Search Results

Search found 5638 results on 226 pages for 'scheduling algorithm'.

Page 80/226 | < Previous Page | 76 77 78 79 80 81 82 83 84 85 86 87  | Next Page >

  • Pruning: When to Stop?

    - by cam
    When does pruning stop being efficient in a depth-first search? I've been working on an efficient method to solve the N-Queens problem and I'm looking at pruning for the first time. I've implemented it for the first two rows, but when does it stop being efficient? How far should I prune to?

    Read the article

  • curious ill conditioned numerical problem

    - by aaa
    hello. somebody today showed me this curious ill conditioned problem (apparently pretty famous), which looks relatively simple ƒ = (333.75 - a^2)b^6 + a^2 (11a^2 b^2 - 121b^4 - 2) + 5.5b^8 + a/(2^b) where a = 77617 and b = 33096 can you determine correct answer?

    Read the article

  • Url shortening algorithm

    - by Bozho
    Now, this is not strictly about URL shortening, but my purpose is such anyway, so let's view it like that. Of course the steps to URL shortening are: Take the full URL Generate a unique short string to be the key for the URL Store the URL and the key in a database (a key-value store would be a perfect match here) Now, about the 2nd point. Here's what I've come up with: ByteArrayOutputStream baos = new ByteArrayOutputStream(); DataOutputStream dos = new DataOutputStream(baos); UUID uuid = UUID.randomUUID(); dos.writeLong(uuid.getMostSignificantBits()); String encoded = new String(Base64.encodeBase64(baos.toByteArray()), "ISO-8859-1"); String shortUrl = StringUtils.left(6); // returns the leftmost 6 characters // check if exists in database, repeat until it does not I wonder if this is good enough. Is it?

    Read the article

  • Problem implementing sorting algorithm in C with an array of structs

    - by dilog
    Well here is my little problem, first my code: struct alumn { char name[100]; char lastname[100]; int par; int nota; }; typedef struct alumn alumn; int bubble(alumn **arr, int length) { int i,j; alumn *temp; for (i=0; i<=length-2; i++) { for (j=i+1; j<=length-1;j++) { if ((*arr)[i].nota > (*arr)[j].nota) { temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } } } } int main(int argc, char **argv) { alumn *alumns; ... here goes some other code ... bubble(&alumns,totalAlumns); return 0; } My problem is that this algorith is not sorting anything. I'm having a hard time doing the swap, i tried everything but nothing works :( . Any help??? struct alumn { char name[100]; char lastname[100]; int par; int nota; }; typedef struct alumn alumn; int bubble(alumn **arr, int length) { int i,j; alumn *temp; for (i=0; i<=length-2; i++) { for (j=i+1; j<=length-1;j++) { if ((*arr)[i].nota > (*arr)[j].nota) { temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } } } } int main(int argc, char **argv) { alumn *alumns; ... here goes some other code ... bubble(&alumns,totalAlumns); return 0; } My problem is that this algorith is not sorting anything. I'm having a hard time doing the swap, i tried everything but nothing works :( . Any help???

    Read the article

  • VBA compare and sort strings with quirky characters

    - by Smandoli
    I am comparing text values from two DAO recordsets in MS Access. I sort on the text field, then go through both recordsets comparing the values from each. The sets are substantially different and while they're mostly alpha-numeric, spaces and symbols like hyphens and periods are very common. My program depends on predictable sorting and fool-proof comparing. But unfortunately, the sort will rank two values differently than the comparison function. StrComp is the obvious first choice: varResult = StrComp(Val_1, Val_2) RFA-300 14.9044 RFA300 14-2044 But for the two pairs above, StrComp returns a different value than one would expect based on the sort. Including vbTextCompare or vbBinaryCompare affects StrComp's result, but not so as to solve the problem. Note the values must always be compared as strings. Of course I make sure that "14-2044" and "14.9044" aren't evaluated as -2030 and ~15. That's not the cause of my problem. I learned API-based functions are more reliable for quirky texts, so I tried these: varResult = CompareString(LOCALE_SYSTEM_DEFAULT, _ SORT_STRINGSORT, strVal_2, -1, strVal_1, -1) varResult = CompareString(LOCALE_SYSTEM_DEFAULT, _ NORM_IGNOREWIDTH, strVal_2, -1, strVal_1, -1) The first one returns the opposite of StrComp. The second one returns the same as StrComp. But neither yields a result that is consistent with the sort order. (NORM_IGNOREWIDTH is probably not relevant, but I needed a place-holder substitute and it looked as good as any.) UPDATE: This is a complete rewrite of the original post, deleting all the info about why I really need this -- just take my word for it and enjoy the brevity.

    Read the article

  • Reduce number of points in line

    - by culebrón
    I'm searching for algorithms to reduce the LOD of polylines, lines (looped or not) of nodes. In simple words, I want to take hi-resolution coastline data and be able to reduce its LOD hundred- or thousandfold to render it in small-scale. I found polygon reduction algorithms (but they require triangles) and Laplacian smoothing, but that doesn't seem exactly what I need.

    Read the article

  • Code bacteria: evolving mathematical behavior

    - by Stefano Borini
    It would not be my intention to put a link on my blog, but I don't have any other method to clarify what I really mean. The article is quite long, and it's in three parts (1,2,3), but if you are curious, it's worth the reading. A long time ago (5 years, at least) I programmed a python program which generated "mathematical bacteria". These bacteria are python objects with a simple opcode-based genetic code. You can feed them with a number and they return a number, according to the execution of their code. I generate their genetic codes at random, and apply an environmental selection to those objects producing a result similar to a predefined expected value. Then I let them duplicate, introduce mutations, and evolve them. The result is quite interesting, as their genetic code basically learns how to solve simple equations, even for values different for the training dataset. Now, this thing is just a toy. I had time to waste and I wanted to satisfy my curiosity. however, I assume that something, in terms of research, has been made... I am reinventing the wheel here, I hope. Are you aware of more serious attempts at creating in-silico bacteria like the one I programmed? Please note that this is not really "genetic algorithms". Genetic algorithms is when you use evolution/selection to improve a vector of parameters against a given scoring function. This is kind of different. I optimize the code, not the parameters, against a given scoring function.

    Read the article

  • Need Urgent Help! Find a repeated numbers out of 3 boxes

    - by james1
    Hi guys, I really need help with finding a repeated number out of 3 boxes. Let's say that i have 3 boxes, each box contain 10 piece of numbered paper (1 - 10) but there is a number the same in all 3 boxes eg: box1 has number 4 and box2 has number 4 and box3 also has number 4. How to find that repeated number in java with an efficient/fastest way possible? Thanks in advance!

    Read the article

  • How to find the insertion point in an array using binary search?

    - by ????
    The basic idea of binary search in an array is simple, but it might return an "approximate" index if the search fails to find the exact item. (we might sometimes get back an index for which the value is larger or smaller than the searched value). For looking for the exact insertion point, it seems that after we got the approximate location, we might need to "scan" to left or right for the exact insertion location, so that, say, in Ruby, we can do arr.insert(exact_index, value) I have the following solution, but the handling for the part when begin_index >= end_index is a bit messy. I wonder if a more elegant solution can be used? (this solution doesn't care to scan for multiple matches if an exact match is found, so the index returned for an exact match may point to any index that correspond to the value... but I think if they are all integers, we can always search for a - 1 after we know an exact match is found, to find the left boundary, or search for a + 1 for the right boundary.) My solution: DEBUGGING = true def binary_search_helper(arr, a, begin_index, end_index) middle_index = (begin_index + end_index) / 2 puts "a = #{a}, arr[middle_index] = #{arr[middle_index]}, " + "begin_index = #{begin_index}, end_index = #{end_index}, " + "middle_index = #{middle_index}" if DEBUGGING if arr[middle_index] == a return middle_index elsif begin_index >= end_index index = [begin_index, end_index].min return index if a < arr[index] && index >= 0 #careful because -1 means end of array index = [begin_index, end_index].max return index if a < arr[index] && index >= 0 return index + 1 elsif a > arr[middle_index] return binary_search_helper(arr, a, middle_index + 1, end_index) else return binary_search_helper(arr, a, begin_index, middle_index - 1) end end # for [1,3,5,7,9], searching for 6 will return index for 7 for insertion # if exact match is found, then return that index def binary_search(arr, a) puts "\nSearching for #{a} in #{arr}" if DEBUGGING return 0 if arr.empty? result = binary_search_helper(arr, a, 0, arr.length - 1) puts "the result is #{result}, the index for value #{arr[result].inspect}" if DEBUGGING return result end arr = [1,3,5,7,9] b = 6 arr.insert(binary_search(arr, b), b) p arr arr = [1,3,5,7,9,11] b = 6 arr.insert(binary_search(arr, b), b) p arr arr = [1,3,5,7,9] b = 60 arr.insert(binary_search(arr, b), b) p arr arr = [1,3,5,7,9,11] b = 60 arr.insert(binary_search(arr, b), b) p arr arr = [1,3,5,7,9] b = -60 arr.insert(binary_search(arr, b), b) p arr arr = [1,3,5,7,9,11] b = -60 arr.insert(binary_search(arr, b), b) p arr arr = [1] b = -60 arr.insert(binary_search(arr, b), b) p arr arr = [1] b = 60 arr.insert(binary_search(arr, b), b) p arr arr = [] b = 60 arr.insert(binary_search(arr, b), b) p arr and result: Searching for 6 in [1, 3, 5, 7, 9] a = 6, arr[middle_index] = 5, begin_index = 0, end_index = 4, middle_index = 2 a = 6, arr[middle_index] = 7, begin_index = 3, end_index = 4, middle_index = 3 a = 6, arr[middle_index] = 5, begin_index = 3, end_index = 2, middle_index = 2 the result is 3, the index for value 7 [1, 3, 5, 6, 7, 9] Searching for 6 in [1, 3, 5, 7, 9, 11] a = 6, arr[middle_index] = 5, begin_index = 0, end_index = 5, middle_index = 2 a = 6, arr[middle_index] = 9, begin_index = 3, end_index = 5, middle_index = 4 a = 6, arr[middle_index] = 7, begin_index = 3, end_index = 3, middle_index = 3 the result is 3, the index for value 7 [1, 3, 5, 6, 7, 9, 11] Searching for 60 in [1, 3, 5, 7, 9] a = 60, arr[middle_index] = 5, begin_index = 0, end_index = 4, middle_index = 2 a = 60, arr[middle_index] = 7, begin_index = 3, end_index = 4, middle_index = 3 a = 60, arr[middle_index] = 9, begin_index = 4, end_index = 4, middle_index = 4 the result is 5, the index for value nil [1, 3, 5, 7, 9, 60] Searching for 60 in [1, 3, 5, 7, 9, 11] a = 60, arr[middle_index] = 5, begin_index = 0, end_index = 5, middle_index = 2 a = 60, arr[middle_index] = 9, begin_index = 3, end_index = 5, middle_index = 4 a = 60, arr[middle_index] = 11, begin_index = 5, end_index = 5, middle_index = 5 the result is 6, the index for value nil [1, 3, 5, 7, 9, 11, 60] Searching for -60 in [1, 3, 5, 7, 9] a = -60, arr[middle_index] = 5, begin_index = 0, end_index = 4, middle_index = 2 a = -60, arr[middle_index] = 1, begin_index = 0, end_index = 1, middle_index = 0 a = -60, arr[middle_index] = 9, begin_index = 0, end_index = -1, middle_index = -1 the result is 0, the index for value 1 [-60, 1, 3, 5, 7, 9] Searching for -60 in [1, 3, 5, 7, 9, 11] a = -60, arr[middle_index] = 5, begin_index = 0, end_index = 5, middle_index = 2 a = -60, arr[middle_index] = 1, begin_index = 0, end_index = 1, middle_index = 0 a = -60, arr[middle_index] = 11, begin_index = 0, end_index = -1, middle_index = -1 the result is 0, the index for value 1 [-60, 1, 3, 5, 7, 9, 11] Searching for -60 in [1] a = -60, arr[middle_index] = 1, begin_index = 0, end_index = 0, middle_index = 0 the result is 0, the index for value 1 [-60, 1] Searching for 60 in [1] a = 60, arr[middle_index] = 1, begin_index = 0, end_index = 0, middle_index = 0 the result is 1, the index for value nil [1, 60] Searching for 60 in [] [60]

    Read the article

  • How to combine elements of a list

    - by Addie
    I'm working in c#. I have a sorted List of structures. The structure has a DateTime object which stores month and year and an integer which stores a value. The list is sorted by date. I need to traverse the list and combine it so that I only have one instance of the structure per date. For example: My initial list would look like this: { (Apr10, 3), (Apr10, 2), (Apr10, -3), (May10, 1), (May10, 1), (May10, -3), (Jun10, 3) } The resulting list should look like this: { (Apr10, 2), (May10, -1), (Jun10, 3) } I'm looking for a simple / efficient solution. The struct is: class CurrentTrade { public DateTime date; public int dwBuy; } The list is: private List<CurrentTrade> FillList

    Read the article

  • Clojure - tail recursive sieve of Eratosthenes

    - by Konrad Garus
    I have this implementation of the sieve of Eratosthenes in Clojure: (defn sieve [n] (loop [last-tried 2 sift (range 2 (inc n))] (if (or (nil? last-tried) (> last-tried n)) sift (let [filtered (filter #(or (= % last-tried) (< 0 (rem % last-tried))) sift)] (let [next-to-try (first (filter #(> % last-tried) filtered))] (recur next-to-try filtered)))))) For larger n (like 20000) it ends with stack overflow. Why doesn't tail call elimination work here? How to fix it?

    Read the article

  • Array sorting efficiency... Beginner need advice

    - by SoleSoft
    I'll start by saying I am very much a beginner programmer, this is essentially my first real project outside of using learning material. I've been making a 'Simon Says' style game (the game where you repeat the pattern generated by the computer) using C# and XNA, the actual game is complete and working fine but while creating it, I wanted to also create a 'top 10' scoreboard. The scoreboard would record player name, level (how many 'rounds' they've completed) and combo (how many buttons presses they got correct), the scoreboard would then be sorted by combo score. This led me to XML, the first time using it, and I eventually got to the point of having an XML file that recorded the top 10 scores. The XML file is managed within a scoreboard class, which is also responsible for adding new scores and sorting scores. Which gets me to the point... I'd like some feedback on the way I've gone about sorting the score list and how I could have done it better, I have no other way to gain feedback =(. I know .NET features Array.Sort() but I wasn't too sure of how to use it as it's not just a single array that needs to be sorted. When a new score needs to be entered into the scoreboard, the player name and level also have to be added. These are stored within an 'array of arrays' (10 = for 'top 10' scores) scoreboardComboData = new int[10]; // Combo scoreboardTextData = new string[2][]; scoreboardTextData[0] = new string[10]; // Name scoreboardTextData[1] = new string[10]; // Level as string The scoreboard class works as follows: - Checks to see if 'scoreboard.xml' exists, if not it creates it - Initialises above arrays and adds any player data from scoreboard.xml, from previous run - when AddScore(name, level, combo) is called the sort begins - Another method can also be called that populates the XML file with above array data The sort checks to see if the new score (combo) is less than or equal to any recorded scores within the scoreboardComboData array (if it's greater than a score, it moves onto the next element). If so, it moves all scores below the score it is less than or equal to down one element, essentially removing the last score and then places the new score within the element below the score it is less than or equal to. If the score is greater than all recorded scores, it moves all scores down one and inserts the new score within the first element. If it's the only score, it simply adds it to the first element. When a new score is added, the Name and Level data is also added to their relevant arrays, in the same way. What a tongue twister. Below is the AddScore method, I've added comments in the hope that it makes things clearer O_o. You can get the actual source file HERE. Below the method is an example of the quickest way to add a score to follow through with a debugger. public static void AddScore(string name, string level, int combo) { // If the scoreboard has not yet been filled, this adds another 'active' // array element each time a new score is added. The actual array size is // defined within PopulateScoreBoard() (set to 10 - for 'top 10' if (totalScores < scoreboardComboData.Length) totalScores++; // Does the scoreboard even need sorting? if (totalScores > 1) { for (int i = totalScores - 1; i > - 1; i--) { // Check to see if score (combo) is greater than score stored in // array if (combo > scoreboardComboData[i] && i != 0) { // If so continue to next element continue; } // Check to see if score (combo) is less or equal to element 'i' // score && that the element is not the last in the // array, if so the score does not need to be added to the scoreboard else if (combo <= scoreboardComboData[i] && i != scoreboardComboData.Length - 1) { // If the score is lower than element 'i' and greater than the last // element within the array, it needs to be added to the scoreboard. This is achieved // by moving each element under element 'i' down an element. The new score is then inserted // into the array under element 'i' for (int j = totalScores - 1; j > i; j--) { // Name and level data are moved down in their relevant arrays scoreboardTextData[0][j] = scoreboardTextData[0][j - 1]; scoreboardTextData[1][j] = scoreboardTextData[1][j - 1]; // Score (combo) data is moved down in relevant array scoreboardComboData[j] = scoreboardComboData[j - 1]; } // The new Name, level and score (combo) data is inserted into the relevant array under element 'i' scoreboardTextData[0][i + 1] = name; scoreboardTextData[1][i + 1] = level; scoreboardComboData[i + 1] = combo; break; } // If the method gets the this point, it means that the score is greater than all scores within // the array and therefore cannot be added in the above way. As it is not less than any score within // the array. else if (i == 0) { // All Names, levels and scores are moved down within their relevant arrays for (int j = totalScores - 1; j != 0; j--) { scoreboardTextData[0][j] = scoreboardTextData[0][j - 1]; scoreboardTextData[1][j] = scoreboardTextData[1][j - 1]; scoreboardComboData[j] = scoreboardComboData[j - 1]; } // The new number 1 top name, level and score, are added into the first element // within each of their relevant arrays. scoreboardTextData[0][0] = name; scoreboardTextData[1][0] = level; scoreboardComboData[0] = combo; break; } // If the methods get to this point, the combo score is not high enough // to be on the top10 score list and therefore needs to break break; } } // As totalScores < 1, the current score is the first to be added. Therefore no checks need to be made // and the Name, Level and combo data can be entered directly into the first element of their relevant // array. else { scoreboardTextData[0][0] = name; scoreboardTextData[1][0] = level; scoreboardComboData[0] = combo; } } } Example for adding score: private static void Initialize() { scoreboardDoc = new XmlDocument(); if (!File.Exists("Scoreboard.xml")) GenerateXML("Scoreboard.xml"); PopulateScoreBoard("Scoreboard.xml"); // ADD TEST SCORES HERE! AddScore("EXAMPLE", "10", 100); AddScore("EXAMPLE2", "24", 999); PopulateXML("Scoreboard.xml"); } In it's current state the source file is just used for testing, initialize is called within main and PopulateScoreBoard handles the majority of other initialising, so nothing else is needed, except to add a test score. I thank you for your time!

    Read the article

  • How can I further optimize this color difference function?

    - by aLfa
    I have made this function to calculate color differences in the CIE Lab colorspace, but it lacks speed. Since I'm not a Java expert, I wonder if any Java guru around has some tips that can improve the speed here. The code is based on the matlab function mentioned in the comment block. /** * Compute the CIEDE2000 color-difference between the sample color with * CIELab coordinates 'sample' and a standard color with CIELab coordinates * 'std' * * Based on the article: * "The CIEDE2000 Color-Difference Formula: Implementation Notes, * Supplementary Test Data, and Mathematical Observations,", G. Sharma, * W. Wu, E. N. Dalal, submitted to Color Research and Application, * January 2004. * available at http://www.ece.rochester.edu/~gsharma/ciede2000/ */ public static double deltaE2000(double[] lab1, double[] lab2) { double L1 = lab1[0]; double a1 = lab1[1]; double b1 = lab1[2]; double L2 = lab2[0]; double a2 = lab2[1]; double b2 = lab2[2]; // Cab = sqrt(a^2 + b^2) double Cab1 = Math.sqrt(a1 * a1 + b1 * b1); double Cab2 = Math.sqrt(a2 * a2 + b2 * b2); // CabAvg = (Cab1 + Cab2) / 2 double CabAvg = (Cab1 + Cab2) / 2; // G = 1 + (1 - sqrt((CabAvg^7) / (CabAvg^7 + 25^7))) / 2 double CabAvg7 = Math.pow(CabAvg, 7); double G = 1 + (1 - Math.sqrt(CabAvg7 / (CabAvg7 + 6103515625.0))) / 2; // ap = G * a double ap1 = G * a1; double ap2 = G * a2; // Cp = sqrt(ap^2 + b^2) double Cp1 = Math.sqrt(ap1 * ap1 + b1 * b1); double Cp2 = Math.sqrt(ap2 * ap2 + b2 * b2); // CpProd = (Cp1 * Cp2) double CpProd = Cp1 * Cp2; // hp1 = atan2(b1, ap1) double hp1 = Math.atan2(b1, ap1); // ensure hue is between 0 and 2pi if (hp1 < 0) { // hp1 = hp1 + 2pi hp1 += 6.283185307179586476925286766559; } // hp2 = atan2(b2, ap2) double hp2 = Math.atan2(b2, ap2); // ensure hue is between 0 and 2pi if (hp2 < 0) { // hp2 = hp2 + 2pi hp2 += 6.283185307179586476925286766559; } // dL = L2 - L1 double dL = L2 - L1; // dC = Cp2 - Cp1 double dC = Cp2 - Cp1; // computation of hue difference double dhp = 0.0; // set hue difference to zero if the product of chromas is zero if (CpProd != 0) { // dhp = hp2 - hp1 dhp = hp2 - hp1; if (dhp > Math.PI) { // dhp = dhp - 2pi dhp -= 6.283185307179586476925286766559; } else if (dhp < -Math.PI) { // dhp = dhp + 2pi dhp += 6.283185307179586476925286766559; } } // dH = 2 * sqrt(CpProd) * sin(dhp / 2) double dH = 2 * Math.sqrt(CpProd) * Math.sin(dhp / 2); // weighting functions // Lp = (L1 + L2) / 2 - 50 double Lp = (L1 + L2) / 2 - 50; // Cp = (Cp1 + Cp2) / 2 double Cp = (Cp1 + Cp2) / 2; // average hue computation // hp = (hp1 + hp2) / 2 double hp = (hp1 + hp2) / 2; // identify positions for which abs hue diff exceeds 180 degrees if (Math.abs(hp1 - hp2) > Math.PI) { // hp = hp - pi hp -= Math.PI; } // ensure hue is between 0 and 2pi if (hp < 0) { // hp = hp + 2pi hp += 6.283185307179586476925286766559; } // LpSqr = Lp^2 double LpSqr = Lp * Lp; // Sl = 1 + 0.015 * LpSqr / sqrt(20 + LpSqr) double Sl = 1 + 0.015 * LpSqr / Math.sqrt(20 + LpSqr); // Sc = 1 + 0.045 * Cp double Sc = 1 + 0.045 * Cp; // T = 1 - 0.17 * cos(hp - pi / 6) + // + 0.24 * cos(2 * hp) + // + 0.32 * cos(3 * hp + pi / 30) - // - 0.20 * cos(4 * hp - 63 * pi / 180) double hphp = hp + hp; double T = 1 - 0.17 * Math.cos(hp - 0.52359877559829887307710723054658) + 0.24 * Math.cos(hphp) + 0.32 * Math.cos(hphp + hp + 0.10471975511965977461542144610932) - 0.20 * Math.cos(hphp + hphp - 1.0995574287564276334619251841478); // Sh = 1 + 0.015 * Cp * T double Sh = 1 + 0.015 * Cp * T; // deltaThetaRad = (pi / 3) * e^-(36 / (5 * pi) * hp - 11)^2 double powerBase = hp - 4.799655442984406; double deltaThetaRad = 1.0471975511965977461542144610932 * Math.exp(-5.25249016001879 * powerBase * powerBase); // Rc = 2 * sqrt((Cp^7) / (Cp^7 + 25^7)) double Cp7 = Math.pow(Cp, 7); double Rc = 2 * Math.sqrt(Cp7 / (Cp7 + 6103515625.0)); // RT = -sin(delthetarad) * Rc double RT = -Math.sin(deltaThetaRad) * Rc; // de00 = sqrt((dL / Sl)^2 + (dC / Sc)^2 + (dH / Sh)^2 + RT * (dC / Sc) * (dH / Sh)) double dLSl = dL / Sl; double dCSc = dC / Sc; double dHSh = dH / Sh; return Math.sqrt(dLSl * dLSl + dCSc * dCSc + dHSh * dHSh + RT * dCSc * dHSh); }

    Read the article

  • Finding patterns in source code

    - by trex279
    If I wanted to learn about pattern recognition in general what would be a good place to start (recommend a book)? Also, does anybody have any experience/knowledge on how to go about applying these algorithms to find abstraction patterns in programs? (repeated code, chunks of code that do the same thing, but in slightly different ways, etc.) Thanks Edit: I don't mind mathematically intensive books. In fact, that would be a good thing.

    Read the article

  • PHP script to draw a spiral?

    - by Vacilando
    Does anybody have a PHP (or other language) script for drawing a spiral. A simple (Archimedean spiral) would be just fine. Of course the principle is simple but coding it in SVG or GD would take some time, so I wonder if somebody has one ready :-)

    Read the article

  • Refresh decorator

    - by Morgoth
    I'm trying to write a decorator that 'refreshes' after being called, but where the refreshing only occurs once after the last function exits. Here is an example: @auto_refresh def a(): print "In a" @auto_refresh def b(): print "In b" a() If a() is called, I want the refresh function to be run after exiting a(). If b() is called, I want the refresh function to be run after exiting b(), but not after a() when called by b(). Here is an example of a class that does this: class auto_refresh(object): def __init__(self, f): print "Initializing decorator" self.f = f def __call__(self, *args, **kwargs): print "Before function" if 'refresh' in kwargs: refresh = kwargs.pop('refresh') else: refresh = False self.f(*args, **kwargs) print "After function" if refresh: print "Refreshing" With this decorator, if I run b() print '---' b(refresh=True) print '---' b(refresh=False) I get the following output: Initializing decorator Initializing decorator Before function In b Before function In a After function After function --- Before function In b Before function In a After function After function Refreshing --- Before function In b Before function In a After function After function So when written this way, not specifying the refresh argument means that refresh is defaulted to False. Can anyone think of a way to change this so that refresh is True when not specified? Changing the refresh = False to refresh = True in the decorator does not work: Initializing decorator Initializing decorator Before function In b Before function In a After function Refreshing After function Refreshing --- Before function In b Before function In a After function Refreshing After function Refreshing --- Before function In b Before function In a After function Refreshing After function because refresh then gets called multiple times in the first and second case, and once in the last case (when it should be once in the first and second case, and not in the last case).

    Read the article

  • Finding unreachable sections of a 2D map

    - by dada
    I don't want you to solve this problem for me, i just want to ask for some ideas. This is the input below, and it represents a map. The 'x' represents land, and the dots - water. So with the 'x' you can represent 'islands' on the map. xxx.x...xxxxx xxxx....x...x ........x.x.x ..xxxxx.x...x ..x...x.xxx.x ..x.x.x...x.. ..x...x...xxx ...xxxxxx.... x............ As you can see, there are some islands which are closed, i.e. if some boat is inside its territory, it won't be able to get out, for ex: ..xxxxx. ..x...x. ..x.x.x. ..x...x. ..xxxxx. And there are some open islands which is possible to get out of them, ex: .xxxxx .x...x .x.x.x .xxx.x The problem is this: For a given NxM map like those above, calculate howm any of the islands are open, and how many are closed. I repeat: I don't want you to solve it, just need some sugestions, ideas for solving. thanks

    Read the article

  • Refining data stored in SQLite - how to join several contacts?

    - by Krab
    Problem background Imagine this problem. You have a water molecule which is in contact with other molecules (if the contact is a hydrogen bond, there can be 4 other molecules around my water). Like in the following picture (A, B, C, D are some other atoms and dots mean the contact). A B . . O / \ H H . . C D I have the information about all the dots and I need to eliminate the water in the center and create records describing contacts of A-C, A-D, A-B, B-C, B-D, and C-D. Database structure Currently, I have the following structure in the database: Table atoms: "id" integer PRIMARY KEY, "amino" char(3) NOT NULL, (HOH for water or other value) other columns identifying the atom Table contacts: "acceptor_id" integer NOT NULL, (the atom near to my hydrogen, here C or D) "donor_id" integer NOT NULL, (here A or B) "directness" char(1) NOT NULL, (this should be D for direct and W for water-mediated) other columns about the contact, such as the distance Current solution (insufficient) Now, I'm going through all the contacts which have donor.amino = "HOH". In this sample case, this would select contacts from C and D. For each of these selected contacts, I look up contacts having the same acceptor_id as is the donor_id in the currently selected contact. From this information, I create the new contact. At the end, I delete all contacts to or from HOH. This way, I am obviously unable to create C-D and A-B contacts (the other 4 are OK). If I try a similar approach - trying to find two contacts having the same donor_id, I end up with duplicate contacts (C-D and D-C). Is there a simple way to retrieve all six contacts without duplicates? I'm dreaming about some one page long SQL query which retrievs just these six wanted rows. :-) It is preferable to conserve information about who is donor where possible, but not strictly necessary. Big thanks to all of you who read this question to this point.

    Read the article

  • Behavior Tree Implementations

    - by Hamza Yerlikaya
    I am looking for behavior tree implementations in any language, I would like to learn more about how they are implemented and used so can roll my own but I could only find one Owyl, unfortunately, it does not contain examples of how it is used. Any one know any other open source ones that I can browse through the code see some examples of how they are used etc? EDIT: Behavior tree is the name of the data structure.

    Read the article

  • Find a missing 32bit integer among a unsorted array containing at most 4 billion ints

    - by pierr
    Hi, This is the problem described in Programming pearls. I can not understand binary search method descrbied by the author. Can any one helps to elaborate? Thanks. EDIT: I can understand binary search in general. I just can not understand how to apply binary search in this special case. How to decide the missing number is in or not in some range so that we can choose another. English is not my native language, that is one reason I can not understand the author well. So, use plain english please:) EDIT: Thank you all for your great answer and comments ! The most important lesson I leant from solving this question is Binary search applies not only on sorted array!

    Read the article

  • Write a function that returns the longest palindrome in a given string. e.g "ccddcc" in the string "

    - by Learner
    I thought of a solution but it runs in O(n^2) time Algo 1: Steps: Its a brute force method Have 2 for loops for i = 1 to i less than array.length -1 for j=i+1 to j less than array.length This way you can get substring of every possible combination from the array Have a palindrome function which checks if a string is palindrome so for every substring (i,j) call this function, if it is a palindrome store it in a string variable If you find next palindrome substring and if it is greater than the current one, replace it with current one. Finally your string variable will have the answer Issues: 1. This algo runs in O(n^2) time. Algo 2: Reverse the string and store it in diferent array Now find the largest matching substring between both the array But this too runs in O(n^2) time Can you guys think of an algo which runs in a better time. If possible O(n) time

    Read the article

  • Best way to Fingerprint and Verify html structure.

    - by Lukas Šalkauskas
    Hello there, I just want to know what is your opinion about how to fingerprint/verify html/links structure. The problem I want to solve is: fingerprint for example 10 different sites, html pages. And after some time I want to have possibility to verify them, so is, if site has been changed, links changed, verification fails, othervise verification success. My base Idea is to analyze link structure by splitting it in some way, doing some kind of tree, and from that tree generate some kind of code. But I'm still in brainstorm stage, where I need to discuss this with someone, and know other ideas. So any ideas, algos, and suggestions would be usefull.

    Read the article

  • Is there a website to look up common, already written functions?

    - by pinnacler
    I'm sitting here writing a function that I'm positive has been written before, somewhere on earth. It's just too common to have not been attempted, and I'm wondering why I can't just go to a website and search for a function that I can then copy and paste into my project in 2 seconds, instead of wasting my day reinventing the wheel. Sure there are certain libraries you can use, but where do you find these libraries and when they are absent, is there a site like I'm describing? Possibly a wiki of some type that contains free code that anybody can edit and improve? Edit: I can code things fine, I just don't know HOW to do them. So for example, right now, I'm trying to localize a robot/car/point in space. I KNOW there is a way to do it, just based off of range and distance. Triangulation and Trilateration. How to code that is a different story. A site that could have psuedo code, step by step how to do that would be ridiculously helpful. It would also ensure the optimal solution since everybody can edit it. I'm also writing in Matlab, which I hate because it's quirky, adding to my desire for creating a website like I describe.

    Read the article

  • Random access gzip stream

    - by jkff
    I'd like to be able to do random access into a gzipped file. I can afford to do some preprocessing on it (say, build some kind of index), provided that the result of the preprocessing is much smaller than the file itself. Any advice? My thoughts were: Hack on an existing gzip implementation and serialize its decompressor state every, say, 1 megabyte of compressed data. Then to do random access, deserialize the decompressor state and read from the megabyte boundary. This seems hard, especially since I'm working with Java and I couldn't find a pure-java gzip implementation :( Re-compress the file in chunks of 1Mb and do same as above. This has the disadvantage of doubling the required disk space. Write a simple parser of the gzip format that doesn't do any decompressing and only detects and indexes block boundaries (if there even are any blocks: I haven't yet read the gzip format description)

    Read the article

< Previous Page | 76 77 78 79 80 81 82 83 84 85 86 87  | Next Page >