Search Results

Search found 1784 results on 72 pages for 'in depth'.

Page 8/72 | < Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >

  • DFS Backtracking with java

    - by Cláudio Ribeiro
    I'm having problems with DFS backtracking in an adjacency matrix. Here's my code: (i added the test to the main in case someone wants to test it) public class Graph { private int numVertex; private int numEdges; private boolean[][] adj; public Graph(int numVertex, int numEdges) { this.numVertex = numVertex; this.numEdges = numEdges; this.adj = new boolean[numVertex][numVertex]; } public void addEdge(int start, int end){ adj[start-1][end-1] = true; adj[end-1][start-1] = true; } List<Integer> visited = new ArrayList<Integer>(); public Integer DFS(Graph G, int startVertex){ int i=0; if(pilha.isEmpty()) pilha.push(startVertex); for(i=1; i<G.numVertex; i++){ pilha.push(i); if(G.adj[i-1][startVertex-1] != false){ G.adj[i-1][startVertex-1] = false; G.adj[startVertex-1][i-1] = false; DFS(G,i); break; }else{ visited.add(pilha.pop()); } System.out.println("Stack: " + pilha); } return -1; } Stack<Integer> pilha = new Stack(); public static void main(String[] args) { Graph g = new Graph(6, 9); g.addEdge(1, 2); g.addEdge(1, 5); g.addEdge(2, 4); g.addEdge(2, 5); g.addEdge(2, 6); g.addEdge(3, 4); g.addEdge(3, 5); g.addEdge(4, 5); g.addEdge(6, 4); g.DFS(g, 1); } } I'm trying to solve the euler path problem. the program solves basic graphs but when it needs to backtrack, it just does not do it. I think the problem might be in the stack manipulations or in the recursive dfs call. I've tried a lot of things, but still can't seem to figure out why it does not backtrack. Can somebody help me ?

    Read the article

  • Listing the content of a tar file or a directory only down to some level

    - by Tim
    I wonder how to list the content of a tar file only down to some level? I understand tar tvf mytar.tar will list all files, but sometimes I would like to only see directories down to some level. Similarly, for the command ls, how do I control the level of subdirectories that will be displayed? By default, it will only show the direct subdirectories, but not go further.

    Read the article

  • Is there a good resource for learning Rails in depth? [closed]

    - by Kocheez
    I've been developing rails applications for about 6 months now (I was originally a java developer) and I'm getting familiar enough with building applications that I want to take my rails knowledge to the next level. The majority of books and learning materials I've found deal mostly with "how to use rails" rather than "how it works". I was wondering if there are any good resources for getting a really in depth understanding of the framework, such as how modules and classes are loaded, the underlying architecture, how servers interact, etc... Any tips on learning more would be greatly appreciated

    Read the article

  • How can I chose the depth of a quadtree?

    - by Evpok
    In a 2d world, using a quadtree to prune pairs in collision detection, how can I chose the depth of said quadtree? The world I am dealing with is mostly made of moving objects¹, so the cost of dispatching the objects between the quadtree cells matter. So what I am interested in is the balance between the gain from less collision checking and the loss from more dispatching. 1. To be completely explicit, autonomous self-replicating cells competing for food sources, in an attempt to show my pupils predator-prey dynamics and genetic evolution at work

    Read the article

  • Efficiently rendering to 3D texture

    - by TravisG
    I have an existing depth texture and some other color textures, and want to process the information in them by rendering to a 3D texture (based on the depth contained in the depth texture, i.e. a point at (x/y) in the depth texture will be rendered to (x/y/texture(depth,uv)) in the 3D texture). Simply doing one manual draw call for each slice of the 3D texture (via glFramebufferTextureLayer) is terribly slow, since I don't know beforehand to what slice of the 3D texture a given texel from one of the color textures or the depth texture belongs. This means the entire process is effectively for each slice for each texel in depth texture process color textures and render to slice So I have to sample the depth texture completely per each slice, and I also have to go through the processing (at least until to discard;) for all texels in it. It would be much faster if I could rearrange the process to for each texel in depth texture figure out what slice it should end up in process color textures and render to slice Is this possible? If so, how? What I'm actually trying to do: the color textures contain lighting information (as seen from light view, it's a reflective shadow map). I want to accumulate that information in the 3D texture and then later use it to light the scene. More specifically I'm trying to implement Cryteks Light Propagation Volumes algorithm.

    Read the article

  • Why is my RapidSSL Certificate chain is not trusted on ubuntu?

    - by olouv
    I have a website that works perfectly with Chrome & other browser but i get some errors with PHP in CLI mode so i'm investigating it, running this: openssl s_client -showcerts -verify 32 -connect dev.carlipa-online.com:443 Quite suprisingly my HTTPS appears untrusted with a Verify return code: 27 (certificate not trusted) Here is the raw output : verify depth is 32 CONNECTED(00000003) depth=2 C = US, O = GeoTrust Inc., CN = GeoTrust Global CA verify error:num=20:unable to get local issuer certificate verify return:1 depth=2 C = US, O = GeoTrust Inc., CN = GeoTrust Global CA verify error:num=27:certificate not trusted verify return:1 depth=1 C = US, O = "GeoTrust, Inc.", CN = RapidSSL CA verify return:1 depth=0 serialNumber = khKDXfnS0WtB8DgV0CAdsmWrXl-Ia9wZ, C = FR, O = *.carlipa-online.com, OU = GT44535187, OU = See www.rapidssl.com/resources/cps (c)12, OU = Domain Control Validated - RapidSSL(R), CN = *.carlipa-online.com verify return:1 So GeoTrust Global CA appears to be not trusted on the system (Ubuntu 11.10). Added Equifax_Secure_CA to try to solve this... But i get in this case Verify return code: 19 (self signed certificate in certificate chain) ! Raw output : verify depth is 32 CONNECTED(00000003) depth=3 C = US, O = Equifax, OU = Equifax Secure Certificate Authority verify error:num=19:self signed certificate in certificate chain verify return:1 depth=3 C = US, O = Equifax, OU = Equifax Secure Certificate Authority verify return:1 depth=2 C = US, O = GeoTrust Inc., CN = GeoTrust Global CA verify return:1 depth=1 C = US, O = "GeoTrust, Inc.", CN = RapidSSL CA verify return:1 depth=0 serialNumber = khKDXfnS0WtB8DgV0CAdsmWrXl-Ia9wZ, C = FR, O = *.carlipa-online.com, OU = GT44535187, OU = See www.rapidssl.com/resources/cps (c)12, OU = Domain Control Validated - RapidSSL(R), CN = *.carlipa-online.com verify return:1 Edit Looks like my server does not trust/provide the Equifax Root CA, however i do correctly have the file in /usr/share/ca-certificates/mozilla/Equifax...

    Read the article

  • What do you do when you realize your job requires you to do something out of your depth?

    - by Billy ONeal
    For a large software project recently, I was really out of my depth. And I did actually know this; and that the only reason I was employed was mostly a lack of other qualified candidates. The job was to build a large application on top of PHP/MySQL, a system I had little experience with. (I did advise the employer of this beforehand -- I've been spoiled by C# ASP.NET/MVC and MSSQL Server) The main reason I applied was location, location, location -- on campus jobs which actually have any programming component are relatively rare. For almost a year and a half I've slogged through this, and I think I can say I know (at least somewhat) what I'm doing now. I've made some mistakes, torn out some hair, and moved on. (I'm still working on this system nowadays, but I no longer feel completely lost) In the future though, I'd like to keep my personal and professional self a little healthier than what occurred in this case. So I'm curious -- what's the best way to handle a situation like this?

    Read the article

  • 3D Graphics with XNA Game Studio 4.0 bug in light map?

    - by Eibis
    i'm following the tutorials on 3D Graphics with XNA Game Studio 4.0 and I came up with an horrible effect when I tried to implement the Light Map http://i.stack.imgur.com/BUWvU.jpg this effect shows up when I look towards the center of the house (and it moves with me). it has this shape because I'm using a sphere to represent light; using other light shapes gives different results. I'm using a class PreLightingRenderer: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using Dhpoware; using Microsoft.Xna.Framework.Content; namespace XNAFirstPersonCamera { public class PrelightingRenderer { // Normal, depth, and light map render targets RenderTarget2D depthTarg; RenderTarget2D normalTarg; RenderTarget2D lightTarg; // Depth/normal effect and light mapping effect Effect depthNormalEffect; Effect lightingEffect; // Point light (sphere) mesh Model lightMesh; // List of models, lights, and the camera public List<CModel> Models { get; set; } public List<PPPointLight> Lights { get; set; } public FirstPersonCamera Camera { get; set; } GraphicsDevice graphicsDevice; int viewWidth = 0, viewHeight = 0; public PrelightingRenderer(GraphicsDevice GraphicsDevice, ContentManager Content) { viewWidth = GraphicsDevice.Viewport.Width; viewHeight = GraphicsDevice.Viewport.Height; // Create the three render targets depthTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Single, DepthFormat.Depth24); normalTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24); lightTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24); // Load effects depthNormalEffect = Content.Load<Effect>(@"Effects\PPDepthNormal"); lightingEffect = Content.Load<Effect>(@"Effects\PPLight"); // Set effect parameters to light mapping effect lightingEffect.Parameters["viewportWidth"].SetValue(viewWidth); lightingEffect.Parameters["viewportHeight"].SetValue(viewHeight); // Load point light mesh and set light mapping effect to it lightMesh = Content.Load<Model>(@"Models\PPLightMesh"); lightMesh.Meshes[0].MeshParts[0].Effect = lightingEffect; this.graphicsDevice = GraphicsDevice; } public void Draw() { drawDepthNormalMap(); drawLightMap(); prepareMainPass(); } void drawDepthNormalMap() { // Set the render targets to 'slots' 1 and 2 graphicsDevice.SetRenderTargets(normalTarg, depthTarg); // Clear the render target to 1 (infinite depth) graphicsDevice.Clear(Color.White); // Draw each model with the PPDepthNormal effect foreach (CModel model in Models) { model.CacheEffects(); model.SetModelEffect(depthNormalEffect, false); model.Draw(Camera.ViewMatrix, Camera.ProjectionMatrix, Camera.Position); model.RestoreEffects(); } // Un-set the render targets graphicsDevice.SetRenderTargets(null); } void drawLightMap() { // Set the depth and normal map info to the effect lightingEffect.Parameters["DepthTexture"].SetValue(depthTarg); lightingEffect.Parameters["NormalTexture"].SetValue(normalTarg); // Calculate the view * projection matrix Matrix viewProjection = Camera.ViewMatrix * Camera.ProjectionMatrix; // Set the inverse of the view * projection matrix to the effect Matrix invViewProjection = Matrix.Invert(viewProjection); lightingEffect.Parameters["InvViewProjection"].SetValue(invViewProjection); // Set the render target to the graphics device graphicsDevice.SetRenderTarget(lightTarg); // Clear the render target to black (no light) graphicsDevice.Clear(Color.Black); // Set render states to additive (lights will add their influences) graphicsDevice.BlendState = BlendState.Additive; graphicsDevice.DepthStencilState = DepthStencilState.None; foreach (PPPointLight light in Lights) { // Set the light's parameters to the effect light.SetEffectParameters(lightingEffect); // Calculate the world * view * projection matrix and set it to // the effect Matrix wvp = (Matrix.CreateScale(light.Attenuation) * Matrix.CreateTranslation(light.Position)) * viewProjection; lightingEffect.Parameters["WorldViewProjection"].SetValue(wvp); // Determine the distance between the light and camera float dist = Vector3.Distance(Camera.Position, light.Position); // If the camera is inside the light-sphere, invert the cull mode // to draw the inside of the sphere instead of the outside if (dist < light.Attenuation) graphicsDevice.RasterizerState = RasterizerState.CullClockwise; // Draw the point-light-sphere lightMesh.Meshes[0].Draw(); // Revert the cull mode graphicsDevice.RasterizerState = RasterizerState.CullCounterClockwise; } // Revert the blending and depth render states graphicsDevice.BlendState = BlendState.Opaque; graphicsDevice.DepthStencilState = DepthStencilState.Default; // Un-set the render target graphicsDevice.SetRenderTarget(null); } void prepareMainPass() { foreach (CModel model in Models) foreach (ModelMesh mesh in model.Model.Meshes) foreach (ModelMeshPart part in mesh.MeshParts) { // Set the light map and viewport parameters to each model's effect if (part.Effect.Parameters["LightTexture"] != null) part.Effect.Parameters["LightTexture"].SetValue(lightTarg); if (part.Effect.Parameters["viewportWidth"] != null) part.Effect.Parameters["viewportWidth"].SetValue(viewWidth); if (part.Effect.Parameters["viewportHeight"] != null) part.Effect.Parameters["viewportHeight"].SetValue(viewHeight); } } } } that uses three effect: PPDepthNormal.fx float4x4 World; float4x4 View; float4x4 Projection; struct VertexShaderInput { float4 Position : POSITION0; float3 Normal : NORMAL0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 Depth : TEXCOORD0; float3 Normal : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4x4 viewProjection = mul(View, Projection); float4x4 worldViewProjection = mul(World, viewProjection); output.Position = mul(input.Position, worldViewProjection); output.Normal = mul(input.Normal, World); // Position's z and w components correspond to the distance // from camera and distance of the far plane respectively output.Depth.xy = output.Position.zw; return output; } // We render to two targets simultaneously, so we can't // simply return a float4 from the pixel shader struct PixelShaderOutput { float4 Normal : COLOR0; float4 Depth : COLOR1; }; PixelShaderOutput PixelShaderFunction(VertexShaderOutput input) { PixelShaderOutput output; // Depth is stored as distance from camera / far plane distance // to get value between 0 and 1 output.Depth = input.Depth.x / input.Depth.y; // Normal map simply stores X, Y and Z components of normal // shifted from (-1 to 1) range to (0 to 1) range output.Normal.xyz = (normalize(input.Normal).xyz / 2) + .5; // Other components must be initialized to compile output.Depth.a = 1; output.Normal.a = 1; return output; } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } PPLight.fx float4x4 WorldViewProjection; float4x4 InvViewProjection; texture2D DepthTexture; texture2D NormalTexture; sampler2D depthSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; sampler2D normalSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; float3 LightColor; float3 LightPosition; float LightAttenuation; // Include shared functions #include "PPShared.vsi" struct VertexShaderInput { float4 Position : POSITION0; }; struct VertexShaderOutput { float4 Position : POSITION0; float4 LightPosition : TEXCOORD0; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; output.Position = mul(input.Position, WorldViewProjection); output.LightPosition = output.Position; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { // Find the pixel coordinates of the input position in the depth // and normal textures float2 texCoord = postProjToScreen(input.LightPosition) + halfPixel(); // Extract the depth for this pixel from the depth map float4 depth = tex2D(depthSampler, texCoord); // Recreate the position with the UV coordinates and depth value float4 position; position.x = texCoord.x * 2 - 1; position.y = (1 - texCoord.y) * 2 - 1; position.z = depth.r; position.w = 1.0f; // Transform position from screen space to world space position = mul(position, InvViewProjection); position.xyz /= position.w; // Extract the normal from the normal map and move from // 0 to 1 range to -1 to 1 range float4 normal = (tex2D(normalSampler, texCoord) - .5) * 2; // Perform the lighting calculations for a point light float3 lightDirection = normalize(LightPosition - position); float lighting = clamp(dot(normal, lightDirection), 0, 1); // Attenuate the light to simulate a point light float d = distance(LightPosition, position); float att = 1 - pow(d / LightAttenuation, 6); return float4(LightColor * lighting * att, 1); } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } PPShared.vsi has some common functions: float viewportWidth; float viewportHeight; // Calculate the 2D screen position of a 3D position float2 postProjToScreen(float4 position) { float2 screenPos = position.xy / position.w; return 0.5f * (float2(screenPos.x, -screenPos.y) + 1); } // Calculate the size of one half of a pixel, to convert // between texels and pixels float2 halfPixel() { return 0.5f / float2(viewportWidth, viewportHeight); } and finally from the Game class I set up in LoadContent with: effect = Content.Load(@"Effects\PPModel"); models[0] = new CModel(Content.Load(@"Models\teapot"), new Vector3(-50, 80, 0), new Vector3(0, 0, 0), 1f, Content.Load(@"Textures\prova_texture_autocad"), GraphicsDevice); house = new CModel(Content.Load(@"Models\house"), new Vector3(0, 0, 0), new Vector3((float)-Math.PI / 2, 0, 0), 35.0f, Content.Load(@"Textures\prova_texture_autocad"), GraphicsDevice); models[0].SetModelEffect(effect, true); house.SetModelEffect(effect, true); renderer = new PrelightingRenderer(GraphicsDevice, Content); renderer.Models = new List(); renderer.Models.Add(house); renderer.Models.Add(models[0]); renderer.Lights = new List() { new PPPointLight(new Vector3(0, 120, 0), Color.White * .85f, 2000) }; where PPModel.fx is: float4x4 World; float4x4 View; float4x4 Projection; texture2D BasicTexture; sampler2D basicTextureSampler = sampler_state { texture = ; addressU = wrap; addressV = wrap; minfilter = anisotropic; magfilter = anisotropic; mipfilter = linear; }; bool TextureEnabled = true; texture2D LightTexture; sampler2D lightSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; float3 AmbientColor = float3(0.15, 0.15, 0.15); float3 DiffuseColor; #include "PPShared.vsi" struct VertexShaderInput { float4 Position : POSITION0; float2 UV : TEXCOORD0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 UV : TEXCOORD0; float4 PositionCopy : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4x4 worldViewProjection = mul(World, mul(View, Projection)); output.Position = mul(input.Position, worldViewProjection); output.PositionCopy = output.Position; output.UV = input.UV; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { // Sample model's texture float3 basicTexture = tex2D(basicTextureSampler, input.UV); if (!TextureEnabled) basicTexture = float4(1, 1, 1, 1); // Extract lighting value from light map float2 texCoord = postProjToScreen(input.PositionCopy) + halfPixel(); float3 light = tex2D(lightSampler, texCoord); light += AmbientColor; return float4(basicTexture * DiffuseColor * light, 1); } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } I don't have any idea on what's wrong... googling the web I found that this tutorial may have some bug but I don't know if it's the LightModel fault (the sphere) or in a shader or in the class PrelightingRenderer. Any help is very appreciated, thank you for reading!

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Visual Studio 2013 Static Code Analysis in depth: What? When and How?

    - by Hosam Kamel
    In this post I'll illustrate in details the following points What is static code analysis? When to use? Supported platforms Supported Visual Studio versions How to use Run Code Analysis Manually Run Code Analysis Automatically Run Code Analysis while check-in source code to TFS version control (TFSVC) Run Code Analysis as part of Team Build Understand the Code Analysis results & learn how to fix them Create your custom rule set Q & A References What is static Rule analysis? Static Code Analysis feature of Visual Studio performs static code analysis on code to help developers identify potential design, globalization, interoperability, performance, security, and a lot of other categories of potential problems according to Microsoft's rules that mainly targets best practices in writing code, and there is a large set of those rules included with Visual Studio grouped into different categorized targeting specific coding issues like security, design, Interoperability, globalizations and others. Static here means analyzing the source code without executing it and this type of analysis can be performed through automated tools (like Visual Studio 2013 Code Analysis Tool) or manually through Code Review which already supported in Visual Studio 2012 and 2013 (check Using Code Review to Improve Quality video on Channel9) There is also Dynamic analysis which performed on executing programs using software testing techniques such as Code Coverage for example. When to use? Running Code analysis tool at regular intervals during your development process can enhance the quality of your software, examines your code for a set of common defects and violations is always a good programming practice. Adding that Code analysis can also find defects in your code that are difficult to discover through testing allowing you to achieve first level quality gate for you application during development phase before you release it to the testing team. Supported platforms .NET Framework, native (C and C++) Database applications. Support Visual Studio versions All version of Visual Studio starting Visual Studio 2013 (except Visual Studio Test Professional) check Feature comparisons Create and modify a custom rule set required Visual Studio Premium or Ultimate. How to use? Code Analysis can be run manually at any time from within the Visual Studio IDE, or even setup to automatically run as part of a Team Build or check-in policy for Team Foundation Server. Run Code Analysis Manually To run code analysis manually on a project, on the Analyze menu, click Run Code Analysis on your project or simply right click on the project name on the Solution Explorer choose Run Code Analysis from the context menu Run Code Analysis Automatically To run code analysis each time that you build a project, you select Enable Code Analysis on Build on the project's Property Page Run Code Analysis while check-in source code to TFS version control (TFSVC) Team Foundation Version Control (TFVC) provides a way for organizations to enforce practices that lead to better code and more efficient group development through Check-in policies which are rules that are set at the team project level and enforced on developer computers before code is allowed to be checked in. (This is available only if you're using Team Foundation Server) Require permissions on Team Foundation Server: you must have the Edit project-level information permission set to Allow typically your account must be part of Project Administrators, Project Collection Administrators, for more information about Team Foundation permissions check http://msdn.microsoft.com/en-us/library/ms252587(v=vs.120).aspx In Team Explorer, right-click the team project name, point to Team Project Settings, and then click Source Control. In the Source Control dialog box, select the Check-in Policy tab. Click Add to create a new check-in policy. Double-click the existing Code Analysis item in the Policy Type list to change the policy. Check or Uncheck the policy option based on the configurations you need to perform as illustrated below: Enforce check-in to only contain files that are part of current solution: code analysis can run only on files specified in solution and project configuration files. This policy guarantees that all code that is part of a solution is analyzed. Enforce C/C++ Code Analysis (/analyze): Requires that all C or C++ projects be built with the /analyze compiler option to run code analysis before they can be checked in. Enforce Code Analysis for Managed Code: Requires that all managed projects run code analysis and build before they can be checked in. Check Code analysis rule set reference on MSDN What is Rule Set? Rule Set is a group of code analysis rules like the example below where Microsoft.Design is the rule set name where "Do not declare static members on generic types" is the code analysis rule Once you configured the Analysis rule the policy will be enabled for all the team member in this project whenever a team member check-in any source code to the TFSVC the policy section will highlight the Code Analysis policy as below TFS is a very extensible platform so you can simply implement your own custom Code Analysis Check-in policy, check this link for more details http://msdn.microsoft.com/en-us/library/dd492668.aspx but you have to be aware also about compatibility between different TFS versions check http://msdn.microsoft.com/en-us/library/bb907157.aspx Run Code Analysis as part of Team Build With Team Foundation Build (TFBuild), you can create and manage build processes that automatically compile and test your applications, and perform other important functions. Code Analysis can be enabled in the Build Definition file by selecting the correct value for the build process parameter "Perform Code Analysis" Once configure, Kick-off your build definition to queue a new build, Code Analysis will run as part of build workflow and you will be able to see code analysis warning as part of build report Understand the Code Analysis results & learn how to fix them Now after you went through Code Analysis configurations and the different ways of running it, we will go through the Code Analysis result how to understand them and how to resolve them. Code Analysis window in Visual Studio will show all the analysis results based on the rule sets you configured in the project file properties, let's dig deep into what each result item contains: 1 Check ID The unique identifier for the rule. CheckId and Category are used for in-source suppression of a warning.       2 Title The title of warning message       3 Description A description of the problem or suggested fix 4 File Name File name and the line of code number which violate the code analysis rule set 5 Category The code analysis category for this error 6 Warning /Error Depend on how you configure it in the rule set the default is Warning level 7 Action Copy: copy the warning information to the clipboard Create Work Item: If you're connected to Team Foundation Server you can create a work item most probably you may create a Task or Bug and assign it for a developer to fix certain code analysis warning Suppress Message: There are times when you might decide not to fix a code analysis warning. You might decide that resolving the warning requires too much recoding in relation to the probability that the issue will arise in any real-world implementation of your code. Or you might believe that the analysis that is used in the warning is inappropriate for the particular context. You can suppress individual warnings so that they no longer appear in the Code Analysis window. Two options available: In Source inserts a SuppressMessage attribute in the source file above the method that generated the warning. This makes the suppression more discoverable. In Suppression File adds a SuppressMessage attribute to the GlobalSuppressions.cs file of the project. This can make the management of suppressions easier. Note that the SuppressMessage attribute added to GlobalSuppression.cs also targets the method that generated the warning. It does not suppress the warning globally.       Visual Studio makes it very easy to fix Code analysis warning, all you have to do is clicking on the Check Id hyperlink if you are not aware how to fix the warring and you'll be directed to MSDN online or local copy based on the configuration you did while installing Visual Studio and you will find all the information about the warring including how to fix it. Create a Custom Code Analysis Rule Set The Microsoft standard rule sets provide groups of rules that are organized by function and depth. For example, the Microsoft Basic Design Guidelines Rules and the Microsoft Extended Design Guidelines Rules contain rules that focus on usability and maintainability issues, with added emphasis on naming rules in the Extended rule set, you can create and modify a custom rule set to meet specific project needs associated with code analysis. To create a custom rule set, you open one or more standard rule sets in the rule set editor. Create and modify a custom rule set required Visual Studio Premium or Ultimate. You can check How to: Create a Custom Rule Set on MSDN for more details http://msdn.microsoft.com/en-us/library/dd264974.aspx Q & A Visual Studio static code analysis vs. FxCop vs. StyleCpp http://www.excella.com/blog/stylecop-vs-fxcop-difference-between-code-analysis-tools/ Code Analysis for SharePoint Apps and SPDisposeCheck? This post lists some of the rule set you can run specifically for SharePoint applications and how to integrate SPDisposeCheck as well. Code Analysis for SQL Server Database Projects? This post illustrate how to run static code analysis on T-SQL through SSDT ReSharper 8 vs. Visual Studio 2013? This document lists some of the features that are provided by ReSharper 8 but are missing or not as fully implemented in Visual Studio 2013. References A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext What is New in Code Analysis for Visual Studio 2013 http://blogs.msdn.com/b/visualstudioalm/archive/2013/07/03/what-is-new-in-code-analysis-for-visual-studio-2013.aspx Analyze the code quality of Windows Store apps using Visual Studio static code analysis http://msdn.microsoft.com/en-us/library/windows/apps/hh441471.aspx [Hands-on-lab] Using Code Analysis with Visual Studio 2012 to Improve Code Quality http://download.microsoft.com/download/A/9/2/A9253B14-5F23-4BC8-9C7E-F5199DB5F831/Using%20Code%20Analysis%20with%20Visual%20Studio%202012%20to%20Improve%20Code%20Quality.docx Originally posted at "Hosam Kamel| Developer & Platform Evangelist" http://blogs.msdn.com/hkamel

    Read the article

  • How to check if two System.Drawing.Color structures represent the same color in 16 bit color depth?

    - by David
    How can I check if two System.Drawing.Color structures represent the same color in 16 bit color depth (or generally based on the value of Screen.PrimaryScreen.BitsPerPixel)? Let's say I set Form.TransparencyKey to Value1 (of Color type), I want to check that when the user selects a new background color for the form (Value2), I don't set the entire form transparent. On 32bit color depth screens I simply compare the two values: if (Value1 == Value2) However, this does not work on 16bit color depth screens, as more Color values for the Value2 would represent the same actual 16bit color as Value1, as I found out the hard way.

    Read the article

  • Python: Get items at depth? (set library?)

    - by Mark
    I have a nested list something like this: PLACES = ( ('CA', 'Canada', ( ('AB', 'Alberta'), ('BC', 'British Columbia' ( ('van', 'Vancouver'), ), ... )), ('US', 'United States', ( ('AL', 'Alabama'), ('AK', 'Alaska'), ... I need to retrieve some data out of it. If depth is 0 I need to retrieve all the countries (and their codes), if depth == 1, I need to retrieve all the states/provinces, if depth == 2 I need to retrieve all the cities... and so forth. Is there some set library for doing stuff like this? Or can someone point me in the right direction? I started coding up a solution only to realize it wouldn't work for levels deeper than 1 because you have to go in and out of each list...

    Read the article

  • Convert array to nested HTML list

    - by Frank
    I have a 2 dimensional array. And each value contains a depth. What I want is that the the array is converted to a (unordered) HTML list. I already found a solution in PHP DOMDocument, but I can't really use it since I have to add a lot of classes and content to the HTML. I' have tried to make something myself, but it didn't workout. Here's the array: array ( 0 => array ( 'name' => 'ELECTRONICS', 'depth' => '0', ), 1 => array ( 'name' => 'TELEVISIONS', 'depth' => '1', ), 2 => array ( 'name' => 'TUBE', 'depth' => '2', ), 3 => array ( 'name' => 'LCD', 'depth' => '2', ), 4 => array ( 'name' => 'PLASMA', 'depth' => '2', ), 5 => array ( 'name' => 'PORTABLE ELECTRONICS', 'depth' => '1', ), 6 => array ( 'name' => 'MP3 PLAYERS', 'depth' => '2', ), 7 => array ( 'name' => 'FLASH', 'depth' => '3', ), 8 => array ( 'name' => 'CD PLAYERS', 'depth' => '2', ), 9 => array ( 'name' => '2 WAY RADIOS', 'depth' => '2', ), ) The array has to be converted to a list like this: ELECTRONICS TELEVISIONS TUBE LCD PLASMA PORTABLE ELECTRONICS MP3 PLAYERS FLASH CD PLAYERS 2 WAY RADIOS Thanks in advance, Frank

    Read the article

  • reformatting a matrix in matlab with nan values

    - by Kate
    This post follows a previous question regarding the restructuring of a matrix: re-formatting a matrix in matlab An additional problem I face is demonstrated by the following example: depth = [0:1:20]'; data = rand(1,length(depth))'; d = [depth,data]; d = [d;d(1:20,:);d]; Here I would like to alter this matrix so that each column represents a specific depth and each row represents time, so eventually I will have 3 rows (i.e. days) and 21 columns (i.e. measurement at each depth). However, we cannot reshape this because the number of measurements for a given day are not the same i.e. some are missing. This is known by: dd = sortrows(d,1); for i = 1:length(depth); e(i) = length(dd(dd(:,1)==depth(i),:)); end From 'e' we find that the number of depth is different for different days. How could I insert a nan into the matrix so that each day has the same depth values? I could find the unique depths first by: unique(d(:,1)) From this, if a depth (from unique) is missing for a given day I would like to insert the depth to the correct position and insert a nan into the respective location in the column of data. How can this be achieved?

    Read the article

  • ANTS CLR and Memory Profiler In Depth Review (Part 1 of 2 &ndash; CLR Profiler)

    - by ToStringTheory
    One of the things that people might not know about me, is my obsession to make my code as efficient as possible.  Many people might not realize how much of a task or undertaking that this might be, but it is surely a task as monumental as climbing Mount Everest, except this time it is a challenge for the mind…  In trying to make code efficient, there are many different factors that play a part – size of project or solution, tiers, language used, experience and training of the programmer, technologies used, maintainability of the code – the list can go on for quite some time. I spend quite a bit of time when developing trying to determine what is the best way to implement a feature to accomplish the efficiency that I look to achieve.  One program that I have recently come to learn about – Red Gate ANTS Performance (CLR) and Memory profiler gives me tools to accomplish that job more efficiently as well.  In this review, I am going to cover some of the features of the ANTS profiler set by compiling some hideous example code to test against. Notice As a member of the Geeks With Blogs Influencers program, one of the perks is the ability to review products, in exchange for a free license to the program.  I have not let this affect my opinions of the product in any way, and Red Gate nor Geeks With Blogs has tried to influence my opinion regarding this product in any way. Introduction The ANTS Profiler pack provided by Red Gate was something that I had not heard of before receiving an email regarding an offer to review it for a license.  Since I look to make my code efficient, it was a no brainer for me to try it out!  One thing that I have to say took me by surprise is that upon downloading the program and installing it you fill out a form for your usual contact information.  Sure enough within 2 hours, I received an email from a sales representative at Red Gate asking if she could help me to achieve the most out of my trial time so it wouldn’t go to waste.  After replying to her and explaining that I was looking to review its feature set, she put me in contact with someone that setup a demo session to give me a quick rundown of its features via an online meeting.  After having dealt with a massive ordeal with one of my utility companies and their complete lack of customer service, Red Gates friendly and helpful representatives were a breath of fresh air, and something I was thankful for. ANTS CLR Profiler The ANTS CLR profiler is the thing I want to focus on the most in this post, so I am going to dive right in now. Install was simple and took no time at all.  It installed both the profiler for the CLR and Memory, but also visual studio extensions to facilitate the usage of the profilers (click any images for full size images): The Visual Studio menu options (under ANTS menu) Starting the CLR Performance Profiler from the start menu yields this window If you follow the instructions after launching the program from the start menu (Click File > New Profiling Session to start a new project), you are given a dialog with plenty of options for profiling: The New Session dialog.  Lots of options.  One thing I noticed is that the buttons in the lower right were half-covered by the panel of the application.  If I had to guess, I would imagine that this is caused by my DPI settings being set to 125%.  This is a problem I have seen in other applications as well that don’t scale well to different dpi scales. The profiler options give you the ability to profile: .NET Executable ASP.NET web application (hosted in IIS) ASP.NET web application (hosted in IIS express) ASP.NET web application (hosted in Cassini Web Development Server) SharePoint web application (hosted in IIS) Silverlight 4+ application Windows Service COM+ server XBAP (local XAML browser application) Attach to an already running .NET 4 process Choosing each option provides a varying set of other variables/options that one can set including options such as application arguments, operating path, record I/O performance performance counters to record (43 counters in all!), etc…  All in all, they give you the ability to profile many different .Net project types, and make it simple to do so.  In most cases of my using this application, I would be using the built in Visual Studio extensions, as they automatically start a new profiling project in ANTS with the options setup, and start your program, however RedGate has made it easy enough to profile outside of Visual Studio as well. On the flip side of this, as someone who lives most of their work life in Visual Studio, one thing I do wish is that instead of opening an entirely separate application/gui to perform profiling after launching, that instead they would provide a Visual Studio panel with the information, and integrate more of the profiling project information into Visual Studio.  So, now that we have an idea of what options that the profiler gives us, its time to test its abilities and features. Horrendous Example Code – Prime Number Generator One of my interests besides development, is Physics and Math – what I went to college for.  I have especially always been interested in prime numbers, as they are something of a mystery…  So, I decided that I would go ahead and to test the abilities of the profiler, I would write a small program, website, and library to generate prime numbers in the quantity that you ask for.  I am going to start off with some terrible code, and show how I would see the profiler being used as a development tool. First off, the IPrimes interface (all code is downloadable at the end of the post): interface IPrimes { IEnumerable<int> GetPrimes(int retrieve); } Simple enough, right?  Anything that implements the interface will (hopefully) provide an IEnumerable of int, with the quantity specified in the parameter argument.  Next, I am going to implement this interface in the most basic way: public class DumbPrimes : IPrimes { public IEnumerable<int> GetPrimes(int retrieve) { //store a list of primes already found var _foundPrimes = new List<int>() { 2, 3 }; //if i ask for 1 or two primes, return what asked for if (retrieve <= _foundPrimes.Count()) return _foundPrimes.Take(retrieve); //the next number to look at int _analyzing = 4; //since I already determined I don't have enough //execute at least once, and until quantity is sufficed do { //assume prime until otherwise determined bool isPrime = true; //start dividing at 2 //divide until number is reached, or determined not prime for (int i = 2; i < _analyzing && isPrime; i++) { //if (i) goes into _analyzing without a remainder, //_analyzing is NOT prime if (_analyzing % i == 0) isPrime = false; } //if it is prime, add to found list if (isPrime) _foundPrimes.Add(_analyzing); //increment number to analyze next _analyzing++; } while (_foundPrimes.Count() < retrieve); return _foundPrimes; } } This is the simplest way to get primes in my opinion.  Checking each number by the straight definition of a prime – is it divisible by anything besides 1 and itself. I have included this code in a base class library for my solution, as I am going to use it to demonstrate a couple of features of ANTS.  This class library is consumed by a simple non-MVVM WPF application, and a simple MVC4 website.  I will not post the WPF code here inline, as it is simply an ObservableCollection<int>, a label, two textbox’s, and a button. Starting a new Profiling Session So, in Visual Studio, I have just completed my first stint developing the GUI and DumbPrimes IPrimes class, so now I want to check my codes efficiency by profiling it.  All I have to do is build the solution (surprised initiating a profiling session doesn’t do this, but I suppose I can understand it), and then click the ANTS menu, followed by Profile Performance.  I am then greeted by the profiler starting up and already monitoring my program live: You are provided with a realtime graph at the top, and a pane at the bottom giving you information on how to proceed.  I am going to start by asking my program to show me the first 15000 primes: After the program finally began responding again (I did all the work on the main UI thread – how bad!), I stopped the profiler, which did kill the process of my program too.  One important thing to note, is that the profiler by default wants to give you a lot of detail about the operation – line hit counts, time per line, percent time per line, etc…  The important thing to remember is that this itself takes a lot of time.  When running my program without the profiler attached, it can generate the 15000 primes in 5.18 seconds, compared to 74.5 seconds – almost a 1500 percent increase.  While this may seem like a lot, remember that there is a trade off.  It may be WAY more inefficient, however, I am able to drill down and make improvements to specific problem areas, and then decrease execution time all around. Analyzing the Profiling Session After clicking ‘Stop Profiling’, the process running my application stopped, and the entire execution time was automatically selected by ANTS, and the results shown below: Now there are a number of interesting things going on here, I am going to cover each in a section of its own: Real Time Performance Counter Bar (top of screen) At the top of the screen, is the real time performance bar.  As your application is running, this will constantly update with the currently selected performance counters status.  A couple of cool things to note are the fact that you can drag a selection around specific time periods to drill down the detail views in the lower 2 panels to information pertaining to only that period. After selecting a time period, you can bookmark a section and name it, so that it is easy to find later, or after reloaded at a later time.  You can also zoom in, out, or fit the graph to the space provided – useful for drilling down. It may be hard to see, but at the top of the processor time graph below the time ticks, but above the red usage graph, there is a green bar. This bar shows at what times a method that is selected in the ‘Call tree’ panel is called. Very cool to be able to click on a method and see at what times it made an impact. As I said before, ANTS provides 43 different performance counters you can hook into.  Click the arrow next to the Performance tab at the top will allow you to change between different counters if you have them selected: Method Call Tree, ADO.Net Database Calls, File IO – Detail Panel Red Gate really hit the mark here I think. When you select a section of the run with the graph, the call tree populates to fill a hierarchical tree of method calls, with information regarding each of the methods.   By default, methods are hidden where the source is not provided (framework type code), however, Red Gate has integrated Reflector into ANTS, so even if you don’t have source for something, you can select a method and get the source if you want.  Methods are also hidden where the impact is seen as insignificant – methods that are only executed for 1% of the time of the overall calling methods time; in other words, working on making them better is not where your efforts should be focused. – Smart! Source Panel – Detail Panel The source panel is where you can see line level information on your code, showing the code for the currently selected method from the Method Call Tree.  If the code is not available, Reflector takes care of it and shows the code anyways! As you can notice, there does seem to be a problem with how ANTS determines what line is the actual line that a call is completed on.  I have suspicions that this may be due to some of the inline code optimizations that the CLR applies upon compilation of the assembly.  In a method with comments, the problem is much more severe: As you can see here, apparently the most offending code in my base library was a comment – *gasp*!  Removing the comments does help quite a bit, however I hope that Red Gate works on their counter algorithm soon to improve the logic on positioning for statistics: I did a small test just to demonstrate the lines are correct without comments. For me, it isn’t a deal breaker, as I can usually determine the correct placements by looking at the application code in the region and determining what makes sense, but it is something that would probably build up some irritation with time. Feature – Suggest Method for Optimization A neat feature to really help those in need of a pointer, is the menu option under tools to automatically suggest methods to optimize/improve: Nice feature – clicking it filters the call tree and stars methods that it thinks are good candidates for optimization.  I do wish that they would have made it more visible for those of use who aren’t great on sight: Process Integration I do think that this could have a place in my process.  After experimenting with the profiler, I do think it would be a great benefit to do some development, testing, and then after all the bugs are worked out, use the profiler to check on things to make sure nothing seems like it is hogging more than its fair share.  For example, with this program, I would have developed it, ran it, tested it – it works, but slowly. After looking at the profiler, and seeing the massive amount of time spent in 1 method, I might go ahead and try to re-implement IPrimes (I actually would probably rewrite the offending code, but so that I can distribute both sets of code easily, I’m just going to make another implementation of IPrimes).  Using two pieces of knowledge about prime numbers can make this method MUCH more efficient – prime numbers fall into two buckets 6k+/-1 , and a number is prime if it is not divisible by any other primes before it: public class SmartPrimes : IPrimes { public IEnumerable<int> GetPrimes(int retrieve) { //store a list of primes already found var _foundPrimes = new List<int>() { 2, 3 }; //if i ask for 1 or two primes, return what asked for if (retrieve <= _foundPrimes.Count()) return _foundPrimes.Take(retrieve); //the next number to look at int _k = 1; //since I already determined I don't have enough //execute at least once, and until quantity is sufficed do { //assume prime until otherwise determined bool isPrime = true; int potentialPrime; //analyze 6k-1 //assign the value to potential potentialPrime = 6 * _k - 1; //if there are any primes that divise this, it is NOT a prime number //using PLINQ for quick boost isPrime = !_foundPrimes.AsParallel() .Any(prime => potentialPrime % prime == 0); //if it is prime, add to found list if (isPrime) _foundPrimes.Add(potentialPrime); if (_foundPrimes.Count() == retrieve) break; //analyze 6k+1 //assign the value to potential potentialPrime = 6 * _k + 1; //if there are any primes that divise this, it is NOT a prime number //using PLINQ for quick boost isPrime = !_foundPrimes.AsParallel() .Any(prime => potentialPrime % prime == 0); //if it is prime, add to found list if (isPrime) _foundPrimes.Add(potentialPrime); //increment k to analyze next _k++; } while (_foundPrimes.Count() < retrieve); return _foundPrimes; } } Now there are definitely more things I can do to help make this more efficient, but for the scope of this example, I think this is fine (but still hideous)! Profiling this now yields a happy surprise 27 seconds to generate the 15000 primes with the profiler attached, and only 1.43 seconds without.  One important thing I wanted to call out though was the performance graph now: Notice anything odd?  The %Processor time is above 100%.  This is because there is now more than 1 core in the operation.  A better label for the chart in my mind would have been %Core time, but to each their own. Another odd thing I noticed was that the profiler seemed to be spot on this time in my DumbPrimes class with line details in source, even with comments..  Odd. Profiling Web Applications The last thing that I wanted to cover, that means a lot to me as a web developer, is the great amount of work that Red Gate put into the profiler when profiling web applications.  In my solution, I have a simple MVC4 application setup with 1 page, a single input form, that will output prime values as my WPF app did.  Launching the profiler from Visual Studio as before, nothing is really different in the profiler window, however I did receive a UAC prompt for a Red Gate helper app to integrate with the web server without notification. After requesting 500, 1000, 2000, and 5000 primes, and looking at the profiler session, things are slightly different from before: As you can see, there are 4 spikes of activity in the processor time graph, but there is also something new in the call tree: That’s right – ANTS will actually group method calls by get/post operations, so it is easier to find out what action/page is giving the largest problems…  Pretty cool in my mind! Overview Overall, I think that Red Gate ANTS CLR Profiler has a lot to offer, however I think it also has a long ways to go.  3 Biggest Pros: Ability to easily drill down from time graph, to method calls, to source code Wide variety of counters to choose from when profiling your application Excellent integration/grouping of methods being called from web applications by request – BRILLIANT! 3 Biggest Cons: Issue regarding line details in source view Nit pick – Processor time vs. Core time Nit pick – Lack of full integration with Visual Studio Ratings Ease of Use (7/10) – I marked down here because of the problems with the line level details and the extra work that that entails, and the lack of better integration with Visual Studio. Effectiveness (10/10) – I believe that the profiler does EXACTLY what it purports to do.  Especially with its large variety of performance counters, a definite plus! Features (9/10) – Besides the real time performance monitoring, and the drill downs that I’ve shown here, ANTS also has great integration with ADO.Net, with the ability to show database queries run by your application in the profiler.  This, with the line level details, the web request grouping, reflector integration, and various options to customize your profiling session I think create a great set of features! Customer Service (10/10) – My entire experience with Red Gate personnel has been nothing but good.  their people are friendly, helpful, and happy! UI / UX (8/10) – The interface is very easy to get around, and all of the options are easy to find.  With a little bit of poking around, you’ll be optimizing Hello World in no time flat! Overall (8/10) – Overall, I am happy with the Performance Profiler and its features, as well as with the service I received when working with the Red Gate personnel.  I WOULD recommend you trying the application and seeing if it would fit into your process, BUT, remember there are still some kinks in it to hopefully be worked out. My next post will definitely be shorter (hopefully), but thank you for reading up to here, or skipping ahead!  Please, if you do try the product, drop me a message and let me know what you think!  I would love to hear any opinions you may have on the product. Code Feel free to download the code I used above – download via DropBox

    Read the article

  • Junior software developer - How to understand web applications in depth?

    - by nat_gr
    I am currently a junior developer in web applications and specifically in ASP.NET MVC technology. My problem is that the C# senior developer in the company has no experience with this technology and I try to learn without any guidance. I went through all tutorials (e.g music store), codeplex projects and also read Pro ASP.NET MVC 4. However, most of the examples are about CRUD and e-commerce applications. What I don't understand is how dependency injection fits in web applications (I have realized that is not only used for facilitating unit testing) or when I should use a custom model binder or how to model the business logic when there is already a database schema in place. I read the forum quite often and it would very helpful if some experienced developer could give me an insight about how to proceed. Do I need to read some books to understand the overall idea behind web applications? And what kind of application should I start building myself - I don't think it would be useful to create similar examples with the tutorials.

    Read the article

  • Junior software developer - How to understand web aplications in depth?

    - by nat_gr
    I am currently a junior developer in web applications and specifically in asp.net mvc technology. My problem is that the c# senior developer in the company has no experience with this technology and I try to learn without any guidance. I went through all tutorials (e.g music store), codeplex projects and also read pro asp.net mvc 4. However, most of the examples are about crud and e-commerce applications. What I don't understand is how dependency injection fits in web applications (I have realized that is not only used for facilitating unit testing) or when i should use a custom model binder or how to model the business logic when there is already a database schema in place. I read the forum quite often and it would very helpful if some experienced developers could give me an insight about how to proceed. Do I need to read some books to understand the overall idea behind web applications? And what kind of application should I start building myself - I don't think it would be useful to create similar examples with the tutorials.

    Read the article

  • Can I use ls -R to show up to 2 folder depth?

    - by Aggelos Kolaitis
    I have a folder tree that looks like this main/ main/34532-23423632-2354/what-i-want/sth/other/blah-blah main/54634-56345634-3422/what-i-want/sth/ .... main/54356-34225675-2345/what-i-want/ I want it to show the tree up to the folder what I want. Because the folders sth, other and so on contain many other things that are useless. I just want to see what's inside each folder named xxxx-xxxxxxxx-xxxxx. Is there any way?

    Read the article

  • Computer Networks UNISA - Chap 10 &ndash; In Depth TCP/IP Networking

    - by MarkPearl
    After reading this section you should be able to Understand methods of network design unique to TCP/IP networks, including subnetting, CIDR, and address translation Explain the differences between public and private TCP/IP networks Describe protocols used between mail clients and mail servers, including SMTP, POP3, and IMAP4 Employ multiple TCP/IP utilities for network discovery and troubleshooting Designing TCP/IP-Based Networks The following sections explain how network and host information in an IPv4 address can be manipulated to subdivide networks into smaller segments. Subnetting Subnetting separates a network into multiple logically defined segments, or subnets. Networks are commonly subnetted according to geographic locations, departmental boundaries, or technology types. A network administrator might separate traffic to accomplish the following… Enhance security Improve performance Simplify troubleshooting The challenges of Classful Addressing in IPv4 (No subnetting) The simplest type of IPv4 is known as classful addressing (which was the Class A, Class B & Class C network addresses). Classful addressing has the following limitations. Restriction in the number of usable IPv4 addresses (class C would be limited to 254 addresses) Difficult to separate traffic from various parts of a network Because of the above reasons, subnetting was introduced. IPv4 Subnet Masks Subnetting depends on the use of subnet masks to identify how a network is subdivided. A subnet mask indicates where network information is located in an IPv4 address. The 1 in a subnet mask indicates that corresponding bits in the IPv4 address contain network information (likewise 0 indicates the opposite) Each network class is associated with a default subnet mask… Class A = 255.0.0.0 Class B = 255.255.0.0 Class C = 255.255.255.0 An example of calculating  the network ID for a particular device with a subnet mask is shown below.. IP Address = 199.34.89.127 Subnet Mask = 255.255.255.0 Resultant Network ID = 199.34.89.0 IPv4 Subnetting Techniques Subnetting breaks the rules of classful IPv4 addressing. Read page 490 for a detailed explanation Calculating IPv4 Subnets Read page 491 – 494 for an explanation Important… Subnetting only applies to the devices internal to your network. Everything external looks at the class of the IP address instead of the subnet network ID. This way, traffic directed to your network externally still knows where to go, and once it has entered your internal network it can then be prioritized and segmented. CIDR (classless Interdomain Routing) CIDR is also known as classless routing or supernetting. In CIDR conventional network class distinctions do not exist, a subnet boundary can move to the left, therefore generating more usable IP addresses on your network. A subnet created by moving the subnet boundary to the left is known as a supernet. With CIDR also came new shorthand for denoting the position of subnet boundaries known as CIDR notation or slash notation. CIDR notation takes the form of the network ID followed by a forward slash (/) followed by the number of bits that are used for the extended network prefix. To take advantage of classless routing, your networks routers must be able to interpret IP addresses that don;t adhere to conventional network class parameters. Routers that rely on older routing protocols (i.e. RIP) are not capable of interpreting classless IP addresses. Internet Gateways Gateways are a combination of software and hardware that enable two different network segments to exchange data. A gateway facilitates communication between different networks or subnets. Because on device cannot send data directly to a device on another subnet, a gateway must intercede and hand off the information. Every device on a TCP/IP based network has a default gateway (a gateway that first interprets its outbound requests to other subnets, and then interprets its inbound requests from other subnets). The internet contains a vast number of routers and gateways. If each gateway had to track addressing information for every other gateway on the Internet, it would be overtaxed. Instead, each handles only a relatively small amount of addressing information, which it uses to forward data to another gateway that knows more about the data’s destination. The gateways that make up the internet backbone are called core gateways. Address Translation An organizations default gateway can also be used to “hide” the organizations internal IP addresses and keep them from being recognized on a public network. A public network is one that any user may access with little or no restrictions. On private networks, hiding IP addresses allows network managers more flexibility in assigning addresses. Clients behind a gateway may use any IP addressing scheme, regardless of whether it is recognized as legitimate by the Internet authorities but as soon as those devices need to go on the internet, they must have legitimate IP addresses to exchange data. When a clients transmission reaches the default gateway, the gateway opens the IP datagram and replaces the client’s private IP address with an Internet recognized IP address. This process is known as NAT (Network Address Translation). TCP/IP Mail Services All Internet mail services rely on the same principles of mail delivery, storage, and pickup, though they may use different types of software to accomplish these functions. Email servers and clients communicate through special TCP/IP application layer protocols. These protocols, all of which operate on a variety of operating systems are discussed below… SMTP (Simple Mail transfer Protocol) The protocol responsible for moving messages from one mail server to another over TCP/IP based networks. SMTP belongs to the application layer of the ODI model and relies on TCP as its transport protocol. Operates from port 25 on the SMTP server Simple sub-protocol, incapable of doing anything more than transporting mail or holding it in a queue MIME (Multipurpose Internet Mail Extensions) The standard message format specified by SMTP allows for lines that contain no more than 1000 ascii characters meaning if you relied solely on SMTP you would have very short messages and nothing like pictures included in an email. MIME us a standard for encoding and interpreting binary files, images, video, and non-ascii character sets within an email message. MIME identifies each element of a mail message according to content type. MIME does not replace SMTP but works in conjunction with it. Most modern email clients and servers support MIME POP (Post Office Protocol) POP is an application layer protocol used to retrieve messages from a mail server POP3 relies on TCP and operates over port 110 With POP3 mail is delivered and stored on a mail server until it is downloaded by a user Disadvantage of POP3 is that it typically does not allow users to save their messages on the server because of this IMAP is sometimes used IMAP (Internet Message Access Protocol) IMAP is a retrieval protocol that was developed as a more sophisticated alternative to POP3 The single biggest advantage IMAP4 has over POP3 is that users can store messages on the mail server, rather than having to continually download them Users can retrieve all or only a portion of any mail message Users can review their messages and delete them while the messages remain on the server Users can create sophisticated methods of organizing messages on the server Users can share a mailbox in a central location Disadvantages of IMAP are typically related to the fact that it requires more storage space on the server. Additional TCP/IP Utilities Nearly all TCP/IP utilities can be accessed from the command prompt on any type of server or client running TCP/IP. The syntaxt may differ depending on the OS of the client. Below is a list of additional TCP/IP utilities – research their use on your own! Ipconfig (Windows) & Ifconfig (Linux) Netstat Nbtstat Hostname, Host & Nslookup Dig (Linux) Whois (Linux) Traceroute (Tracert) Mtr (my traceroute) Route

    Read the article

  • ANTS CLR and Memory Profiler In Depth Review (Part 2 of 2 &ndash; Memory Profiler)

    - by ToStringTheory
    One of the things that people might not know about me, is my obsession to make my code as efficient as possible. Many people might not realize how much of a task or undertaking that this might be, but it is surely a task as monumental as climbing Mount Everest, except this time it is a challenge for the mind… In trying to make code efficient, there are many different factors that play a part – size of project or solution, tiers, language used, experience and training of the programmer, technologies used, maintainability of the code – the list can go on for quite some time. I spend quite a bit of time when developing trying to determine what is the best way to implement a feature to accomplish the efficiency that I look to achieve. One program that I have recently come to learn about – Red Gate ANTS Performance (CLR) and Memory profiler gives me tools to accomplish that job more efficiently as well. In this review, I am going to cover some of the features of the ANTS memory profiler set by compiling some hideous example code to test against. Notice As a member of the Geeks With Blogs Influencers program, one of the perks is the ability to review products, in exchange for a free license to the program. I have not let this affect my opinions of the product in any way, and Red Gate nor Geeks With Blogs has tried to influence my opinion regarding this product in any way. Introduction – Part 2 In my last post, I reviewed the feature packed Red Gate ANTS Performance Profiler.  Separate from the Red Gate Performance Profiler is the Red Gate ANTS Memory Profiler – a simple, easy to use utility for checking how your application is handling memory management…  A tool that I wish I had had many times in the past.  This post will be focusing on the ANTS Memory Profiler and its tool set. The memory profiler has a large assortment of features just like the Performance Profiler, with the new session looking nearly exactly alike: ANTS Memory Profiler Memory profiling is not something that I have to do very often…  In the past, the few cases I’ve had to find a memory leak in an application I have usually just had to trace the code of the operations being performed to look for oddities…  Sadly, I have come across more undisposed/non-using’ed IDisposable objects, usually from ADO.Net than I would like to ever see.  Support is not fun, however using ANTS Memory Profiler makes this task easier.  For this round of testing, I am going to use the same code from my previous example, using the WPF application. This time, I will choose the ‘Profile Memory’ option from the ANTS menu in Visual Studio, which launches the solution in its currently configured state/start-up project, and then launches the ANTS Memory Profiler to help.  It prepopulates all of the fields with the current project information, and all I have to do is select the ‘Start Profiling’ option. When the window comes up, it is actually quite barren, just giving ideas on how to work the profiler.  You start by getting to the point in your application that you want to profile, and then taking a ‘Memory Snapshot’.  This performs a full garbage collection, and snapshots the managed heap.  Using the same WPF app as before, I will go ahead and take a snapshot now. As you can see, ANTS is already giving me lots of information regarding the snapshot, however this is just a snapshot.  The whole point of the profiler is to perform an action, usually one where a memory problem is being noticed, and then take another snapshot and perform a diff between them to see what has changed.  I am going to go ahead and generate 5000 primes, and then take another snapshot: As you can see, ANTS is already giving me a lot of new information about this snapshot compared to the last.  Information such as difference in memory usage, fragmentation, class usage, etc…  If you take more snapshots, you can use the dropdown at the top to set your actual comparison snapshots. If you beneath the timeline, you will see a breadcrumb trail showing how best to approach profiling memory using ANTS.  When you first do the comparison, you start on the Summary screen.  You can either use the charts at the bottom, or switch to the class list screen to get to the next step.  Here is the class list screen: As you can see, it lists information about all of the instances between the snapshots, as well as at the bottom giving you a way to filter by telling ANTS what your problem is.  I am going to go ahead and select the Int16[] to look at the Instance Categorizer Using the instance categorizer, you can travel backwards to see where all of the instances are coming from.  It may be hard to see in this image, but hopefully the lightbox (click on it) will help: I can see that all of these instances are rooted to the application through the UI TextBlock control.  This image will probably be even harder to see, however using the ‘Instance Retention Graph’, you can trace an objects memory inheritance up the chain to see its roots as well.  This is a simple example, as this is simply a known element.  Usually you would be profiling an actual problem, and comparing those differences.  I know in the past, I have spotted a problem where a new context was created per page load, and it was rooted into the application through an event.  As the application began to grow, performance and reliability problems started to emerge.  A tool like this would have been a great way to identify the problem quickly. Overview Overall, I think that the Red Gate ANTS Memory Profiler is a great utility for debugging those pesky leaks.  3 Biggest Pros: Easy to use interface with lots of options for configuring profiling session Intuitive and helpful interface for drilling down from summary, to instance, to root graphs ANTS provides an API for controlling the profiler. Not many options, but still helpful. 2 Biggest Cons: Inability to automatically snapshot the memory by interval Lack of complete integration with Visual Studio via an extension panel Ratings Ease of Use (9/10) – I really do believe that they have brought simplicity to the once difficult task of memory profiling.  I especially liked how it stepped you further into the drilldown by directing you towards the best options. Effectiveness (10/10) – I believe that the profiler does EXACTLY what it purports to do.  Features (7/10) – A really great set of features all around in the application, however, I would like to see some ability for automatically triggering snapshots based on intervals or framework level items such as events. Customer Service (10/10) – My entire experience with Red Gate personnel has been nothing but good.  their people are friendly, helpful, and happy! UI / UX (9/10) – The interface is very easy to get around, and all of the options are easy to find.  With a little bit of poking around, you’ll be optimizing Hello World in no time flat! Overall (9/10) – Overall, I am happy with the Memory Profiler and its features, as well as with the service I received when working with the Red Gate personnel.  Thank you for reading up to here, or skipping ahead – I told you it would be shorter!  Please, if you do try the product, drop me a message and let me know what you think!  I would love to hear any opinions you may have on the product. Code Feel free to download the code I used above – download via DropBox

    Read the article

  • k-d tree implementation [closed]

    - by user466441
    when i run my code and debugged,i got this error - this 0x00093584 {_Myproxy=0x00000000 _Mynextiter=0x00000000 } std::_Iterator_base12 * const - _Myproxy 0x00000000 {_Mycont=??? _Myfirstiter=??? } std::_Container_proxy * _Mycont CXX0017: Error: symbol "" not found _Myfirstiter CXX0030: Error: expression cannot be evaluated + _Mynextiter 0x00000000 {_Myproxy=??? _Mynextiter=??? } std::_Iterator_base12 * but i dont know what does it means,code is this #include<iostream> #include<vector> #include<algorithm> using namespace std; struct point { float x,y; }; vector<point>pointleft(4); vector<point>pointright(4); //we are going to implement two comparison function for x and y coordinates,we need it in calculation of median (we should sort vector //by x or y according to depth informaton,is depth even or odd. bool sortby_X(point &a,point &b) { return a.x<b.x; } bool sortby_Y(point &a,point &b) { return a.y<b.y; } //so i am going to implement to median finding algorithm,one for finding median by x and another find median by y point medianx(vector<point>points) { point temp; sort(points.begin(),points.end(),sortby_X); temp=points[(points.size()/2)]; return temp; } point mediany(vector<point>points) { point temp; sort(points.begin(),points.end(),sortby_Y); temp=points[(points.size()/2)]; return temp; } //now construct basic tree structure struct Tree { float x,y; Tree(point a) { x=a.x; y=a.y; } Tree *left; Tree *right; }; Tree * build_kd( Tree *root,vector<point>points,int depth) { point temp; if(points.size()==1)// that point is as a leaf { if(root==NULL) root=new Tree(points[0]); return root; } if(depth%2==0) { temp=medianx(points); root=new Tree(temp); for(int i=0;i<points.size();i++) { if (points[i].x<temp.x) pointleft[i]=points[i]; else pointright[i]=points[i]; } } else { temp=mediany(points); root=new Tree(temp); for(int i=0;i<points.size();i++) { if(points[i].y<temp.y) pointleft[i]=points[i]; else pointright[i]=points[i]; } } return build_kd(root->left,pointleft,depth+1); return build_kd(root->right,pointright,depth+1); } void print(Tree *root) { while(root!=NULL) { cout<<root->x<<" " <<root->y; print(root->left); print(root->right); } } int main() { int depth=0; Tree *root=NULL; vector<point>points(4); float x,y; int n=4; for(int i=0;i<n;i++) { cin>>x>>y; points[i].x=x; points[i].y=y; } root=build_kd(root,points,depth); print(root); return 0; } i am trying ti implement in c++ this pseudo code tuple function build_kd_tree(int depth, set points): if points contains only one point: return that point as a leaf. if depth is even: Calculate the median x-value. Create a set of points (pointsLeft) that have x-values less than the median. Create a set of points (pointsRight) that have x-values greater than or equal to the median. else: Calculate the median y-value. Create a set of points (pointsLeft) that have y-values less than the median. Create a set of points (pointsRight) that have y-values greater than or equal to the median. treeLeft = build_kd_tree(depth + 1, pointsLeft) treeRight = build_kd_tree(depth + 1, pointsRight) return(median, treeLeft, treeRight) please help me what this error means?

    Read the article

  • Performing a Depth First Search iteratively using async/parallel processing?

    - by Prabhu
    Here is a method that does a DFS search and returns a list of all items given a top level item id. How could I modify this to take advantage of parallel processing? Currently, the call to get the sub items is made one by one for each item in the stack. It would be nice if I could get the sub items for multiple items in the stack at the same time, and populate my return list faster. How could I do this (either using async/await or TPL, or anything else) in a thread safe manner? private async Task<IList<Item>> GetItemsAsync(string topItemId) { var items = new List<Item>(); var topItem = await GetItemAsync(topItemId); Stack<Item> stack = new Stack<Item>(); stack.Push(topItem); while (stack.Count > 0) { var item = stack.Pop(); items.Add(item); var subItems = await GetSubItemsAsync(item.SubId); foreach (var subItem in subItems) { stack.Push(subItem); } } return items; } I was thinking of something along these lines, but it's not coming together: var tasks = stack.Select(async item => { items.Add(item); var subItems = await GetSubItemsAsync(item.SubId); foreach (var subItem in subItems) { stack.Push(subItem); } }).ToList(); if (tasks.Any()) await Task.WhenAll(tasks); The language I'm using is C#.

    Read the article

  • Best in-depth analytics or stats tools? (preferrably server-side)

    - by Litso
    Hey all, I know there's been questions about this before, but mine is a little more specific. I work for a high traffic website and we want to start tracking our visitors better. Unfortunately, Google Analytics is not an option at the moment, so what I'm looking for is some alternatives, preferrably server-side (but not necessarily). We're currently running Urchin, but what I'm missing most there is the way you can set conversions in Analytics and then track (for example) which keywords convert better or which landing pages convert better. Also, A/B testing is something I really miss. Which analytics tools can be compared to analytics in terms of advanced segmentation, navigation summaries, A/B testing, etc?

    Read the article

  • Most efficient 3d depth sorting for isometric 3d in AS3?

    - by AttackingHobo
    I am not using the built in 3d MovieClips, and I am storing the 3d location my way. I have read a few different articles on sorting depths, but most of them seem in efficient. I had a really efficient way to do it in AS2, but it was really hacky, and I am guessing there are more efficient ways that do not rely on possibly unreliable hacks. What is the most efficient way to sort display depths using AS3 with Z depths I already have?

    Read the article

  • Install lubuntu 12.04 on an old Dell c600 : Video issues

    - by maniat1k
    I am trying to install lubuntu on an old laptop. I use the 386 alternate instalation of it, because it has only 256mb ... All when ok so when I start up the lubuntu the screen splits between 1024x768 and 800x600... its very horrible to use =). Ok I do this: lspci and found an ATI Rage mobility M3. 01:00.0 VGA compatible controller: ATI Technologies Inc Rage Mobility M3 AGP 2x (rev 02) So I tryied the old xorg way to edit the missing resolution, but it does not work:... Section "Screen" Identifier "Default Screen" Device "ATI Technologies, Inc. Rage Mobility M3 (AGP)" Monitor "Generic Monitor" DefaultDepth 24 SubSection "Display" Depth 1 Modes "1024x768" EndSubSection SubSection "Display" Depth 4 Modes "1024x768" EndSubSection SubSection "Display" Depth 8 Modes "1024x768" EndSubSection SubSection "Display" Depth 15 Modes "1024x768" EndSubSection SubSection "Display" Depth 16 Modes "1024x768" EndSubSection SubSection "Display" Depth 24 Modes "1024x768" EndSubSection EndSection on an brand new xorg.conf... Do an init 6 to see if X take the changes, but nothing habbened: also tryed to do pkg-reconfigure -changedir /etc/X11 (where I created the new xorg.conf) and nothing.. removed the X conf from /tmp.. also do sudo apt-get update / upgrade... and no luck... UPDATE Updated to 12.04. This an edited xorg fr old dells like mine: # xorg.conf (X.Org X Window System server configuration file) # # This file was generated by dexconf, the Debian X Configuration tool, using # values from the debconf database. # # Edit this file with caution, and see the xorg.conf manual page. # (Type "man xorg.conf" at the shell prompt.) # # This file is automatically updated on xserver-xorg package upgrades *only* # if it has not been modified since the last upgrade of the xserver-xorg # package. # # If you have edited this file but would like it to be automatically updated # again, run the following command: # sudo dpkg-reconfigure -phigh xserver-xorg # xorg.conf for dell latitude c600 by A. Howlett and others Section "ServerLayout" Identifier "Default Server Layout" Screen 0 "Screen0" InputDevice "Keyboard0" "CoreKeyboard" InputDevice "Mouse0" "CorePointer" InputDevice "Generic Mouse" "AlwaysCore" EndSection Section "Files" RgbPath "/usr/X11R6/lib/X11/rgb" FontPath "/usr/share/fonts/local" FontPath "/usr/share/fonts/misc" FontPath "/usr/share/fonts/75dpi:unscaled" FontPath "/usr/share/fonts/100dpi:unscaled" FontPath "/usr/share/fonts/Type1" FontPath "/usr/share/fonts/CID" FontPath "/usr/share/fonts/Speedo" FontPath "/usr/share/fonts/cyrillic" FontPath "/usr/share/fonts/artwiz-aleczapka" FontPath "/usr/share/fonts/TTF" FontPath "/usr/share/fonts/util" FontPath "/usr/local/share/fonts" FontPath "/usr/share/fonts" FontPath "/usr/share/fonts" FontPath "/usr/share/fonts/aquafont" FontPath "/usr/share/fonts/artwiz" FontPath "/usr/share/fonts/artwiz-aleczapka-en" FontPath "/usr/share/fonts/corefonts" FontPath "/usr/share/fonts/freefont" EndSection Section "Module" Load "GLcore" Load "dbe" Load "dri" Load "extmod" Load "glx" Load "pex5" Load "record" Load "xie" Load "v4l" Load "freetype" EndSection Section "InputDevice" Identifier "Keyboard0" Driver "keyboard" Option "XkbModel" "pc104" Option "XkbLayout" "us" EndSection Section "InputDevice" Identifier "Mouse0" Driver "mouse" Option "CorePointer" Option "Device" "/dev/psaux" Option "Protocol" "PS/2" Option "Emulate3Buttons" "true" Option "ZAxisMapping" "4 5" EndSection Section "InputDevice" Identifier "Generic Mouse" Driver "mouse" Option "SendCoreEvents" "true" Option "Device" "/dev/input/mice" Option "Protocol" "ImPS/2" Option "Emulate3Buttons" "true" Option "ZAxisMapping" "4 5" EndSection Section "Monitor" Identifier "laptop LCD" VendorName "Dell" ModelName "Latitude C600" HorizSync 31.5-48.5 VertRefresh 40-70 EndSection Section "Device" Identifier "Video0" Driver "r128" VideoRam 8192 Option "EnablePageFlip" "true" Option "AGPFastWrite" "true" Option "AGPMode" "2" BusID "PCI:01:00:0" Screen 0 Option "Display" "FP" Option "MonitorLayout" "CRT, LFP" EndSection Section "Screen" Identifier "Screen0" Device "Video0" Monitor "laptop LCD" DefaultDepth 16 Subsection "Display" Depth 32 Modes "1280x1024" "1152x864" "1024x768" "800x600" "640x480" EndSubSection Subsection "Display" Depth 24 Modes "1280x1024" "1152x864" "1024x768" "800x600" "640x480" EndSubSection Subsection "Display" Depth 16 Modes "1280x1024" "1152x864" "1024x768" "800x600" "640x480" EndSubSection Subsection "Display" Depth 8 Modes "1280x1024" "1152x864" "1024x768" "800x600" "640x480" EndSubSection EndSection Section "DRI" Mode 0666 EndSection

    Read the article

< Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >