Search Results

Search found 5638 results on 226 pages for 'scheduling algorithm'.

Page 79/226 | < Previous Page | 75 76 77 78 79 80 81 82 83 84 85 86  | Next Page >

  • How To Generate Parameter Set for the Diffie-Hellman Key Agreement Algorithm in Android

    - by sebby_zml
    Hello everyone, I am working on mobile/server security related project. I am now stuck in generating a Diffie-Hellman key agreement part. It works fine in server side program but it is not working in mobile side. Thus, I assume that it is not compactible with Android. I used the following class to get the parameters. It returns a comma-separated string of 3 values. The first number is the prime modulus P. The second number is the base generator G. The third number is bit size of the random exponent L. My question is is there anything wrong with the code or it is not compactible for android?What kind of changes should I do? Your suggestion and guidance would be very much help for me. Thanks a lot in advance. public static String genDhParams() { try { // Create the parameter generator for a 1024-bit DH key pair AlgorithmParameterGenerator paramGen = AlgorithmParameterGenerator.getInstance("DH"); paramGen.init(1024); // Generate the parameters AlgorithmParameters params = paramGen.generateParameters(); DHParameterSpec dhSpec = (DHParameterSpec)params.getParameterSpec(DHParameterSpec.class); // Return the three values in a string return ""+dhSpec.getP()+","+dhSpec.getG()+","+dhSpec.getL(); } catch (NoSuchAlgorithmException e) { } catch (InvalidParameterSpecException e) { } return null; } Regards, Sebby

    Read the article

  • about Master theorem

    - by matin1234
    Hi this is the link http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic5/ is written that for T(n)<=2n+T(n/3)+T(n/3) the T(n) is not O(n) but with master theorem we can use case 3 and we can say that its T(n) is theta(n) please help me! thanks how can we prove that T(n) is not O(n)

    Read the article

  • What's the best general programming book to review basic development concepts?

    - by Charles S.
    I'm looking for for a programming book that reviews basic concepts like implementing linked lists, stacks, queues, hash tables, tree traversals, search algorithms, etc. etc. Basically, I'm looking for a review of everything I learned in college but have forgotten. I prefer something written in the last few years that includes at least a decent amount of code in object-oriented languages. This is to study for job interview questions but I already have the "solving interview questions" books. I'm looking for something with a little more depth and explanation. Any good recommendations?

    Read the article

  • A simple explanation of Naive Bayes Classification

    - by Jaggerjack
    I am finding it hard to understand the process of Naive Bayes, and I was wondering if someone could explained it with a simple step by step process in English. I understand it takes comparisons by times occurred as a probability, but I have no idea how the training data is related to the actual dataset. Please give me an explanation of what role the training set plays. I am giving a very simple example for fruits here, like banana for example training set--- round-red round-orange oblong-yellow round-red dataset---- round-red round-orange round-red round-orange oblong-yellow round-red round-orange oblong-yellow oblong-yellow round-red

    Read the article

  • C# - split String into smaller Strings by length variable

    - by tyndall
    I'd like to break apart a String by a certain length variable. It needs to bounds check so as not explode when the last section of string is not as long as or longer than the length. Looking for the most succinct (yet understandable) version. Example: string x = "AAABBBCC"; string[] arr = x.SplitByLength(3); // arr[0] -> "AAA"; // arr[1] -> "BBB"; // arr[2] -> "CC"

    Read the article

  • C++: building iterator from bits

    - by gruszczy
    I have a bitmap and would like to return an iterator of positions of set bits. Right now I just walk the whole bitmap and if bit is set, then I provide next position. I believe this could be done more effectively: for example build statically array for each combination of bits in single byte and return vector of positions. This can't be done for a whole int, because array would be too big. But maybe there are some better solutions? Do you know any smart algorithms for this?

    Read the article

  • How does Batcher Merge work at a high level?

    - by Mike
    I'm trying to grasp the concept of a Batcher Sort. However, most resources I've found online focus on proof entirely or on low-level pseudocode. Before I look at proofs, I'd like to understand how Batcher Sort works. Can someone give a high level overview of how Batcher Sort works(particularly the merge) without overly verbose pseudocode(I want to get the idea behind the Batcher Sort, not implement it)? Thanks!

    Read the article

  • What kind of data processing problems would CUDA help with?

    - by Chris McCauley
    Hi, I've worked on many data matching problems and very often they boil down to quickly and in parallel running many implementations of CPU intensive algorithms such as Hamming / Edit distance. Is this the kind of thing that CUDA would be useful for? What kinds of data processing problems have you solved with it? Is there really an uplift over the standard quad-core intel desktop? Chris

    Read the article

  • B-Tree Revision

    - by stan
    Hi, If we are looking for line intersections (horizontal and vertical lines only) and we have n lines with half of them vertical and no intersections then Sorting the list of line end points on y value will take N log N using mergesort Each insert delete and search of our data structue (assuming its a b-tree) will be < log n so the total search time will be N log N What am i missing here, if the time to sort using mergesort takes a time of N log N and insert and delete takes a time of < log n are we dropping the constant factor to give an overal time of N log N. If not then how comes < log n goes missing in total ONotation run time? Thanks

    Read the article

  • Detecting Singularities in a Graph

    - by nasufara
    I am creating a graphing calculator in Java as a project for my programming class. There are two main components to this calculator: the graph itself, which draws the line(s), and the equation evaluator, which takes in an equation as a String and... well, evaluates it. To create the line, I create a Path2D.Double instance, and loop through the points on the line. To do this, I calculate as many points as the graph is wide (e.g. if the graph itself is 500px wide, I calculate 500 points), and then scale it to the window of the graph. Now, this works perfectly for most any line. However, it does not when dealing with singularities. If, when calculating points, the graph encounters a domain error (such as 1/0), the graph closes the shape in the Path2D.Double instance and starts a new line, so that the line looks mathematically correct. Example: However, because of the way it scales, sometimes it is rendered correctly, sometimes it isn't. When it isn't, the actual asymptotic line is shown, because within those 500 points, it skipped over x = 2.0 in the equation 1 / (x-2), and only did x = 1.98 and x = 2.04, which are perfectly valid in that equation. Example: In that case, I increased the window on the left and right one unit each. My question is: Is there a way to deal with singularities using this method of scaling so that the resulting line looks mathematically correct? I myself have thought of implementing a binary search-esque method, where, if it finds that it calculates one point, and then the next point is wildly far away from the last point, it searches in between those points for a domain error. I had trouble figuring out how to make it work in practice, however. Thank you for any help you may give!

    Read the article

  • Return a number between 0 and 4

    - by munchine
    How do I return a number between 0 and 4, depending the input number? For example if I pass it number 23 it will return 3. The number set should look like 0 5 10 15 20 .. 1 6 11 16 21 .. 2 7 12 17 22 .. 3 8 13 18 23 .. 4 9 14 19 24 What's the math for this?

    Read the article

  • Refining data stored in SQLite - how to join several contacts?

    - by Krab
    Problem background Imagine this problem. You have a water molecule which is in contact with other molecules (if the contact is a hydrogen bond, there can be 4 other molecules around my water). Like in the following picture (A, B, C, D are some other atoms and dots mean the contact). A B . . O / \ H H . . C D I have the information about all the dots and I need to eliminate the water in the center and create records describing contacts of A-C, A-D, A-B, B-C, B-D, and C-D. Database structure Currently, I have the following structure in the database: Table atoms: "id" integer PRIMARY KEY, "amino" char(3) NOT NULL, (HOH for water or other value) other columns identifying the atom Table contacts: "acceptor_id" integer NOT NULL, (the atom near to my hydrogen, here C or D) "donor_id" integer NOT NULL, (here A or B) "directness" char(1) NOT NULL, (this should be D for direct and W for water-mediated) other columns about the contact, such as the distance Current solution (insufficient) Now, I'm going through all the contacts which have donor.amino = "HOH". In this sample case, this would select contacts from C and D. For each of these selected contacts, I look up contacts having the same acceptor_id as is the donor_id in the currently selected contact. From this information, I create the new contact. At the end, I delete all contacts to or from HOH. This way, I am obviously unable to create C-D and A-B contacts (the other 4 are OK). If I try a similar approach - trying to find two contacts having the same donor_id, I end up with duplicate contacts (C-D and D-C). Is there a simple way to retrieve all six contacts without duplicates? I'm dreaming about some one page long SQL query which retrievs just these six wanted rows. :-) It is preferable to conserve information about who is donor where possible, but not strictly necessary. Big thanks to all of you who read this question to this point.

    Read the article

  • sorting using recursion

    - by user310587
    I have the following function to sort an array with even numbers in the front and odd numbers in the back. Is there a way to get it done without using any loops? //front is 0, back =array.length-1; arrangeArray (front, back); public static void arrangeArray (int front, int back) { if (front != back || front<back) { while (numbers [front]%2 == 0) front++; while (numbers[back]%2!=0) back--; if (front < back) { int oddnum = numbers [front]; numbers[front]= numbers[back]; numbers[back]=oddnum; arrangeArray (front+1, back-1); } } }

    Read the article

  • How to combine elements of a list

    - by Addie
    I'm working in c#. I have a sorted List of structures. The structure has a DateTime object which stores month and year and an integer which stores a value. The list is sorted by date. I need to traverse the list and combine it so that I only have one instance of the structure per date. For example: My initial list would look like this: { (Apr10, 3), (Apr10, 2), (Apr10, -3), (May10, 1), (May10, 1), (May10, -3), (Jun10, 3) } The resulting list should look like this: { (Apr10, 2), (May10, -1), (Jun10, 3) } I'm looking for a simple / efficient solution. The struct is: class CurrentTrade { public DateTime date; public int dwBuy; } The list is: private List<CurrentTrade> FillList

    Read the article

  • Clojure - tail recursive sieve of Eratosthenes

    - by Konrad Garus
    I have this implementation of the sieve of Eratosthenes in Clojure: (defn sieve [n] (loop [last-tried 2 sift (range 2 (inc n))] (if (or (nil? last-tried) (> last-tried n)) sift (let [filtered (filter #(or (= % last-tried) (< 0 (rem % last-tried))) sift)] (let [next-to-try (first (filter #(> % last-tried) filtered))] (recur next-to-try filtered)))))) For larger n (like 20000) it ends with stack overflow. Why doesn't tail call elimination work here? How to fix it?

    Read the article

  • Code bacteria: evolving mathematical behavior

    - by Stefano Borini
    It would not be my intention to put a link on my blog, but I don't have any other method to clarify what I really mean. The article is quite long, and it's in three parts (1,2,3), but if you are curious, it's worth the reading. A long time ago (5 years, at least) I programmed a python program which generated "mathematical bacteria". These bacteria are python objects with a simple opcode-based genetic code. You can feed them with a number and they return a number, according to the execution of their code. I generate their genetic codes at random, and apply an environmental selection to those objects producing a result similar to a predefined expected value. Then I let them duplicate, introduce mutations, and evolve them. The result is quite interesting, as their genetic code basically learns how to solve simple equations, even for values different for the training dataset. Now, this thing is just a toy. I had time to waste and I wanted to satisfy my curiosity. however, I assume that something, in terms of research, has been made... I am reinventing the wheel here, I hope. Are you aware of more serious attempts at creating in-silico bacteria like the one I programmed? Please note that this is not really "genetic algorithms". Genetic algorithms is when you use evolution/selection to improve a vector of parameters against a given scoring function. This is kind of different. I optimize the code, not the parameters, against a given scoring function.

    Read the article

  • How can I further optimize this color difference function?

    - by aLfa
    I have made this function to calculate color differences in the CIE Lab colorspace, but it lacks speed. Since I'm not a Java expert, I wonder if any Java guru around has some tips that can improve the speed here. The code is based on the matlab function mentioned in the comment block. /** * Compute the CIEDE2000 color-difference between the sample color with * CIELab coordinates 'sample' and a standard color with CIELab coordinates * 'std' * * Based on the article: * "The CIEDE2000 Color-Difference Formula: Implementation Notes, * Supplementary Test Data, and Mathematical Observations,", G. Sharma, * W. Wu, E. N. Dalal, submitted to Color Research and Application, * January 2004. * available at http://www.ece.rochester.edu/~gsharma/ciede2000/ */ public static double deltaE2000(double[] lab1, double[] lab2) { double L1 = lab1[0]; double a1 = lab1[1]; double b1 = lab1[2]; double L2 = lab2[0]; double a2 = lab2[1]; double b2 = lab2[2]; // Cab = sqrt(a^2 + b^2) double Cab1 = Math.sqrt(a1 * a1 + b1 * b1); double Cab2 = Math.sqrt(a2 * a2 + b2 * b2); // CabAvg = (Cab1 + Cab2) / 2 double CabAvg = (Cab1 + Cab2) / 2; // G = 1 + (1 - sqrt((CabAvg^7) / (CabAvg^7 + 25^7))) / 2 double CabAvg7 = Math.pow(CabAvg, 7); double G = 1 + (1 - Math.sqrt(CabAvg7 / (CabAvg7 + 6103515625.0))) / 2; // ap = G * a double ap1 = G * a1; double ap2 = G * a2; // Cp = sqrt(ap^2 + b^2) double Cp1 = Math.sqrt(ap1 * ap1 + b1 * b1); double Cp2 = Math.sqrt(ap2 * ap2 + b2 * b2); // CpProd = (Cp1 * Cp2) double CpProd = Cp1 * Cp2; // hp1 = atan2(b1, ap1) double hp1 = Math.atan2(b1, ap1); // ensure hue is between 0 and 2pi if (hp1 < 0) { // hp1 = hp1 + 2pi hp1 += 6.283185307179586476925286766559; } // hp2 = atan2(b2, ap2) double hp2 = Math.atan2(b2, ap2); // ensure hue is between 0 and 2pi if (hp2 < 0) { // hp2 = hp2 + 2pi hp2 += 6.283185307179586476925286766559; } // dL = L2 - L1 double dL = L2 - L1; // dC = Cp2 - Cp1 double dC = Cp2 - Cp1; // computation of hue difference double dhp = 0.0; // set hue difference to zero if the product of chromas is zero if (CpProd != 0) { // dhp = hp2 - hp1 dhp = hp2 - hp1; if (dhp > Math.PI) { // dhp = dhp - 2pi dhp -= 6.283185307179586476925286766559; } else if (dhp < -Math.PI) { // dhp = dhp + 2pi dhp += 6.283185307179586476925286766559; } } // dH = 2 * sqrt(CpProd) * sin(dhp / 2) double dH = 2 * Math.sqrt(CpProd) * Math.sin(dhp / 2); // weighting functions // Lp = (L1 + L2) / 2 - 50 double Lp = (L1 + L2) / 2 - 50; // Cp = (Cp1 + Cp2) / 2 double Cp = (Cp1 + Cp2) / 2; // average hue computation // hp = (hp1 + hp2) / 2 double hp = (hp1 + hp2) / 2; // identify positions for which abs hue diff exceeds 180 degrees if (Math.abs(hp1 - hp2) > Math.PI) { // hp = hp - pi hp -= Math.PI; } // ensure hue is between 0 and 2pi if (hp < 0) { // hp = hp + 2pi hp += 6.283185307179586476925286766559; } // LpSqr = Lp^2 double LpSqr = Lp * Lp; // Sl = 1 + 0.015 * LpSqr / sqrt(20 + LpSqr) double Sl = 1 + 0.015 * LpSqr / Math.sqrt(20 + LpSqr); // Sc = 1 + 0.045 * Cp double Sc = 1 + 0.045 * Cp; // T = 1 - 0.17 * cos(hp - pi / 6) + // + 0.24 * cos(2 * hp) + // + 0.32 * cos(3 * hp + pi / 30) - // - 0.20 * cos(4 * hp - 63 * pi / 180) double hphp = hp + hp; double T = 1 - 0.17 * Math.cos(hp - 0.52359877559829887307710723054658) + 0.24 * Math.cos(hphp) + 0.32 * Math.cos(hphp + hp + 0.10471975511965977461542144610932) - 0.20 * Math.cos(hphp + hphp - 1.0995574287564276334619251841478); // Sh = 1 + 0.015 * Cp * T double Sh = 1 + 0.015 * Cp * T; // deltaThetaRad = (pi / 3) * e^-(36 / (5 * pi) * hp - 11)^2 double powerBase = hp - 4.799655442984406; double deltaThetaRad = 1.0471975511965977461542144610932 * Math.exp(-5.25249016001879 * powerBase * powerBase); // Rc = 2 * sqrt((Cp^7) / (Cp^7 + 25^7)) double Cp7 = Math.pow(Cp, 7); double Rc = 2 * Math.sqrt(Cp7 / (Cp7 + 6103515625.0)); // RT = -sin(delthetarad) * Rc double RT = -Math.sin(deltaThetaRad) * Rc; // de00 = sqrt((dL / Sl)^2 + (dC / Sc)^2 + (dH / Sh)^2 + RT * (dC / Sc) * (dH / Sh)) double dLSl = dL / Sl; double dCSc = dC / Sc; double dHSh = dH / Sh; return Math.sqrt(dLSl * dLSl + dCSc * dCSc + dHSh * dHSh + RT * dCSc * dHSh); }

    Read the article

< Previous Page | 75 76 77 78 79 80 81 82 83 84 85 86  | Next Page >