Search Results

Search found 5516 results on 221 pages for 'scope identity'.

Page 79/221 | < Previous Page | 75 76 77 78 79 80 81 82 83 84 85 86  | Next Page >

  • CentOS 6.2 Bridge Setup for KVM

    - by Gaia
    I'm trying to set up bridged networking with KVM on CentOS 6.2 to no avail. There are plenty of docs and tutorials about it, but they all seem to conflict or don't provide info specific enough to my situation. I just don't get it. I access the host via public IP "xxx.xxx.128.58". All other available IPs (/29) should be bridged and made available to the only KVM guest (running a public facing LAMP stack) that will be setup on this machine. The amazingly unhelpful NOC people assigned the extra IPs to eth1. Is this correct? Should br0 bridge to eth0 or eth1? How do I set this up? Here is the relevant info: eth0 Link encap:Ethernet HWaddr 00:25:90:68:FE:BC inet6 addr: fe80::225:90ff:fe68:febc/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:763 errors:0 dropped:0 overruns:0 frame:0 TX packets:8 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:550811 (537.9 KiB) TX bytes:648 (648.0 b) Memory:fb980000-fba00000 eth1 Link encap:Ethernet HWaddr 00:25:90:68:FE:BD inet addr:xxx.xxx.128.58 Bcast:xxx.xxx.128.63 Mask:255.255.255.248 inet6 addr: fe80::225:90ff:fe68:febd/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:1806 errors:0 dropped:0 overruns:0 frame:0 TX packets:1505 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:133166 (130.0 KiB) TX bytes:106070 (103.5 KiB) Memory:fb900000-fb980000 eth1:0 Link encap:Ethernet HWaddr 00:25:90:68:FE:BD inet addr:xxx.xxx.128.59 Bcast:xxx.xxx.128.63 Mask:255.255.255.248 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Memory:fb900000-fb980000 eth1:1 Link encap:Ethernet HWaddr 00:25:90:68:FE:BD inet addr:xxx.xxx.128.60 Bcast:xxx.xxx.128.63 Mask:255.255.255.248 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Memory:fb900000-fb980000 eth1:2 Link encap:Ethernet HWaddr 00:25:90:68:FE:BD inet addr:xxx.xxx.128.61 Bcast:xxx.xxx.128.63 Mask:255.255.255.248 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Memory:fb900000-fb980000 eth1:3 Link encap:Ethernet HWaddr 00:25:90:68:FE:BD inet addr:xxx.xxx.128.62 Bcast:xxx.xxx.128.63 Mask:255.255.255.248 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Memory:fb900000-fb980000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b) virbr0 Link encap:Ethernet HWaddr 52:54:00:62:55:68 inet addr:192.168.122.1 Bcast:192.168.122.255 Mask:255.255.255.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b) > cat /etc/sysconfig/network NETWORKING=yes HOSTNAME=XXXX.domain.com > brctl show bridge name bridge id STP enabled interfaces br0 8000.00259068febc no eth0 virbr0 8000.525400625568 yes virbr0-nic > ls -fl | grep ifcfg -rw-r--r-- 1 root root 198 Jun 7 10:58 ifcfg-eth0 -rw-r--r--. 1 root root 254 Oct 7 2011 ifcfg-lo -rw-r--r-- 1 root root 77 Jun 6 18:51 ifcfg-eth1-range0 -rw-r--r-- 1 root root 168 Jun 6 18:50 ifcfg-eth1 > cat ifcfg-eth0 DEVICE="eth0" BOOTPROTO="static" BRIDGE="br0" HWADDR="00:25:90:68:FE:BC" IPV6INIT="yes" MTU="1500" NM_CONTROLLED="yes" ONBOOT="yes" TYPE="Ethernet" IPADDR="yyy.yyy.216.131" NETMASK="255.255.255.128" > cat ifcfg-eth1 DEVICE="eth1" HWADDR="00:25:90:68:FE:BD" NM_CONTROLLED="yes" ONBOOT="yes" BOOTPROTO="static" IPADDR="xxx.xxx.128.58" NETMASK="255.255.255.248" GATEWAY="xxx.xxx.128.57" > cat ifcfg-eth1-range0 IPADDR_START="xxx.xxx.128.59" IPADDR_END="xxx.xxx.128.62" CLONENUM_START="0" Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface xxx.xxx.128.56 * 255.255.255.248 U 0 0 0 eth1 192.168.122.0 * 255.255.255.0 U 0 0 0 virbr0 link-local * 255.255.0.0 U 1003 0 0 eth1 default xxx.xxx.128.57 0.0.0.0 UG 0 0 0 eth1

    Read the article

  • Issue in setting up VPN connection (IKEv1) using android (ICS vpn client) with Strongswan 4.5.0 server

    - by Kushagra Bhatnagar
    I am facing issues in setting up VPN connection(IKEv1) using android (ICS vpn client) and Strongswan 4.5.0 server. Below is the set up: Strongswan server is running on ubuntu linux machine which is connected to some wifi hotspot. Using the steps in this guide link, I generated CA, server and client certificate. Once certificates are generated, following (clientCert.p12 and caCert.pem) are sent to mobile via mail and installed on android device. Below are the ip addresses assigned to various interfaces Linux server wlan0 interface ip where server is running: 192.168.43.212, android device eth0 interface ip address: 192.168.43.62; Android device is also attached with the same wifi hotspot. On the Android device, I uses IPsec Xauth RSA option for setting up VPN authentication configuration. I am using the following ipsec.conf configuration: # basic configuration config setup plutodebug=all # crlcheckinterval=600 # strictcrlpolicy=yes # cachecrls=yes nat_traversal=yes # charonstart=yes plutostart=yes # Add connections here. # Sample VPN connections conn ios1 keyexchange=ikev1 authby=xauthrsasig xauth=server left=%defaultroute leftsubnet=0.0.0.0/0 leftfirewall=yes leftcert=serverCert.pem right=192.168.43.62 rightsubnet=10.0.0.0/24 rightsourceip=10.0.0.2 rightcert=clientCert.pem pfs=no auto=add      With the above configurations when I enable VPN on android device, VPN connection is not successful and it gets timed out in Authentication phase. I ran wireshark on both the android device and strongswan server, from the tcpdump below are the observations. Initially Identity Protection (Main mode) exchanges happens between device and server and all are successful. After all successful Identity Protection (Main mode) exchanges server is sending Transaction (Config mode) to device. In reply android device is sending Informational message instead of Transaction (Config mode) message. Further server is keep on sending Transaction (Config mode) message and device is again sending Identity Protection (Main mode) messages. Finally timeout happens and connection fails. I also capture Strongswan server logs and below are the snippets from the server logs which also verifies the same(described above). Apr 27 21:09:40 Linux pluto[12105]: | **parse ISAKMP Message: Apr 27 21:09:40 Linux pluto[12105]: | initiator cookie: Apr 27 21:09:40 Linux pluto[12105]: | 06 fd 61 b8 86 82 df ed Apr 27 21:09:40 Linux pluto[12105]: | responder cookie: Apr 27 21:09:40 Linux pluto[12105]: | 73 7a af 76 74 f0 39 8b Apr 27 21:09:40 Linux pluto[12105]: | next payload type: ISAKMP_NEXT_HASH Apr 27 21:09:40 Linux pluto[12105]: | ISAKMP version: ISAKMP Version 1.0 Apr 27 21:09:40 Linux pluto[12105]: | exchange type: ISAKMP_XCHG_INFO Apr 27 21:09:40 Linux pluto[12105]: | flags: ISAKMP_FLAG_ENCRYPTION Apr 27 21:09:40 Linux pluto[12105]: | message ID: a2 80 ad 82 Apr 27 21:09:40 Linux pluto[12105]: | length: 92 Apr 27 21:09:40 Linux pluto[12105]: | ICOOKIE: 06 fd 61 b8 86 82 df ed Apr 27 21:09:40 Linux pluto[12105]: | RCOOKIE: 73 7a af 76 74 f0 39 8b Apr 27 21:09:40 Linux pluto[12105]: | peer: c0 a8 2b 3e Apr 27 21:09:40 Linux pluto[12105]: | state hash entry 25 Apr 27 21:09:40 Linux pluto[12105]: | state object not found Apr 27 21:09:40 Linux pluto[12105]: packet from 192.168.43.62:500: Informational Exchange is for an unknown (expired?) SA Apr 27 21:09:40 Linux pluto[12105]: | next event EVENT_RETRANSMIT in 10 seconds for #9 Can anyone please provide update on this issue. Why the VPN connection gets timed out and why the ISAKMP exchanges are not proper between Android and strongswan server.

    Read the article

  • Incorrect gzipping of http requests, can't find who's doing it

    - by Ned Batchelder
    We're seeing some very strange mangling of HTTP responses, and we can't figure out what is doing it. We have an app server handling JSON requests. Occasionally, the response is returned gzipped, but with incorrect headers that prevent the browser from interpreting it correctly. The problem is intermittent, and changes behavior over time. Yesterday morning it seemed to fail 50% of the time, and in fact, seemed tied to one of our two load-balanced servers. Later in the afternoon, it was failing only 20 times out of 1000, and didn't correlate with an app server. The two app servers are running Apache 2.2 with mod_wsgi and a Django app stack. They have identical Apache configs and source trees, and even identical packages installed on Red Hat. There's a hardware load balancer in front, I don't know the make or model. Akamai is also part of the food chain, though we removed Akamai and still had the problem. Here's a good request and response: * Connected to example.com (97.7.79.129) port 80 (#0) > POST /claim/ HTTP/1.1 > User-Agent: curl/7.19.7 (x86_64-pc-linux-gnu) libcurl/7.19.7 OpenSSL/0.9.8k zlib/1.2.3.3 libidn/1.15 > Host: example.com > Accept: */* > Referer: http://example.com/apps/ > Accept-Encoding: gzip,deflate > Content-Length: 29 > Content-Type: application/x-www-form-urlencoded > } [data not shown] < HTTP/1.1 200 OK < Server: Apache/2 < Content-Language: en-us < Content-Encoding: identity < Content-Length: 47 < Content-Type: application/x-javascript < Connection: keep-alive < Vary: Accept-Encoding < { [data not shown] * Connection #0 to host example.com left intact * Closing connection #0 {"msg": "", "status": "OK", "printer_name": ""} And here's a bad one: * Connected to example.com (97.7.79.129) port 80 (#0) > POST /claim/ HTTP/1.1 > User-Agent: curl/7.19.7 (x86_64-pc-linux-gnu) libcurl/7.19.7 OpenSSL/0.9.8k zlib/1.2.3.3 libidn/1.15 > Host: example.com > Accept: */* > Referer: http://example.com/apps/ > Accept-Encoding: gzip,deflate > Content-Length: 29 > Content-Type: application/x-www-form-urlencoded > } [data not shown] < HTTP/1.1 200 OK < Server: Apache/2 < Content-Language: en-us < Content-Encoding: identity < Content-Type: application/x-javascript < Content-Encoding: gzip < Content-Length: 59 < Connection: keep-alive < Vary: Accept-Encoding < X-N: S < { [data not shown] * Connection #0 to host example.com left intact * Closing connection #0 ?V?-NW?RPR?QP*.I,)-???A??????????T??Z? ??/ There are two things to notice about the bad response: It has two Content-Encoding headers, and the browsers seem to use the first. So they see an identity encoding header, and gzipped content, so they can't interpret the response. The bad response has an extra "X-N: S" header. Perhaps if I could find out what intermediary adds "X-N: S" headers to responses, I could track down the culprit...

    Read the article

  • VirtualBox - Public Static IP for a Debian Guest on a Dedicated Server

    - by user86296
    Goal: I want to run a Debian-squeeze-Guest in VirtualBox and it's own public static ip. I found tons of threads about this topic, but all in all I'm now trying for 10 hours (reading the manual, the forums, trying to learn about networking concepts & commands) to give a Guest his own public static ip (so that the Guest is similar to a vServer you can order from a hosting company), but wasn't able to. Since I'm a big noob as far as networking stuff is concerned, I'm probably doing something wrong.(please bear with me :-) ) Situation: VirtualBox 4.0.10 (headless no gui) is running on a dedicated Debian-Server, the Guest OS is Debian as well. The server has a static ip and I ordered an additional ip for a VM. Problem description: Upto now I was able to use NAT to access the VM from the outside and to setup an internal network between several Guests and all of this worked very well. When setting NIC 1 to bridged and configuring a public static ip on the guest, the guest was unpingable. (neither from outside, nor from the host) I could connect to the guest via the internal network, from another vm, though. ( VBoxManage controlvm VMGuest nic1 bridged eth0 ) ( configuration attempt of static-ip on the guest '/etc/network/interfaces' is below) Please let me know what I'm doing wrong, or what I can try to get it to work, or if you need more info. I think I've read that with a current VirtualBox-version for bridged networking no special host-configuration is necessary, is that accurate, or might that be the problem? Additional Info Info I got from the hosting company about the additional IP Please note that you can use the IP address only for this server. IP: 46.4.xx.xx Gateway: 46.4.xx.xx Mask: 255.255.255.248 VBoxManage showvminfo VMGuest |less ... NIC 1: MAC: 080027D72F7B, Attachment: Bridged Interface 'eth0', Cable connected: on, Trace: off (file: none), Type: 82540EM, Reported speed: 0 Mbps, Boot priority: 0 NIC 2: MAC: 080027B03B75, Attachment: Internal Network 'InternalNet1', Cable connected: on, Trace: off (file: none), Type: Am79C973, Reported speed: 0 Mbps, Boot priority: 0 NIC 3: disabled (...rest is disabled) cat /etc/network/interfaces on the Host-machine # Loopback device: auto lo iface lo inet loopback # device: eth0 auto eth0 iface eth0 inet static address 46.4.xx.xx broadcast 46.4.xx.xx netmask 255.255.255.224 gateway 46.4.xx.xx post-up mii-tool -F 100baseTx-FD eth0 # default route to access subnet up route add -net 46.4.xx.xx netmask 255.255.255.224 gw 46.4.xx.xx eth0 cat /etc/network/interfaces on the Guest-VM # This file describes the network interfaces available on your system # and how to activate them. For more information, see interfaces(5). # The loopback network interface auto lo iface lo inet loopback # The primary network interface allow-hotplug eth0 auto eth0 iface eth0 inet static address 46.4.xx.xx netmask 255.255.255.248 gateway 46.4.xx.xx auto eth1 iface eth1 inet dhcp ifconfig -a on the Guest shows the correct static ip for eth0 but the Guest is unreachable "over eth0" eth0 Link encap:Ethernet HWaddr 08:00:27:d7:2f:7b inet addr:46.4.xx.xx Bcast:46.4.xx.xx Mask:255.255.255.248 inet6 addr: fe80::a00:27ff:fed7:2f7b/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:21 errors:0 dropped:0 overruns:0 frame:0 TX packets:69 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:1260 (1.2 KiB) TX bytes:3114 (3.0 KiB) eth1 Link encap:Ethernet HWaddr 08:00:27:b0:3b:75 inet addr:192.168.10.3 Bcast:192.168.10.255 Mask:255.255.255.0 inet6 addr: fe80::a00:27ff:feb0:3b75/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:142 errors:0 dropped:0 overruns:0 frame:0 TX packets:92 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:15962 (15.5 KiB) TX bytes:14540 (14.1 KiB) Interrupt:16 Base address:0xd240 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:123 errors:0 dropped:0 overruns:0 frame:0 TX packets:123 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:25156 (24.5 KiB) TX bytes:25156 (24.5 KiB)

    Read the article

  • Have to dhclient each restart to access internet

    - by Zeophlite
    So each time I restart my ubuntu server (virtual 10.04, via Xencenter), I have to call dhclient before I can access the internet: http://img813.imageshack.us/i/dhclient.png/ What do I need to change to get internet access automatically? Apologies for posting images, I'm using Xencenter, so I can't copy/paste the console output EDIT:: daniel@workwork:~$ cat /etc/network/interfaces # This file describes the network interfaces available on your system # and how to activate them. For more information, see interfaces(5). # The loopback network interface auto lo iface lo inet loopback # The primary network interface auto eth0 iface eth0 inet static address 192.168.69.136 netmask 255.255.255.0 network 192.168.69.0 broadcast 192.168.69.255 gateway 192.168.69.1 # dns-* options are implemented by the resolvconf package, if installed dns-nameservers 192.168.69.120 dns-search workwork.com.au daniel@workwork:~$ ifconfig eth0 Link encap:Ethernet HWaddr ae:11:14:22:0a:03 inet6 addr: fe80::ac11:14ff:fe22:a03/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:32 errors:0 dropped:0 overruns:0 frame:0 TX packets:85 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:10496 (10.4 KB) TX bytes:13086 (13.0 KB) Interrupt:32 Base address:0x6000 eth1 Link encap:Ethernet HWaddr b2:2c:40:f2:a0:fa inet addr:192.168.69.167 Bcast:192.168.69.255 Mask:255.255.255.0 inet6 addr: fe80::b02c:40ff:fef2:a0fa/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:13448 errors:0 dropped:0 overruns:0 frame:0 TX packets:3100 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:7679428 (7.6 MB) TX bytes:282286 (282.2 KB) Interrupt:36 Base address:0xa100 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:179 errors:0 dropped:0 overruns:0 frame:0 TX packets:179 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:36905 (36.9 KB) TX bytes:36905 (36.9 KB) daniel@workwork:/var/lib/dhcp3$ cat dhclient.leases lease { interface "eth1"; fixed-address 192.168.69.167; filename "boot\\x86\\wdsnbp.com"; option subnet-mask 255.255.255.0; option routers 192.168.69.1; option dhcp-lease-time 28800; option dhcp-message-type 5; option domain-name-servers 192.168.69.120,192.168.69.121; option dhcp-server-identifier 192.168.69.120; option dhcp-renewal-time 14400; option dhcp-rebinding-time 25200; option domain-name "workwork.com.au"; renew 5 2011/03/18 07:36:53; rebind 5 2011/03/18 11:35:39; expire 5 2011/03/18 12:35:39; } lease { interface "eth1"; fixed-address 192.168.69.167; filename "boot\\x86\\wdsnbp.com"; option subnet-mask 255.255.255.0; option routers 192.168.69.1; option dhcp-lease-time 28800; option dhcp-message-type 5; option domain-name-servers 192.168.69.120,192.168.69.121; option dhcp-server-identifier 192.168.69.120; option dhcp-renewal-time 14400; option dhcp-rebinding-time 25200; option domain-name "workwork.com.au"; renew 5 2011/03/18 08:51:58; rebind 5 2011/03/18 12:24:16; expire 5 2011/03/18 13:24:16; } daniel@workwork:/var/lib/dhcp3$ cat dhclient.eth0.leases daniel@workwork:/var/lib/dhcp3$ ifconfig eth1 before and after dhclient http://img692.imageshack.us/i/prepost.png/

    Read the article

  • SBS2003 to SBS2011 Migration - Installation Error

    - by Shawn Gradwell
    Microsoft Small Business Server 2003 to 2011 Migration. I followed the Migration Guide from Microsoft and the source server had no errors when running the various tests prior to the migration. I have completed the destination server setup using the Answer File and the server is up and running. It all looks good, I can access Exchange and AD and the only problem is the error message when you log in stating that the setup did not complete and to check the logs. Because all looks good I am continuing the migration to the destination server. I also have to state that this client does not use Sharepoint at all. Do I have to redo everything? Herewith the logs: [4992] 121016.225454.5905: Task: Starting Add User or Group access VSS registry. [4992] 121016.225454.7645: TaskManagement: In TaskScheduler.RunTasks(): The "ConfigureSharePointVSSRegistryTask" Task threw an Exception during the Run() call:System.Security.Principal.IdentityNotMappedException: Some or all identity references could not be translated. at System.Security.Principal.NTAccount.Translate(IdentityReferenceCollection sourceAccounts, Type targetType, Boolean forceSuccess) at System.Security.Principal.NTAccount.Translate(Type targetType) at System.Security.AccessControl.CommonObjectSecurity.ModifyAccess(AccessControlModification modification, AccessRule rule, Boolean& modified) at System.Security.AccessControl.CommonObjectSecurity.AddAccessRule(AccessRule rule) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.AddUsersToAccessRegistry(List`1 names) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.Run(ITaskDataLink dl) at Microsoft.WindowsServerSolutions.TaskManagement.Data.Task.Run(ITaskDataLink dataLink) at Microsoft.WindowsServerSolutions.TaskManagement.TaskScheduler.RunTasks(String taskListId, String stateFileName) [4992] 121016.225454.7655: Setup: An error was encountered on the TME thread: System.Security.Principal.IdentityNotMappedException: Some or all identity references could not be translated. at System.Security.Principal.NTAccount.Translate(IdentityReferenceCollection sourceAccounts, Type targetType, Boolean forceSuccess) at System.Security.Principal.NTAccount.Translate(Type targetType) at System.Security.AccessControl.CommonObjectSecurity.ModifyAccess(AccessControlModification modification, AccessRule rule, Boolean& modified) at System.Security.AccessControl.CommonObjectSecurity.AddAccessRule(AccessRule rule) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.AddUsersToAccessRegistry(List`1 names) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.Run(ITaskDataLink dl) at Microsoft.WindowsServerSolutions.TaskManagement.Data.Task.Run(ITaskDataLink dataLink) at Microsoft.WindowsServerSolutions.TaskManagement.TaskScheduler.RunTasks(String taskListId, String stateFileName) at Microsoft.WindowsServerSolutions.Setup.SBSSetup.ProgressPagePresenter._RunTasks(Object sender, DoWorkEventArgs e) [4956] 121016.225455.0685: Setup: _UnhandledExceptionHandler: Setup encountered an error: System.Reflection.TargetInvocationException: Exception has been thrown by the target of an invocation. ---> System.Reflection.TargetInvocationException: The TME thread failed (see the inner exception). ---> System.Security.Principal.IdentityNotMappedException: Some or all identity references could not be translated. at System.Security.Principal.NTAccount.Translate(IdentityReferenceCollection sourceAccounts, Type targetType, Boolean forceSuccess) at System.Security.Principal.NTAccount.Translate(Type targetType) at System.Security.AccessControl.CommonObjectSecurity.ModifyAccess(AccessControlModification modification, AccessRule rule, Boolean& modified) at System.Security.AccessControl.CommonObjectSecurity.AddAccessRule(AccessRule rule) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.AddUsersToAccessRegistry(List`1 names) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.Run(ITaskDataLink dl) at Microsoft.WindowsServerSolutions.TaskManagement.Data.Task.Run(ITaskDataLink dataLink) at Microsoft.WindowsServerSolutions.TaskManagement.TaskScheduler.RunTasks(String taskListId, String stateFileName) at Microsoft.WindowsServerSolutions.Setup.SBSSetup.ProgressPagePresenter._RunTasks(Object sender, DoWorkEventArgs e) at System.ComponentModel.BackgroundWorker.WorkerThreadStart(Object argument) --- End of inner exception stack trace --- at Microsoft.WindowsServerSolutions.Setup.SBSSetup.ProgressPagePresenter.TasksCompleted(Object sender, RunWorkerCompletedEventArgs e) --- End of inner exception stack trace --- at System.RuntimeMethodHandle._InvokeMethodFast(IRuntimeMethodInfo method, Object target, Object[] arguments, SignatureStruct& sig, MethodAttributes methodAttributes, RuntimeType typeOwner) at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr, Binder binder, Object[] parameters, CultureInfo culture, Boolean skipVisibilityChecks) at System.Delegate.DynamicInvokeImpl(Object[] args) at System.Windows.Forms.Control.InvokeMarshaledCallbackDo(ThreadMethodEntry tme) at System.Windows.Forms.Control.InvokeMarshaledCallbackHelper(Object obj) at System.Threading.ExecutionContext.runTryCode(Object userData) at System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean ignoreSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Windows.Forms.Control.InvokeMarshaledCallback(ThreadMethodEntry tme) at System.Windows.Forms.Control.InvokeMarshaledCallbacks() at System.Windows.Forms.Control.WndProc(Message& m) at System.Windows.Forms.NativeWindow.DebuggableCallback(IntPtr hWnd, Int32 msg, IntPtr wparam, IntPtr lparam) at System.Windows.Forms.UnsafeNativeMethods.DispatchMessageW(MSG& msg) at System.Windows.Forms.Application.ComponentManager.System.Windows.Forms.UnsafeNativeMethods.IMsoComponentManager.FPushMessageLoop(IntPtr dwComponentID, Int32 reason, Int32 pvLoopData) at System.Windows.Forms.Application.ThreadContext.RunMessageLoopInner(Int32 reason, ApplicationContext context) at System.Windows.Forms.Application.ThreadContext.RunMessageLoop(Int32 reason, ApplicationContext context) at Microsoft.WindowsServerSolutions.Common.Wizards.Framework.WizardChainEngine.Launch() at Microsoft.WindowsServerSolutions.Setup.SBSSetup.MainClass._LaunchWizard() at Microsoft.WindowsServerSolutions.Setup.SBSSetup.MainClass.RealMain(String[] args) at Microsoft.WindowsServerSolutions.Setup.SBSSetup.MainClass.Main(String[] args) [4956] 121016.225455.0865: Setup: Removed the password. [4956] 121016.225455.0905: Setup: Deleting scheduled task at path Microsoft\Windows\Windows Small Business Server 2011 Standard with name Setup [4956] 121016.225455.8055: Setup: Removed SBSSetup from the RunOnce.

    Read the article

  • Wear and tear on server hard drive from filesystem polling by PHP script

    - by jackie
    So I'm working on a discussion platform, and various clients will visit http://host/thread.php, which will render the discussion thread to date in addition to a form to submit a new post. When a new post is submitted, I would like all of the other clients with browser windows open to have it appear in near-real-time. One of the constraints of my script is that it may not use a DBMS and it must stay in the filesystem. Additionally, I can't use any PECL/PEAR extensions like inotify or anything like that for IPC. The flow will look like this: Client A requests thread.php and the thread is so far empty, but nonetheless it opens a Server-Side Event at eventPusher.php. Client B does the same. Client A fills out a post in the form and and submits (POSTs) it to subHandler.php. ??? (subHandler stores the new submission into the main thread storefile which gets read from when a fresh, new client requests thread.php, in addition to somehow signalling to the continually-running eventPusher event-source that a new comment was posted and that it should echo the event-json to the client. How, exactly, it will send this signal I'm yet unsure of, but there are a few options that I've thought of -- this is the crux of the question, so see below for more clarification) eventPusher.php happily pushes the new event to the client and it shows up soon after it was originally submitted on all clients who have the page open's screens. Now for the #4 missing-link mystery-step, I see a few problems. I mean, either way, eventPusher is gonna be doing a while loop of some sort -- it's gonna be polling something, I think that much is clear. (If that's a bad assumption please do let me know.) Now, the simplest way would be subHandler gets invoked on the form submission, writes it to the main store in addition to newComments.xml, then exits without doing anything else. Then eventPusher checks in newComments.xml every X seconds (by the way, what would be a reasonable time interval here?) and if it finds something then it emits an event to the client. Now, my fear with this is that the server's hard drive will have to constantly start spinning up. Maybe this isn't the case, perhaps it would just get cached in RAM and the linux kernel would take care of this transparently such that filesystem access doesn't actually engage the device because the kernel knows that that particular file hasn't changed since last read. * idea #2: I have no idea how to go about this, but perhaps there is a variable scope that gets stored in general RAM on the system which can be read by any process. Like if we mega-exported a bash variable so that $new_post is normally false but it gets toggled to true by subHandler, and then back to flase once it's pushed to the client. I doubt there's such a variable scope in PHP directly, but I struggle with the concept of variable scope, I just can't seem to understand it no matter what I read on it. * idea #3: eventPusher queries ps in its whileloop for another instance of itself. If there's not another eventPusher active then it's highly unlikely that new comments will be getting submitted. It's okay if this only works =90% of the time, it doesn't need to be completely foolproof. * idea #4: eventPusher queries DMESG to see if that file's been written to recently. So to sum everything up, I need to have inter-php-script-communication in near-real-time that will work on a standard mod_php shared hosting setup without any elevated privileges, PHP addon modules, or other system adjustments that can't be done from the PHP script itself at runtime. With*out* spinning up the drive more than a few times. No SQL servers either. Apologies if my english isn't the best, I'm still trying to improve on it.

    Read the article

  • vagrant fails to bring up additional adapter for centos vm using virtual box provider

    - by Anadi Misra
    this is in continuation of the question asked here about host only adapter on dhcp I upgraded to vagrant 1.6.3 and the updated Vagrantfile to following setting for multiple adapters # add additional adapter for inter machine networking dev.vm.network :private_network, :type => "dhcp", :adapter => "2", :netmask => "255.255.255.0" it goes through creating adapters but then fails bringing up the mic on vm Anadis-MacBook-Pro:full-stack-env anadi$ vagrant up Bringing machine 'full-stack-env' up with 'virtualbox' provider... ==> full-stack-env: Clearing any previously set forwarded ports... ==> full-stack-env: Clearing any previously set network interfaces... ==> full-stack-env: Preparing network interfaces based on configuration... full-stack-env: Adapter 1: nat full-stack-env: Adapter 2: hostonly ==> full-stack-env: Forwarding ports... full-stack-env: 22 => 4223 (adapter 1) full-stack-env: 8080 => 8090 (adapter 1) ==> full-stack-env: Running 'pre-boot' VM customizations... ==> full-stack-env: Booting VM... ==> full-stack-env: Waiting for machine to boot. This may take a few minutes... full-stack-env: SSH address: 127.0.0.1:4223 full-stack-env: SSH username: vagrant full-stack-env: SSH auth method: private key full-stack-env: Warning: Connection timeout. Retrying... full-stack-env: Warning: Connection timeout. Retrying... full-stack-env: Warning: Remote connection disconnect. Retrying... ==> full-stack-env: Machine booted and ready! ==> full-stack-env: Checking for guest additions in VM... ==> full-stack-env: Setting hostname... ==> full-stack-env: Configuring and enabling network interfaces... The following SSH command responded with a non-zero exit status. Vagrant assumes that this means the command failed! ARPCHECK=no /sbin/ifup eth 2> /dev/null Stdout from the command: Device eth does not seem to be present, delaying initialization. Stderr from the command: how ever when I log in to the environment I see two network interfaces as expected Anadis-MacBook-Pro:full-stack-env anadi$ vagrant ssh Last login: Wed Jun 4 12:54:47 2014 from 10.0.2.2 [vagrant@full-stack-env ~]$ ifconfig eth0 Link encap:Ethernet HWaddr 08:00:27:BD:39:57 inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0 inet6 addr: fe80::a00:27ff:febd:3957/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:511 errors:0 dropped:0 overruns:0 frame:0 TX packets:360 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:54574 (53.2 KiB) TX bytes:46675 (45.5 KiB) eth1 Link encap:Ethernet HWaddr 08:00:27:A3:86:C9 inet addr:172.28.128.3 Bcast:172.28.128.255 Mask:255.255.255.0 inet6 addr: fe80::a00:27ff:fea3:86c9/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:5 errors:0 dropped:0 overruns:0 frame:0 TX packets:9 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:1360 (1.3 KiB) TX bytes:894 (894.0 b) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b) I am bit confused here on why it is trying to add another mic (eth2)? In the VM I used for creating this vagrant box, I had added two NICs already.

    Read the article

  • Ubuntu Server, 2 Ethernet Devices, Same Gateway - Want to force internet traffic through 1 device (or at least allow it to work!)

    - by Chris Drumgoole
    I have a Ubuntu 10.04 Server with 2 ethernet devices, eth0 and eth1. eth0 has a static IP of 192.168.1.210 eth1 has a static IP if 192.168.1.211 The DHCP server (which also serves as the internet gateway) sits at 192.168.1.1. The issue I have right now is when I have both plugged in, I can connect to both IPs over SSH internally, but I can't connect to the internet from the server. If I unplug one of the devices (e.g. eth1), then it works, no problem. (Also, I get the same result when I run sudo ifconfig eth1 down). Question, how can I configure it so that I can have both devices eth0 and eth1 play nice on the same network, but allow internet access as well? (I am open to either enforcing all inet traffic going through a single device, or through both, I'm flexible). From my google searching, it seems I could have a unique (or not popular) problem, so haven't been able to find a solution. Is this something that people generally don't do? The reason I want to make use of both ethernet devices is because I want to run different local traffic services on on both to split the load, so to speak... Thanks in advance. UPDATE Contents of /etc/network/interfaces: # The loopback network interface auto lo iface lo inet loopback # The primary network interface auto eth0 iface eth0 inet dhcp # The secondary network interface #auto eth1 #iface eth1 inet dhcp (Note: above, I commented out the last 2 lines because I thought that was causing issues... but it didn't solve it) netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 192.168.1.0 192.168.1.1 255.255.255.0 UG 0 0 0 eth0 192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0 UPDATE 2 I made a change to the /etc/network/interfaces file as suggested by Kevin. Before I display the file contents and the route table, when I am logged into the server (through SSH), I can not ping an external server, so this is the same issue I was experiencing that led to me posting this question. I ran a /etc/init.d/networking restart after making the file changes. Contents of /etc/network/interfaces: # The loopback network interface auto lo iface lo inet loopback # The primary network interface auto eth0 iface eth0 inet dhcp address 192.168.1.210 netmask 255.255.255.0 gateway 192.168.1.1 # The secondary network interface auto eth1 iface eth1 inet dhcp address 192.168.1.211 netmask 255.255.255.0 ifconfig output eth0 Link encap:Ethernet HWaddr 78:2b:cb:4c:02:7f inet addr:192.168.1.210 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::7a2b:cbff:fe4c:27f/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:6397 errors:0 dropped:0 overruns:0 frame:0 TX packets:683 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:538881 (538.8 KB) TX bytes:85597 (85.5 KB) Interrupt:36 Memory:da000000-da012800 eth1 Link encap:Ethernet HWaddr 78:2b:cb:4c:02:80 inet addr:192.168.1.211 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::7a2b:cbff:fe4c:280/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:5799 errors:0 dropped:0 overruns:0 frame:0 TX packets:8 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:484436 (484.4 KB) TX bytes:1184 (1.1 KB) Interrupt:48 Memory:dc000000-dc012800 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:635 errors:0 dropped:0 overruns:0 frame:0 TX packets:635 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:38154 (38.1 KB) TX bytes:38154 (38.1 KB) netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0 192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth1 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0

    Read the article

  • Parallelism in .NET – Part 14, The Different Forms of Task

    - by Reed
    Before discussing Task creation and actual usage in concurrent environments, I will briefly expand upon my introduction of the Task class and provide a short explanation of the distinct forms of Task.  The Task Parallel Library includes four distinct, though related, variations on the Task class. In my introduction to the Task class, I focused on the most basic version of Task.  This version of Task, the standard Task class, is most often used with an Action delegate.  This allows you to implement for each task within the task decomposition as a single delegate. Typically, when using the new threading constructs in .NET 4 and the Task Parallel Library, we use lambda expressions to define anonymous methods.  The advantage of using a lambda expression is that it allows the Action delegate to directly use variables in the calling scope.  This eliminates the need to make separate Task classes for Action<T>, Action<T1,T2>, and all of the other Action<…> delegate types.  As an example, suppose we wanted to make a Task to handle the ”Show Splash” task from our earlier decomposition.  Even if this task required parameters, such as a message to display, we could still use an Action delegate specified via a lambda: // Store this as a local variable string messageForSplashScreen = GetSplashScreenMessage(); // Create our task Task showSplashTask = new Task( () => { // We can use variables in our outer scope, // as well as methods scoped to our class! this.DisplaySplashScreen(messageForSplashScreen); }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This provides a huge amount of flexibility.  We can use this single form of task for any task which performs an operation, provided the only information we need to track is whether the task has completed successfully or not.  This leads to my first observation: Use a Task with a System.Action delegate for any task for which no result is generated. This observation leads to an obvious corollary: we also need a way to define a task which generates a result.  The Task Parallel Library provides this via the Task<TResult> class. Task<TResult> subclasses the standard Task class, providing one additional feature – the ability to return a value back to the user of the task.  This is done by switching from providing an Action delegate to providing a Func<TResult> delegate.  If we decompose our problem, and we realize we have one task where its result is required by a future operation, this can be handled via Task<TResult>.  For example, suppose we want to make a task for our “Check for Update” task, we could do: Task<bool> checkForUpdateTask = new Task<bool>( () => { return this.CheckWebsiteForUpdate(); }); Later, we would start this task, and perform some other work.  At any point in the future, we could get the value from the Task<TResult>.Result property, which will cause our thread to block until the task has finished processing: // This uses Task<bool> checkForUpdateTask generated above... // Start the task, typically on a background thread checkForUpdateTask.Start(); // Do some other work on our current thread this.DoSomeWork(); // Discover, from our background task, whether an update is available // This will block until our task completes bool updateAvailable = checkForUpdateTask.Result; This leads me to my second observation: Use a Task<TResult> with a System.Func<TResult> delegate for any task which generates a result. Task and Task<TResult> provide a much cleaner alternative to the previous Asynchronous Programming design patterns in the .NET framework.  Instead of trying to implement IAsyncResult, and providing BeginXXX() and EndXXX() methods, implementing an asynchronous programming API can be as simple as creating a method that returns a Task or Task<TResult>.  The client side of the pattern also is dramatically simplified – the client can call a method, then either choose to call task.Wait() or use task.Result when it needs to wait for the operation’s completion. While this provides a much cleaner model for future APIs, there is quite a bit of infrastructure built around the current Asynchronous Programming design patterns.  In order to provide a model to work with existing APIs, two other forms of Task exist.  There is a constructor for Task which takes an Action<Object> and a state parameter.  In addition, there is a constructor for creating a Task<TResult> which takes a Func<Object, TResult> as well as a state parameter.  When using these constructors, the state parameter is stored in the Task.AsyncState property. While these two overloads exist, and are usable directly, I strongly recommend avoiding this for new development.  The two forms of Task which take an object state parameter exist primarily for interoperability with traditional .NET Asynchronous Programming methodologies.  Using lambda expressions to capture variables from the scope of the creator is a much cleaner approach than using the untyped state parameters, since lambda expressions provide full type safety without introducing new variables.

    Read the article

  • NHibernate 2 Beginner's Guide Review

    - by Ricardo Peres
    OK, here's the review I promised a while ago. This is a beginner's introduction to NHibernate, so if you have already some experience with NHibernate, you will notice it lacks a lot of concepts and information. It starts with a good description of NHibernate and why would we use it. It goes on describing basic mapping scenarios having primary keys generated with the HiLo or Identity algorithms, without actually explaining why would we choose one over the other. As for mapping, the book talks about XML mappings and provides a simple example of Fluent NHibernate, comparing it to its XML counterpart. When it comes to relations, it covers one-to-many/many-to-one and many-to-many, not one-to-one relations, but only talks briefly about lazy loading, which is, IMO, an important concept. Only Bags are described, not any of the other collection types. The log4net configuration description gets it's own chapter, which I find excessive. The chapter on configuration merely lists the most common properties for configuring NHibernate, both in XML and in code. Querying only talks about loading by ID (using Get, not Load) and using Criteria API, on which a paging example is presented as well as some common filtering options (property equals/like/between to, no examples on conjunction/disjunction, however). There's a chapter fully dedicated to ASP.NET, which explains how we can use NHibernate in web applications. It basically talks about ASP.NET concepts, though. Following it, another chapter explains how we can build our own ASP.NET providers using NHibernate (Membership, Role). The available entity generators for NHibernate are referred and evaluated on a chapter of their own, the list is fine (CodeSmith, nhib-gen, AjGenesis, Visual NHibernate, MyGeneration, NGen, NHModeler, Microsoft T4 (?) and hbm2net), examples are provided whenever possible, however, I have some problems with some of the evaluations: for example, Visual NHibernate scores 5 out of 5 on Visual Studio integration, which simply does not exist! I suspect the author means to say that it can be launched from inside Visual Studio, but then, what can't? Finally, there's a chapter I really don't understand. It seems like a bag where a lot of things are thrown in, like NHibernate Burrow (which actually isn't explained at all), Blog.Net components, CSS template conversion and web.config settings related to the maximum request length for file uploads and ending with XML configuration, with the help of GhostDoc. Like I said, the book is only good for absolute beginners, it does a fair job in explaining the very basics, but lack a lot of not-so-basic concepts. Among other things, it lacks: Inheritance mapping strategies (table per class hierarchy, table per class, table per concrete class) Load versus Get usage Other usefull ISession methods First level cache (Identity Map pattern) Other collection types other that Bag (Set, List, Map, IdBag, etc Fetch options User Types Filters Named queries LINQ examples HQL examples And that's it! I hope you find this review useful. The link to the book site is https://www.packtpub.com/nhibernate-2-x-beginners-guide/book

    Read the article

  • ODI 12c - Parallel Table Load

    - by David Allan
    In this post we will look at the ODI 12c capability of parallel table load from the aspect of the mapping developer and the knowledge module developer - two quite different viewpoints. This is about parallel table loading which isn't to be confused with loading multiple targets per se. It supports the ability for ODI mappings to be executed concurrently especially if there is an overlap of the datastores that they access, so any temporary resources created may be uniquely constructed by ODI. Temporary objects can be anything basically - common examples are staging tables, indexes, views, directories - anything in the ETL to help the data integration flow do its job. In ODI 11g users found a few workarounds (such as changing the technology prefixes - see here) to build unique temporary names but it was more of a challenge in error cases. ODI 12c mappings by default operate exactly as they did in ODI 11g with respect to these temporary names (this is also true for upgraded interfaces and scenarios) but can be configured to support the uniqueness capabilities. We will look at this feature from two aspects; that of a mapping developer and that of a developer (of procedures or KMs). 1. Firstly as a Mapping Developer..... 1.1 Control when uniqueness is enabled A new property is available to set unique name generation on/off. When unique names have been enabled for a mapping, all temporary names used by the collection and integration objects will be generated using unique names. This property is presented as a check-box in the Property Inspector for a deployment specification. 1.2 Handle cleanup after successful execution Provided that all temporary objects that are created have a corresponding drop statement then all of the temporary objects should be removed during a successful execution. This should be the case with the KMs developed by Oracle. 1.3 Handle cleanup after unsuccessful execution If an execution failed in ODI 11g then temporary tables would have been left around and cleaned up in the subsequent run. In ODI 12c, KM tasks can now have a cleanup-type task which is executed even after a failure in the main tasks. These cleanup tasks will be executed even on failure if the property 'Remove Temporary Objects on Error' is set. If the agent was to crash and not be able to execute this task, then there is an ODI tool (OdiRemoveTemporaryObjects here) you can invoke to cleanup the tables - it supports date ranges and the like. That's all there is to it from the aspect of the mapping developer it's much, much simpler and straightforward. You can now execute the same mapping concurrently or execute many mappings using the same resource concurrently without worrying about conflict.  2. Secondly as a Procedure or KM Developer..... In the ODI Operator the executed code shows the actual name that is generated - you can also see the runtime code prior to execution (introduced in 11.1.1.7), for example below in the code type I selected 'Pre-executed Code' this lets you see the code about to be processed and you can also see the executed code (which is the default view). References to the collection (C$) and integration (I$) names will be automatically made unique by using the odiRef APIs - these objects will have unique names whenever concurrency has been enabled for a particular mapping deployment specification. It's also possible to use name uniqueness functions in procedures and your own KMs. 2.1 New uniqueness tags  You can also make your own temporary objects have unique names by explicitly including either %UNIQUE_STEP_TAG or %UNIQUE_SESSION_TAG in the name passed to calls to the odiRef APIs. Such names would always include the unique tag regardless of the concurrency setting. To illustrate, let's look at the getObjectName() method. At <% expansion time, this API will append %UNIQUE_STEP_TAG to the object name for collection and integration tables. The name parameter passed to this API may contain  %UNIQUE_STEP_TAG or %UNIQUE_SESSION_TAG. This API always generates to the <? version of getObjectName() At execution time this API will replace the unique tag macros with a string that is unique to the current execution scope. The returned name will conform to the name-length restriction for the target technology, and its pattern for the unique tag. Any necessary truncation will be performed against the initial name for the object and any other fixed text that may have been specified. Examples are:- <?=odiRef.getObjectName("L", "%COL_PRFEMP%UNIQUE_STEP_TAG", "D")?> SCOTT.C$_EABH7QI1BR1EQI3M76PG9SIMBQQ <?=odiRef.getObjectName("L", "EMP%UNIQUE_STEP_TAG_AE", "D")?> SCOTT.EMPAO96Q2JEKO0FTHQP77TMSAIOSR_ Methods which have this kind of support include getFrom, getTableName, getTable, getObjectShortName and getTemporaryIndex. There are APIs for retrieving this tag info also, the getInfo API has been extended with the following properties (the UNIQUE* properties can also be used in ODI procedures); UNIQUE_STEP_TAG - Returns the unique value for the current step scope, e.g. 5rvmd8hOIy7OU2o1FhsF61 Note that this will be a different value for each loop-iteration when the step is in a loop. UNIQUE_SESSION_TAG - Returns the unique value for the current session scope, e.g. 6N38vXLrgjwUwT5MseHHY9 IS_CONCURRENT - Returns info about the current mapping, will return 0 or 1 (only in % phase) GUID_SRC_SET - Returns the UUID for the current source set/execution unit (only in % phase) The getPop API has been extended with the IS_CONCURRENT property which returns info about an mapping, will return 0 or 1.  2.2 Additional APIs Some new APIs are provided including getFormattedName which will allow KM developers to construct a name from fixed-text or ODI symbols that can be optionally truncate to a max length and use a specific encoding for the unique tag. It has syntax getFormattedName(String pName[, String pTechnologyCode]) This API is available at both the % and the ? phase.  The format string can contain the ODI prefixes that are available for getObjectName(), e.g. %INT_PRF, %COL_PRF, %ERR_PRF, %IDX_PRF alongwith %UNIQUE_STEP_TAG or %UNIQUE_SESSION_TAG. The latter tags will be expanded into a unique string according to the specified technology. Calls to this API within the same execution context are guaranteed to return the same unique name provided that the same parameters are passed to the call. e.g. <%=odiRef.getFormattedName("%COL_PRFMY_TABLE%UNIQUE_STEP_TAG_AE", "ORACLE")%> <?=odiRef.getFormattedName("%COL_PRFMY_TABLE%UNIQUE_STEP_TAG_AE", "ORACLE")?> C$_MY_TAB7wDiBe80vBog1auacS1xB_AE <?=odiRef.getFormattedName("%COL_PRFMY_TABLE%UNIQUE_STEP_TAG.log", "FILE")?> C2_MY_TAB7wDiBe80vBog1auacS1xB.log 2.3 Name length generation  As part of name generation, the length of the generated name will be compared with the maximum length for the target technology and truncation may need to be applied. When a unique tag is included in the generated string it is important that uniqueness is not compromised by truncation of the unique tag. When a unique tag is NOT part of the generated name, the name will be truncated by removing characters from the end - this is the existing 11g algorithm. When a unique tag is included, the algorithm will first truncate the <postfix> and if necessary  the <prefix>. It is recommended that users will ensure there is sufficient uniqueness in the <prefix> section to ensure uniqueness of the final resultant name. SUMMARY To summarize, ODI 12c make it much simpler to utilize mappings in concurrent cases and provides APIs for helping developing any procedures or custom knowledge modules in such a way they can be used in highly concurrent, parallel scenarios. 

    Read the article

  • No mapping between account names and security IDs was done

    - by ybbest
    When I try to install SQL Server 2008 R2, I got the error “No mapping between account names and security IDs was done” when I try to set the SQL Server Database engine services identity to a domain user name. The reason I am getting the error is that I create a base VM forgot to run sysprep, before I copy the VM and used to install SQL servers. You need to run the sysprep as follows: References: How to Sysprep in Windows Server 2008 R2 and Windows 7

    Read the article

  • Thinktecture.IdentityModel: WIF Support for WCF REST Services and OData

    - by Your DisplayName here!
    The latest drop of Thinktecture.IdentityModel includes plumbing and support for WIF, claims and tokens for WCF REST services and Data Services (aka OData). Cibrax has an alternative implementation that uses the WCF Rest Starter Kit. His recent post reminded me that I should finally “document” that part of our library. Features include: generic plumbing for all WebServiceHost derived WCF services support for SAML and SWT tokens support for ClaimsAuthenticationManager and ClaimsAuthorizationManager based solely on native WCF extensibility points (and WIF) This post walks you through the setup of an OData / WCF DataServices endpoint with token authentication and claims support. This sample is also included in the codeplex download along a similar sample for plain WCF REST services. Setting up the Data Service To prove the point I have created a simple WCF Data Service that renders the claims of the current client as an OData set. public class ClaimsData {     public IQueryable<ViewClaim> Claims     {         get { return GetClaims().AsQueryable(); }     }       private List<ViewClaim> GetClaims()     {         var claims = new List<ViewClaim>();         var identity = Thread.CurrentPrincipal.Identity as IClaimsIdentity;           int id = 0;         identity.Claims.ToList().ForEach(claim =>             {                 claims.Add(new ViewClaim                 {                    Id = ++id,                    ClaimType = claim.ClaimType,                    Value = claim.Value,                    Issuer = claim.Issuer                 });             });           return claims;     } } …and hooked that up with a read only data service: public class ClaimsDataService : DataService<ClaimsData> {     public static void InitializeService(IDataServiceConfiguration config)     {         config.SetEntitySetAccessRule("*", EntitySetRights.AllRead);     } } Enabling WIF Before you enable WIF, you should generate your client proxies. Afterwards the service will only accept requests with an access token – and svcutil does not support that. All the WIF magic is done in a special service authorization manager called the FederatedWebServiceAuthorizationManager. This code checks incoming calls to see if the Authorization HTTP header (or X-Authorization for environments where you are not allowed to set the authorization header) contains a token. This header must either start with SAML access_token= or WRAP access_token= (for SAML or SWT tokens respectively). For SAML validation, the plumbing uses the normal WIF configuration. For SWT you can either pass in a SimpleWebTokenRequirement or the SwtIssuer, SwtAudience and SwtSigningKey app settings are checked.If the token can be successfully validated, ClaimsAuthenticationManager and ClaimsAuthorizationManager are invoked and the IClaimsPrincipal gets established. The service authorization manager gets wired up by the FederatedWebServiceHostFactory: public class FederatedWebServiceHostFactory : WebServiceHostFactory {     protected override ServiceHost CreateServiceHost(       Type serviceType, Uri[] baseAddresses)     {         var host = base.CreateServiceHost(serviceType, baseAddresses);           host.Authorization.ServiceAuthorizationManager =           new FederatedWebServiceAuthorizationManager();         host.Authorization.PrincipalPermissionMode = PrincipalPermissionMode.Custom;           return host;     } } The last step is to set up the .svc file to use the service host factory (see the sample download). Calling the Service To call the service you need to somehow get a token. This is up to you. You can either use WSTrustChannelFactory (for the full CLR), WSTrustClient (Silverlight) or some other way to obtain a token. The sample also includes code to generate SWT tokens for testing – but the whole WRAP/SWT support will be subject of a separate post. I created some extensions methods for the most common web clients (WebClient, HttpWebRequest, DataServiceContext) that allow easy setting of the token, e.g.: public static void SetAccessToken(this DataServiceContext context,   string token, string type, string headerName) {     context.SendingRequest += (s, e) =>     {         e.RequestHeaders[headerName] = GetHeader(token, type);     }; } Making a query against the Data Service could look like this: static void CallService(string token, string type) {     var data = new ClaimsData(new Uri("https://server/odata.svc/"));     data.SetAccessToken(token, type);       data.Claims.ToList().ForEach(c =>         Console.WriteLine("{0}\n {1}\n ({2})\n", c.ClaimType, c.Value, c.Issuer)); } HTH

    Read the article

  • TechDays 2011 Sweden Videos

    - by Your DisplayName here!
    All the videos from the excellent Örebro event are now online. Dominick Baier: A Technical Introduction to the Windows Identity Foundation (watch) Dominick Baier & Christian Weyer: Securing REST-Services and Web APIs on the Windows Azure Platform (watch) Christian Weyer: Real World Azure - Elasticity from on-premise to the cloud and back (watch) Our interview with Robert (watch)

    Read the article

  • WORD CERTIFIED IMPLEMENTATION SPECIALIST EN LAAT ORACLE UNIVERSITY U ASSISTEREN HIERMEE

    - by mseika
    WORD CERTIFIED IMPLEMENTATION SPECIALIST EN LAAT ORACLE UNIVERSITY U ASSISTEREN HIERMEE Word gespecialiseerd!Oracle weet exact welke competenties implementatie specialisten moeten opbouwen en beseft de bijbehorende inspanning die hiervoor nodig is. Het nieuwe Specialized programma van Oracle PartnerNetwork biedt een scala van certificering mogelijkheden aan (Specializations) die aantonen dat de benodigde kennis en vaardigheden bij u en bij uw teamleden aanwezig zijn.Word erkend! Bevestig uw kennis en vaardigheden en ontvang de beloning die u verdient door examens te halen voor de hele portefeuille van producten en oplossingen die Oracle aanbiedt. Haal het examen en ontvang uw OPN Specialist Certificaat. Stap 1: Kies uw SpecialisatieBekijk de Specialization Guide (PDF) - ons aanbod van Specialisaties voor de individu. Stap 2: Bereik de vereiste kennis en de vaardighedenBoek een Oracle University OPN Only Bootcamp en bereik de vereiste kennis en de vaardigheden om een Certified Implementation Specialist te worden.Wij hebben voor u de volgende Bootcamps geselecteerd en de komende maanden ingepland bij Oracle University in Utrecht, The Netherlands: Boot Camp Duur Data Voorbereiding voor Specialization (Exam Code) Database Oracle Database 11g Specialist 5 21-25 jan 12 Oracle Database 11g Certified Implementation Specialist (1Z0-514) Oracle Data Warehousing 11g Implementation 5 3-7 dec 12 3-7 apr 13 Data Warehousing 11g Certified Implementation Specialist (1Z0-515) Exadata Oracle Exadata 11g Technical Boot Camp 3 28-30 jan 13 Oracle Exadata 11g Certified Implementation Specialist (1Z0-536) Fusion Middleware Oracle AIA 11g Implementation 4 20-22 feb 13 Oracle Application Integration Architecture 11g Certified Implementation Specialist (1Z0-543) Oracle BPM 11g Implementation 4 15-18 okt 12 14-17 jan 12 15-18 apr 13 Oracle Unified Business Process Management Suite 11g Billing Certified Implementation Specialist (1Z0-560) Oracle WebCenter 11g Implementation 4 10-13 okt 12 5-8 feb 13 Oracle WebCenter Portal 11g Certified Implementation Specialist (1Z0-541) Oracle Identity Administration and Analytics 11g Implementation 3 7-9 nov 12 6-8 mrt 13 Identity Administration and Analytics 11g Certified Implementation Specialist (1Z0-545) Business Intelligence and Datawarehousing Oracle BI Enterprise Edition 11g Implementation 5 24-28 sep12 11-15 mrt 13 Boek een Boot Camp: U kunt online boeken of gebruik maken van dit inschrijfformulier Prijzen: U merkt dat de ‘OPN Only’ Boot Camps in prijs sterk gereduceerd zijn en bovendien is uw OPN korting (silver, gold, platinum of diamond) nog steeds van toepassing! Stap 3: Boek en neem uw examen afBezoek de examenregistratie web-pagina en lees de instructies voor het boeken van uw examen bij een Pearson VUE Authorized Testcentrum. Examens kunnen betaald worden door één van de gratis examen vouchers die uw bedrijf heeft, door een voucher aan te schaffen bij Oracle University of met uw creditcard bij het Pearson VUE Testcentrum. Stap 4: Ontvang uw OPN Specialist CertificateGefeliciteerd! U bent nu een Certified Implementation Specialist. Heeft u meer informatie of assistentie nodig?Neem dan contact op met uw Oracle University Account Manager of met onze Education Service Desk: eMail: [email protected]:+ 31 30 66 99 244 Bij het boeken graag de volgende code vermelden: E1229

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • CVE-2014-3520 Privilege Escalation vulnerability in OpenStack Keystone

    - by Ritwik Ghoshal
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2014-3520 Privilege Escalation vulnerability 3.5 OpenStack Identity (Keystone) Solaris 11.2 11.2.1.5.0 This notification describes vulnerabilities fixed in third-party components that are included in Oracle's product distributions.Information about vulnerabilities affecting Oracle products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • Using MAC Authentication for simple Web API’s consumption

    - by cibrax
    For simple scenarios of Web API consumption where identity delegation is not required, traditional http authentication schemas such as basic, certificates or digest are the most used nowadays. All these schemas rely on sending the caller credentials or some representation of it in every request message as part of the Authorization header, so they are prone to suffer phishing attacks if they are not correctly secured at transport level with https. In addition, most client applications typically authenticate two different things, the caller application and the user consuming the API on behalf of that application. For most cases, the schema is simplified by using a single set of username and password for authenticating both, making necessary to store those credentials temporally somewhere in memory. The true is that you can use two different identities, one for the user running the application, which you might authenticate just once during the first call when the application is initialized, and another identity for the application itself that you use on every call. Some cloud vendors like Windows Azure or Amazon Web Services have adopted an schema to authenticate the caller application based on a Message Authentication Code (MAC) generated with a symmetric algorithm using a key known by the two parties, the caller and the Web API. The caller must include a MAC as part of the Authorization header created from different pieces of information in the request message such as the address, the host, and some other headers. The Web API can authenticate the caller by using the key associated to it and validating the attached MAC in the request message. In that way, no credentials are sent as part of the request message, so there is no way an attacker to intercept the message and get access to those credentials. Anyways, this schema also suffers from some deficiencies that can generate attacks. For example, brute force can be still used to infer the key used for generating the MAC, and impersonate the original caller. This can be mitigated by renewing keys in a relative short period of time. This schema as any other can be complemented with transport security. Eran Rammer, one of the brains behind OAuth, has recently published an specification of a protocol based on MAC for Http authentication called Hawk. The initial version of the spec is available here. A curious fact is that the specification per se does not exist, and the specification itself is the code that Eran initially wrote using node.js. In that implementation, you can associate a key to an user, so once the MAC has been verified on the Web API, the user can be inferred from that key. Also a timestamp is used to avoid replay attacks. As a pet project, I decided to port that code to .NET using ASP.NET Web API, which is available also in github under https://github.com/pcibraro/hawknet Enjoy!.

    Read the article

  • Autofac

    - by csharp-source.net
    A .NET IoC container written in C#. Focus on programmatic configuration with builder syntax. Zero intrusion into existing code. Create components using reflection or with lambda expressions for unlimited flexibility. Managed disposal of any IDisposable components created by the container within a defined scope.

    Read the article

  • Windows Azure Platform Training Kit - June Update

    - by guybarrette
    Microsoft released an update to its Azure training kit. Here is what is new in the kit: Introduction to Windows Azure - VS2010 version Introduction To SQL Azure - VS2010 version Introduction to the Windows Azure Platform AppFabric Service Bus - VS2010 version Introduction to Dallas - VS2010 version Introduction to the Windows Azure Platform AppFabric Access Control Service - VS2010 version Web Services and Identity in the Cloud Exploring Windows Azure Storage VS2010 version + new Exercise: “Working with Drives” Windows Azure Deployment VS2010 version + new Exercise: “Securing Windows Azure with SSL” Minor fixes to presentations – mainly timelines, pricing, new features etc. Download it here var addthis_pub="guybarrette";

    Read the article

  • SQL SERVER – 3 Online SQL Courses at Pluralsight and Free Learning Resources

    - by pinaldave
    Usain Bolt is an inspiration for all. He broke his own record multiple times because he wanted to do better! Read more about him on wikipedia. He is great and indeed fastest man on the planet. Usain Bolt – World’s Fastest Man “Can you teach me SQL Server Performance Tuning?” This is one of the most popular questions which I receive all the time. The answer is YES. I would love to do performance tuning training for anyone, anywhere.  It is my favorite thing to do, and it is my favorite thing to train others in.  If possible, I would love to do training 24 hours a day, 7 days a week, 365 days a year.  To me, it doesn’t feel like a job. Of course, as much as I would love to do performance tuning 24/7/365, obviously I am just one human being and can only be in one place t one time.  It is also very difficult to train more than one person at a time, and it is difficult to train two or more people at a time, especially when the two people are at different levels.  I am also limited by geography.  I live in India, and adjust to my own time zone.  Trying to teach a live course from India to someone whose time zone is 12 or more hours off of mine is very difficult.  If I am trying to teach at 2 am, I am sure I am not at my best! There was only one solution to scale – Online Trainings. I have built 3 different courses on SQL Server Performance Tuning with Pluralsight. Now I have no problem – I am 100% scalable and available 24/7 and 365. You can make me say the same things again and again till you find it right. I am in your mobile, PC as well as on XBOX. This is why I am such a big fan of online courses.  I have recorded many performance tuning classes and you can easily access them online, at your own time.  And don’t think that just because these aren’t live classes you won’t be able to get any feedback from me.  I encourage all my viewers to go ahead and ask me questions by e-mail, Twitter, Facebook, or whatever way you can get a hold of me. Here are details of three of my courses with Pluralsight. I suggest you go over the description of the course. As an author of the course, I have few FREE codes for watching the free courses. Please leave a comment with your valid email address, I will send a few of them to random winners. SQL Server Performance: Introduction to Query Tuning  SQL Server performance tuning is an art to master – for developers and DBAs alike. This course takes a systematic approach to planning, analyzing, debugging and troubleshooting common query-related performance problems. This includes an introduction to understanding execution plans inside SQL Server. In this almost four hour course we cover following important concepts. Introduction 10:22 Execution Plan Basics 45:59 Essential Indexing Techniques 20:19 Query Design for Performance 50:16 Performance Tuning Tools 01:15:14 Tips and Tricks 25:53 Checklist: Performance Tuning 07:13 The duration of each module is mentioned besides the name of the module. SQL Server Performance: Indexing Basics This course teaches you how to master the art of performance tuning SQL Server by better understanding indexes. In this almost two hour course we cover following important concepts. Introduction 02:03 Fundamentals of Indexing 22:21 Practical Indexing Implementation Techniques 37:25 Index Maintenance 16:33 Introduction to ColumnstoreIndex 08:06 Indexing Practical Performance Tips and Tricks 24:56 Checklist : Index and Performance 07:29 The duration of each module is mentioned besides the name of the module. SQL Server Questions and Answers This course is designed to help you better understand how to use SQL Server effectively. The course presents many of the common misconceptions about SQL Server, and then carefully debunks those misconceptions with clear explanations and short but compelling demos, showing you how SQL Server really works. In this almost 2 hours and 15 minutes course we cover following important concepts. Introduction 00:54 Retrieving IDENTITY value using @@IDENTITY 08:38 Concepts Related to Identity Values 04:15 Difference between WHERE and HAVING 05:52 Order in WHERE clause 07:29 Concepts Around Temporary Tables and Table Variables 09:03 Are stored procedures pre-compiled? 05:09 UNIQUE INDEX and NULLs problem 06:40 DELETE VS TRUNCATE 06:07 Locks and Duration of Transactions 15:11 Nested Transaction and Rollback 09:16 Understanding Date/Time Datatypes 07:40 Differences between VARCHAR and NVARCHAR datatypes 06:38 Precedence of DENY and GRANT security permissions 05:29 Identify Blocking Process 06:37 NULLS usage with Dynamic SQL 08:03 Appendix Tips and Tricks with Tools 20:44 The duration of each module is mentioned besides the name of the module. SQL in Sixty Seconds You will have to login and to get subscribed to the courses to view them. Here are my free video learning resources SQL in Sixty Seconds. These are 60 second video which I have built on various subjects related to SQL Server. Do let me know what you think about them? Here are three of my latest videos: Identify Most Resource Intensive Queries – SQL in Sixty Seconds #028 Copy Column Headers from Resultset – SQL in Sixty Seconds #027 Effect of Collation on Resultset – SQL in Sixty Seconds #026 You can watch and learn at your own pace.  Then you can easily ask me any questions you have.  E-mail is easiest, but for really tough questions I’m willing to talk on Skype, Gtalk, or even Facebook chat.  Please do watch and then talk with me, I am always available on the internet! Here is the video of the world’s fastest man.Usain St. Leo Bolt inspires us that we all do better than best. We can go the next level of our own record. We all can improve if we have a will and dedication.  Watch the video from 5:00 mark. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL in Sixty Seconds, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL Training, SQLServer, T SQL, Technology, Video

    Read the article

< Previous Page | 75 76 77 78 79 80 81 82 83 84 85 86  | Next Page >