc/json/process/getweather/?location=london http://www.url.com/service.svc/json/process/getproductsbycategory/?categoryid=1 http://www.url.om/service.svc/json/process/sayhello/?name=andy Another reason why my direction has gone to a single request for the REST implementation is because of restrictions which are imposed by browsers on the length of the url.  From what I have read this is on average 2000 characters.  I think that this is a very acceptable usage limit in the context of using 1 request, but I do not think this is acceptable for accommodating multiple requests chained together.  I would love to be corrected on that one, I really would but unfortunately from what I have read I have come to the conclusion that this is not the case. The mapping function So, as I say this is just the first pass I have made at this, and I am not overly happy with the try catch for detecting types without default constructors.  I know there is a better way but for the minute, it escapes me.  I would also like to know the correct way for adding mapping functions and not using the anonymous way that I have used.  To achieve this I have used recursion which I am sure is what other mapping function use. As you do have to go as deep as the complex type is. public static object RecurseType(NameValueCollection collection, Type type, string prefix) { try { var returnObject = Activator.CreateInstance(type); foreach (var property in type.GetProperties()) { foreach (var key in collection.AllKeys) { if (String.IsNullOrEmpty(prefix) || key.Length > prefix.Length) { var propertyNameToMatch = String.IsNullOrEmpty(prefix) ? key : key.Substring(property.Name.IndexOf(prefix) + prefix.Length + 1); if (property.Name == propertyNameToMatch) { property.SetValue(returnObject, Convert.ChangeType(collection.Get(key), property.PropertyType), null); } else if(property.GetValue(returnObject,null) == null) { property.SetValue(returnObject, RecurseType(collection, property.PropertyType, String.Concat(prefix, property.PropertyType.Name)), null); } } } } return returnObject; } catch (MissingMethodException) { //Quite a blunt way of dealing with Types without default constructor return null; } }   Another thing is performance, I have not measured this in anyway, it is as I say the first pass, so I hope this can be the start of a more perfected implementation.  I tested this out with a complex type of three levels, there is no intended logical meaning to the properties, they are simply for the purposes of example.  You could call this a spiking session, as from here on in, now I know what I am building I would take a more TDD approach.  OK, purists, why did I not do this from the start, well I didn’t, this was a brain dump and now I know what I am building I can. The console test and how I used with AutoMapper is as follows: static void Main(string[] args) { var collection = new NameValueCollection(); collection.Add("Name", "Andrew Rea"); collection.Add("Number", "1"); collection.Add("AddressLine1", "123 Street"); collection.Add("AddressNumber", "2"); collection.Add("AddressPostCodeCountry", "United Kingdom"); collection.Add("AddressPostCodeNumber", "3"); AutoMapper.Mapper.CreateMap<NameValueCollection, Person>() .ConvertUsing(x => { return(Person) RecurseType(x, typeof(Person), null); }); var person = AutoMapper.Mapper.Map<NameValueCollection, Person>(collection); Console.WriteLine(person.Name); Console.WriteLine(person.Number); Console.WriteLine(person.Address.Line1); Console.WriteLine(person.Address.Number); Console.WriteLine(person.Address.PostCode.Country); Console.WriteLine(person.Address.PostCode.Number); Console.ReadLine(); }   Notice the convention that I am using and that this method requires you do use.  Each property is prefixed with the constructed name of its parents combined.  This is the convention used by AutoMapper and it makes sense. I can also think of other uses for this including using with ASP.NET MVC ModelBinders for creating a complex type from the QueryString which is itself is a NameValueCollection. Hope this is of some help to people and I would welcome any code reviews you could give me. References: Agatha : http://code.google.com/p/agatha-rrsl/ AutoMapper : http://automapper.codeplex.com/   Cheers for now, Andrew   P.S. I will have the proposed solution for a more complete REST implementation for AGATHA very soon. 

    Read the article

  • Multi-tenant ASP.NET MVC - Views

    - by zowens
    Part I – Introduction Part II – Foundation Part III – Controllers   So far we have covered the basic premise of tenants and how they will be delegated. Now comes a big issue with multi-tenancy, the views. In some applications, you will not have to override views for each tenant. However, one of my requirements is to add extra views (and controller actions) along with overriding views from the core structure. This presents a bit of a problem in locating views for each tenant request. I have chosen quite an opinionated approach at the present but will coming back to the “views” issue in a later post. What’s the deal? The path I’ve chosen is to use precompiled Spark views. I really love Spark View Engine and was planning on using it in my project anyways. However, I ran across a really neat aspect of the source when I was having a look under the hood. There’s an easy way to hook in embedded views from your project. There are solutions that provide this, but they implement a special Virtual Path Provider. While I think this is a great solution, I would rather just have Spark take care of the view resolution. The magic actually happens during the compilation of the views into a bin-deployable DLL. After the views are compiled, the are simply pulled out of the views DLL. Each tenant has its own views DLL that just has “.Views” appended after the assembly name as a convention. The list of reasons for this approach are quite long. The primary motivation is performance. I’ve had quite a few performance issues in the past and I would like to increase my application’s performance in any way that I can. My customized build of Spark removes insignificant whitespace from the HTML output so I can some some bandwidth and load time without having to deal with whitespace removal at runtime.   How to setup Tenants for the Host In the source, I’ve provided a single tenant as a sample (Sample1). This will serve as a template for subsequent tenants in your application. The first step is to add a “PostBuildStep” installer into the project. I’ve defined one in the source that will eventually change as we focus more on the construction of dependency containers. The next step is to tell the project to run the installer and copy the DLL output to a folder in the host that will pick up as a tenant. Here’s the code that will achieve it (this belongs in Post-build event command line field in the Build Events tab of settings) %systemroot%\Microsoft.NET\Framework\v4.0.30319\installutil "$(TargetPath)" copy /Y "$(TargetDir)$(TargetName)*.dll" "$(SolutionDir)Web\Tenants\" copy /Y "$(TargetDir)$(TargetName)*.pdb" "$(SolutionDir)Web\Tenants\" The DLLs with a name starting with the target assembly name will be copied to the “Tenants” folder in the web project. This means something like MultiTenancy.Tenants.Sample1.dll and MultiTenancy.Tenants.Sample1.Views.dll will both be copied along with the debug symbols. This is probably the simplest way to go about this, but it is a tad inflexible. For example, what if you have dependencies? The preferred method would probably be to use IL Merge to merge your dependencies with your target DLL. This would have to be added in the build events. Another way to achieve that would be to simply bypass Visual Studio events and use MSBuild.   I also got a question about how I was setting up the controller factory. Here’s the basics on how I’m setting up tenants inside the host (Global.asax) protected void Application_Start() { RegisterRoutes(RouteTable.Routes); // create a container just to pull in tenants var topContainer = new Container(); topContainer.Configure(config => { config.Scan(scanner => { scanner.AssembliesFromPath(Path.Combine(Server.MapPath("~/"), "Tenants")); scanner.AddAllTypesOf<IApplicationTenant>(); }); }); // create selectors var tenantSelector = new DefaultTenantSelector(topContainer.GetAllInstances<IApplicationTenant>()); var containerSelector = new TenantContainerResolver(tenantSelector); // clear view engines, we don't want anything other than spark ViewEngines.Engines.Clear(); // set view engine ViewEngines.Engines.Add(new TenantViewEngine(tenantSelector)); // set controller factory ControllerBuilder.Current.SetControllerFactory(new ContainerControllerFactory(containerSelector)); } The code to setup the tenants isn’t actually that hard. I’m utilizing assembly scanners in StructureMap as a simple way to pull in DLLs that are not in the AppDomain. Remember that there is a dependency on the host in the tenants and a tenant cannot simply be referenced by a host because of circular dependencies.   Tenant View Engine TenantViewEngine is a simple delegator to the tenant’s specified view engine. You might have noticed that a tenant has to define a view engine. public interface IApplicationTenant { .... IViewEngine ViewEngine { get; } } The trick comes in specifying the view engine on the tenant side. Here’s some of the code that will pull views from the DLL. protected virtual IViewEngine DetermineViewEngine() { var factory = new SparkViewFactory(); var file = GetType().Assembly.CodeBase.Without("file:///").Replace(".dll", ".Views.dll").Replace('/', '\\'); var assembly = Assembly.LoadFile(file); factory.Engine.LoadBatchCompilation(assembly); return factory; } This code resides in an abstract Tenant where the fields are setup in the constructor. This method (inside the abstract class) will load the Views assembly and load the compilation into Spark’s “Descriptors” that will be used to determine views. There is some trickery on determining the file location… but it works just fine.   Up Next There’s just a few big things left such as StructureMap configuring controllers with a convention instead of specifying types directly with container construction and content resolution. I will also try to find a way to use the Web Forms View Engine in a multi-tenant way we achieved with the Spark View Engine without using a virtual path provider. I will probably not use the Web Forms View Engine personally, but I’m sure some people would prefer using WebForms because of the maturity of the engine. As always, I love to take questions by email or on twitter. Suggestions are always welcome as well! (Oh, and here’s another link to the source code).

    Read the article

  • Intel Dual Band Wireless-AC 7260 keeps dropping wifi

    - by Rick T
    My wifi Intel Dual Band Wireless-AC 7260 keeps dropping wificonnection drops and the network to which I was connected disappears from the list of available networks in network manager. The only way to fix it is to disable wifi and re-enable it How can I fix this. I'm using ubuntu 14.04 64bit. It mostly drops connections on the 5ghz network. My other devices don't drop connections over wifi. see logs and versions rt@simon:~$ uname -a Linux simon 3.13.0-34-generic #60-Ubuntu SMP Wed Aug 13 15:45:27 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux rt@simon:~$ rt@simon:~$ dmesg | grep iwl [ 3.370777] iwlwifi 0000:03:00.0: irq 46 for MSI/MSI-X [ 3.381089] iwlwifi 0000:03:00.0: loaded firmware version 22.24.8.0 op_mode iwlmvm [ 3.414637] iwlwifi 0000:03:00.0: Detected Intel(R) Dual Band Wireless AC 7260, REV=0x144 [ 3.414695] iwlwifi 0000:03:00.0: L1 Disabled; Enabling L0S [ 3.414913] iwlwifi 0000:03:00.0: L1 Disabled; Enabling L0S [ 3.630208] ieee80211 phy0: Selected rate control algorithm 'iwl-mvm-rs' [ 9.304838] iwlwifi 0000:03:00.0: L1 Disabled; Enabling L0S [ 9.305068] iwlwifi 0000:03:00.0: L1 Disabled; Enabling L0S [ 605.483174] iwlwifi 0000:03:00.0: L1 Disabled; Enabling L0S [ 605.483396] iwlwifi 0000:03:00.0: L1 Disabled; Enabling L0S rt@simon:~$ cat /var/log/syslog | grep -e iwl -e 80211 | tail -n25 Aug 14 08:13:02 simon kernel: [ 3.452780] cfg80211: (5735000 KHz - 5835000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) Aug 14 08:13:02 simon kernel: [ 3.630208] ieee80211 phy0: Selected rate control algorithm 'iwl-mvm-rs' Aug 14 08:13:06 simon NetworkManager[1125]: <info> rfkill1: found WiFi radio killswitch (at /sys/devices/pci0000:00/0000:00:1c.2/0000:03:00.0/ieee80211/phy0/rfkill1) (driver iwlwifi) Aug 14 08:13:06 simon NetworkManager[1125]: <info> (wlan0): using nl80211 for WiFi device control Aug 14 08:13:06 simon NetworkManager[1125]: <info> (wlan0): new 802.11 WiFi device (driver: 'iwlwifi' ifindex: 3) Aug 14 08:13:06 simon kernel: [ 9.304838] iwlwifi 0000:03:00.0: L1 Disabled; Enabling L0S Aug 14 08:13:06 simon kernel: [ 9.305068] iwlwifi 0000:03:00.0: L1 Disabled; Enabling L0S Aug 14 08:14:18 simon kernel: [ 81.230162] cfg80211: Calling CRDA to update world regulatory domain Aug 14 08:14:18 simon kernel: [ 81.232330] cfg80211: World regulatory domain updated: Aug 14 08:14:18 simon kernel: [ 81.232332] cfg80211: (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp) Aug 14 08:14:18 simon kernel: [ 81.232333] cfg80211: (2402000 KHz - 2472000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) Aug 14 08:14:18 simon kernel: [ 81.232334] cfg80211: (2457000 KHz - 2482000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) Aug 14 08:14:18 simon kernel: [ 81.232335] cfg80211: (2474000 KHz - 2494000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) Aug 14 08:14:18 simon kernel: [ 81.232336] cfg80211: (5170000 KHz - 5250000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) Aug 14 08:14:18 simon kernel: [ 81.232337] cfg80211: (5735000 KHz - 5835000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) Aug 14 08:23:02 simon kernel: [ 605.483174] iwlwifi 0000:03:00.0: L1 Disabled; Enabling L0S Aug 14 08:23:02 simon kernel: [ 605.483396] iwlwifi 0000:03:00.0: L1 Disabled; Enabling L0S Aug 14 08:23:18 simon kernel: [ 621.223905] cfg80211: Calling CRDA to update world regulatory domain Aug 14 08:23:18 simon kernel: [ 621.228945] cfg80211: World regulatory domain updated: Aug 14 08:23:18 simon kernel: [ 621.228950] cfg80211: (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp) Aug 14 08:23:18 simon kernel: [ 621.228954] cfg80211: (2402000 KHz - 2472000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) Aug 14 08:23:18 simon kernel: [ 621.228956] cfg80211: (2457000 KHz - 2482000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) Aug 14 08:23:18 simon kernel: [ 621.228959] cfg80211: (2474000 KHz - 2494000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) Aug 14 08:23:18 simon kernel: [ 621.228961] cfg80211: (5170000 KHz - 5250000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) Aug 14 08:23:18 simon kernel: [ 621.228963] cfg80211: (5735000 KHz - 5835000 KHz @ 40000 KHz), (300 mBi, 2000 mBm)

    Read the article

  • More SQL Smells

    - by Nick Harrison
    Let's continue exploring some of the SQL Smells from Phil's list. He has been putting together. Datatype mis-matches in predicates that rely on implicit conversion.(Plamen Ratchev) This is a great example poking holes in the whole theory of "If it works it's not broken" Queries will this probably will generally work and give the correct response. In fact, without careful analysis, you probably may be completely oblivious that there is even a problem. This subtle little problem will needlessly complicate queries and slow them down regardless of the indexes applied. Consider this example: CREATE TABLE [dbo].[Page](     [PageId] [int] IDENTITY(1,1) NOT NULL,     [Title] [varchar](75) NOT NULL,     [Sequence] [int] NOT NULL,     [ThemeId] [int] NOT NULL,     [CustomCss] [text] NOT NULL,     [CustomScript] [text] NOT NULL,     [PageGroupId] [int] NOT NULL;  CREATE PROCEDURE PageSelectBySequence ( @sequenceMin smallint , @sequenceMax smallint ) AS BEGIN SELECT [PageId] , [Title] , [Sequence] , [ThemeId] , [CustomCss] , [CustomScript] , [PageGroupId] FROM [CMS].[dbo].[Page] WHERE Sequence BETWEEN @sequenceMin AND @SequenceMax END  Note that the Sequence column is defined as int while the sequence parameter is defined as a small int. The problem is that the database may have to do a lot of type conversions to evaluate the query. In some cases, this may even negate the indexes that you have in place. Using Correlated subqueries instead of a join   (Dave_Levy/ Plamen Ratchev) There are two main problems here. The first is a little subjective, since this is a non-standard way of expressing the query, it is harder to understand. The other problem is much more objective and potentially problematic. You are taking much of the control away from the optimizer. Written properly, such a query may well out perform a corresponding query written with traditional joins. More likely than not, performance will degrade. Whenever you assume that you know better than the optimizer, you will most likely be wrong. This is the fundmental problem with any hint. Consider a query like this:  SELECT Page.Title , Page.Sequence , Page.ThemeId , Page.CustomCss , Page.CustomScript , PageEffectParams.Name , PageEffectParams.Value , ( SELECT EffectName FROM dbo.Effect WHERE EffectId = dbo.PageEffects.EffectId ) AS EffectName FROM Page INNER JOIN PageEffect ON Page.PageId = PageEffects.PageId INNER JOIN PageEffectParam ON PageEffects.PageEffectId = PageEffectParams.PageEffectId  This can and should be written as:  SELECT Page.Title , Page.Sequence , Page.ThemeId , Page.CustomCss , Page.CustomScript , PageEffectParams.Name , PageEffectParams.Value , EffectName FROM Page INNER JOIN PageEffect ON Page.PageId = PageEffects.PageId INNER JOIN PageEffectParam ON PageEffects.PageEffectId = PageEffectParams.PageEffectId INNER JOIN dbo.Effect ON dbo.Effects.EffectId = dbo.PageEffects.EffectId  The correlated query may just as easily show up in the where clause. It's not a good idea in the select clause or the where clause. Few or No comments. This one is a bit more complicated and controversial. All comments are not created equal. Some comments are helpful and need to be included. Other comments are not necessary and may indicate a problem. I tend to follow the rule of thumb that comments that explain why are good. Comments that explain how are bad. Many people may be shocked to hear the idea of a bad comment, but hear me out. If a comment is needed to explain what is going on or how it works, the logic is too complex and needs to be simplified. Comments that explain why are good. Comments may explain why the sql is needed are good. Comments that explain where the sql is used are good. Comments that explain how tables are related should not be needed if the sql is well written. If they are needed, you need to consider reworking the sql or simplify your data model. Use of functions in a WHERE clause. (Anil Das) Calling a function in the where clause will often negate the indexing strategy. The function will be called for every record considered. This will often a force a full table scan on the tables affected. Calling a function will not guarantee that there is a full table scan, but there is a good chance that it will. If you find that you often need to write queries using a particular function, you may need to add a column to the table that has the function already applied.

    Read the article

  • Portal And Content - Content Integration - Best Practices

    - by Stefan Krantz
    Lately we have seen an increase in projects that have failed to either get user friendly content integration or non satisfactory performance. Our intention is to mitigate any knowledge gap that our previous post might have left you with, therefore this post will repeat some recommendation or reference back to old useful post. Moreover this post will help you understand ground up how to design, architect and implement business enabled, responsive and performing portals with complex requirements on business centric information publishing. Design the Information Model The key to successful portal deployments is Information modeling, it's a key task to understand the use case you designing for, therefore I have designed a set of question you need to ask yourself or your customer: Question: Who will own the content, IT or Business? Answer: BusinessQuestion: Who will publish the content, IT or Business? Answer: BusinessQuestion: Will there be multiple publishers? Answer: YesQuestion: Are the publishers computer scientist?Answer: NoQuestion: How often do the information changes, daily, weekly, monthly?Answer: Daily, weekly If your answers to the questions matches at least 2, we strongly recommend you design your content with following principles: Divide your pages in to logical sections, where each section is marked with its purpose Assign capabilities to each section, does it contain text, images, formatting and/or is it static and is populated through other contextual information Select editor/design element type WYSIWYG - Rich Text Plain Text - non-format text Image - Image object Static List - static list of formatted informationDynamic Data List - assembled information from multiple data files through CMIS query The result of such design map could look like following below examples: Based on the outcome of the required elements in the design column 3 from the left you will now simply design a data model in WebCenter Content - Site Studio by creating a Region Definition structure matching your design requirements.For more information on how to create a Region definition see following post: Region Definition Post - note see instruction 7 for details. Each region definition can now be used to instantiate data files, a data file will hold the actual data for each element in the region definition. Another way you can see this is to compare the region definition as an extension to the metadata model in WebCenter Content for each data file item. Design content templates With a solid dependable information model we can now proceed to template creation and page design, in this phase focuses on how to place the content sections from the region definition on the page via a Content Presenter template. Remember by creating content presenter templates you will leverage the latest and most integrated technology WebCenter has to offer. This phase is much easier since the you already have the information model and design wire-frames to base the logic on, however there is still few considerations to pay attention to: Base the template on ADF and make only necessary exceptions to markup when required Leverage ADF design components for Tabs, Accordions and other similar components, this way the design in the content published areas will comply with other design areas based on custom ADF taskflows There is no performance impact when using meta data or region definition based data All data access regardless of type, metadata or xml data it can be accessed via the Content Presenter - Node. See below for applied examples on how to access data Access metadata property from Document - #{node.propertyMap['myProp'].value}myProp in this example can be for instance (dDocName, dDocTitle, xComments or any other available metadata) Access element data from data file xml - #{node.propertyMap['[Region Definition Name]:[Element name]'].asTextHtml}Region Definition Name is the expect region definition that the current data file is instantiatingElement name is the element value you like to grab from the data file I recommend you read following  useful post on content template topic:CMIS queries and template creation - note see instruction 9 for detailsStatic List template rendering For more information on templates:Single Item Content TemplateMulti Item Content TemplateExpression Language Internationalization Considerations When integrating content assets via content presenter you by now probably understand that the content item/data file is wired to the page, what is also pretty common at this stage is that the content item/data file only support one language since its not practical or business friendly to mix that into a complex structure. Therefore you will be left with a very common dilemma that you will have to either build a complete new portal for each locale, which is not an good option! However with little bit of information modeling and clear naming convention this can be addressed. Basically you can simply make sure that all content item/data file are named with a predictable naming convention like "Content1_EN" for the English rendition and "Content1_ES" for the Spanish rendition. This way through simple none complex customizations you will be able to dynamically switch the actual content item/data file just before rendering. By following proposed approach above you not only enable a simple mechanism for internationalized content you also preserve the functionality in the content presenter to support business accessible run-time publishing of information on existing and new pages. I recommend you read following useful post on Internationalization topics:Internationalize with Content Presenter Integrate with Review & Approval processes Today the Review and approval functionality and configuration is based out of WebCenter Content - Criteria Workflows. Criteria Workflows uses the metadata of the checked in document to evaluate if the document is under any review/approval process. So for instance if a Criteria Workflow is configured to force any documents with Version = "2" or "higher" and Content Type is "Instructions", any matching content item version on check in will now enter the workflow before getting released for general access. Few things to consider when configuring Criteria Workflows: Make sure to not trigger on version one for Content Items that are Data Files - if you trigger on version 1 you will not only approve an empty document you will also have a content presenter pointing to a none existing document - since the document will only be available after successful completion of the workflow Approval workflows sometimes requires more complex criteria, the recommendation if that is the case is that the meta data triggering such criteria is automatically populated, this can be achieved through many approaches including Content Profiles Criteria workflows are configured and managed in WebCenter Content Administration Applets where you can configure one or more workflows. When you configured Criteria workflows the Content Presenter will support the editors with the approval process directly inline in the "Contribution mode" of the portal. In addition to approve/reject and details of the task, the content presenter natively support the user to view the current and future version of the change he/she is approving. See below for example: Architectural recommendation To support review&approval processes - minimize the amount of data files per page Each CMIS query can consume significant time depending on the complexity of the query - minimize the amount of CMIS queries per page Use Content Presenter Templates based on ADF - this way you minimize the design considerations and optimize the usage of caching Implement the page in as few Data files as possible - simplifies publishing process, increases performance and simplifies release process Named data file (node) or list of named nodes when integrating to pages increases performance vs. querying for data Named data file (node) or list of named nodes when integrating to pages enables business centric page creation and publishing and reduces the need for IT department interaction Summary Just because one architectural decision solves a business problem it doesn't mean its the right one, when designing portals all architecture has to be in harmony and not impacting each other. For instance the most technical complex solution is not always the best since it will most likely defeat the business accessibility, performance or both, therefore the best approach is to first design for simplicity that even a non-technical user can operate, after that consider the performance impact and final look at the technology challenges these brings and workaround them first with out-of-the-box features, after that design and develop functions to complement the short comings.

    Read the article

  • OpenGL/GLSL: Render to cube map?

    - by BobDole
    I'm trying to figure out how to render my scene to a cube map. I've been stuck on this for a bit and figured I would ask you guys for some help. I'm new to OpenGL and this is the first time I'm using a FBO. I currently have a working example of using a cubemap bmp file, and the samplerCube sample type in the fragment shader is attached to GL_TEXTURE1. I'm not changing the shader code at all. I'm just changing the fact that I wont be calling the function that was loading the cubemap bmp file and trying to use the below code to render to a cubemap. You can see below that I'm also attaching the texture again to GL_TEXTURE1. This is so when I set the uniform: glUniform1i(getUniLoc(myProg, "Cubemap"), 1); it can access it in my fragment shader via uniform samplerCube Cubemap. I'm calling the below function like so: cubeMapTexture = renderToCubeMap(150, GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE); Now, I realize in the draw loop below that I'm not changing the view direction to look down the +x, -x, +y, -y, +z, -z axis. I really was just wanting to see something working first before implemented that. I figured I should at least see something on my object the way the code is now. I'm not seeing anything, just straight black. I've made my background white still the object is black. I've removed lighting, and coloring to just sample the cubemap texture and still black. I'm thinking the problem might be the format types when setting my texture which is GL_RGB8, GL_RGBA but I've also tried: GL_RGBA, GL_RGBA GL_RGB, GL_RGB I thought this would be standard since we are rendering to a texture attached to a framebuffer, but I've seen different examples that use different enum values. I've also tried binding the cube map texture in every draw call that I'm wanting to use the cube map: glBindTexture(GL_TEXTURE_CUBE_MAP, cubeMapTexture); Also, I'm not creating a depth buffer for the FBO which I saw in most examples, because I'm only wanting the color buffer for my cube map. I actually added one to see if that was the problem and still got the same results. I could of fudged that up when I tried. Any help that can point me in the right direction would be appreciated. GLuint renderToCubeMap(int size, GLenum InternalFormat, GLenum Format, GLenum Type) { // color cube map GLuint textureObject; int face; GLenum status; //glEnable(GL_TEXTURE_2D); glActiveTexture(GL_TEXTURE1); glGenTextures(1, &textureObject); glBindTexture(GL_TEXTURE_CUBE_MAP, textureObject); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); for (face = 0; face < 6; face++) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, 0, InternalFormat, size, size, 0, Format, Type, NULL); } // framebuffer object glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X, textureObject, 0); status = glCheckFramebufferStatus(GL_FRAMEBUFFER); printf("%d\"\n", status); printf("%d\n", GL_FRAMEBUFFER_COMPLETE); glViewport(0,0,size, size); for (face = 1; face < 6; face++) { drawSpheres(); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, textureObject, 0); } //Bind 0, which means render to back buffer, as a result, fb is unbound glBindFramebuffer(GL_FRAMEBUFFER, 0); return textureObject; }

    Read the article

  • Emit Knowledge - social network for knowledge sharing

    - by hajan
    Emit Knowledge, as the words refer - it's a social network for emitting / sharing knowledge from users by users. Those who can benefit the most out of this network is perhaps all of YOU who have something to share with others and contribute to the knowledge world. I've been closely communicating with the core team of this very, very interesting, brand new social network (with specific purpose!) about the concept, idea and the vision they have for their product and I can say with a lot of confidence that this network has real potential to become something from which we will all benefit. I won't speak much about that and would prefer to give you link and try it yourself - http://www.emitknowledge.com Mainly, through the past few months I've been testing this network and it is getting improved all the time. The user experience is great, you can easily find out what you need and it follows some known patterns that are common for all social networks. They have some real good ideas and plans that are already under development for the next updates of their product. You can do micro blogging or you can do regular normal blogging… it’s up to you, and the way it works, it is seamless. Here is a short Question and Answers (QA) interview I made with the lead of the team, Marijan Nikolovski: 1. Can you please explain us briefly, what is Emit Knowledge? Emit Knowledge is a brand new knowledge based social network, delivering quality content from users to users. We believe that people’s knowledge, experience and professional thoughts compose quality content, worth sharing among millions around the world. Therefore, we created the platform that matches people’s need to share and gain knowledge in the most suitable and comfortable way. Easy to work with, Emit Knowledge lets you to smoothly craft and emit knowledge around the globe. 2. How 'old' is Emit Knowledge? In hamster’s years we are almost five years old start-up :). Just kidding. We’ve released our public beta about three months ago. Our official release date is 27 of June 2012. 3. How did you come up with this idea? Everything started from a simple idea to solve a complex problem. We’ve seen that the social web has become polluted with data and is on the right track to lose its base principles – socialization and common cause. That was our start point. We’ve gathered the team, drew some sketches and started to mind map the idea. After several idea refactoring’s Emit Knowledge was born. 4. Is there any competition out there in the market? Currently we don't have any competitors that share the same cause. What makes our platform different is the ideology that our product promotes and the functionalities that our platform offers for easy socialization based on interests and knowledge sharing. 5. What are the main technologies used to build Emit Knowledge? Emit Knowledge was built on a heterogeneous pallet of technologies. Currently, we have four of separation: UI – Built on ASP.NET MVC3 and Knockout.js; Messaging infrastructure – Build on top of RabbitMQ; Background services – Our in-house solution for job distribution, orchestration and processing; Data storage – Build on top of MongoDB; What are the main reasons you've chosen ASP.NET MVC? Since all of our team members are .NET engineers, the decision was very natural. ASP.NET MVC is the only Microsoft web stack that sticks to the HTTP behavioral standards. It is easy to work with, have a tiny learning curve and everyone who is familiar with the HTTP will understand its architecture and convention without any difficulties. 6. What are the main reasons for choosing ASP.NET MVC? Since all of our team members are .NET engineers, the decision was very natural. ASP.NET MVC is the only Microsoft web stack that sticks to the HTTP behavioral standards. It is easy to work with, have a tiny learning curve and everyone who is familiar with the HTTP will understand its architecture and convention without any difficulties. 7. Did you use some of the latest Microsoft technologies? If yes, which ones? Yes, we like to rock the cutting edge tech house. Currently we are using Microsoft’s latest technologies like ASP.NET MVC, Web API (work in progress) and the best for the last; we are utilizing Windows Azure IaaS to the bone. 8. Can you please tell us shortly, what would be the benefit of regular bloggers in other blogging platforms to join Emit Knowledge? Well, unless you are some of the smoking ace gurus whose blogs are followed by a large number of users, our platform offers knowledge based segregated community equipped with tools that will enable both current and future users to expand their relations and to self-promote in the community based on their activity and knowledge sharing. 10. I see you are working very intensively and there is already integration with some third-party services to make the process of sharing and emitting knowledge easier, which services did you integrate until now and what do you plan do to next? We have “reemit” functionality for internal sharing and we also support external services like: Twitter; LinkedIn; Facebook; For the regular bloggers we have an extra cream, Windows Live Writer support for easy blog posts emitting. 11. What should we expect next? Currently, we are working on a new fancy community feature. This means that we are going to support user groups to be formed. So for all existing communities and user groups out there, wait us a little bit, we are coming for rescue :). One of the top next features they are developing is the Community Feature. It means, if you have your own User Group, Community Group or any other Group on which you and your users are mostly blogging or sharing (emitting) knowledge in various ways, Emit Knowledge as a platform will help you have everything you need to promote your group, make new followers and host all the necessary stuff that you have had need of. I would invite you to try the network and start sharing knowledge in a way that will help you gather new followers and spread your knowledge faster, easier and in a more efficient way! Let’s Emit Knowledge!

    Read the article

  • How to detect UTF-8-based encoded strings [closed]

    - by Diego Sendra
    A customer of asked us to build him a multi-language based support VB6 scraper, for which we had the need to detect UTF-8 based encoded strings to decode it later for proper displaying in application UI. It's necessary to point out that this need arises based on VB6 limitations to natively support UTF-8 in its controls, contrary to what it happens in .NET where you can tell a control that it should expect UTF-8 encoding. VB6 natively supports ISO 8859-1 and/or Windows-1252 encodings only, for which textboxes, dropdowns, listview controls, others can't be defined to natively support/expect UTF-8 as you can do in .NET considering what we just explained; so we would see weird symbols such as é, è among others, making it a whole mess at the time of displaying. So, next function contains whole UTF-8 encoded punctuation marks and symbols from languages like Spanish, Italian, German, Portuguese, French and others, based on an excellent UTF-8 based list we got from this link - Ref. http://home.telfort.nl/~t876506/utf8tbl.html Basically, the function compares if each and one of the listed UTF-8 encoded sentences, separated by | (pipe) are found in our passed string making a substring search first. Whether it's not found, it makes an alternative ASCII value based search to get a match. Say, a string like "Societé" (Society in english) would return FALSE through calling isUTF8("Societé") while it would return TRUE when calling isUTF8("SocietÈ") since È is the UTF-8 encoded representation of é. Once you got it TRUE or FALSE, you can decode the string through DecodeUTF8() function for properly displaying it, a function we found somewhere else time ago and also included in this post. Function isUTF8(ByVal ptstr As String) Dim tUTFencoded As String Dim tUTFencodedaux Dim tUTFencodedASCII As String Dim ptstrASCII As String Dim iaux, iaux2 As Integer Dim ffound As Boolean ffound = False ptstrASCII = "" For iaux = 1 To Len(ptstr) ptstrASCII = ptstrASCII & Asc(Mid(ptstr, iaux, 1)) & "|" Next tUTFencoded = "Ä|Ã…|Ç|É|Ñ|Ö|ÃŒ|á|Ã|â|ä|ã|Ã¥|ç|é|è|ê|ë|í|ì|î|ï|ñ|ó|ò|ô|ö|õ|ú|ù|û|ü|â€|°|¢|£|§|•|¶|ß|®|©|â„¢|´|¨|â‰|Æ|Ø|∞|±|≤|≥|Â¥|µ|∂|∑|âˆ|Ï€|∫|ª|º|Ω|æ|ø|¿|¡|¬|√|Æ’|≈|∆|«|»|…|Â|À|Ã|Õ|Å’|Å“|–|—|“|â€|‘|’|÷|â—Š|ÿ|Ÿ|â„|€|‹|›|ï¬|fl|‡|·|‚|„|‰|Â|Ú|Ã|Ë|È|Ã|ÃŽ|Ã|ÃŒ|Ó|Ô||Ã’|Ú|Û|Ù|ı|ˆ|Ëœ|¯|˘|Ë™|Ëš|¸|Ë|Ë›|ˇ" & _ "Å|Å¡|¦|²|³|¹|¼|½|¾|Ã|×|Ã|Þ|ð|ý|þ" & _ "â‰|∞|≤|≥|∂|∑|âˆ|Ï€|∫|Ω|√|≈|∆|â—Š|â„|ï¬|fl||ı|˘|Ë™|Ëš|Ë|Ë›|ˇ" tUTFencodedaux = Split(tUTFencoded, "|") If UBound(tUTFencodedaux) > 0 Then iaux = 0 Do While Not ffound And Not iaux > UBound(tUTFencodedaux) If InStr(1, ptstr, tUTFencodedaux(iaux), vbTextCompare) > 0 Then ffound = True End If If Not ffound Then 'ASCII numeric search tUTFencodedASCII = "" For iaux2 = 1 To Len(tUTFencodedaux(iaux)) 'gets ASCII numeric sequence tUTFencodedASCII = tUTFencodedASCII & Asc(Mid(tUTFencodedaux(iaux), iaux2, 1)) & "|" Next 'tUTFencodedASCII = Left(tUTFencodedASCII, Len(tUTFencodedASCII) - 1) 'compares numeric sequences If InStr(1, ptstrASCII, tUTFencodedASCII) > 0 Then ffound = True End If End If iaux = iaux + 1 Loop End If isUTF8 = ffound End Function Function DecodeUTF8(s) Dim i Dim c Dim n s = s & " " i = 1 Do While i <= Len(s) c = Asc(Mid(s, i, 1)) If c And &H80 Then n = 1 Do While i + n < Len(s) If (Asc(Mid(s, i + n, 1)) And &HC0) <> &H80 Then Exit Do End If n = n + 1 Loop If n = 2 And ((c And &HE0) = &HC0) Then c = Asc(Mid(s, i + 1, 1)) + &H40 * (c And &H1) Else c = 191 End If s = Left(s, i - 1) + Chr(c) + Mid(s, i + n) End If i = i + 1 Loop DecodeUTF8 = s End Function

    Read the article

  • Subterranean IL: Custom modifiers

    - by Simon Cooper
    In IL, volatile is an instruction prefix used to set a memory barrier at that instruction. However, in C#, volatile is applied to a field to indicate that all accesses on that field should be prefixed with volatile. As I mentioned in my previous post, this means that the field definition needs to store this information somehow, as such a field could be accessed from another assembly. However, IL does not have a concept of a 'volatile field'. How is this information stored? Attributes The standard way of solving this is to apply a VolatileAttribute or similar to the field; this extra metadata notifies the C# compiler that all loads and stores to that field should use the volatile prefix. However, there is a problem with this approach, namely, the .NET C++ compiler. C++ allows methods to be overloaded using properties, like volatile or const, on the parameters; this is perfectly legal C++: public ref class VolatileMethods { void Method(int *i) {} void Method(volatile int *i) {} } If volatile was specified using a custom attribute, then the VolatileMethods class wouldn't be compilable to IL, as there is nothing to differentiate the two methods from each other. This is where custom modifiers come in. Custom modifiers Custom modifiers are similar to custom attributes, but instead of being applied to an IL element separately to its declaration, they are embedded within the field or parameter's type signature itself. The VolatileMethods class would be compiled to the following IL: .class public VolatileMethods { .method public instance void Method(int32* i) {} .method public instance void Method( int32 modreq( [mscorlib]System.Runtime.CompilerServices.IsVolatile)* i) {} } The modreq([mscorlib]System.Runtime.CompilerServices.IsVolatile) is the custom modifier. This adds a TypeDef or TypeRef token to the signature of the field or parameter, and even though they are mostly ignored by the CLR when it's executing the program, this allows methods and fields to be overloaded in ways that wouldn't be allowed using attributes. Because the modifiers are part of the signature, they need to be fully specified when calling such a method in IL: call instance void Method( int32 modreq([mscorlib]System.Runtime.CompilerServices.IsVolatile)*) There are two ways of applying modifiers; modreq specifies required modifiers (like IsVolatile), and modopt specifies optional modifiers that can be ignored by compilers (like IsLong or IsConst). The type specified as the modifier argument are simple placeholders; if you have a look at the definitions of IsVolatile and IsLong they are completely empty. They exist solely to be referenced by a modifier. Custom modifiers are used extensively by the C++ compiler to specify concepts that aren't expressible in IL, but still need to be taken into account when calling method overloads. C++ and C# That's all very well and good, but how does this affect C#? Well, the C++ compiler uses modreq(IsVolatile) to specify volatility on both method parameters and fields, as it would be slightly odd to have the same concept represented using a modifier or attribute depending on what it was applied to. Once you've compiled your C++ project, it can then be referenced and used from C#, so the C# compiler has to recognise the modreq(IsVolatile) custom modifier applied to fields, and vice versa. So, even though you can't overload fields or parameters with volatile using C#, volatile needs to be expressed using a custom modifier rather than an attribute to guarentee correct interoperability and behaviour with any C++ dlls that happen to come along. Next up: a closer look at attributes, and how certain attributes compile in unexpected ways.

    Read the article

  • From J2EE to Java EE: what has changed?

    - by Bruno.Borges
    See original @Java_EE tweet on 29 May 2014 Yeap, it has been 8 years since the term J2EE was replaced, and still some people refer to it (mostly recruiters, luckily!). But then comes the question: what has changed besides the name? Our community friend Abhishek Gupta worked on this question and provided an excellent response titled "What's in a name? Java EE? J2EE?". But let me give you a few highlights here so you don't lose yourself with YATO (yet another tab opened): J2EE used to be an infrastructure and resources provider only, requiring developers to depend on external 3rd-party frameworks to then implement application requirements or improve productivity J2EE used to require hundreds of XML lines of codes to define just a dozen of resources like EJBs, MDBs, Servlets, and so on J2EE used to support only EAR (Enterprise Archives) with a bunch of other archives like JARs and WARs just to run a simple Web application And so on, and so on! It was a great technology but still required a lot of work to get something up and running. Remember xDoclet? Remember Struts? The old days of pure Hibernate code? Or when Ajax became a trending topic and we were all implementing it with DWR Servlet? Still, we J2EE developers survived, and learned, and helped evolve the platform to a whole new level of DX (Developer Experience). A new DX for J2EE suggested a new name. One that referred to the platform as the Enterprise Edition of Java, because "Java is why we're here" quoting Bill Shannon. The release of Java EE 5 included so many features that clearly showed developers the platform was going after all those DX gaps. Radical simplification of the persistence model with the introduction of JPA Support of Annotations following the launch of Java SE 5.0 Updated XML APIs with the introduction of StAX Drastic simplification of the EJB component model (with annotations!) Convention over Configuration and Dependency Injection A few bullets you may say but that represented a whole new DX and a vision for upcoming versions. Clearly, the release of Java EE 5 helped drive the future of the platform by reducing the number of XMLs, Java Interfaces, simplified configurations, provided convention-over-configuration, etc! We then saw the release of Java EE 6 with even more great features like Managed Beans, CDI, Bean Validation, improved JSP and Servlets APIs, JASPIC, the posisbility to deploy plain WARs and so many other improvements it is difficult to list in one sentence. And we've gotta give Spring Framework some credit here: thanks to Rod Johnson and team, concepts like Dependency Injection fit perfectly into the Java EE Platform. Clearly, Spring used to be one of the most inspiring frameworks for the Java EE platform, and it is great to see things like Pivotal and Spring supporting JSR 352 Batch API standard! Cooperation to keep improving DX at maximum in the server-side Java landscape.  The master piece result of these previous releases is seen and called today as Java EE 7, which by providing a newly and improved JavaServer Faces release, with new features for Web Development like WebSockets API, improved JAX-RS, and JSON-P, but also including Batch API and so many other great improvements, has increased developer productivity and brought innovation to server-side Java developers. Java EE is not just a new name (which was introduced back in May 2006!) but a new Developer Experience for server-side Java developers. To show you why we are here and where we are going (see the Java EE 8 update), we wanted to share with you a draft of the new Java EE logos that the evangelist team created, to help you spread the word about Java EE. You can get access to these images at the Java EE Platform Facebook Album, or the Google+ Java EE Platform Album whichever is better for you, but don't forget to like and/or +1 those social network profiles :-) A message to all job recruiters: stop using J2EE and start using Java EE if you want to find great Java EE 5, Java EE 6, or Java EE 7 developers To not only save you recruiter valuable characters when tweeting that job opportunity but to also match the correct term, we invite you to replace long terms like "Java/J2EE" or even worse "#Java #J2EE #JEE" or all these awkward combinations with the only acceptable hashtag: #JavaEE. And to prove that Java EE is catching among developers and even recruiters, and that J2EE is past, let me highlight here how are the jobs trends! The image below is from Indeed.com trends page, for the following keywords: J2EE, Java/J2EE, Java/JEE, JEE. As you can see, J2EE is indeed going away, while JEE saw some increase. Perhaps because some people are just lazy to type "Java" but at the same time they are aware that J2EE (the '2') is past. We shall forgive that for a while :-) Another proof that J2EE is going away is by looking at its trending statistics at Google. People have been showing less and less interest in the term J2EE. See the chart below:  Recruiter, if you still need proof that J2EE is past, that Java EE is trending, and that other job recruiters are seeking for Java EE developers, and that the developer community is aware of the new term, perhaps these other charts can show you what term you should be using. See for example the Job Trends for Java EE at Indeed.com and notice where it started... 2006! 8 years ago :-) Last but not least, the Google Trends for Java EE term (including the still wrong but forgivable JavaEE term) shows us that the new term is catching up very well. J2EE is past. Oh, and don't worry about the curves going down. We developers like to be hipsters sometimes and today only AngularJS, NodeJS, BigData are going up. Java EE and other traditional server-side technologies such as Spring, or even from other platforms such as Ruby on Rails, PHP, Grails, are pretty much consolidated and the curves... well, they are consolidated too. So If you are a Java EE developer, drop that J2EE from your résumé, and let recruiters also know that this term is past. Embrace Java EE, and enjoy a new developer experience for server-side Java developers. Java EE on TwitterJava EE on Google+Java EE on Facebook

    Read the article

  • Default Parameters vs Method Overloading

    - by João Angelo
    With default parameters introduced in C# 4.0 one might be tempted to abandon the old approach of providing method overloads to simulate default parameters. However, you must take in consideration that both techniques are not interchangeable since they show different behaviors in certain scenarios. For me the most relevant difference is that default parameters are a compile time feature while method overloading is a runtime feature. To illustrate these concepts let’s take a look at a complete, although a bit long, example. What you need to retain from the example is that static method Foo uses method overloading while static method Bar uses C# 4.0 default parameters. static void CreateCallerAssembly(string name) { // Caller class - Invokes Example.Foo() and Example.Bar() string callerCode = String.Concat( "using System;", "public class Caller", "{", " public void Print()", " {", " Console.WriteLine(Example.Foo());", " Console.WriteLine(Example.Bar());", " }", "}"); var parameters = new CompilerParameters(new[] { "system.dll", "Common.dll" }, name); new CSharpCodeProvider().CompileAssemblyFromSource(parameters, callerCode); } static void Main() { // Example class - Foo uses overloading while Bar uses C# 4.0 default parameters string exampleCode = String.Concat( "using System;", "public class Example", "{{", " public static string Foo() {{ return Foo(\"{0}\"); }}", " public static string Foo(string key) {{ return \"FOO-\" + key; }}", " public static string Bar(string key = \"{0}\") {{ return \"BAR-\" + key; }}", "}}"); var compiler = new CSharpCodeProvider(); var parameters = new CompilerParameters(new[] { "system.dll" }, "Common.dll"); // Build Common.dll with default value of "V1" compiler.CompileAssemblyFromSource(parameters, String.Format(exampleCode, "V1")); // Caller1 built against Common.dll that uses a default of "V1" CreateCallerAssembly("Caller1.dll"); // Rebuild Common.dll with default value of "V2" compiler.CompileAssemblyFromSource(parameters, String.Format(exampleCode, "V2")); // Caller2 built against Common.dll that uses a default of "V2" CreateCallerAssembly("Caller2.dll"); dynamic caller1 = Assembly.LoadFrom("Caller1.dll").CreateInstance("Caller"); dynamic caller2 = Assembly.LoadFrom("Caller2.dll").CreateInstance("Caller"); Console.WriteLine("Caller1.dll:"); caller1.Print(); Console.WriteLine("Caller2.dll:"); caller2.Print(); } And if you run this code you will get the following output: // Caller1.dll: // FOO-V2 // BAR-V1 // Caller2.dll: // FOO-V2 // BAR-V2 You see that even though Caller1.dll runs against the current Common.dll assembly where method Bar defines a default value of “V2″ the output show us the default value defined at the time Caller1.dll compiled against the first version of Common.dll. This happens because the compiler will copy the current default value to each method call, much in the same way a constant value (const keyword) is copied to a calling assembly and changes to it’s value will only be reflected if you rebuild the calling assembly again. The use of default parameters is also discouraged by Microsoft in public API’s as stated in (CA1026: Default parameters should not be used) code analysis rule.

    Read the article

  • Oh no! My padding's invalid!

    - by Simon Cooper
    Recently, I've been doing some work involving cryptography, and encountered the standard .NET CryptographicException: 'Padding is invalid and cannot be removed.' Searching on StackOverflow produces 57 questions concerning this exception; it's a very common problem encountered. So I decided to have a closer look. To test this, I created a simple project that decrypts and encrypts a byte array: // create some random data byte[] data = new byte[100]; new Random().NextBytes(data); // use the Rijndael symmetric algorithm RijndaelManaged rij = new RijndaelManaged(); byte[] encrypted; // encrypt the data using a CryptoStream using (var encryptor = rij.CreateEncryptor()) using (MemoryStream encryptedStream = new MemoryStream()) using (CryptoStream crypto = new CryptoStream( encryptedStream, encryptor, CryptoStreamMode.Write)) { crypto.Write(data, 0, data.Length); encrypted = encryptedStream.ToArray(); } byte[] decrypted; // and decrypt it again using (var decryptor = rij.CreateDecryptor()) using (CryptoStream crypto = new CryptoStream( new MemoryStream(encrypted), decryptor, CryptoStreamMode.Read)) { byte[] decrypted = new byte[data.Length]; crypto.Read(decrypted, 0, decrypted.Length); } Sure enough, I got exactly the same CryptographicException when trying to decrypt the data even in this simple example. Well, I'm obviously missing something, if I can't even get this single method right! What does the exception message actually mean? What am I missing? Well, after playing around a bit, I discovered the problem was fixed by changing the encryption step to this: // encrypt the data using a CryptoStream using (var encryptor = rij.CreateEncryptor()) using (MemoryStream encryptedStream = new MemoryStream()) { using (CryptoStream crypto = new CryptoStream( encryptedStream, encryptor, CryptoStreamMode.Write)) { crypto.Write(data, 0, data.Length); } encrypted = encryptedStream.ToArray(); } Aaaah, so that's what the problem was. The CryptoStream wasn't flushing all it's data to the MemoryStream before it was being read, and closing the stream causes it to flush everything to the backing stream. But why does this cause an error in padding? Cryptographic padding All symmetric encryption algorithms (of which Rijndael is one) operates on fixed block sizes. For Rijndael, the default block size is 16 bytes. This means the input needs to be a multiple of 16 bytes long. If it isn't, then the input is padded to 16 bytes using one of the padding modes. This is only done to the final block of data to be encrypted. CryptoStream has a special method to flush this final block of data - FlushFinalBlock. Calling Stream.Flush() does not flush the final block, as you might expect. Only by closing the stream or explicitly calling FlushFinalBlock is the final block, with any padding, encrypted and written to the backing stream. Without this call, the encrypted data is 16 bytes shorter than it should be. If this final block wasn't written, then the decryption gets to the final 16 bytes of the encrypted data and tries to decrypt it as the final block with padding. The end bytes don't match the padding scheme it's been told to use, therefore it throws an exception stating what is wrong - what the decryptor expects to be padding actually isn't, and so can't be removed from the stream. So, as well as closing the stream before reading the result, an alternative fix to my encryption code is the following: // encrypt the data using a CryptoStream using (var encryptor = rij.CreateEncryptor()) using (MemoryStream encryptedStream = new MemoryStream()) using (CryptoStream crypto = new CryptoStream( encryptedStream, encryptor, CryptoStreamMode.Write)) { crypto.Write(data, 0, data.Length); // explicitly flush the final block of data crypto.FlushFinalBlock(); encrypted = encryptedStream.ToArray(); } Conclusion So, if your padding is invalid, make sure that you close or call FlushFinalBlock on any CryptoStream performing encryption before you access the encrypted data. Flush isn't enough. Only then will the final block be present in the encrypted data, allowing it to be decrypted successfully.

    Read the article

  • Managing common code on Windows 7 (.NET) and Windows 8 (WinRT)

    - by ryanabr
    Recent announcements regarding Windows Phone 8 and the fact that it will have the WinRT behind it might make some of this less painful but I  discovered the "XmlDocument" object is in a new location in WinRT and is almost the same as it's brother in .NET System.Xml.XmlDocument (.NET) Windows.Data.Xml.Dom.XmlDocument (WinRT) The problem I am trying to solve is how to work with both types in the code that performs the same task on both Windows Phone 7 and Windows 8 platforms. The first thing I did was define my own XmlNode and XmlNodeList classes that wrap the actual Microsoft objects so that by using the "#if" compiler directive either work with the WinRT version of the type, or the .NET version from the calling code easily. public class XmlNode     { #if WIN8         public Windows.Data.Xml.Dom.IXmlNode Node { get; set; }         public XmlNode(Windows.Data.Xml.Dom.IXmlNode xmlNode)         {             Node = xmlNode;         } #endif #if !WIN8 public System.Xml.XmlNode Node { get; set ; } public XmlNode(System.Xml.XmlNode xmlNode)         {             Node = xmlNode;         } #endif     } public class XmlNodeList     { #if WIN8         public Windows.Data.Xml.Dom.XmlNodeList List { get; set; }         public int Count {get {return (int)List.Count;}}         public XmlNodeList(Windows.Data.Xml.Dom.XmlNodeList list)         {             List = list;         } #endif #if !WIN8 public System.Xml.XmlNodeList List { get; set ; } public int Count { get { return List.Count;}} public XmlNodeList(System.Xml.XmlNodeList list)         {             List = list;        } #endif     } From there I can then use my XmlNode and XmlNodeList in the calling code with out having to clutter the code with all of the additional #if switches. The challenge after this was the code that worked directly with the XMLDocument object needed to be seperate on both platforms since the method for populating the XmlDocument object is completly different on both platforms. To solve this issue. I made partial classes, one partial class for .NET and one for WinRT. Both projects have Links to the Partial Class that contains the code that is the same for the majority of the class, and the partial class contains the code that is unique to the version of the XmlDocument. The files with the little arrow in the lower left corner denotes 'linked files' and are shared in multiple projects but only exist in one location in source control. You can see that the _Win7 partial class is included directly in the project since it include code that is only for the .NET platform, where as it's cousin the _Win8 (not pictured above) has all of the code specific to the _Win8 platform. In the _Win7 partial class is this code: public partial class WUndergroundViewModel     { public static WUndergroundData GetWeatherData( double lat, double lng)         { WUndergroundData data = new WUndergroundData();             System.Net. WebClient c = new System.Net. WebClient(); string req = "http://api.wunderground.com/api/xxx/yesterday/conditions/forecast/q/[LAT],[LNG].xml" ;             req = req.Replace( "[LAT]" , lat.ToString());             req = req.Replace( "[LNG]" , lng.ToString()); XmlDocument doc = new XmlDocument();             doc.Load(c.OpenRead(req)); foreach (XmlNode item in doc.SelectNodes("/response/features/feature" ))             { switch (item.Node.InnerText)                 { case "yesterday" :                         ParseForecast( new FishingControls.XmlNodeList (doc.SelectNodes( "/response/forecast/txt_forecast/forecastdays/forecastday" )), new FishingControls.XmlNodeList (doc.SelectNodes( "/response/forecast/simpleforecast/forecastdays/forecastday" )), data); break ; case "conditions" :                         ParseCurrent( new FishingControls.XmlNode (doc.SelectSingleNode("/response/current_observation" )), data); break ; case "forecast" :                         ParseYesterday( new FishingControls.XmlNodeList (doc.SelectNodes( "/response/history/observations/observation" )),data); break ;                 }             } return data;         }     } in _win8 partial class is this code: public partial class WUndergroundViewModel     { public async static Task< WUndergroundData > GetWeatherData(double lat, double lng)         { WUndergroundData data = new WUndergroundData (); HttpClient c = new HttpClient (); string req = "http://api.wunderground.com/api/xxxx/yesterday/conditions/forecast/q/[LAT],[LNG].xml" ;             req = req.Replace( "[LAT]" , lat.ToString());             req = req.Replace( "[LNG]" , lng.ToString()); HttpResponseMessage msg = await c.GetAsync(req); string stream = await msg.Content.ReadAsStringAsync(); XmlDocument doc = new XmlDocument ();             doc.LoadXml(stream, null); foreach ( IXmlNode item in doc.SelectNodes("/response/features/feature" ))             { switch (item.InnerText)                 { case "yesterday" :                         ParseForecast( new FishingControls.XmlNodeList (doc.SelectNodes( "/response/forecast/txt_forecast/forecastdays/forecastday" )), new FishingControls.XmlNodeList (doc.SelectNodes( "/response/forecast/simpleforecast/forecastdays/forecastday" )), data); break; case "conditions" :                         ParseCurrent( new FishingControls.XmlNode (doc.SelectSingleNode("/response/current_observation" )), data); break; case "forecast" :                         ParseYesterday( new FishingControls.XmlNodeList (doc.SelectNodes( "/response/history/observations/observation")), data); break;                 }             } return data;         }     } Summary: This method allows me to have common 'business' code for both platforms that is pretty clean, and I manage the technology differences separately. Thank you tostringtheory for your suggestion, I was considering that approach.

    Read the article

  • Introduction to WebCenter Personalization: &ldquo;The Conductor&rdquo;

    - by Steve Pepper
    There are some new faces in the town of WebCenter with the latest 11g PS3 release.  A new component has introduced itself as "Oracle WebCenter Personalization", a.k.a WCP, to simplify delivery of a personalized experience and content to end users.  This posting reviews one of the primary components within WCP: "The Conductor". The Conductor: This ain't just an ordinary cloud... One of the founding principals behind WebCenter Personalization was to provide an open client-side API that remains independent of the technology invoking it, in addition to independence from the architecture running it.  The Conductor delivers this, and much, much more. The Conductor is the engine behind WebCenter Personalization that allows flow-based documents, called "Scenarios", to be managed and executed on the server-side through a well published and RESTful api.      The Conductor also supports an extensible model for custom provider integration that can be easily invoked within a Scenario to promote seamless integration with existing business assets. Introducing the Scenario Conductor Scenarios are declarative offline-authored documents using the custom Personalization JDeveloper bundle included with WebCenter.  A Scenario contains one (or more) statements that can: Create variables that are scoped to the current execution context Iterate over collections, or loop until a specific condition is met Execute one or more statements when a condition is met Invoke other scenarios that exist within the same namespace Invoke a data provider that integrates with custom applications Once a variable is assigned within the Scenario's execution context, it can be referenced anywhere within the same Scenario using the common Expression Language syntax used in J2EE web containers. Scenarios are then published and tested to the Integrated WebLogic Server domain, or published remotely to other domains running WebCenter Personalization. Various Client-side Models The Conductor server API is built upon RESTful services that support a wide variety of clients able to communicate over HTTP.  The Conductor supports the following client-side models: REST:  Popular browser-based languages can be used to manage and execute Conductor Scenarios.  There are other public methods to retrieve configured provider metadata that can be used by custom applications. The Conductor currently supports XML and JSON for it's API syntax. Java: WebCenter Personalization delivers a robust and light-weight java client with the popular Jersey framework as it's foundation.  It has never been easier to write a remote java client to manage remote RESTful services. Expression Language (EL): Allow the results of Scenario execution to control your user interface or embed personalized content using the session-scoped managed bean.  The EL client can also be used in straight JSP pages with minimal configuration. Extensible Provider Framework The Conductor supports a pluggable provider framework for integrating custom code with Scenario execution.  There are two types of providers supported by the Conductor: Function Provider: Function Providers are simple java annotated classes with static methods that are meant to be served as utilities.  Some common uses would include: object creation or instantiation, data transformation, and the like.  Function Providers can be invoked using the common EL syntax from variable assignments, conditions, and loops. For example:  ${myUtilityClass:doStuff(arg1,arg2))} If you are familiar with EL Functions, Function Providers are based on the same concept. Data Provider: Like Function Providers, Data Providers are annotated java classes, but they must adhere to a much more strict object model.  Data Providers have access to a wealth of Conductor services, such as: Access to namespace-scoped configuration API that can be managed by Oracle Enterprise Manager, Scenario execution context for expression resolution, and more.  Oracle ships with three out-of-the-box data providers that supports integration with: Standardized Content Servers(CMIS),  Federated Profile Properties through the Properties Service, and WebCenter Activity Graph. Useful References If you are looking to immediately get started writing your own application using WebCenter Personalization Services, you will find the following references helpful in getting you on your way: Personalizing WebCenter Applications Authoring Personalized Scenarios in JDeveloper Using Personalization APIs Externally Implementing and Calling Function Providers Implementing and Calling Data Providers

    Read the article

  • Entity Framework 6: Alpha2 Now Available

    - by ScottGu
    The Entity Framework team recently announced the 2nd alpha release of EF6.   The alpha 2 package is available for download from NuGet. Since this is a pre-release package make sure to select “Include Prereleases” in the NuGet package manager, or execute the following from the package manager console to install it: PM> Install-Package EntityFramework -Pre This week’s alpha release includes a bunch of great improvements in the following areas: Async language support is now available for queries and updates when running on .NET 4.5. Custom conventions now provide the ability to override the default conventions that Code First uses for mapping types, properties, etc. to your database. Multi-tenant migrations allow the same database to be used by multiple contexts with full Code First Migrations support for independently evolving the model backing each context. Using Enumerable.Contains in a LINQ query is now handled much more efficiently by EF and the SQL Server provider resulting greatly improved performance. All features of EF6 (except async) are available on both .NET 4 and .NET 4.5. This includes support for enums and spatial types and the performance improvements that were previously only available when using .NET 4.5. Start-up time for many large models has been dramatically improved thanks to improved view generation performance. Below are some additional details about a few of the improvements above: Async Support .NET 4.5 introduced the Task-Based Asynchronous Pattern that uses the async and await keywords to help make writing asynchronous code easier. EF 6 now supports this pattern. This is great for ASP.NET applications as database calls made through EF can now be processed asynchronously – avoiding any blocking of worker threads. This can increase scalability on the server by allowing more requests to be processed while waiting for the database to respond. The following code shows an MVC controller that is querying a database for a list of location entities:     public class HomeController : Controller     {         LocationContext db = new LocationContext();           public async Task<ActionResult> Index()         {             var locations = await db.Locations.ToListAsync();               return View(locations);         }     } Notice above the call to the new ToListAsync method with the await keyword. When the web server reaches this code it initiates the database request, but rather than blocking while waiting for the results to come back, the thread that is processing the request returns to the thread pool, allowing ASP.NET to process another incoming request with the same thread. In other words, a thread is only consumed when there is actual processing work to do, allowing the web server to handle more concurrent requests with the same resources. A more detailed walkthrough covering async in EF is available with additional information and examples. Also a walkthrough is available showing how to use async in an ASP.NET MVC application. Custom Conventions When working with EF Code First, the default behavior is to map .NET classes to tables using a set of conventions baked into EF. For example, Code First will detect properties that end with “ID” and configure them automatically as primary keys. However, sometimes you cannot or do not want to follow those conventions and would rather provide your own. For example, maybe your primary key properties all end in “Key” instead of “Id”. Custom conventions allow the default conventions to be overridden or new conventions to be added so that Code First can map by convention using whatever rules make sense for your project. The following code demonstrates using custom conventions to set the precision of all decimals to 5. As with other Code First configuration, this code is placed in the OnModelCreating method which is overridden on your derived DbContext class:         protected override void OnModelCreating(DbModelBuilder modelBuilder)         {             modelBuilder.Properties<decimal>()                 .Configure(x => x.HasPrecision(5));           } But what if there are a couple of places where a decimal property should have a different precision? Just as with all the existing Code First conventions, this new convention can be overridden for a particular property simply by explicitly configuring that property using either the fluent API or a data annotation. A more detailed description of custom code first conventions is available here. Community Involvement I blogged a while ago about EF being released under an open source license.  Since then a number of community members have made contributions and these are included in EF6 alpha 2. Two examples of community contributions are: AlirezaHaghshenas contributed a change that increases the startup performance of EF for larger models by improving the performance of view generation. The change means that it is less often necessary to use of pre-generated views. UnaiZorrilla contributed the first community feature to EF: the ability to load all Code First configuration classes in an assembly with a single method call like the following: protected override void OnModelCreating(DbModelBuilder modelBuilder) {        modelBuilder.Configurations            .AddFromAssembly(typeof(LocationContext).Assembly); } This code will find and load all the classes that inherit from EntityTypeConfiguration<T> or ComplexTypeConfiguration<T> in the assembly where LocationContext is defined. This reduces the amount of coupling between the context and Code First configuration classes, and is also a very convenient shortcut for large models. Other upcoming features coming in EF 6 Lots of information about the development of EF6 can be found on the EF CodePlex site, including a roadmap showing the other features that are planned for EF6. One of of the nice upcoming features is connection resiliency, which will automate the process of retying database operations on transient failures common in cloud environments and with databases such as the Windows Azure SQL Database. Another often requested feature that will be included in EF6 is the ability to map stored procedures to query and update operations on entities when using Code First. Summary EF6 is the first open source release of Entity Framework being developed in CodePlex. The alpha 2 preview release of EF6 is now available on NuGet, and contains some really great features for you to try. The EF team are always looking for feedback from developers - especially on the new features such as custom Code First conventions and async support. To provide feedback you can post a comment on the EF6 alpha 2 announcement post, start a discussion or file a bug on the CodePlex site. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • JEP 124: Enhance the Certificate Revocation-Checking API

    - by smullan
    Revocation checking is the mechanism to determine the revocation status of a certificate. If it is revoked, it is considered invalid and should not be used. Currently as of JDK 7, the PKIX implementation of java.security.cert.CertPathValidator  includes a revocation checking implementation that supports both OCSP and CRLs, the two main methods of checking revocation. However, there are very few options that allow you to configure the behavior. You can always implement your own revocation checker, but that's a lot of work. JEP 124 (Enhance the Certificate Revocation-Checking API) is one of the 11 new security features in JDK 8. This feature enhances the java.security.cert API to support various revocation settings such as best-effort checking, end-entity certificate checking, and mechanism-specific options and parameters. Let's describe each of these in more detail and show some examples. The features are provided through a new class named PKIXRevocationChecker. A PKIXRevocationChecker instance is returned by a PKIX CertPathValidator as follows: CertPathValidator cpv = CertPathValidator.getInstance("PKIX"); PKIXRevocationChecker prc = (PKIXRevocationChecker)cpv.getRevocationChecker(); You can now set various revocation options by calling different methods of the returned PKIXRevocationChecker object. For example, the best-effort option (called soft-fail) allows the revocation check to succeed if the status cannot be obtained due to a network connection failure or an overloaded server. It is enabled as follows: prc.setOptions(Enum.setOf(Option.SOFT_FAIL)); When the SOFT_FAIL option is specified, you can still obtain any exceptions that may have been thrown due to network issues. This can be useful if you want to log this information or treat it as a warning. You can obtain these exceptions by calling the getSoftFailExceptions method: List<CertPathValidatorException> exceptions = prc.getSoftFailExceptions(); Another new option called ONLY_END_ENTITY allows you to only check the revocation status of the end-entity certificate. This can improve performance, but you should be careful using this option, as the revocation status of CA certificates will not be checked. To set more than one option, simply specify them together, for example: prc.setOptions(Enum.setOf(Option.SOFT_FAIL, Option.ONLY_END_ENTITY)); By default, PKIXRevocationChecker will try to check the revocation status of a certificate using OCSP first, and then CRLs as a fallback. However, you can switch the order using the PREFER_CRLS option, or disable the fallback altogether using the NO_FALLBACK option. For example, here is how you would only use CRLs to check the revocation status: prc.setOptions(Enum.setOf(Option.PREFER_CRLS, Option.NO_FALLBACK)); There are also a number of other useful methods which allow you to specify various options such as the OCSP responder URI, the trusted OCSP responder certificate, and OCSP request extensions. However, one of the most useful features is the ability to specify a cached OCSP response with the setOCSPResponse method. This can be quite useful if the OCSPResponse has already been obtained, for example in a protocol that uses OCSP stapling. After you have set all of your preferred options, you must add the PKIXRevocationChecker to your PKIXParameters object as one of your custom CertPathCheckers before you validate the certificate chain, as follows: PKIXParameters params = new PKIXParameters(keystore); params.addCertPathChecker(prc); CertPathValidatorResult result = cpv.validate(path, params); Early access binaries of JDK 8 can be downloaded from http://jdk8.java.net/download.html

    Read the article

  • jQuery post with FileStreamResult as return value

    - by karl
    Hello, I'm quite new with jquery and asp.net mvc. My problem is that I'm calling a method in a controller that returns a FileStreamResult. This is working fine, but when I'm calling it with the jQuery post it doesn't work. I can see with vs debug tool that the progam is exectuting the method. Therefor I think it has something to do with that my jQuery call should take care of the return parameter? Somenoe? The jQuery code: <script type="text/javascript"> function createPPT() { $.post("<%= Url.Action( "DownloadAsPowerpoint", "RightMenu" )%>"); } </script> The method in the controller: public ActionResult DownloadAsPowerpoint() { Stream stream; //... HttpContext.Response.AddHeader("content-disposition", "attachment; filename=presentation.pptx"); return new FileStreamResult(stream, "application/pptx"); } Could someone explain and give me some example code?

    Read the article

  • ASP.NET PowerShell Impersonation

    - by Ben
    I have developed an ASP.NET MVC Web Application to execute PowerShell scripts. I am using the VS web server and can execute scripts fine. However, a requirement is that users are able to execute scripts against AD to perform actions that their own user accounts are not allowed to do. Therefore I am using impersonation to switch the identity before creating the PowerShell runspace: Runspace runspace = RunspaceFactory.CreateRunspace(config); var currentuser = WindowsIdentity.GetCurrent().Name; if (runspace.RunspaceStateInfo.State == RunspaceState.BeforeOpen) { runspace.Open(); } I have tested using a domain admin account and I get the following exception when calling runspace.Open(): Security Exception Description: The application attempted to perform an operation not allowed by the security policy. To grant this application the required permission please contact your system administrator or change the application's trust level in the configuration file. Exception Details: System.Security.SecurityException: Requested registry access is not allowed. The web application is running in full trust and I have explicitly added the account I am using for impersonation to the local administrators group of the machine (even though the domain admins group was already there). I'm using advapi32.dll LogonUser call to perform the impersonation in a similar way to this post (http://blogs.msdn.com/webdav_101/archive/2008/09/25/howto-calling-exchange-powershell-from-an-impersonated-thead.aspx) Any help appreciated as this is a bit of a show stopper at the moment. Thanks Ben

    Read the article

  • "Win32 exception occurred releasing IUnknown at..." error using Pylons and WMI

    - by Anders
    Hi all, Im using Pylons in combination with WMI module to do some basic system monitoring of a couple of machines, for POSIX based systems everything is simple - for Windows - not so much. Doing a request to the Pylons server to get current CPU, however it's not working well, or atleast with the WMI module. First i simply did (something) this: c = wmi.WMI() for cpu in c.Win32_Processor(): value = cpu.LoadPercentage However, that gave me an error when accessing this module via Pylons (GET http://ip:port/cpu): raise x_wmi_uninitialised_thread ("WMI returned a syntax error: you're probably running inside a thread without first calling pythoncom.CoInitialize[Ex]") x_wmi_uninitialised_thread: <x_wmi: WMI returned a syntax error: you're probably running inside a thread without first calling pythoncom.CoInitialize[Ex] (no underlying exception)> Looking at http://timgolden.me.uk/python/wmi/tutorial.html, i wrapped the code accordingly to the example under the topic "CoInitialize & CoUninitialize", which makes the code work, but it keeps throwing "Win32 exception occurred releasing IUnknown at..." And then looking at http://mail.python.org/pipermail/python-win32/2007-August/006237.html and the follow up post, trying to follow that - however pythoncom._GetInterfaceCount() is always 20. Im guessing this is someway related to Pylons spawning worker threads and crap like that, however im kinda lost here, advice would be nice. Thanks in advance, Anders

    Read the article

  • How to change StartupUri of WPF Application?

    - by Akash Kava
    I am trying to modify App.cs and load the WPF XAML files from code behind but its not working as it should. No matter whatever I try to set as StartupUri it doesnt start, the program quits after this. public partial class App : Application { protected override void OnStartup(StartupEventArgs e) { base.OnStartup(e); LoginDialog dlg = new LoginDialog(); if (dlg.ShowDialog() != true) return; switch (dlg.ChoiceApp) { case ChoiceApp.CustomerEntry: StartupUri = new Uri("/MyApp;component/Forms/CustomerEntry.xaml", UriKind.Relative); break; case ChoiceApp.VendorEntry: StartupUri = new Uri("/MyApp;component/Forms/VendorEntry.xaml", UriKind.Relative); break; } } } Now I even did trace and found out that LoginDialog is working correctly and is returning values correctly but setting "StartupUri" does not work. I checked in reverse assembly that DoStartup method of App gets called after OnStartup, so technically my StartupUri must load, but it doesnt, in App.xaml startup uri is not at all defined. Note: Bug Confirmed I noticed that ShowDialog sets Application.MainWindow and when dialog ends, it sets it back to null, and because of this setting StartupUri does not work after calling Modal Dialog in OnStartup or Startup event. There is no error or exception about invalid uri or anything like that. This method works without DialogBox being called in Startup event or OnStartup, i think calling showdialog on this method causes something like its mainwindow being set to expired window and it shuts down after this.

    Read the article

< Previous Page | 75 76 77 78 79 80 81 82 83 84 85 86  | Next Page >