Search Results

Search found 2114 results on 85 pages for 'historical debugger'.

Page 79/85 | < Previous Page | 75 76 77 78 79 80 81 82 83 84 85  | Next Page >

  • User control events not getting to their handlers

    - by PhrkOnLsh
    I am trying to create a user control to wrap around the Membership API (A set of custom Gridviews to display the data better) and, while the code and the controls worked fine in the page, when I moved them to an .ascx, the events stopped firing to it. <%@ Control Language="C#" AutoEventWireup="true" CodeBehind="CustomMembership.ascx.cs" Inherits="CCGlink.CustomMembership" %> <asp:Panel ID="mainPnl" runat="server"> <asp:Label id="lblError" ForeColor="Red" Font-Bold="true" runat="server" /> <asp:GridView id="grdUsers" HeaderStyle-cssclass="<%# _headercss %>" RowStyle-cssclass="<%# _rowcss %>" AlternatingRowStyle-cssclass="<%# _alternatingcss %>" OnRowUpdating="grdUsers_RowUpdating" OnRowDeleting="grdUsers_RowDeleting" OnRowCancelingEdit="grdUsers_cancelEdit" autogeneratecolumns="false" allowsorting="true" AllowPaging="true" EmptyDataText="No users..." pagesize="<%# PageSizeForBoth %>" runat="server"> <!-- ...columns... --> </asp:GridView> <asp:Button id="btnAllDetails" onclick="btnAllDetails_clicked" text="Full Info" runat="server" /> <asp:GridView DataKeyNames="UserName" HeaderStyle-cssclass="<%# _headercss %>" RowStyle-cssclass="<%# _rowcss %>" AlternatingRowStyle-cssclass="<%# _alternatingcss %>" id="grdAllDetails" visible="false" allowsorting="true" EmptyDataText="No users in DB." pagesize="<%# PageSizeForBoth %>" runat="server" /> <asp:Button id="btnDoneAllDetails" onclick="btnAllDetails_clicked" text="Done." Visible="false" runat="server" /> </asp:Panel> However, none of the events in the first two controls (the gridview grdUsers and the button btnAllDetails) simply do NOT occur, I have verified this in the debugger. If they occured just fine in the aspx page, why do they die on moving to the ascx? My code in the aspx now is: <div class="admin-right"> <asp:ScriptManager ID="sm1" runat="server" /> <h1>User Management</h1> <div class="admin-right-users"> <asp:UpdatePanel ID="up1" runat="server"> <ContentTemplate> <cm1:CustomMembership id="showUsers" PageSizeForBoth="9" AlternatingRowStylecssclass="alternating" RowStylecssclass="row" DataSource="srcUsers" HeaderStylecssclass="header" runat="server" /> </ContentTemplate> </asp:UpdatePanel> </div> Thanks.

    Read the article

  • Weird seg fault problem

    - by bluedaemon
    Greetings, I'm having a weird seg fault problem. My application dumps a core file at runtime. After digging into it I found it died in this block: #include <lib1/c.h> ... x::c obj; obj.func1(); I defined class c in a library lib1: namespace x { struct c { c(); ~c(); void fun1(); vector<char *> _data; }; } x::c::c() { } x::c::~c() { for ( int i = 0; i < _data.size(); ++i ) delete _data[i]; } I could not figure it out for some time till I ran nm on the lib1.so file: there are more function definitions than I defined: x::c::c() x::c::c() x::c::~c() x::c::~c() x::c::func1() x::c::func2() After searching in code base I found someone else defined a class with same name in same namespace, but in another library lib2 as follows: namespace x { struct c { c(); ~c(); void func2(); vector<string> strs_; }; } x::c::c() { } x::c::~c() { } My application links to lib2, which has dependency on lib1. This interesting behavior brings several questions: Why would it even work? I would expect a "multiple definitions" error while linking against lib2 (which depends upon lib1) but never had such. The application seems to be doing what's defined in func1 except it dumps a core at runtime. After attaching debugger, I found my application calls the ctor of class c in lib2, then calls func1 (defined in lib1). When going out of scope it calls dtor of class c in lib2, where the seg fault occurs. Can anybody teach me how this could even occur? How can I prevent such problems from happening again? Is there any C++ syntax I can use? Forgot to mention I'm using g++ 4.1 on RHEL4, thank you very much!

    Read the article

  • Windows 7 BSOD - ntoskrnl?

    - by Ken Mason
    2 new HP Pavilion notebooks with 7 Home Premium pre-loaded with Norton. My first act was to use the Norton Removal Tool and load ZoneAlarm free and AVG Free. Frequent random BSOD's ever since...I found my way into Debug and have had various reports regarding ntoskrnl, depending on the status of symbols. It's been many years since I played with (DOS 3.x) debug, so this has been a considerable fumble. Excerpts follow and any insights would be greatly appreciated, as I am not a developer: ADDITIONAL_DEBUG_TEXT: Use '!findthebuild' command to search for the target build information. If the build information is available, run '!findthebuild -s ; .reload' to set symbol path and load symbols. MODULE_NAME: nt FAULTING_MODULE: fffff8000305d000 nt DEBUG_FLR_IMAGE_TIMESTAMP: 4b88cfeb BUGCHECK_STR: 0x7f_8 CUSTOMER_CRASH_COUNT: 1 DEFAULT_BUCKET_ID: VISTA_DRIVER_FAULT CURRENT_IRQL: 0 LAST_CONTROL_TRANSFER: from fffff800030ccb69 to fffff800030cd600 STACK_TEXT: fffff80004d6fd28 fffff800030ccb69 : 000000000000007f 0000000000000008 0000000080050033 00000000000006f8 : nt+0x70600 fffff80004d6fd30 000000000000007f : 0000000000000008 0000000080050033 00000000000006f8 fffff80003095e58 : nt+0x6fb69 fffff80004d6fd38 0000000000000008 : 0000000080050033 00000000000006f8 fffff80003095e58 0000000000000000 : 0x7f fffff80004d6fd40 0000000080050033 : 00000000000006f8 fffff80003095e58 0000000000000000 0000000000000000 : 0x8 fffff80004d6fd48 00000000000006f8 : fffff80003095e58 0000000000000000 0000000000000000 0000000000000000 : 0x80050033 fffff80004d6fd50 fffff80003095e58 : 0000000000000000 0000000000000000 0000000000000000 0000000000000000 : 0x6f8 fffff80004d6fd58 0000000000000000 : 0000000000000000 0000000000000000 0000000000000000 0000000000000000 : nt+0x38e58 STACK_COMMAND: kb FOLLOWUP_IP: nt+70600 fffff800`030cd600 48894c2408 mov qword ptr [rsp+8],rcx SYMBOL_STACK_INDEX: 0 SYMBOL_NAME: nt+70600 FOLLOWUP_NAME: MachineOwner IMAGE_NAME: ntoskrnl.exe BUCKET_ID: WRONG_SYMBOLS Followup: MachineOwner ...................................................................... 0: kd !lmi nt Loaded Module Info: [nt] Module: ntkrnlmp Base Address: fffff8000305d000 Image Name: ntkrnlmp.exe Machine Type: 34404 (X64) Time Stamp: 4b88cfeb Sat Feb 27 00:55:23 2010 Size: 5dc000 CheckSum: 545094 Characteristics: 22 perf Debug Data Dirs: Type Size VA Pointer CODEVIEW 25, 19c65c, 19bc5c RSDS - GUID: {7E9A3CAB-6268-45DE-8E10-816E3080A3B7} Age: 2, Pdb: ntkrnlmp.pdb CLSID 4, 19c658, 19bc58 [Data not mapped] Image Type: FILE - Image read successfully from debugger. ntkrnlmp.exe Symbol Type: PDB - Symbols loaded successfully from symbol server. d:\debugsymbols\ntkrnlmp.pdb\7E9A3CAB626845DE8E10816E3080A3B72\ntkrnlmp.pdb Load Report: public symbols , not source indexed d:\debugsymbols\ntkrnlmp.pdb\7E9A3CAB626845DE8E10816E3080A3B72\ntkrnlmp.pdb 0: kd !analyze -v * Bugcheck Analysis * * UNEXPECTED_KERNEL_MODE_TRAP (7f) This means a trap occurred in kernel mode, and it's a trap of a kind that the kernel isn't allowed to have/catch (bound trap) or that is always instant death (double fault). The first number in the bugcheck params is the number of the trap (8 = double fault, etc) Consult an Intel x86 family manual to learn more about what these traps are. Here is a portion of those codes: If kv shows a taskGate use .tss on the part before the colon, then kv. Else if kv shows a trapframe use .trap on that value Else .trap on the appropriate frame will show where the trap was taken (on x86, this will be the ebp that goes with the procedure KiTrap) Endif kb will then show the corrected stack. Arguments: Arg1: 0000000000000008, EXCEPTION_DOUBLE_FAULT Arg2: 0000000080050033 Arg3: 00000000000006f8 Arg4: fffff80003095e58 Debugging Details: BUGCHECK_STR: 0x7f_8 CUSTOMER_CRASH_COUNT: 1 DEFAULT_BUCKET_ID: VISTA_DRIVER_FAULT PROCESS_NAME: System CURRENT_IRQL: 2 LAST_CONTROL_TRANSFER: from fffff800030ccb69 to fffff800030cd600 STACK_TEXT: fffff80004d6fd28 fffff800030ccb69 : 000000000000007f 0000000000000008 0000000080050033 00000000000006f8 : nt!KeBugCheckEx fffff80004d6fd30 fffff800030cb032 : 0000000000000000 0000000000000000 0000000000000000 0000000000000000 : nt!KiBugCheckDispatch+0x69 fffff80004d6fe70 fffff80003095e58 : 0000000000000000 0000000000000000 0000000000000000 0000000000000000 : nt!KiDoubleFaultAbort+0xb2 fffff880089efc60 0000000000000000 : 0000000000000000 0000000000000000 0000000000000000 0000000000000000 : nt!SeAccessCheckFromState+0x58 STACK_COMMAND: kb FOLLOWUP_IP: nt!KiDoubleFaultAbort+b2 fffff800`030cb032 90 nop SYMBOL_STACK_INDEX: 2 SYMBOL_NAME: nt!KiDoubleFaultAbort+b2 FOLLOWUP_NAME: MachineOwner MODULE_NAME: nt IMAGE_NAME: ntkrnlmp.exe DEBUG_FLR_IMAGE_TIMESTAMP: 4b88cfeb FAILURE_BUCKET_ID: X64_0x7f_8_nt!KiDoubleFaultAbort+b2 BUCKET_ID: X64_0x7f_8_nt!KiDoubleFaultAbort+b2 Followup: MachineOwner I tried running Rootkit Revealer but I don't think it works on x64 systems. Similarly Blacklight seems to have aged off. I'm running Sophos Anti-Rootkit now. So far so good...

    Read the article

  • I have a NGINX server configured to work with node.js, but many times a file of 1.03MB of js is not loaded by various browser and various pc

    - by Totty
    I'm using this in a local LAN so it should be quite fast. The nginx server use the node.js server to serve static files, so it must pass throught node.js to download the files, but that is not a problem when I'm not using the nginx. In chrome with debugger on I can see that the status is: 206 - partial content and it only has downloaded 31KB of 1.03MB. After 1.1 min it turns red and the status failed. Waiting time: 6ms Receiving: 1.1 min The headers in google chrom: Request URL:http://192.168.1.16/production/assembly/script/production.js Request Method:GET Status Code:206 Partial Content Request Headersview source Accept:*/* Accept-Charset:ISO-8859-1,utf-8;q=0.7,*;q=0.3 Accept-Encoding:gzip,deflate,sdch Accept-Language:pt-PT,pt;q=0.8,en-US;q=0.6,en;q=0.4 Connection:keep-alive Cookie:connect.sid=s%3Abls2qobcCaJ%2FyBNZwedtDR9N.0vD4Fi03H1bEdCszGsxIjjK0lZIjJhLnToWKFVxZOiE Host:192.168.1.16 If-Range:"1081715-1350053827000" Range:bytes=16090-16090 Referer:http://192.168.1.16/production/assembly/ User-Agent:Mozilla/5.0 (Windows NT 6.0) AppleWebKit/537.4 (KHTML, like Gecko) Chrome/22.0.1229.94 Safari/537.4 Response Headersview source Accept-Ranges:bytes Cache-Control:public, max-age=0 Connection:keep-alive Content-Length:1 Content-Range:bytes 16090-16090/1081715 Content-Type:application/javascript Date:Mon, 15 Oct 2012 09:18:50 GMT ETag:"1081715-1350053827000" Last-Modified:Fri, 12 Oct 2012 14:57:07 GMT Server:nginx/1.1.19 X-Powered-By:Express My nginx configurations: File 1: user totty; worker_processes 4; pid /var/run/nginx.pid; events { worker_connections 768; # multi_accept on; } http { ## # Basic Settings ## sendfile on; tcp_nopush on; tcp_nodelay on; keepalive_timeout 65; types_hash_max_size 2048; # server_tokens off; # server_names_hash_bucket_size 64; # server_name_in_redirect off; include /etc/nginx/mime.types; default_type application/octet-stream; ## # Logging Settings ## access_log /home/totty/web/production01_server/node_modules/production/_logs/_NGINX_access.txt; error_log /home/totty/web/production01_server/node_modules/production/_logs/_NGINX_error.txt; ## # Gzip Settings ## gzip on; gzip_disable "msie6"; # gzip_vary on; # gzip_proxied any; # gzip_comp_level 6; # gzip_buffers 16 8k; # gzip_http_version 1.1; # gzip_types text/plain text/css application/json application/x-javascript text/xml application/xml application/xml+rss text/javascript; ## # nginx-naxsi config ## # Uncomment it if you installed nginx-naxsi ## #include /etc/nginx/naxsi_core.rules; ## # nginx-passenger config ## # Uncomment it if you installed nginx-passenger ## #passenger_root /usr; #passenger_ruby /usr/bin/ruby; ## # Virtual Host Configs ## autoindex on; include /home/totty/web/production01_server/_deployment/nginxConfigs/server/*; } File that is included by the previous file: server { # custom location for entry # using only "/" instead of "/production/assembly" it # would allow you to go to "thatip/". In this way # we are limiting to "thatip/production/assembly/" location /production/assembly/ { # ip and port used in node.js proxy_pass http://127.0.0.1:3000/; } location /production/assembly.mongo/ { proxy_pass http://127.0.0.1:9000/; proxy_redirect off; } location /production/assembly.logs/ { autoindex on; alias /home/totty/web/production01_server/node_modules/production/_logs/; } }

    Read the article

  • 17 new features in Visual Studio 2010

    - by vik20000in
    Visual studio 2010 has been released to RTM a few days back. This release of Visual studio 2010 comes with a big number of improvements on many fronts. In this post I will try and point out some of the major improvements in Visual Studio 2010. 1)      Visual studio IDE Improvement. Visual studio IDE has been rewritten in WPF. The look and feel of the studio has been improved for improved readability. Start page has been redesigned and template so that anyone can change the start page as they wish. 2)      Multiple Monitor - Support for Multiple Monitor was already there in Visual studio. But in this edition it has been improved as much that we can now place the document, design and code window outside the IDE in another monitor. 3)      ZOOM in Code Editor – Making the editors in WPF has made significant improvement for them. The best one that I like is the ZOOM feature. We can now zoom in the code editor with the help of the ctrl + Mouse scroll. The zoom feature does not work on the Design surface or windows with icon like solution view and toolbox. 4)      Box Selection - Another Important improvement in the Visual studio 2010 is the box selection. We can select a rectangular by holding down the Alt Key and selecting with mouse.  Now in the rectangular selection we can insert text, Paste same code in different line etc. This is helpful if you want to convert a number of variables from public to private etc… 5)      New Improved Search – One of the best productivity improvements in Visual studio 2010 is its new search as you type support. This has been done in the Navigate To window which can be brought up by pressing (Ctrl + ,). The navigate To windows also take help of the Camel casing and will be able to search with the help of camel casing when character is entered in upper case. For example we can search AOH for AddOrederHeader. 6)      Call Hierarchy – This feature is only available to the Visual C# and Visual C++ editor. The call hierarchy windows displays the calls made to and from (yes both to and from) a selected method property or a constructor. The call hierarchy also shows the implementation of interface and the overrides of virtual or abstract methods. This window is very helpful in understanding the code flow, and evaluating the effect of making changes. The best part is it is available at design time and not at runtime only like a debugger. 7)      Highlighting references – One of the very cool stuff in Visual Studio 2010 is the fact if you select a variable then all the use of that variable will be highlighted alongside. This should work for all the result of symbols returned by Find all reference. This also works for Name of class, objects variable, properties and methods. We can also use the Ctrl + Shift + Down Arrow or Up Arror to move through them. 8)      Generate from usage - The Generate from usage feature lets you use classes and members before you define them. You can generate a stub for any undefined class, constructor, method, property, field, or enum that you want to use but have not yet defined. You can generate new types and members without leaving your current location in code, This minimizes interruption to your workflow.9)      IntelliSense Suggestion Mode - IntelliSense now provides two alternatives for IntelliSense statement completion, completion mode and suggestion mode. Use suggestion mode for situations where classes and members are used before they are defined. In suggestion mode, when you type in the editor and then commit the entry, the text you typed is inserted into the code. When you commit an entry in completion mode, the editor shows the entry that is highlighted on the members list. When an IntelliSense window is open, you can press CTRL+ALT+SPACEBAR to toggle between completion mode and suggestion mode. 10)   Application Lifecycle Management – A client application for management of application lifecycle like version control, work item tracking, build automation, team portal etc is available for free (this is not available for express edition.). 11)   Start Page – The start page has been redesigned with WPF for new functionality and look. Tabbed areas are provided for content from different source including MSDN. Once you open some project the start page closes automatically. The list of recent project also lets you remove project from the list. And above all the start page is customizable enough to be changed as per individual requirement. 12)   Extension Manager – Visual Studio 2010 has provided good ways to be extended. We can also use MEF to extend most of the features of Visual Studio. The new extension manager now can go the visual studio gallery and install the extension without even opening any explorer. 13)   Code snippets – Visual studio 2010 for HTML, Jscript and Asp.net also. 14)   Improved Intelligence for JavaScript has been improved vastly (around 2-5 times). Intelligence now also shows the XML documentation comment on the go. 15)   Web Deployment – Web Deployment has been vastly improved. We can package and publish the web application in one click. Three major supported deployment scenarios are Web packages, one click deployment and Web configuration Transformation. 16)   SharePoint - Visual Studio 2010 also brings vastly improved development experience for SharePoint. We can create, edit, debug, package, deploy and activate SharePoint project from within Visual Studio. Deployment of Site is as easy as hitting F5. 17)   Azure – Visual Studio 2010 also comes with handy improvement for developing on windows Azure environment. Vikram

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • Building extensions for Expression Blend 4 using MEF

    - by Timmy Kokke
    Introduction Although it was possible to write extensions for Expression Blend and Expression Design, it wasn’t very easy and out of the box only one addin could be used. With Expression Blend 4 it is possible to write extensions using MEF, the Managed Extensibility Framework. Until today there’s no documentation on how to build these extensions, so look thru the code with Reflector is something you’ll have to do very often. Because Blend and Design are build using WPF searching the visual tree with Snoop and Mole belong to the tools you’ll be using a lot exploring the possibilities.  Configuring the extension project Extensions are regular .NET class libraries. To create one, load up Visual Studio 2010 and start a new project. Because Blend is build using WPF, choose a WPF User Control Library from the Windows section and give it a name and location. I named mine DemoExtension1. Because Blend looks for addins named *.extension.dll  you’ll have to tell Visual Studio to use that in the Assembly Name. To change the Assembly Name right click your project and go to Properties. On the Application tab, add .Extension to name already in the Assembly name text field. To be able to debug this extension, I prefer to set the output path on the Build tab to the extensions folder of Expression Blend. This means that everything that used to go into the Debug folder is placed in the extensions folder. Including all referenced assemblies that have the copy local property set to false. One last setting. To be able to debug your extension you could start Blend and attach the debugger by hand. I like it to be able to just hit F5. Go to the Debug tab and add the the full path to Blend.exe in the Start external program text field. Extension Class Add a new class to the project.  This class needs to be inherited from the IPackage interface. The IPackage interface can be found in the Microsoft.Expression.Extensibility namespace. To get access to this namespace add Microsoft.Expression.Extensibility.dll to your references. This file can be found in the same folder as the (Expression Blend 4 Beta) Blend.exe file. Make sure the Copy Local property is set to false in this reference. After implementing the interface the class would look something like: using Microsoft.Expression.Extensibility; namespace DemoExtension1 { public class DemoExtension1:IPackage { public void Load(IServices services) { } public void Unload() { } } } These two methods are called when your addin is loaded and unloaded. The parameter passed to the Load method, IServices services, is your main entry point into Blend. The IServices interface exposes the GetService<T> method. You will be using this method a lot. Almost every part of Blend can be accessed thru a service. For example, you can use to get to the commanding services of Blend by calling GetService<ICommandService>() or to get to the Windowing services by calling GetService<IWindowService>(). To get Blend to load the extension we have to implement MEF. (You can get up to speed on MEF on the community site or read the blog of Mr. MEF, Glenn Block.)  In the case of Blend extensions, all that needs to be done is mark the class with an Export attribute and pass it the type of IPackage. The Export attribute can be found in the System.ComponentModel.Composition namespace which is part of the .NET 4 framework. You need to add this to your references. using System.ComponentModel.Composition; using Microsoft.Expression.Extensibility;   namespace DemoExtension1 { [Export(typeof(IPackage))] public class DemoExtension1:IPackage { Blend is able to find your addin now. Adding UI The addin doesn’t do very much at this point. The WPF User Control Library came with a UserControl so lets use that in this example. I just drop a Button and a TextBlock onto the surface of the control to have something to show in the demo. To get the UserControl to work in Blend it has to be registered with the WindowService.  Call GetService<IWindowService>() on the IServices interface to get access to the windowing services. The UserControl will be used in Blend on a Palette and has to be registered to enable it. This is done by calling the RegisterPalette on the IWindowService interface and passing it an identifier, an instance of the UserControl and a caption for the palette. public void Load(IServices services) { IWindowService windowService = services.GetService<IWindowService>(); UserControl1 uc = new UserControl1(); windowService.RegisterPalette("DemoExtension", uc, "Demo Extension"); } After hitting F5 to start debugging Expression Blend will start. You should be able to find the addin in the Window menu now. Activating this window will show the “Demo Extension” palette with the UserControl, style according to the settings of Blend. Now what? Because little is publicly known about how to access different parts of Blend adding breakpoints in Debug mode and browsing thru objects using the Quick Watch feature of Visual Studio is something you have to do very often. This demo extension can be used for that purpose very easily. Add the click event handler to the button on the UserControl. Change the contructor to take the IServices interface and store this in a field. Set a breakpoint in the Button_Click method. public partial class UserControl1 : UserControl { private readonly IServices _services;   public UserControl1(IServices services) { _services = services; InitializeComponent(); }   private void button1_Click(object sender, RoutedEventArgs e) { } } Change the call to the constructor in the load method and pass it the services property. public void Load(IServices services) { IWindowService service = services.GetService<IWindowService>(); UserControl1 uc = new UserControl1(services); service.RegisterPalette("DemoExtension", uc, "Demo Extension"); } Hit F5 to compile and start Blend. Got to the window menu and start show the addin. Click on  the button to hit the breakpoint. Now place the carrot text _services text in the code window and hit Shift+F9 to show the Quick Watch window. Now start exploring and discovering where to find everything you need.  More Information The are no official resources available yet. Microsoft has released one extension for expression Blend that is very useful as a reference, the Microsoft Expression Blend® Add-in Preview for Windows® Phone. This will install a .extension.dll file in the extension folder of Blend. You can load this file with Reflector and have a peek at how Microsoft is building his addins. Conclusion I hope this gives you something to get started building extensions for Expression Blend. Until Microsoft releases the final version, which hopefully includes more information about building extensions, we’ll have to work on documenting it in the community.

    Read the article

  • Dynamically creating a Generic Type at Runtime

    - by Rick Strahl
    I learned something new today. Not uncommon, but it's a core .NET runtime feature I simply did not know although I know I've run into this issue a few times and worked around it in other ways. Today there was no working around it and a few folks on Twitter pointed me in the right direction. The question I ran into is: How do I create a type instance of a generic type when I have dynamically acquired the type at runtime? Yup it's not something that you do everyday, but when you're writing code that parses objects dynamically at runtime it comes up from time to time. In my case it's in the bowels of a custom JSON parser. After some thought triggered by a comment today I realized it would be fairly easy to implement two-way Dictionary parsing for most concrete dictionary types. I could use a custom Dictionary serialization format that serializes as an array of key/value objects. Basically I can use a custom type (that matches the JSON signature) to hold my parsed dictionary data and then add it to the actual dictionary when parsing is complete. Generic Types at Runtime One issue that came up in the process was how to figure out what type the Dictionary<K,V> generic parameters take. Reflection actually makes it fairly easy to figure out generic types at runtime with code like this: if (arrayType.GetInterface("IDictionary") != null) { if (arrayType.IsGenericType) { var keyType = arrayType.GetGenericArguments()[0]; var valueType = arrayType.GetGenericArguments()[1]; … } } The GetArrayType method gets passed a type instance that is the array or array-like object that is rendered in JSON as an array (which includes IList, IDictionary, IDataReader and a few others). In my case the type passed would be something like Dictionary<string, CustomerEntity>. So I know what the parent container class type is. Based on the the container type using it's then possible to use GetGenericTypeArguments() to retrieve all the generic types in sequential order of definition (ie. string, CustomerEntity). That's the easy part. Creating a Generic Type and Providing Generic Parameters at RunTime The next problem is how do I get a concrete type instance for the generic type? I know what the type name and I have a type instance is but it's generic, so how do I get a type reference to keyvaluepair<K,V> that is specific to the keyType and valueType above? Here are a couple of things that come to mind but that don't work (and yes I tried that unsuccessfully first): Type elementType = typeof(keyvalue<keyType, valueType>); Type elementType = typeof(keyvalue<typeof(keyType), typeof(valueType)>); The problem is that this explicit syntax expects a type literal not some dynamic runtime value, so both of the above won't even compile. I turns out the way to create a generic type at runtime is using a fancy bit of syntax that until today I was completely unaware of: Type elementType = typeof(keyvalue<,>).MakeGenericType(keyType, valueType); The key is the type(keyvalue<,>) bit which looks weird at best. It works however and produces a non-generic type reference. You can see the difference between the full generic type and the non-typed (?) generic type in the debugger: The nonGenericType doesn't show any type specialization, while the elementType type shows the string, CustomerEntity (truncated above) in the type name. Once the full type reference exists (elementType) it's then easy to create an instance. In my case the parser parses through the JSON and when it completes parsing the value/object it creates a new keyvalue<T,V> instance. Now that I know the element type that's pretty trivial with: // Objects start out null until we find the opening tag resultObject = Activator.CreateInstance(elementType); Here the result object is picked up by the JSON array parser which creates an instance of the child object (keyvalue<K,V>) and then parses and assigns values from the JSON document using the types  key/value property signature. Internally the parser then takes each individually parsed item and adds it to a list of  List<keyvalue<K,V>> items. Parsing through a Generic type when you only have Runtime Type Information When parsing of the JSON array is done, the List needs to be turned into a defacto Dictionary<K,V>. This should be easy since I know that I'm dealing with an IDictionary, and I know the generic types for the key and value. The problem is again though that this needs to happen at runtime which would mean using several Convert.ChangeType() calls in the code to dynamically cast at runtime. Yuk. In the end I decided the easier and probably only slightly slower way to do this is a to use the dynamic type to collect the items and assign them to avoid all the dynamic casting madness: else if (IsIDictionary) { IDictionary dict = Activator.CreateInstance(arrayType) as IDictionary; foreach (dynamic item in items) { dict.Add(item.key, item.value); } return dict; } This code creates an instance of the generic dictionary type first, then loops through all of my custom keyvalue<K,V> items and assigns them to the actual dictionary. By using Dynamic here I can side step all the explicit type conversions that would be required in the three highlighted areas (not to mention that this nested method doesn't have access to the dictionary item generic types here). Static <- -> Dynamic Dynamic casting in a static language like C# is a bitch to say the least. This is one of the few times when I've cursed static typing and the arcane syntax that's required to coax types into the right format. It works but it's pretty nasty code. If it weren't for dynamic that last bit of code would have been a pretty ugly as well with a bunch of Convert.ChangeType() calls to litter the code. Fortunately this type of type convulsion is rather rare and reserved for system level code. It's not every day that you create a string to object parser after all :-)© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  CSharp   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Writing the tests for FluentPath

    - by Bertrand Le Roy
    Writing the tests for FluentPath is a challenge. The library is a wrapper around a legacy API (System.IO) that wasn’t designed to be easily testable. If it were more testable, the sensible testing methodology would be to tell System.IO to act against a mock file system, which would enable me to verify that my code is doing the expected file system operations without having to manipulate the actual, physical file system: what we are testing here is FluentPath, not System.IO. Unfortunately, that is not an option as nothing in System.IO enables us to plug a mock file system in. As a consequence, we are left with few options. A few people have suggested me to abstract my calls to System.IO away so that I could tell FluentPath – not System.IO – to use a mock instead of the real thing. That in turn is getting a little silly: FluentPath already is a thin abstraction around System.IO, so layering another abstraction between them would double the test surface while bringing little or no value. I would have to test that new abstraction layer, and that would bring us back to square one. Unless I’m missing something, the only option I have here is to bite the bullet and test against the real file system. Of course, the tests that do that can hardly be called unit tests. They are more integration tests as they don’t only test bits of my code. They really test the successful integration of my code with the underlying System.IO. In order to write such tests, the techniques of BDD work particularly well as they enable you to express scenarios in natural language, from which test code is generated. Integration tests are being better expressed as scenarios orchestrating a few basic behaviors, so this is a nice fit. The Orchard team has been successfully using SpecFlow for integration tests for a while and I thought it was pretty cool so that’s what I decided to use. Consider for example the following scenario: Scenario: Change extension Given a clean test directory When I change the extension of bar\notes.txt to foo Then bar\notes.txt should not exist And bar\notes.foo should exist This is human readable and tells you everything you need to know about what you’re testing, but it is also executable code. What happens when SpecFlow compiles this scenario is that it executes a bunch of regular expressions that identify the known Given (set-up phases), When (actions) and Then (result assertions) to identify the code to run, which is then translated into calls into the appropriate methods. Nothing magical. Here is the code generated by SpecFlow: [NUnit.Framework.TestAttribute()] [NUnit.Framework.DescriptionAttribute("Change extension")] public virtual void ChangeExtension() { TechTalk.SpecFlow.ScenarioInfo scenarioInfo = new TechTalk.SpecFlow.ScenarioInfo("Change extension", ((string[])(null))); #line 6 this.ScenarioSetup(scenarioInfo); #line 7 testRunner.Given("a clean test directory"); #line 8 testRunner.When("I change the extension of " + "bar\\notes.txt to foo"); #line 9 testRunner.Then("bar\\notes.txt should not exist"); #line 10 testRunner.And("bar\\notes.foo should exist"); #line hidden testRunner.CollectScenarioErrors();} The #line directives are there to give clues to the debugger, because yes, you can put breakpoints into a scenario: The way you usually write tests with SpecFlow is that you write the scenario first, let it fail, then write the translation of your Given, When and Then into code if they don’t already exist, which results in running but failing tests, and then you write the code to make your tests pass (you implement the scenario). In the case of FluentPath, I built a simple Given method that builds a simple file hierarchy in a temporary directory that all scenarios are going to work with: [Given("a clean test directory")] public void GivenACleanDirectory() { _path = new Path(SystemIO.Path.GetTempPath()) .CreateSubDirectory("FluentPathSpecs") .MakeCurrent(); _path.GetFileSystemEntries() .Delete(true); _path.CreateFile("foo.txt", "This is a text file named foo."); var bar = _path.CreateSubDirectory("bar"); bar.CreateFile("baz.txt", "bar baz") .SetLastWriteTime(DateTime.Now.AddSeconds(-2)); bar.CreateFile("notes.txt", "This is a text file containing notes."); var barbar = bar.CreateSubDirectory("bar"); barbar.CreateFile("deep.txt", "Deep thoughts"); var sub = _path.CreateSubDirectory("sub"); sub.CreateSubDirectory("subsub"); sub.CreateFile("baz.txt", "sub baz") .SetLastWriteTime(DateTime.Now); sub.CreateFile("binary.bin", new byte[] {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0xFF}); } Then, to implement the scenario that you can read above, I had to write the following When: [When("I change the extension of (.*) to (.*)")] public void WhenIChangeTheExtension( string path, string newExtension) { var oldPath = Path.Current.Combine(path.Split('\\')); oldPath.Move(p => p.ChangeExtension(newExtension)); } As you can see, the When attribute is specifying the regular expression that will enable the SpecFlow engine to recognize what When method to call and also how to map its parameters. For our scenario, “bar\notes.txt” will get mapped to the path parameter, and “foo” to the newExtension parameter. And of course, the code that verifies the assumptions of the scenario: [Then("(.*) should exist")] public void ThenEntryShouldExist(string path) { Assert.IsTrue(_path.Combine(path.Split('\\')).Exists); } [Then("(.*) should not exist")] public void ThenEntryShouldNotExist(string path) { Assert.IsFalse(_path.Combine(path.Split('\\')).Exists); } These steps should be written with reusability in mind. They are building blocks for your scenarios, not implementation of a specific scenario. Think small and fine-grained. In the case of the above steps, I could reuse each of those steps in other scenarios. Those tests are easy to write and easier to read, which means that they also constitute a form of documentation. Oh, and SpecFlow is just one way to do this. Rob wrote a long time ago about this sort of thing (but using a different framework) and I highly recommend this post if I somehow managed to pique your interest: http://blog.wekeroad.com/blog/make-bdd-your-bff-2/ And this screencast (Rob always makes excellent screencasts): http://blog.wekeroad.com/mvc-storefront/kona-3/ (click the “Download it here” link)

    Read the article

  • tile_static, tile_barrier, and tiled matrix multiplication with C++ AMP

    - by Daniel Moth
    We ended the previous post with a mechanical transformation of the C++ AMP matrix multiplication example to the tiled model and in the process introduced tiled_index and tiled_grid. This is part 2. tile_static memory You all know that in regular CPU code, static variables have the same value regardless of which thread accesses the static variable. This is in contrast with non-static local variables, where each thread has its own copy. Back to C++ AMP, the same rules apply and each thread has its own value for local variables in your lambda, whereas all threads see the same global memory, which is the data they have access to via the array and array_view. In addition, on an accelerator like the GPU, there is a programmable cache, a third kind of memory type if you'd like to think of it that way (some call it shared memory, others call it scratchpad memory). Variables stored in that memory share the same value for every thread in the same tile. So, when you use the tiled model, you can have variables where each thread in the same tile sees the same value for that variable, that threads from other tiles do not. The new storage class for local variables introduced for this purpose is called tile_static. You can only use tile_static in restrict(direct3d) functions, and only when explicitly using the tiled model. What this looks like in code should be no surprise, but here is a snippet to confirm your mental image, using a good old regular C array // each tile of threads has its own copy of locA, // shared among the threads of the tile tile_static float locA[16][16]; Note that tile_static variables are scoped and have the lifetime of the tile, and they cannot have constructors or destructors. tile_barrier In amp.h one of the types introduced is tile_barrier. You cannot construct this object yourself (although if you had one, you could use a copy constructor to create another one). So how do you get one of these? You get it, from a tiled_index object. Beyond the 4 properties returning index objects, tiled_index has another property, barrier, that returns a tile_barrier object. The tile_barrier class exposes a single member, the method wait. 15: // Given a tiled_index object named t_idx 16: t_idx.barrier.wait(); 17: // more code …in the code above, all threads in the tile will reach line 16 before a single one progresses to line 17. Note that all threads must be able to reach the barrier, i.e. if you had branchy code in such a way which meant that there is a chance that not all threads could reach line 16, then the code above would be illegal. Tiled Matrix Multiplication Example – part 2 So now that we added to our understanding the concepts of tile_static and tile_barrier, let me obfuscate rewrite the matrix multiplication code so that it takes advantage of tiling. Before you start reading this, I suggest you get a cup of your favorite non-alcoholic beverage to enjoy while you try to fully understand the code. 01: void MatrixMultiplyTiled(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W) 02: { 03: static const int TS = 16; 04: array_view<const float,2> a(M, W, vA); 05: array_view<const float,2> b(W, N, vB); 06: array_view<writeonly<float>,2> c(M,N,vC); 07: parallel_for_each(c.grid.tile< TS, TS >(), 08: [=] (tiled_index< TS, TS> t_idx) restrict(direct3d) 09: { 10: int row = t_idx.local[0]; int col = t_idx.local[1]; 11: float sum = 0.0f; 12: for (int i = 0; i < W; i += TS) { 13: tile_static float locA[TS][TS], locB[TS][TS]; 14: locA[row][col] = a(t_idx.global[0], col + i); 15: locB[row][col] = b(row + i, t_idx.global[1]); 16: t_idx.barrier.wait(); 17: for (int k = 0; k < TS; k++) 18: sum += locA[row][k] * locB[k][col]; 19: t_idx.barrier.wait(); 20: } 21: c[t_idx.global] = sum; 22: }); 23: } Notice that all the code up to line 9 is the same as per the changes we made in part 1 of tiling introduction. If you squint, the body of the lambda itself preserves the original algorithm on lines 10, 11, and 17, 18, and 21. The difference being that those lines use new indexing and the tile_static arrays; the tile_static arrays are declared and initialized on the brand new lines 13-15. On those lines we copy from the global memory represented by the array_view objects (a and b), to the tile_static vanilla arrays (locA and locB) – we are copying enough to fit a tile. Because in the code that follows on line 18 we expect the data for this tile to be in the tile_static storage, we need to synchronize the threads within each tile with a barrier, which we do on line 16 (to avoid accessing uninitialized memory on line 18). We also need to synchronize the threads within a tile on line 19, again to avoid the race between lines 14, 15 (retrieving the next set of data for each tile and overwriting the previous set) and line 18 (not being done processing the previous set of data). Luckily, as part of the awesome C++ AMP debugger in Visual Studio there is an option that helps you find such races, but that is a story for another blog post another time. May I suggest reading the next section, and then coming back to re-read and walk through this code with pen and paper to really grok what is going on, if you haven't already? Cool. Why would I introduce this tiling complexity into my code? Funny you should ask that, I was just about to tell you. There is only one reason we tiled our extent, had to deal with finding a good tile size, ensure the number of threads we schedule are correctly divisible with the tile size, had to use a tiled_index instead of a normal index, and had to understand tile_barrier and to figure out where we need to use it, and double the size of our lambda in terms of lines of code: the reason is to be able to use tile_static memory. Why do we want to use tile_static memory? Because accessing tile_static memory is around 10 times faster than accessing the global memory on an accelerator like the GPU, e.g. in the code above, if you can get 150GB/second accessing data from the array_view a, you can get 1500GB/second accessing the tile_static array locA. And since by definition you are dealing with really large data sets, the savings really pay off. We have seen tiled implementations being twice as fast as their non-tiled counterparts. Now, some algorithms will not have performance benefits from tiling (and in fact may deteriorate), e.g. algorithms that require you to go only once to global memory will not benefit from tiling, since with tiling you already have to fetch the data once from global memory! Other algorithms may benefit, but you may decide that you are happy with your code being 150 times faster than the serial-version you had, and you do not need to invest to make it 250 times faster. Also algorithms with more than 3 dimensions, which C++ AMP supports in the non-tiled model, cannot be tiled. Also note that in future releases, we may invest in making the non-tiled model, which already uses tiling under the covers, go the extra step and use tile_static memory on your behalf, but it is obviously way to early to commit to anything like that, and we certainly don't do any of that today. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Exception Handling Differences Between 32/64 Bit

    - by Alois Kraus
    I do quite a bit of debugging .NET applications but from time to time I see things that are impossible (at a first look). I may ask you dear reader what your mental exception handling model is. Exception handling is easy after all right? Lets suppose the following code:         private void F1(object sender, EventArgs e)         {             try             {                 F2();             }             catch (Exception ex)             {                 throw new Exception("even worse Exception");             }           }           private void F2()         {             try             {                 F3();             }             finally             {                 throw new Exception("other exception");             }         }           private void F3()         {             throw new NotImplementedException();         }   What will the call stack look like when you break into the catch(Exception) clause in Windbg (32 and 64 bit on .NET 3.5 SP1)? The mental model I have is that when an exception is thrown the stack frames are unwound until the catch handler can execute. An exception does propagate the call chain upwards.   So when F3 does throw an exception the control flow will resume at the finally handler in F2 which does throw another exception hiding the original one (that is nasty) and then the new Exception will be catched in F1 where the catch handler is executed. So we should see in the catch handler in F1 as call stack only the F1 stack frame right? Well lets try it out in Windbg. For this I created a simple Windows Forms application with one button which does execute the F1 method in its click handler. When you compile the application for 64 bit and the catch handler is reached you will find with the following commands in Windbg   Load sos extension from the same path where mscorwks was loaded in the current process .loadby sos mscorwks   Beak on clr exceptions sxe clr   Continue execution g   Dump mixed call stack container C++  and .NET Stacks interleaved 0:000> !DumpStack OS Thread Id: 0x1d8 (0) Child-SP         RetAddr          Call Site 00000000002c88c0 000007fefa68f0bd KERNELBASE!RaiseException+0x39 00000000002c8990 000007fefac42ed0 mscorwks!RaiseTheExceptionInternalOnly+0x295 00000000002c8a60 000007ff005dd7f4 mscorwks!JIT_Throw+0x130 00000000002c8c10 000007fefa6942e1 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F1(System.Object, System.EventArgs)+0xb4 00000000002c8c60 000007fefa661012 mscorwks!ExceptionTracker::CallHandler+0x145 00000000002c8d60 000007fefa711a72 mscorwks!ExceptionTracker::CallCatchHandler+0x9e 00000000002c8df0 0000000077b055cd mscorwks!ProcessCLRException+0x25e 00000000002c8e90 0000000077ae55f8 ntdll!RtlpExecuteHandlerForUnwind+0xd 00000000002c8ec0 000007fefa637c1a ntdll!RtlUnwindEx+0x539 00000000002c9560 000007fefa711a21 mscorwks!ClrUnwindEx+0x36 00000000002c9a70 0000000077b0554d mscorwks!ProcessCLRException+0x20d 00000000002c9b10 0000000077ae5d1c ntdll!RtlpExecuteHandlerForException+0xd 00000000002c9b40 0000000077b1fe48 ntdll!RtlDispatchException+0x3cb 00000000002ca220 000007fefdaeaa7d ntdll!KiUserExceptionDispatcher+0x2e 00000000002ca7e0 000007fefa68f0bd KERNELBASE!RaiseException+0x39 00000000002ca8b0 000007fefac42ed0 mscorwks!RaiseTheExceptionInternalOnly+0x295 00000000002ca980 000007ff005dd8df mscorwks!JIT_Throw+0x130 00000000002cab30 000007fefa6942e1 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F2()+0x9f 00000000002cab80 000007fefa71b5b3 mscorwks!ExceptionTracker::CallHandler+0x145 00000000002cac80 000007fefa70dcd0 mscorwks!ExceptionTracker::ProcessManagedCallFrame+0x683 00000000002caed0 000007fefa7119af mscorwks!ExceptionTracker::ProcessOSExceptionNotification+0x430 00000000002cbd90 0000000077b055cd mscorwks!ProcessCLRException+0x19b 00000000002cbe30 0000000077ae55f8 ntdll!RtlpExecuteHandlerForUnwind+0xd 00000000002cbe60 000007fefa637c1a ntdll!RtlUnwindEx+0x539 00000000002cc500 000007fefa711a21 mscorwks!ClrUnwindEx+0x36 00000000002cca10 0000000077b0554d mscorwks!ProcessCLRException+0x20d 00000000002ccab0 0000000077ae5d1c ntdll!RtlpExecuteHandlerForException+0xd 00000000002ccae0 0000000077b1fe48 ntdll!RtlDispatchException+0x3cb 00000000002cd1c0 000007fefdaeaa7d ntdll!KiUserExceptionDispatcher+0x2e 00000000002cd780 000007fefa68f0bd KERNELBASE!RaiseException+0x39 00000000002cd850 000007fefac42ed0 mscorwks!RaiseTheExceptionInternalOnly+0x295 00000000002cd920 000007ff005dd968 mscorwks!JIT_Throw+0x130 00000000002cdad0 000007ff005dd875 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F3()+0x48 00000000002cdb10 000007ff005dd786 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F2()+0x35 00000000002cdb60 000007ff005dbe6a WindowsFormsApplication1!WindowsFormsApplication1.Form1.F1(System.Object, System.EventArgs)+0x46 00000000002cdbc0 000007ff005dd452 System_Windows_Forms!System.Windows.Forms.Control.OnClick(System.EventArgs)+0x5a   Hm okaaay. I see my method F1 two times in this call stack. Looks like we did get some recursion bug. But that can´t be given the obvious code above. Let´s try the same thing in a 32 bit process.  0:000> !DumpStack OS Thread Id: 0x33e4 (0) Current frame: KERNELBASE!RaiseException+0x58 ChildEBP RetAddr  Caller,Callee 0028ed38 767db727 KERNELBASE!RaiseException+0x58, calling ntdll!RtlRaiseException 0028ed4c 68b9008c mscorwks!Binder::RawGetClass+0x20, calling mscorwks!Module::LookupTypeDef 0028ed5c 68b904ff mscorwks!Binder::IsClass+0x23, calling mscorwks!Binder::RawGetClass 0028ed68 68bfb96f mscorwks!Binder::IsException+0x14, calling mscorwks!Binder::IsClass 0028ed78 68bfb996 mscorwks!IsExceptionOfType+0x23, calling mscorwks!Binder::IsException 0028ed80 68bfbb1c mscorwks!RaiseTheExceptionInternalOnly+0x2a8, calling KERNEL32!RaiseExceptionStub 0028eda8 68ba0713 mscorwks!Module::ResolveStringRef+0xe0, calling mscorwks!BaseDomain::GetStringObjRefPtrFromUnicodeString 0028edc8 68b91e8d mscorwks!SetObjectReferenceUnchecked+0x19 0028ede0 68c8e910 mscorwks!JIT_Throw+0xfc, calling mscorwks!RaiseTheExceptionInternalOnly 0028ee44 68c8e734 mscorwks!JIT_StrCns+0x22, calling mscorwks!LazyMachStateCaptureState 0028ee54 68c8e865 mscorwks!JIT_Throw+0x1e, calling mscorwks!LazyMachStateCaptureState 0028eea4 02ffaecd (MethodDesc 0x7af08c +0x7d WindowsFormsApplication1.Form1.F1(System.Object, System.EventArgs)), calling mscorwks!JIT_Throw 0028eeec 02ffaf19 (MethodDesc 0x7af098 +0x29 WindowsFormsApplication1.Form1.F2()), calling 06370634 0028ef58 02ffae37 (MethodDesc 0x7a7bb0 +0x4f System.Windows.Forms.Control.OnClick(System.EventArgs))   That does look more familar. The call stack has been unwound and we do see only some frames into the history where the debugger was smart enough to find out that we have called F2 from F1. The exception handling on 64 bit systems does work quite differently which seems to have the nice property to remember the called methods not only during the first pass of exception filter clauses (during first pass all catch handler are called if they are going to catch the exception which is about to be thrown)  but also when the actual stack unwind has taken place. This makes it possible to follow not only the call stack right at the moment but also to look into the “history” of the catch/finally clauses. In a 64 bit process you only need to look at the ExceptionTracker to find out if a catch or finally handler was called. The two frames ProcessManagedCallFrame/CallHandler does indicate a finally clause whereas CallCatchHandler/CallHandler indicates a catch clause. That was a interesting one. Oh and by the way if you manage to load the Microsoft symbols you can also find out the hidden exception which. When you encounter in the call stack a line 0016eb34 75b79617 KERNELBASE!RaiseException+0x58 ====> Exception Code e0434f4d cxr@16e850 exr@16e838 Then it is a good idea to execute .exr 16e838 !analyze –v to find out more. In the managed world it is even easier since we can dump the objects allocated on the stack which have not yet been garbage collected to look at former method parameters. The command !dso which is the abbreviation for dump stack objects will give you 0:000> !dso OS Thread Id: 0x46c (0) ESP/REG  Object   Name 0016dd4c 020737f0 System.Exception 0016dd98 020737f0 System.Exception 0016dda8 01f5c6cc System.Windows.Forms.Button 0016ddac 01f5d2b8 System.EventHandler 0016ddb0 02071744 System.Windows.Forms.MouseEventArgs 0016ddc0 01f5d2b8 System.EventHandler 0016ddcc 01f5c6cc System.Windows.Forms.Button 0016dddc 020737f0 System.Exception 0016dde4 01f5d2b8 System.EventHandler 0016ddec 02071744 System.Windows.Forms.MouseEventArgs 0016de40 020737f0 System.Exception 0016de80 02071744 System.Windows.Forms.MouseEventArgs 0016de8c 01f5d2b8 System.EventHandler 0016de90 01f5c6cc System.Windows.Forms.Button 0016df10 02073784 System.SByte[] 0016df5c 02073684 System.NotImplementedException 0016e2a0 02073684 System.NotImplementedException 0016e2e8 01ed69f4 System.Resources.ResourceManager From there it is easy to do 0:000> !pe 02073684 Exception object: 02073684 Exception type: System.NotImplementedException Message: Die Methode oder der Vorgang sind nicht implementiert. InnerException: <none> StackTrace (generated):     SP       IP       Function     0016ECB0 006904AD WindowsFormsApplication2!WindowsFormsApplication2.Form1.F3()+0x35     0016ECC0 00690411 WindowsFormsApplication2!WindowsFormsApplication2.Form1.F2()+0x29     0016ECF0 0069038F WindowsFormsApplication2!WindowsFormsApplication2.Form1.F1(System.Object, System.EventArgs)+0x3f StackTraceString: <none> HResult: 80004001 to see the former exception. That´s all for today.

    Read the article

  • CodePlex Daily Summary for Friday, August 22, 2014

    CodePlex Daily Summary for Friday, August 22, 2014Popular ReleasesQuickMon: Version 3.22: This release add two important changes. 1. Config variables at the monitor pack level (global to entire monitor pack for all Collectors) 2. The QuickMon (Windows) service now automatically reloads monitor packs that have been changed since it was started. This means you don't have to restart the service for changes to take effect.SSIS ReportGeneratorTask: ReportGenerator Task 1.8: New version of the SSIS Report Generator Task that supports SQL Server 2008, 2012 and 2014. In addition to minor bug fixes Multi-Value Parameters and Execution Information were integrated. The complete variable and parameter assignment is now a string and can be set dynamically.Corefig for Windows Server 2012 Core and Hyper-V Server 2012: Corefig 1.1.2 ISO: FixesUpdated Hyper-V scripts to use version 2 of the WMI tree. Updated the Hyper-V check for saved VM to look for the proper identifier. Fixed text issues with the licensing tab (thanks to briangw for rooting this problem out). EnhancementsNew (and improved) version number in Corefig.psd1.Outlook 2013 Backup Add-In: Outlook Backup Add-In 1.3: Changelog for new version: Added button in config-window to reset the last backup-time (this will trigger the backup after closing outlook) Minimum interval set to 0 (backup at each closing of outlook) Catch exception when data store entry is corrupt Added two parameters (prefix and suffix) to automatically rename the backup file Updated VSTO-Runtime to 10.0.50325 Upgraded project to Visual Studio 2013 Added optional command to run after backup (e.g. pack backup files, ...) Add...babelua: 1.6.7.0: V1.6.7.0 - 2014.8.21New feature: add a file search window ( ctrl+1 or ALT+L ), like The file search in VC Assistant; Stability improvement: performance improvement when BabeLua load/unload; performance improvement when debugger load lua files;File Explorer for WPF: FileExplorer3_20August2014: Please see Aug14 Update.Open NFe: RDI Open NFe 3.0 (alpha): Atualização para o layout 3.10 da NFe.ODBC Connect: v1.0: ODBC Connect executables for both 32bit and 64bit ODBC data sourcesMSSQL Deployment Tool: Microsoft SQL Deploy Tool v1.3.1: MicrosoftSqlDeployTool: v1.3.1.38348 What's changed? Update namespace and assembly name. Bug fixing.SharePoint 2013 Search Query Tool: SharePoint 2013 Search Query Tool v2.1: Layout improvements Bug fixes Stores auth method and user name Moved experimental settings to Advanced boxCtrlAltStudio Viewer: CtrlAltStudio Viewer 1.2.2.41183 Alpha: This alpha of the CtrlAltStudio Viewer provides some preliminary Oculus Rift DK2 support. For more details, see the release notes linked to below. Release notes: http://ctrlaltstudio.com/viewer/release-notes/1-2-2-41183-alpha Support info: http://ctrlaltstudio.com/viewer/support Privacy policy: http://ctrlaltstudio.com/viewer/privacy Disclaimer: This software is not provided or supported by Linden Lab, the makers of Second Life.HDD Guardian: HDD Guardian 0.6.1: New: package now include smartctl 6.3; Removed: standard notification e-mail. Now you have to set your mail server to send e-mail alerts; Bugfix: USB detection error; custom e-mail server settings issue; bottom panel displays a wrong ATA error count.VG-Ripper & PG-Ripper: VG-Ripper 2.9.62: changes NEW: Added Support for 'MadImage.org' links NEW: Added Support for 'ImgSpot.org' links NEW: Added Support for 'ImgClick.net' links NEW: Added Support for 'Imaaage.com' links NEW: Added Support for 'Image-Bugs.com' links NEW: Added Support for 'Pictomania.org' links NEW: Added Support for 'ImgDap.com' links NEW: Added Support for 'FileSpit.com' links FIXED: 'ImgSee.me' linksMagick.NET: Magick.NET 7.0.0.0001: Magick.NET linked with ImageMagick 7-Beta.CMake Tools for Visual Studio: CMake Tools for Visual Studio 1.2: This release adds the following new features and bug fixes from CMake Tools for Visual Studio 1.1: Added support for CMake 3.0. Added support for word completion. Added IntelliSense support for the CMAKEHOSTSYSTEM_INFORMATION command. Fixed syntax highlighting for tokens beginning with escape sequences. Fixed issue uninstalling CMake Tools for Visual Studio after Visual Studio has been uninstalled.GW2 Personal Assistant Overlay: GW2 Personal Assistant Overlay 1.1: Overview1.1 is the second 'stable' release of the GW2 Personal Assistant Overlay. This version includes just a couple of very minor features and some minor bug fixes. For details regarding installation, setup, and general use, see Documentation. Note: If you were using a previous version, you will probably want to copy over the following user settings files: GW2PAO.DungeonSettings.xml GW2PAO.EventSettings.xml GW2PAO.WvWSettings.xml GW2PAO.ZoneCompletionSettings.xml New FeaturesAdded new "No...Fluentx: Fluentx v1.5.3: Added few more extension methods.fastJSON: v2.1.2: 2.1.2 - bug fix circular referencesJPush.NET: JPush Server SDK 1.2.1 (For JPush V3): Assembly: 1.2.1.24728 JPush REST API Version: v3 JPush Documentation Reference .NET framework: v4.0 or above. Sample: class: JPushClientV3 2014 Augest 15th.SEToolbox: SEToolbox 01.043.008 Release 1: Changed ship/station names to use new DisplayName instead of Beacon/Antenna. Fixed issue with updated SE binaries 01.043.018 using new Voxel Material definitions.New Projects1thManage: GDT for erevery oneCreateProjectOnCodePlex: This is the first project for CoderCamps.HEAD FIRST C# LAB 1 : A DAY AT THE RACES: This has been provided for educational purposes and general discussion to improve coding practices associated with the resources detailed within Head First C#.Introduce Audit logging to your EF application using Repository & Unit of Work: Introduce Auditing in your application that uses Entity Framework by utilizing the Repository and Unit of Work design patterns.License Registration (C++): Allow to create demo version, activate or not a module.MS Word SharepointWiki Plugin: Scope of the Plugin is to enable a Post to a Sharepoint Wiki from within MS Word with Formatted Text and Images.Send My Zip: This app will help you to send the files were zipped then send the email about password information. This project is currently in setup mode and only availablewinhttp: this is a project for http/https download.Wix Builder: WixBuilder focusses on easily generating a WiX script from a project ouput, compile and link it into msi installer using the WiX Toolset.XiamiSig: ????????。

    Read the article

  • Elegance, thy Name is jQuery

    - by SGWellens
    So, I'm browsing though some questions over on the Stack Overflow website and I found a good jQuery question just a few minutes old. Here is a link to it. It was a tough question; I knew that by answering it, I could learn new stuff and reinforce what I already knew: Reading is good, doing is better. Maybe I could help someone in the process too. I cut and pasted the HTML from the question into my Visual Studio IDE and went back to Stack Overflow to reread the question. Dang, someone had already answered it! And it was a great answer. I never even had a chance to start analyzing the issue. Now I know what a one-legged man feels like in an ass-kicking contest. Nevertheless, since the question and answer were so interesting, I decided to dissect them and learn as much as possible. The HTML consisted of some divs separated by h3 headings.  Note the elements are laid out sequentially with no programmatic grouping: <h3 class="heading">Heading 1</h3> <div>Content</div> <div>More content</div> <div>Even more content</div><h3 class="heading">Heading 2</h3> <div>some content</div> <div>some more content</div><h3 class="heading">Heading 3</h3> <div>other content</div></form></body>  The requirement was to wrap a div around each h3 heading and the subsequent divs grouping them into sections. Why? I don't know, I suppose if you screen-scrapped some HTML from another site, you might want to reformat it before displaying it on your own. Anyways… Here is the marvelously, succinct posted answer: $('.heading').each(function(){ $(this).nextUntil('.heading').andSelf().wrapAll('<div class="section">');}); I was familiar with all the parts except for nextUntil and andSelf. But, I'll analyze the whole answer for completeness. I'll do this by rewriting the posted answer in a different style and adding a boat-load of comments: function Test(){ // $Sections is a jQuery object and it will contain three elements var $Sections = $('.heading'); // use each to iterate over each of the three elements $Sections.each(function () { // $this is a jquery object containing the current element // being iterated var $this = $(this); // nextUntil gets the following sibling elements until it reaches // an element with the CSS class 'heading' // andSelf adds in the source element (this) to the collection $this = $this.nextUntil('.heading').andSelf(); // wrap the elements with a div $this.wrapAll('<div class="section" >'); });}  The code here doesn't look nearly as concise and elegant as the original answer. However, unless you and your staff are jQuery masters, during development it really helps to work through algorithms step by step. You can step through this code in the debugger and examine the jQuery objects to make sure one step is working before proceeding on to the next. It's much easier to debug and troubleshoot when each logical coding step is a separate line of code. Note: You may think the original code runs much faster than this version. However, the time difference is trivial: Not enough to worry about: Less than 1 millisecond (tested in IE and FF). Note: You may want to jam everything into one line because it results in less traffic being sent to the client. That is true. However, most Internet servers now compress HTML and JavaScript by stripping out comments and white space (go to Bing or Google and view the source). This feature should be enabled on your server: Let the server compress your code, you don't need to do it. Free Career Advice: Creating maintainable code is Job One—Maximum Priority—The Prime Directive. If you find yourself suddenly transferred to customer support, it may be that the code you are writing is not as readable as it could be and not as readable as it should be. Moving on… I created a CSS class to enhance the results: .section{ background-color: yellow; border: 2px solid black; margin: 5px;} Here is the rendered output before:   …and after the jQuery code runs.   Pretty Cool! But, while playing with this code, the logic of nextUntil began to bother me: What happens in the last section? What stops elements from being collected since there are no more elements with the .heading class? The answer is nothing.  In this case it stopped collecting elements because it was at the end of the page.  But what if there were additional HTML elements? I added an anchor tag and another div to the HTML: <h3 class="heading">Heading 1</h3> <div>Content</div> <div>More content</div> <div>Even more content</div><h3 class="heading">Heading 2</h3> <div>some content</div> <div>some more content</div><h3 class="heading">Heading 3</h3> <div>other content</div><a>this is a link</a><div>unrelated div</div> </form></body> The code as-is will include both the anchor and the unrelated div. This isn't what we want.   My first attempt to correct this used the filter parameter of the nextUntil function: nextUntil('.heading', 'div')  This will only collect div elements. But it merely skipped the anchor tag and it still collected the unrelated div:   The problem is we need a way to tell the nextUntil function when to stop. CSS selectors to the rescue! nextUntil('.heading, a')  This tells nextUntil to stop collecting elements when it gets to an element with a .heading class OR when it gets to an anchor tag. In this case it solved the problem. FYI: The comma operator in a CSS selector allows multiple criteria.   Bingo! One final note, we could have broken the code down even more: We could have replaced the andSelf function here: $this = $this.nextUntil('.heading, a').andSelf(); With this: // get all the following siblings and then add the current item$this = $this.nextUntil('.heading, a');$this.add(this);  But in this case, the andSelf function reads real nice. In my opinion. Here's a link to a jsFiddle if you want to play with it. I hope someone finds this useful Steve Wellens CodeProject

    Read the article

  • CodePlex Daily Summary for Sunday, September 02, 2012

    CodePlex Daily Summary for Sunday, September 02, 2012Popular ReleasesThisismyusername's codeplex page.: HTML5 Multitouch Example - Fruit Ninja in HTML5: This is an example of how you could create a game such as Fruit Ninja using HTML5's multitouch capabilities. This example isn't responsive enough, so I will be working on that, and it doesn't have great graphics, either. If I had my own webpage, I could store some graphics and upload the game there and it might look halfway decent, but here the fruits are just circles. I hope you enjoy reading the source code anyway.GmailDefaultMaker: GmailDefaultMaker 3.0.0.2: Add QQ Mail BugfixRuminate XNA 4.0 GUI: Release 1.1.1: Fixed bugs with Slider and TextBox. Added ComboBox.Confuser: Confuser build 76542: This is a build of changeset 76542.SharePoint Column & View Permission: SharePoint Column and View Permission v1.2: Version 1.2 of this project. If you will find any bugs please let me know at enti@zoznam.sk or post your findings in Issue TrackerMihmojsos OS: Mihmojsos OS 3 (Smart Rabbit): !Mihmojsos OS 3 Smart Rabbit Mihmojsos Smart Rabbit is now availableDotNetNuke Translator: 01.00.00 Beta: First release of the project.YNA: YNA 0.2 alpha: Wath's new since 0.1 alpha ? A lot of changes but there are the most interresting : StateManager is now better and faster Mouse events for all YnObjects (Sprites, Images, texts) A really big improvement for YnGroup Gamepad support And the news : Tiled Map support (need refactoring) Isometric tiled map support (need refactoring) Transition effect like "FadeIn" and "FadeOut" (YnTransition) Timers (YnTimer) Path management (YnPath, need more refactoring) Downloads All downloads...Audio Pitch & Shift: Audio Pitch And Shift 5.1.0.2: fixed several issues with streaming modeUrlPager: UrlPager 1.2: Fixed bug in which url parameters will lost after paging; ????????url???bug;Sofire Suite: Sofire v1.5.0.0: Sofire v1.5.0.0 ?? ???????? ?????: 1、?? 2、????EntLib.com????????: EntLib.com???????? v3.0: EntLib eCommerce Solution ???Microsoft .Net Framework?????????????????????。Coevery - Free CRM: Coevery 1.0.0.24: Add a sample database, and installation instructions.Math.NET Numerics: Math.NET Numerics v2.2.1: Major linear algebra rework since v2.1, now available on Codeplex as well (previous versions were only available via NuGet). Since v2.2.0: Student-T density more robust for very large degrees of freedom Sparse Kronecker product much more efficient (now leverages sparsity) Direct access to raw matrix storage implementations for advanced extensibility Now also separate package for signed core library with a strong name (we dropped strong names in v2.2.0) Also available as NuGet packages...Microsoft SQL Server Product Samples: Database: AdventureWorks Databases – 2012, 2008R2 and 2008: About this release This release consolidates AdventureWorks databases for SQL Server 2012, 2008R2 and 2008 versions to one page. Each zip file contains an mdf database file and ldf log file. This should make it easier to find and download AdventureWorks databases since all OLTP versions are on one page. There are no database schema changes. For each release of the product, there is a light-weight and full version of the AdventureWorks sample database. The light-weight version is denoted by ...Christoc's DotNetNuke Module Development Template: DotNetNuke Project Templates V1.1 for VS2012: This release is specifically for Visual Studio 2012 Support, distributed through the Visual Studio Extensions gallery at http://visualstudiogallery.msdn.microsoft.com/ After you build in Release mode the installable packages (source/install) can be found in the INSTALL folder now, within your module's folder, not the packages folder anymore Check out the blog post for all of the details about this release. http://www.dotnetnuke.com/Resources/Blogs/EntryId/3471/New-Visual-Studio-2012-Projec...Home Access Plus+: v8.0: v8.0.0901.1830 RELEASE CHANGED TO BETA Any issues, please log them on http://www.edugeek.net/forums/home-access-plus/ This is full release, NO upgrade ZIP will be provided as most files require replacing. To upgrade from a previous version, delete everything but your AppData folder, extract all but the AppData folder and run your HAP+ install Documentation is supplied in the Web Zip The Quota Services require executing a script to register the service, this can be found in there install ...Phalanger - The PHP Language Compiler for the .NET Framework: 3.0.0.3406 (September 2012): New features: Extended ReflectionClass libxml error handling, constants DateTime::modify(), DateTime::getOffset() TreatWarningsAsErrors MSBuild option OnlyPrecompiledCode configuration option; allows to use only compiled code Fixes: ArgsAware exception fix accessing .NET properties bug fix ASP.NET session handler fix for OutOfProc mode DateTime methods (WordPress posting fix) Phalanger Tools for Visual Studio: Visual Studio 2010 & 2012 New debugger engine, PHP-like debugging ...MabiCommerce: MabiCommerce 1.0.1: What's NewSetup now creates shortcuts Fix spelling errors Minor enhancement to the Map window.ScintillaNET: ScintillaNET 2.5.2: This release has been built from the 2.5 branch. Version 2.5.2 is functionally identical to the 2.5.1 release but also includes the XML documentation comments file generated by Visual Studio. It is not 100% comprehensive but it will give you Visual Studio IntelliSense for a large part of the API. Just make sure the ScintillaNET.xml file is in the same folder as the ScintillaNET.dll reference you're using in your projects. (The XML file does not need to be distributed with your application)....New ProjectsATSV: this is a student project for making a new silverlight UI Bookmark Collector: This project is a best practice example of how to use content items in DotNetNuke. It allows you to quickly and easily manage a listing of external links.BPVotingmachine: BP Vote SystemClean My Space: Sort your files in a fun and fast! With Clean My Space you can!CutePlatform: CutePlatform is a platform game based around the PlanetCute graphics pack from Daniel cook, make him a visit in www.lostgardem.comDancTeX: This project is targeting the integration of LaTeX into VisusalStudio. Epi Info™ Companion for Android: A mobile companion to the Epi Info™ 7 desktop tool for epidemiologic data collection and analysis.Flucene: Object Document Mapper for Lucene.Netfluentserializer: FluentSerializer is a library for .NET usable to create serialize/deserialize data through its fluent interface. The methods it creates are compiled.hongjiapp: hongjiappidealthings educational comprehensive administration system: ?????????????????????????????????????????????.Java Accounting Library: The project aims at providing a Financial Accounting Java Library which may be integrated to any other Java Application independent of its Backend Database.mycnblogs: mycnblogsNETPack: Lightweight and flexible packer for .NETRandom Useful Code: This project is where I will store various useful classes I have built over time. Only the code will be provided, no Library or the like.Suleymaniye Tavimi: Namaz vakitleri hesaplama uygulamasidir. Istenilen yer için hesaplama yapar.

    Read the article

  • Elegance, thy Name is jQuery

    - by SGWellens
    So, I'm browsing though some questions over on the Stack Overflow website and I found a good jQuery question just a few minutes old. Here is a link to it. It was a tough question; I knew that by answering it, I could learn new stuff and reinforce what I already knew: Reading is good, doing is better. Maybe I could help someone in the process too. I cut and pasted the HTML from the question into my Visual Studio IDE and went back to Stack Overflow to reread the question. Dang, someone had already answered it! And it was a great answer. I never even had a chance to start analyzing the issue. Now I know what a one-legged man feels like in an ass-kicking contest. Nevertheless, since the question and answer were so interesting, I decided to dissect them and learn as much as possible. The HTML consisted of some divs separated by h3 headings.  Note the elements are laid out sequentially with no programmatic grouping: <h3 class="heading">Heading 1</h3> <div>Content</div> <div>More content</div> <div>Even more content</div><h3 class="heading">Heading 2</h3> <div>some content</div> <div>some more content</div><h3 class="heading">Heading 3</h3> <div>other content</div></form></body>  The requirement was to wrap a div around each h3 heading and the subsequent divs grouping them into sections. Why? I don't know, I suppose if you screen-scrapped some HTML from another site, you might want to reformat it before displaying it on your own. Anyways… Here is the marvelously, succinct posted answer: $('.heading').each(function(){ $(this).nextUntil('.heading').andSelf().wrapAll('<div class="section">');}); I was familiar with all the parts except for nextUntil and andSelf. But, I'll analyze the whole answer for completeness. I'll do this by rewriting the posted answer in a different style and adding a boat-load of comments: function Test(){ // $Sections is a jQuery object and it will contain three elements var $Sections = $('.heading'); // use each to iterate over each of the three elements $Sections.each(function () { // $this is a jquery object containing the current element // being iterated var $this = $(this); // nextUntil gets the following sibling elements until it reaches // an element with the CSS class 'heading' // andSelf adds in the source element (this) to the collection $this = $this.nextUntil('.heading').andSelf(); // wrap the elements with a div $this.wrapAll('<div class="section" >'); });}  The code here doesn't look nearly as concise and elegant as the original answer. However, unless you and your staff are jQuery masters, during development it really helps to work through algorithms step by step. You can step through this code in the debugger and examine the jQuery objects to make sure one step is working before proceeding on to the next. It's much easier to debug and troubleshoot when each logical coding step is a separate line. Note: You may think the original code runs much faster than this version. However, the time difference is trivial: Not enough to worry about: Less than 1 millisecond (tested in IE and FF). Note: You may want to jam everything into one line because it results in less traffic being sent to the client. That is true. However, most Internet servers now compress HTML and JavaScript by stripping out comments and white space (go to Bing or Google and view the source). This feature should be enabled on your server: Let the server compress your code, you don't need to do it. Free Career Advice: Creating maintainable code is Job One—Maximum Priority—The Prime Directive. If you find yourself suddenly transferred to customer support, it may be that the code you are writing is not as readable as it could be and not as readable as it should be. Moving on… I created a CSS class to see the results: .section{ background-color: yellow; border: 2px solid black; margin: 5px;} Here is the rendered output before:   …and after the jQuery code runs.   Pretty Cool! But, while playing with this code, the logic of nextUntil began to bother me: What happens in the last section? What stops elements from being collected since there are no more elements with the .heading class? The answer is nothing.  In this case it stopped because it was at the end of the page.  But what if there were additional HTML elements? I added an anchor tag and another div to the HTML: <h3 class="heading">Heading 1</h3> <div>Content</div> <div>More content</div> <div>Even more content</div><h3 class="heading">Heading 2</h3> <div>some content</div> <div>some more content</div><h3 class="heading">Heading 3</h3> <div>other content</div><a>this is a link</a><div>unrelated div</div> </form></body> The code as-is will include both the anchor and the unrelated div. This isn't what we want.   My first attempt to correct this used the filter parameter of the nextUntil function: nextUntil('.heading', 'div')  This will only collect div elements. But it merely skipped the anchor tag and it still collected the unrelated div:   The problem is we need a way to tell the nextUntil function when to stop. CSS selectors to the rescue: nextUntil('.heading, a')  This tells nextUntil to stop collecting sibling elements when it gets to an element with a .heading class OR when it gets to an anchor tag. In this case it solved the problem. FYI: The comma operator in a CSS selector allows multiple criteria.   Bingo! One final note, we could have broken the code down even more: We could have replaced the andSelf function here: $this = $this.nextUntil('.heading, a').andSelf(); With this: // get all the following siblings and then add the current item$this = $this.nextUntil('.heading, a');$this.add(this);  But in this case, the andSelf function reads real nice. In my opinion. Here's a link to a jsFiddle if you want to play with it. I hope someone finds this useful Steve Wellens CodeProject

    Read the article

  • Profiling Startup Of VS2012 &ndash; SpeedTrace Profiler

    - by Alois Kraus
    SpeedTrace is a relatively unknown profiler made a company called Ipcas. A single professional license does cost 449€+VAT. For the test I did use SpeedTrace 4.5 which is currently Beta. Although it is cheaper than dotTrace it has by far the most options to influence how profiling does work. First you need to create a tracing project which does configure tracing for one process type. You can start the application directly from the profiler or (much more interesting) it does attach to a specific process when it is started. For this you need to check “Trace the specified …” radio button and enter the process name in the “Process Name of the Trace” edit box. You can even selectively enable tracing for processes with a specific command line. Then you need to activate the trace project by pressing the Activate Project button and you are ready to start VS as usual. If you want to profile the next 10 VS instances that you start you can set the Number of Processes counter to e.g. 10. This is immensely helpful if you are trying to profile only the next 5 started processes. As you can see there are many more tabs which do allow to influence tracing in a much more sophisticated way. SpeedTrace is the only profiler which does not rely entirely on the profiling Api of .NET. Instead it does modify the IL code (instrumentation on the fly) to write tracing information to disc which can later be analyzed. This approach is not only very fast but it does give you unprecedented analysis capabilities. Once the traces are collected they do show up in your workspace where you can open the trace viewer. I do skip the other windows because this view is by far the most useful one. You can sort the methods not only by Wall Clock time but also by CPU consumption and wait time which none of the other products support in their views at the same time. If you want to optimize for CPU consumption sort by CPU time. If you want to find out where most time is spent you need Clock Total time and Clock Waiting. There you can directly see if the method did take long because it did wait on something or it did really execute stuff that did take so long. Once you have found a method you want to drill deeper you can double click on a method to get to the Caller/Callee view which is similar to the JetBrains Method Grid view. But this time you do see much more. In the middle is the clicked method. Above are the methods that call you and below are the methods that you do directly call. Normally you would then start digging deeper to find the end of the chain where the slow method worth optimizing is located. But there is a shortcut. You can press the magic   button to calculate the aggregation of all called methods. This is displayed in the lower left window where you can see each method call and how long it did take. There you can also sort to see if this call stack does only contain methods (e.g. WCF connect calls which you cannot make faster) not worth optimizing. YourKit has a similar feature where it is called Callees List. In the Functions tab you have in the context menu also many other useful analysis options One really outstanding feature is the View Call History Drilldown. When you select this one you get not a sum of all method invocations but a list with the duration of each method call. This is not surprising since SpeedTrace does use tracing to get its timings. There you can get many useful graphs how this method did behave over time. Did it become slower at some point in time or was only the first call slow? The diagrams and the list will tell you that. That is all fine but what should I do when one method call was slow? I want to see from where it was coming from. No problem select the method in the list hit F10 and you get the call stack. This is a life saver if you e.g. search for serialization problems. Today Serializers are used everywhere. You want to find out from where the 5s XmlSerializer.Deserialize call did come from? Hit F10 and you get the call stack which did invoke the 5s Deserialize call. The CPU timeline tab is also useful to find out where long pauses or excessive CPU consumption did happen. Click in the graph to get the Thread Stacks window where you can get a quick overview what all threads were doing at this time. This does look like the Stack Traces feature in YourKit. Only this time you get the last called method first which helps to quickly see what all threads were executing at this moment. YourKit does generate a rather long list which can be hard to go through when you have many threads. The thread list in the middle does not give you call stacks or anything like that but you see which methods were found most often executing code by the profiler which is a good indication for methods consuming most CPU time. This does sound too good to be true? I have not told you the best part yet. The best thing about this profiler is the staff behind it. When I do see a crash or some other odd behavior I send a mail to Ipcas and I do get usually the next day a mail that the problem has been fixed and a download link to the new version. The guys at Ipcas are even so helpful to log in to your machine via a Citrix Client to help you to get started profiling your actual application you want to profile. After a 2h telco I was converted from a hater to a believer of this tool. The fast response time might also have something to do with the fact that they are actively working on 4.5 to get out of the door. But still the support is by far the best I have encountered so far. The only downside is that you should instrument your assemblies including the .NET Framework to get most accurate numbers. You can profile without doing it but then you will see very high JIT times in your process which can severely affect the correctness of the measured timings. If you do not care about exact numbers you can also enable in the main UI in the Data Trace tab logging of method arguments of primitive types. If you need to know what files at which times were opened by your application you can find it out without a debugger. Since SpeedTrace does read huge trace files in its reader you should perhaps use a 64 bit machine to be able to analyze bigger traces as well. The memory consumption of the trace reader is too high for my taste. But they did promise for the next version to come up with something much improved.

    Read the article

  • Turning on collision crashes game

    - by MomentumGaming
    I am getting a null pointer excecption to both my sprite and level. I am working on my mob class, and when I try to move him and the move function is called, the game crashes after checking collision with a null pointer excecption. Taking out the one line that actually checks if the tile located in front of it fixes the problem. Also, if i keep collision ON but don't move the position of the mob (the spider) the game works fine. I will have collision, and the spider appears on the screen, only problem is, getting it to move causes this nasty error that i just can't fix. true Exception in thread "Display" java.lang.NullPointerException at com.apcompsci.game.entity.mob.Mob.collision(Mob.java:67) at com.apcompsci.game.entity.mob.Mob.move(Mob.java:38) at com.apcompsci.game.entity.mob.spider.update(spider.java:58) at com.apcompsci.game.level.Level.update(Level.java:55) at com.apcompsci.game.Game.update(Game.java:128) at com.apcompsci.game.Game.run(Game.java:106) at java.lang.Thread.run(Unknown Source) Here is my renderMob mehtod: public void renderMob(int xp,int yp,Sprite sprite,int flip) { xp -= xOffset; yp-=yOffset; for(int y = 0; y<32; y++) { int ya = y + yp; int ys = y; if(flip == 2||flip == 3)ys = 31-y; for(int x = 0; x<32; x++) { int xa = x + xp; int xs = x; if(flip == 1||flip == 3)xs = 31-x; if(xa < -32 || xa >=width || ya<0||ya>=height) break; if(xa<0) xa =0; int col = sprite.pixels[xs+ys*32]; if(col!= 0x000000) pixels[xa+ya*width] = col; } } } My spider class which determines the sprite and where I control movement, also rendering the spider onto the screen, when I increment ya to move the sprite, I get the crash, but without ya++, it runs flawlessly with a spider sprite on screen: package com.apcompsci.game.entity.mob; import com.apcompsci.game.entity.mob.Mob.Direction; import com.apcompsci.game.graphics.Screen; import com.apcompsci.game.graphics.Sprite; import com.apcompsci.game.level.Level; public class spider extends Mob{ Direction dir; private Sprite sprite; private boolean walking; public spider(int x, int y) { this.x = x <<4; this.y = y <<4; sprite = sprite.spider_forward; } public void update() { int xa = 0, ya = 0; ya++; if(ya<0) { sprite = sprite.spider_forward; dir = Direction.UP; } if(ya>0) { sprite = sprite.spider_back; dir = Direction.DOWN; } if(xa<0) { sprite = sprite.spider_side; dir = Direction.LEFT; } if(xa>0) { sprite = sprite.spider_side; dir = Direction.LEFT; } if(xa!= 0 || ya!= 0) { System.out.println("true"); move(xa,ya); walking = true; } else{ walking = false; } } public void render(Screen screen) { screen.renderMob(x, y, sprite, 0); } } This is th mob class that contains the move() method that is called in the spider class above. This move method calls the collision method. tile and sprite comes up null in the debugger: package com.apcompsci.game.entity.mob; import java.util.ArrayList; import java.util.List; import com.apcompsci.game.entity.Entity; import com.apcompsci.game.entity.projectile.DemiGodProjectile; import com.apcompsci.game.entity.projectile.Projectile; import com.apcompsci.game.graphics.Sprite; public class Mob extends Entity{ protected Sprite sprite; protected boolean moving = false; protected enum Direction { UP,DOWN,LEFT,RIGHT } protected Direction dir; public void move(int xa,int ya) { if(xa != 0 && ya != 0) { move(xa,0); move(0,ya); return; } if(xa>0) dir = Direction.RIGHT; if(xa<0) dir = Direction.LEFT; if(ya>0)dir = Direction.DOWN; if(ya<0)dir = Direction.UP; if(!collision(xa,ya)){ x+= xa; y+=ya; } } public void update() { } public void shoot(int x, int y, double dir) { //dir = Math.toDegrees(dir); Projectile p = new DemiGodProjectile(x, y,dir); level.addProjectile(p); } public boolean collision(int xa,int ya) { boolean solid = false; for(int c = 0; c<4; c++) { int xt = ((x+xa) + c % 2 * 14 - 8 )/16; int yt = ((y+ya) + c / 2 * 12 +3 )/16; if(level.getTile(xt, yt).solid()) solid = true; } return solid; } public void render() { } } Finally, here is the method in which i call the add() method for the spider to add it to the level: protected void loadLevel(String path) { try{ BufferedImage image = ImageIO.read(SpawnLevel.class.getResource(path)); int w = width =image.getWidth(); int h = height = image.getHeight(); tiles = new int[w*h]; image.getRGB(0, 0, w,h, tiles,0, w); } catch(IOException e){ e.printStackTrace(); System.out.println("Exception! Could not load level file!"); } add(new spider(20,45)); } I don't think i need to include the level class but just in case, I have provided a gistHub link for better context. It contains all of the full classes listed above , plus my entity class and maybe another. Thanks for the help if you decide to do so, much appreciated! Also, please tell me if i'm in the wrong section of stackeoverflow, i figured that since this is the gamign section that it belonged but debugging code normally goes into the general section.

    Read the article

  • How to Plug a Small Hole in NetBeans JSF (Join Table) Code Generation

    - by MarkH
    I was asked recently to provide an assist with designing and building a small-but-vital application that had at its heart some basic CRUD (Create, Read, Update, & Delete) functionality, built upon an Oracle database, to be accessible from various locations. Working from the stated requirements, I fleshed out the basic application and database designs and, once validated, set out to complete the first iteration for review. Using SQL Developer, I created the requisite tables, indices, and sequences for our first run. One of the tables was a many-to-many join table with three fields: one a primary key for that table, the other two being primary keys for the other tables, represented as foreign keys in the join table. Here is a simplified example of the trio of tables: Once the database was in decent shape, I fired up NetBeans to let it have first shot at the code. NetBeans does a great job of generating a mountain of essential code, saving developers what must be millions of hours of effort each year by building a basic foundation with a few clicks and keystrokes. Lest you think it (or any tool) can do everything for you, however, occasionally something tosses a paper clip into the delicate machinery and makes you open things up to fix them. Join tables apparently qualify.  :-) In the case above, the entity class generated for the join table (New Entity Classes from Database) included an embedded object consisting solely of the two foreign key fields as attributes, in addition to an object referencing each one of the "component" tables. The Create page generated (New JSF Pages from Entity Classes) worked well to a point, but when trying to save, we were greeted with an error: Transaction aborted. Hmm. A quick debugger session later and I'd identified the issue: when trying to persist the new join-table object, the embedded "foreign-keys-only" object still had null values for its two (required value) attributes...even though the embedded table objects had populated key attributes. Here's the simple fix: In the join-table controller class, find the public String create() method. It will look something like this:     public String create() {        try {            getFacade().create(current);            JsfUtil.addSuccessMessage(ResourceBundle.getBundle("/Bundle").getString("JoinEntityCreated"));            return prepareCreate();        } catch (Exception e) {            JsfUtil.addErrorMessage(e, ResourceBundle.getBundle("/Bundle").getString("PersistenceErrorOccured"));            return null;        }    } To restore balance to the force, modify the create() method as follows (changes in red):     public String create() {         try {            // Add the next two lines to resolve:            current.getJoinEntityPK().setTbl1id(current.getTbl1().getId().toBigInteger());            current.getJoinEntityPK().setTbl2id(current.getTbl2().getId().toBigInteger());            getFacade().create(current);            JsfUtil.addSuccessMessage(ResourceBundle.getBundle("/Bundle").getString("JoinEntityCreated"));            return prepareCreate();        } catch (Exception e) {            JsfUtil.addErrorMessage(e, ResourceBundle.getBundle("/Bundle").getString("PersistenceErrorOccured"));            return null;        }    } I'll be refactoring this code shortly, but for now, it works. Iteration one is complete and being reviewed, and we've met the milestone. Here's to happy endings (and customers)! All the best,Mark

    Read the article

  • Does the ulkJSON library have limitations when dealing with base64 in Delphi 7?

    - by Da Gopherboy
    I'm working on a project that is using Delphi 7 to consume RESTful services. We are creating and decoding JSON with the ulkJSON library. Up to this point I've been able to successfully build and send JSON containing a base64 string that exceed 5,160kb. I can verify that the base64 is being received by the services and verify the integrity of the base64 once its there. In addition to sending, I can also receive and successfully decode JSON with a smaller (~ 256KB or less) base64. However I am experiencing some issues on the return trip when larger (~1,024KB+) base64 is involved for some reason. Specifically when attempting to use the following JSON format and function combination: JSON: { "message" : "/9j/4AAQSkZJRgABAQEAYABgAAD...." } Function: function checkResults(JSONFormattedString: String): String; var jsonObject : TlkJSONObject; iteration : Integer; i : Integer; x : Integer; begin jsonObject := TlkJSONobject.Create; // Validate that the JSONFormatted string is not empty. // If it is empty, inform the user/programmer, and exit from this routine. if JSONFormattedString = '' then begin result := 'Error: JSON returned is Null'; jsonObject.Free; exit; end; // Now that we can validate that this string is not empty, we are going to // assume that the string is a JSONFormatted string and attempt to parse it. // // If the string is not a valid JSON object (such as an http status code) // throw an exception informing the user/programmer that an unexpected value // has been passed. And exit from this routine. try jsonObject := TlkJSON.ParseText(JSONFormattedString) as TlkJSONobject; except on e:Exception do begin result := 'Error: No JSON was received from web services'; jsonObject.Free; exit; end; end; // Now that the object has been parsed, lets check the contents. try result := jsonObject.Field['message'].value; jsonObject.Free; exit; except on e:Exception do begin result := 'Error: No Message received from Web Services '+e.message; jsonObject.Free; exit; end; end; end; As mentioned above when using the above function, I am able to get small (256KB and less) base64 strings out of the 'message' field of a JSON object. But for some reason if the received JSON is larger than say 1,024kb the following line seems to just stop in its tracks: jsonObject := TlkJSON.ParseText(JSONFormattedString) as TlkJSONobject; No errors, no results. Following the debugger, I can go into the library, and see that the JSON string being passed is not considered to be JSON despite being in the format listed above. The only difference I can find between calls that work as expected and calls that do not work as expect appears to be the size of base64 being transmitted. Am I missing something completely obvious and should be shot for my code implementation (very possible)? Have I missed some notation regarding the limitations of the ulkJSON library? Any input would be extremely helpful. Thanks in advance stack!

    Read the article

  • Ruby Debug IDE error : ruby-debug-ide-0.4.9/lib/ruby-debug-ide.rb:109:in `debug_load'

    - by Paul
    I hope someone can assist me. I have RubyMine 2.0.2 installed on Windows 7 32 bit computer. Since a week ago (I presume it must have been after I have update some gems) I cant seem to debug form the IDE. I am trying to debug a rake task which I could before. Running the rake task normally works perfect, just debug doesnt. Its not just limited to the rake, I cant debug any ruby files. I've tried installing older versions of debug-ide and debug-base but to no success. I've tried it with ruby 1.8.7 and 1.8.6 on different computers but nothing. Trying to search the web gave some information, which I've tried, but also no success. Im desperate to get this working. Below are the full error and my current settings: Error: C:\InstantRails\ruby\bin\ruby.exe -e STDOUT.sync=true;STDERR.sync=true;load($0=ARGV.shift) C:\InstantRails\ruby\bin/rdebug-ide --port 57167 -- C:/InstantRails/rails_apps/paperserve/lib/tasks/poll_snmp.rake Fast Debugger (ruby-debug-ide 0.4.9) listens on :57167 C:/InstantRails/rails_apps/paperserve/lib/tasks/poll_snmp.rake:5 C:/InstantRails/ruby/lib/ruby/gems/1.8/gems/ruby-debug-ide-0.4.9/lib/ruby-debug ide.rb:109:in `debug_load' C:/InstantRails/ruby/lib/ruby/gems/1.8/gems/ruby-debug-ide-0.4.9/lib/ruby-debug ide.rb:109:in `debug_program' C:/InstantRails/ruby/lib/ruby/gems/1.8/gems/ruby-debug-ide-0.4.9/bin/rdebug-ide:87 C:\InstantRails\ruby\bin/rdebug-ide:19:in `load' C:\InstantRails\ruby\bin/rdebug-ide:19 -e:1:in `load' -e:1 Uncaught exception: undefined method `namespace' for main:Object Process finished with exit code 1 Code snippet (It fails at the start of namespace. If I remove this, it fails on the next line, etc, etc) #This script should run every 15 minutes require 'snmp' require 'yaml' namespace :cdeweb do RubyGems Environment: RUBYGEMS VERSION: 1.3.7 RUBY VERSION: 1.8.6 (2007-09-24 patchlevel 111) [i386-mswin32] INSTALLATION DIRECTORY: C:/InstantRails/ruby/lib/ruby/gems/1.8 RUBY EXECUTABLE: C:/InstantRails/ruby/bin/ruby.exe EXECUTABLE DIRECTORY: C:/InstantRails/ruby/bin RUBYGEMS PLATFORMS: ruby x86-mswin32-60 GEM PATHS: C:/InstantRails/ruby/lib/ruby/gems/1.8 C:/Users/Paul.LPFSYSTEMS/.gem/ruby/1.8 GEM CONFIGURATION: :update_sources = true :verbose = true :benchmark = false :backtrace = false :bulk_threshold = 1000 REMOTE SOURCES: http://rubygems.org/ * LOCAL GEMS * actionmailer (2.3.5, 2.0.2) actionpack (2.3.5, 2.0.2) activerecord (2.3.5, 2.0.2) activeresource (2.3.5, 2.0.2) activesupport (2.3.5, 2.0.2) capistrano (2.5.18, 2.1.0) cgi_multipart_eof_fix (2.5.0) cmdparse (2.0.2) columnize (0.3.1) fxri (0.3.7, 0.3.6) fxruby (1.6.12 mswin32) gem_plugin (0.2.3) highline(1.5.2, 1.4.0) hpricot (0.8.2 x86-mswin32, 0.6 mswin32) inaction_mailer (0.6) json (1.4.2 x86-mswin32) json_pure (1.4.2) linecache (0.43 mswin32) log4r (1.1.7, 1.0.5) mongrel (1.1.5 x86-mswin32-60, 1.1.2 mswin32) mysql(2.8.1 x86-mswin32, 2.7.3 mswin32) needle (1.3.0) net-scp (1.0.2) net-sftp (2.0.4, 1.1.0) net-ssh (2.0.22, 1.1.2) net-ssh-gateway (1.0.1) rack (1.0.1) rails (2.3.5, 2.0.2) rake (0.8.7, 0.8.1, 0.8.0, 0.7.3) ruby-debug-base (0.10.3 mswin32) ruby-debug-ide (0.4.9) ruby-net-ldap (0.0.4) rubygems-update (1.3.7, 1.3.6, 1.0.1) snmp (1.0.2) sources (0.0.1) sqlite3-ruby (1.2.5 x86-mswin32, 1.2.1 mswin32) win32-api (1.4.6 x86-mswin32-60, 1.0.4 mswin32) win32-clipboard (0.5.2, 0.4.3) win32-dir (0.3.6, 0.3.2) win32-eventlog (0.5.2, 0.4.6) win32-file (0.6.3, 0.5.4) win32-file-stat (1.3.4, 1.2.7) win32-process (0.6.2, 0.5.3) win32-sapi (0.1.5, 0.1.4) win32-sound (0.4.2, 0.4.1) windows-api (0.4.0, 0.2.0)

    Read the article

  • Android: ActivityThread.performLaunchActivity error

    - by fordays
    Hi, I'm getting an ActivityThread.performLaunchActivity(ActivityThread$ActivityRecord,Intent) error each time I boot up my program in the debugger. The program won't even start up! Any help would be greatly appreciated! I'm very new to this environment. Let me know if you need anymore information/code to help me out. Here is my logcat: 06-09 11:16:26.848: ERROR/vold(27): Error opening switch name path '/sys/class/switch/test2' (No such file or directory) 06-09 11:16:26.848: ERROR/vold(27): Error bootstrapping switch '/sys/class/switch/test2' (No such file or directory) 06-09 11:16:26.848: ERROR/vold(27): Error opening switch name path '/sys/class/switch/test' (No such file or directory) 06-09 11:16:26.848: ERROR/vold(27): Error bootstrapping switch '/sys/class/switch/test' (No such file or directory) 06-09 11:16:37.887: ERROR/MemoryHeapBase(53): error opening /dev/pmem: No such file or directory 06-09 11:16:37.887: ERROR/SurfaceFlinger(53): Couldn't open /sys/power/wait_for_fb_sleep or /sys/power/wait_for_fb_wake 06-09 11:16:37.927: ERROR/libEGL(53): couldn't load <libhgl.so> library (Cannot load library: load_library[984]: Library 'libhgl.so' not found) 06-09 11:16:38.407: ERROR/libEGL(64): couldn't load <libhgl.so> library (Cannot load library: load_library[984]: Library 'libhgl.so' not found) 06-09 11:16:41.358: ERROR/BatteryService(53): Could not open '/sys/class/power_supply/usb/online' 06-09 11:16:41.367: ERROR/BatteryService(53): Could not open '/sys/class/power_supply/battery/batt_vol' 06-09 11:16:41.367: ERROR/BatteryService(53): Could not open '/sys/class/power_supply/battery/batt_temp' 06-09 11:16:41.667: ERROR/EventHub(53): could not get driver version for /dev/input/mouse0, Not a typewriter 06-09 11:16:41.667: ERROR/EventHub(53): could not get driver version for /dev/input/mice, Not a typewriter 06-09 11:16:41.797: ERROR/System(53): Failure starting core service 06-09 11:16:41.797: ERROR/System(53): java.lang.SecurityException 06-09 11:16:41.797: ERROR/System(53): at android.os.BinderProxy.transact(Native Method) 06-09 11:16:41.797: ERROR/System(53): at android.os.ServiceManagerProxy.addService(ServiceManagerNative.java:146) 06-09 11:16:41.797: ERROR/System(53): at android.os.ServiceManager.addService(ServiceManager.java:72) 06-09 11:16:41.797: ERROR/System(53): at com.android.server.ServerThread.run(SystemServer.java:162) 06-09 11:16:41.797: ERROR/AndroidRuntime(53): Crash logging skipped, no checkin service 06-09 11:16:42.777: ERROR/LockPatternKeyguardView(53): Failed to bind to GLS while checking for account 06-09 11:16:46.557: ERROR/ActivityThread(111): Failed to find provider info for com.google.settings 06-09 11:16:46.577: ERROR/ActivityThread(111): Failed to find provider info for com.google.settings 06-09 11:16:49.087: ERROR/ApplicationContext(53): Couldn't create directory for SharedPreferences file shared_prefs/wallpaper-hints.xml 06-09 11:16:51.146: ERROR/ActivityThread(108): Failed to find provider info for android.server.checkin 06-09 11:16:54.266: ERROR/ActivityThread(108): Failed to find provider info for android.server.checkin 06-09 11:16:54.416: ERROR/ActivityThread(108): Failed to find provider info for android.server.checkin 06-09 11:16:56.336: ERROR/MediaPlayerService(31): Couldn't open fd for content://settings/system/notification_sound 06-09 11:16:56.356: ERROR/MediaPlayer(53): Unable to to create media player 06-09 11:16:56.637: ERROR/AndroidRuntime(201): Uncaught handler: thread main exiting due to uncaught exception 06-09 11:16:56.757: ERROR/AndroidRuntime(201): java.lang.RuntimeException: Unable to start activity ComponentInfo{com.svgeeks.kidneytest/com.svgeeks.kidneytest.KidneyTest}: java.lang.ClassCastException: android.widget.EditText 06-09 11:16:56.757: ERROR/AndroidRuntime(201): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2401) 06-09 11:16:56.757: ERROR/AndroidRuntime(201): at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2417) 06-09 11:16:56.757: ERROR/AndroidRuntime(201): at android.app.ActivityThread.access$2100(ActivityThread.java:116) 06-09 11:16:56.757: ERROR/AndroidRuntime(201): at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1794) 06-09 11:16:56.757: ERROR/AndroidRuntime(201): at android.os.Handler.dispatchMessage(Handler.java:99) 06-09 11:16:56.757: ERROR/AndroidRuntime(201): at android.os.Looper.loop(Looper.java:123) 06-09 11:16:56.757: ERROR/AndroidRuntime(201): at android.app.ActivityThread.main(ActivityThread.java:4203) 06-09 11:16:56.757: ERROR/AndroidRuntime(201): at java.lang.reflect.Method.invokeNative(Native Method) 06-09 11:16:56.757: ERROR/AndroidRuntime(201): at java.lang.reflect.Method.invoke(Method.java:521) 06-09 11:16:56.757: ERROR/AndroidRuntime(201): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:791) 06-09 11:16:56.757: ERROR/AndroidRuntime(201): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:549) 06-09 11:16:56.757: ERROR/AndroidRuntime(201): at dalvik.system.NativeStart.main(Native Method) 06-09 11:16:56.757: ERROR/AndroidRuntime(201): Caused by: java.lang.ClassCastException: android.widget.EditText 06-09 11:16:56.757: ERROR/AndroidRuntime(201): at com.svgeeks.kidneytest.KidneyTest.onCreate(KidneyTest.java:57) 06-09 11:16:56.757: ERROR/AndroidRuntime(201): at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1123) 06-09 11:16:56.757: ERROR/AndroidRuntime(201): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2364) 06-09 11:16:56.757: ERROR/AndroidRuntime(201): ... 11 more 06-09 11:16:56.876: ERROR/dalvikvm(201): Unable to open stack trace file '/data/anr/traces.txt': Permission denied

    Read the article

  • WPF ContextMenu with bound items: Items.Count == 0 in ContextMenuOpening event

    - by OregonGhost
    I have a ContextMenu with the ItemsSource bound to the selected item of a list view, like this: <ContextMenu ItemsSource="{Binding Path=PlacementTarget.SelectedItem, RelativeSource={RelativeSource Self}, Converter={StaticResource possibleConverter}}"/> The possibleConverter enumerates all possible values for a property of the the selected item, which are shown in the context menu. In the Opened event of the context menu, I select the current value like this: var cm = e.OriginalSource as ContextMenu; if (cm != null) { var lv = cm.PlacementTarget as ListView; var field = lv.SelectedItem as Field; var item = cm.ItemContainerGenerator.ContainerFromItem(cm.Items.OfType<object>().Where(o => o.ToString().Equals(field.StringValue)).FirstOrDefault()) as MenuItem; if (item != null) { item.IsChecked = true; } } Not particularly elegant, but it works. With the debugger I verified that the ContextMenu.Items.Count property has a non-zero value when expected (i.e. cm.Items.Count is non-zero in the if). So far, so good. There are, however, items in the listview where the context menu will have no items. In this case, an empty menu is shown. I tried to suppress this in the ContextMenuOpening event in the list view, like this: var lv = sender as ListView; if (lv != null) { var cm = lv.ContextMenu; if ((cm != null) && (cm.Items.Count > 0)) { // Here we want to check the current item, which is currently done in the Opened event. } else { e.Handled = true; } } Seems like it should work. However, cm.Items.Count is always zero. This is true even if ListView.SelectedItem did not change: For an item with menu entries, the menu is shown correctly after the first click, so the data binding has already happend. It is shown correct the second time as well, but in any case, Items.Count is zero in the ContextMenuOpening event. What am I missing? How can I suppress empty context menus? Why is the count zero in the ContextMenuOpening handler, which is in Windows Forms (ContextMenuStrip.Opening) the canonical point where to do these things? EDIT: Upon further investigating, it turns out that in the ContextMenuOpening handler, any binding to the listview fails, which is why ItemsSource is null. I tried to bind via ElementName, via a FindAncestor relationship, all to no avail. The PlacementTarget is null during that event. An ugly hack worked though: In the ContextMenuOpening event, I assign the list view to the ContextMenu.Tag property, while the ItemsSource binding now binds to Tag.SelectedItem. This updates the binding, so Items.Count is what it should be. It's still strange. How can you do meaningful things in ContextMenuOpening other than replacing the menu or something, if the binding fails because somehow the context menu is out of context during the event? Was it only tested with static pre-defined menu items?

    Read the article

  • "Content is not allowed in prolog" when parsing perfectly valid XML on GAE

    - by Adrian Petrescu
    Hey guys, I've been beating my head against this absolutely infuriating bug for the last 48 hours, so I thought I'd finally throw in the towel and try asking here before I throw my laptop out the window. I'm trying to parse the response XML from a call I made to AWS SimpleDB. The response is coming back on the wire just fine; for example, it may look like: <?xml version="1.0" encoding="utf-8"?> <ListDomainsResponse xmlns="http://sdb.amazonaws.com/doc/2009-04-15/"> <ListDomainsResult> <DomainName>Audio</DomainName> <DomainName>Course</DomainName> <DomainName>DocumentContents</DomainName> <DomainName>LectureSet</DomainName> <DomainName>MetaData</DomainName> <DomainName>Professors</DomainName> <DomainName>Tag</DomainName> </ListDomainsResult> <ResponseMetadata> <RequestId>42330b4a-e134-6aec-e62a-5869ac2b4575</RequestId> <BoxUsage>0.0000071759</BoxUsage> </ResponseMetadata> </ListDomainsResponse> I pass in this XML to a parser with XMLEventReader eventReader = xmlInputFactory.createXMLEventReader(response.getContent()); and call eventReader.nextEvent(); a bunch of times to get the data I want. Here's the bizarre part -- it works great inside the local server. The response comes in, I parse it, everyone's happy. The problem is that when I deploy the code to Google App Engine, the outgoing request still works, and the response XML seems 100% identical and correct to me, but the response fails to parse with the following exception: com.amazonaws.http.HttpClient handleResponse: Unable to unmarshall response (ParseError at [row,col]:[1,1] Message: Content is not allowed in prolog.): <?xml version="1.0" encoding="utf-8"?> <ListDomainsResponse xmlns="http://sdb.amazonaws.com/doc/2009-04-15/"><ListDomainsResult><DomainName>Audio</DomainName><DomainName>Course</DomainName><DomainName>DocumentContents</DomainName><DomainName>LectureSet</DomainName><DomainName>MetaData</DomainName><DomainName>Professors</DomainName><DomainName>Tag</DomainName></ListDomainsResult><ResponseMetadata><RequestId>42330b4a-e134-6aec-e62a-5869ac2b4575</RequestId><BoxUsage>0.0000071759</BoxUsage></ResponseMetadata></ListDomainsResponse> javax.xml.stream.XMLStreamException: ParseError at [row,col]:[1,1] Message: Content is not allowed in prolog. at com.sun.org.apache.xerces.internal.impl.XMLStreamReaderImpl.next(Unknown Source) at com.sun.xml.internal.stream.XMLEventReaderImpl.nextEvent(Unknown Source) at com.amazonaws.transform.StaxUnmarshallerContext.nextEvent(StaxUnmarshallerContext.java:153) ... (rest of lines omitted) I have double, triple, quadruple checked this XML for 'invisible characters' or non-UTF8 encoded characters, etc. I looked at it byte-by-byte in an array for byte-order-marks or something of that nature. Nothing; it passes every validation test I could throw at it. Even stranger, it happens if I use a Saxon-based parser as well -- but ONLY on GAE, it always works fine in my local environment. It makes it very hard to trace the code for problems when I can only run the debugger on an environment that works perfectly (I haven't found any good way to remotely debug on GAE). Nevertheless, using the primitive means I have, I've tried a million approaches including: XML with and without the prolog With and without newlines With and without the "encoding=" attribute in the prolog Both newline styles With and without the chunking information present in the HTTP stream And I've tried most of these in multiple combinations where it made sense they would interact -- nothing! I'm at my wit's end. Has anyone seen an issue like this before that can hopefully shed some light on it? Thanks!

    Read the article

  • Inconsistent responses from ISAPI DLL in mod_isapi.

    - by William Leader
    I have a ISAPI dll which I created with Delphi 2009, and I have been able to test that it functions as designed when I run it inside of IIS 5.1. However when I attempt to host the web service from within Apache on Windows XP using mod_isapi, I do not get consistent results. The ISAPI dll implements a very simple SOAP service with two methods. One method is a simple echo service that sends back the string sent to it. The second method is used to send a file to the server using a TSoapAttachement (Mutipart MIME). The interface can be descibes as follows IPdiSvc2 = interface(IInvokable) ['{532DCDD7-D66B-4D2C-924E-2F389D3E0A74}'] function Echo(data:string): string; stdcall; function SendFile(request:TFileDescription; attachment: TSOAPAttachment): TSendFileResponse; stdcall; end; What is interesting is if I only call the echo function Apache handles this without error every time. The webservice only returns an error after calling send File, but not every time. There are three outcomes to calling send file that I have observed: A normal result without an error (HTTP 200 OK). A Soap encoded exception with the message: 'Required white space was missing. Line: 11 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML.' (HTTP 500 Internal Error). This also generates a message in the Apache error.log 'Premature end of script headers: MYISAPI.dll' A Soap encoded exception with the message: 'Access violation at address 01A53D57 in module MYISAPI.dll. Read of address 00000000.' (HTTP 200 OK). What I find interesting is that the second third outcomes still occur if I call echo after calling send file. Calling SendFile, SendFile, SendFile, SendFile results in outcomes 1, 2, 3, 1. Calling Echo, SendFile, SendFile, SendFile results in outcomes 1, 1, 2, 3. Calling SendFile, Echo, Echo, SendFile results in outcomes 1, 2, 3, 1. The pattern I am seing is that after a Successful SendFile, the next to requests result in outcomes 2 and 3 regardless of what those two requests are. My guess is that because Apache uses multiple threads to handle multiple requests that each request is getting handled in a slightly different way, and that the DLL may not have been initialized in the same way for each worker thread. I do not think the problem exists in my code as when I attach the debugger to httpd.exe it does recognize the exceptions but it says the exceptions are in non-delphi code meaning that they are happening before the code inside my DLL has a chance to execute. I suspect it may have something to do with the way I have apache configured. My Apache configuration is the defaults created by the 2.2.15 installer for windows with the following addition: <IfModule isapi_module> AddHandler isapi-handler .dll ISAPILogNotSupported on ISAPIFakeAsync on ISAPIAppendLogToErrors on </IfModule> <IfModule alias_module> ScriptAlias /myisapi/ "C:/path/to/myisapi/" </IfModule> <Directory "C:/path/to/myisapi/"> AllowOverride None Options ExecCGI Order allow,deny Allow from all </Directory>

    Read the article

  • postMessage to PDF in an iFrame

    - by Linus
    Here's my situation. I had a webpage with an embedded PDF form. We used a basic object tag (embed in FF) to load the PDF file like this: <object id="pdfForm" height="100%" width="100%" type="application/pdf" data="..url"></object> On this webpage was an Html Save button that would trigger some Javascript which used the postMessage API of the embedded object to execute javascript embedded in the PDF. Basically, that code looked like this: function save() { sendMessage(["submitForm"]); } function sendMessage(aMessage) { pdfObject = document.getElementById("pdfForm"); if (typeof(pdfObject) == "undefined") return; if (typeof (pdfObject.postMessage) == "undefined") return; pdfObject.postMessage(aMessage); } This all was working beautifully. Except we ran into an issue with Firefox so that we need to embed the PDF using iFrame, instead of the object tag. So now, the PDF is embeded using this code: <iframe id="pdfWrapper" src="..someUrl" width="100%" height="800px" frameborder="0"></iframe> Unfortunately, with this code, the javascript for posting a message no longer works, and I can't really figure out how to get access to the pdf object anymore so that I can access the postMessage api. Using fiddler or the chome javascript debugger, it is clear that within the iframe, the browser is automatically generating an embed tag (not an object tag), but that does not let me access the postMessage API. This is the code I'm trying which doesn't work: function sendMessage(aMessage) { var frame = document.getElementById("pdfWrapper"); var doc = null; if (frame.contentDocument) doc = frame.contentDocument; else if (frame.contentWindow) doc = frame.contentWindow.document; else if (frame.document) doc = frame.document; if (doc==null || typeof(doc) == "undefined") return; var pdfObject = doc.embeds[0]; if (pdfObject==null || typeof (pdfObject.postMessage) == "undefined") return; pdfObject.postMessage(aMessage); } Any help on this? Sorry for the long question. EDIT: I've been asked to provide samples in code so that people can test whether the messaging works. Essentially, all you need is any PDF with this javascript embedded. function myOnMessage(aMessage) { app.alert("Hello World!"); } function myOnDisclose(cURL, cDocumentURL) { return true; } function myOnError(error, aMessage) { app.alert(error); } var msgHandlerObject = new Object(); msgHandlerObject.onMessage = myOnMessage; msgHandlerObject.onError = myOnError; msgHandlerObject.onDisclose = myOnDisclose; msgHandlerObject.myDoc = this; this.hostContainer.messageHandler = msgHandlerObject; I realize you need Acrobat pro to create PDFs with javascript, so to make this easier, I posted sample code--both working and non working scenarios--at this url: http://www.filedropper.com/pdfmessage You can download the zip and extract it to /inetpub/wwwroot if you use Windows, and then point your browser to either the works.htm or fails.htm. Thanks for any help you can give.

    Read the article

< Previous Page | 75 76 77 78 79 80 81 82 83 84 85  | Next Page >