Search Results

Search found 12222 results on 489 pages for 'initial context'.

Page 8/489 | < Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >

  • Translating with context

    - by translate
    Is there a way I can see the result of my work while I am translating? It is difficult to translate without context. If I could see how my work will appear while I am doing it, translating is much easier. Edit from Oli: I understand this question to be from somebody who is translating an application. Translators often only have a list of phrases to translate without being able to see where those phrases are used in the app. This person wants a way to quickly locate a string inside an application so they can understand the phrase better and provide the best possible translation.

    Read the article

  • Versioning Java APIs in a non-web context

    - by GAP
    I have modular java application which consists of 40 modules. Some of these modules needs to expose external APIs which other modules or any external integration should be using. The system runs as a desktop application and each module is bundled as a separate jar file. My plan is to bundle the external api as a separate jar. But now the question is: how can I maintain multiple versions of the same API to keep backward compatibility in cases where it can co-exist? Are there any de facto standards on handling APIs versioning out of a web context ?

    Read the article

  • How can I get jQuery $('.class', context) to include context itself if it matches .class?

    - by Jake
    I want to be able to match against all elements in a given context including the context element itself. Here is the code I'm using currently, but it seems inefficient. Is there a better way? Note: I'm using jQ 1.3.2, but I'll upgrade soon so I'm interested in 1.4 solutions too. var context = $('#id'); var filters = '.class1, .class2'; // take context itself if it matches filters $(context).filter(filters) // add anything matching filters inside context .add($(filters, context)) Note: .add($(f,c)) works in jQ 1.3 as .add(f,c) in jQ 1.4

    Read the article

  • Android: how to obtain AssetManager without reference to Context?

    - by ab11
    I have a Class that needs to obtain a reference to it's application's AssetManager. This class does not extend any sort of android UI class, so it doesn't have a getContext() method, or anything similar. Is there some sort of static Context.getCurrentApplicationContext() type of method? To clarify: my class is intended to be used like a library, for other applications. It has no associated AndroidManifest.xml or control over the context which is calling it.

    Read the article

  • How to change Blackberry initial message download limit.

    - by Mikey B
    BES 4.1.6 Blackberry 8300 (curve) Hi guys, I've noticed that handhelds will typically only retrieve the first few KB and then prompt the user to manually retrieve more (or auto-retrieve if they scroll down). The problem is that I have a BB app that needs to see the entire message all at once on the first initial time it's opened. Is there a setting on BES that will allow me to change how much data a handheld initially retrieves per message? Thanks, M

    Read the article

  • Quick guide to Oracle IRM 11g: Classification design

    - by Simon Thorpe
    Quick guide to Oracle IRM 11g indexThis is the final article in the quick guide to Oracle IRM. If you've followed everything prior you will now have a fully functional and tested Information Rights Management service. It doesn't matter if you've been following the 10g or 11g guide as this next article is common to both. ContentsWhy this is the most important part... Understanding the classification and standard rights model Identifying business use cases Creating an effective IRM classification modelOne single classification across the entire businessA context for each and every possible granular use caseWhat makes a good context? Deciding on the use of roles in the context Reviewing the features and security for context roles Summary Why this is the most important part...Now the real work begins, installing and getting an IRM system running is as simple as following instructions. However to actually have an IRM technology easily protecting your most sensitive information without interfering with your users existing daily work flows and be able to scale IRM across the entire business, requires thought into how confidential documents are created, used and distributed. This article is going to give you the information you need to ask the business the right questions so that you can deploy your IRM service successfully. The IRM team here at Oracle have over 10 years of experience in helping customers and it is important you understand the following to be successful in securing access to your most confidential information. Whatever you are trying to secure, be it mergers and acquisitions information, engineering intellectual property, health care documentation or financial reports. No matter what type of user is going to access the information, be they employees, contractors or customers, there are common goals you are always trying to achieve.Securing the content at the earliest point possible and do it automatically. Removing the dependency on the user to decide to secure the content reduces the risk of mistakes significantly and therefore results a more secure deployment. K.I.S.S. (Keep It Simple Stupid) Reduce complexity in the rights/classification model. Oracle IRM lets you make changes to access to documents even after they are secured which allows you to start with a simple model and then introduce complexity once you've understood how the technology is going to be used in the business. After an initial learning period you can review your implementation and start to make informed decisions based on user feedback and administration experience. Clearly communicate to the user, when appropriate, any changes to their existing work practice. You must make every effort to make the transition to sealed content as simple as possible. For external users you must help them understand why you are securing the documents and inform them the value of the technology to both your business and them. Before getting into the detail, I must pay homage to Martin White, Vice President of client services in SealedMedia, the company Oracle acquired and who created Oracle IRM. In the SealedMedia years Martin was involved with every single customer and was key to the design of certain aspects of the IRM technology, specifically the context model we will be discussing here. Listening carefully to customers and understanding the flexibility of the IRM technology, Martin taught me all the skills of helping customers build scalable, effective and simple to use IRM deployments. No matter how well the engineering department designed the software, badly designed and poorly executed projects can result in difficult to use and manage, and ultimately insecure solutions. The advice and information that follows was born with Martin and he's still delivering IRM consulting with customers and can be found at www.thinkers.co.uk. It is from Martin and others that Oracle not only has the most advanced, scalable and usable document security solution on the market, but Oracle and their partners have the most experience in delivering successful document security solutions. Understanding the classification and standard rights model The goal of any successful IRM deployment is to balance the increase in security the technology brings without over complicating the way people use secured content and avoid a significant increase in administration and maintenance. With Oracle it is possible to automate the protection of content, deploy the desktop software transparently and use authentication methods such that users can open newly secured content initially unaware the document is any different to an insecure one. That is until of course they attempt to do something for which they don't have any rights, such as copy and paste to an insecure application or try and print. Central to achieving this objective is creating a classification model that is simple to understand and use but also provides the right level of complexity to meet the business needs. In Oracle IRM the term used for each classification is a "context". A context defines the relationship between.A group of related documents The people that use the documents The roles that these people perform The rights that these people need to perform their role The context is the key to the success of Oracle IRM. It provides the separation of the role and rights of a user from the content itself. Documents are sealed to contexts but none of the rights, user or group information is stored within the content itself. Sealing only places information about the location of the IRM server that sealed it, the context applied to the document and a few other pieces of metadata that pertain only to the document. This important separation of rights from content means that millions of documents can be secured against a single classification and a user needs only one right assigned to be able to access all documents. If you have followed all the previous articles in this guide, you will be ready to start defining contexts to which your sensitive information will be protected. But before you even start with IRM, you need to understand how your own business uses and creates sensitive documents and emails. Identifying business use cases Oracle is able to support multiple classification systems, but usually there is one single initial need for the technology which drives a deployment. This need might be to protect sensitive mergers and acquisitions information, engineering intellectual property, financial documents. For this and every subsequent use case you must understand how users create and work with documents, to who they are distributed and how the recipients should interact with them. A successful IRM deployment should start with one well identified use case (we go through some examples towards the end of this article) and then after letting this use case play out in the business, you learn how your users work with content, how well your communication to the business worked and if the classification system you deployed delivered the right balance. It is at this point you can start rolling the technology out further. Creating an effective IRM classification model Once you have selected the initial use case you will address with IRM, you need to design a classification model that defines the access to secured documents within the use case. In Oracle IRM there is an inbuilt classification system called the "context" model. In Oracle IRM 11g it is possible to extend the server to support any rights classification model, but the majority of users who are not using an application integration (such as Oracle IRM within Oracle Beehive) are likely to be starting out with the built in context model. Before looking at creating a classification system with IRM, it is worth reviewing some recognized standards and methods for creating and implementing security policy. A very useful set of documents are the ISO 17799 guidelines and the SANS security policy templates. First task is to create a context against which documents are to be secured. A context consists of a group of related documents (all top secret engineering research), a list of roles (contributors and readers) which define how users can access documents and a list of users (research engineers) who have been given a role allowing them to interact with sealed content. Before even creating the first context it is wise to decide on a philosophy which will dictate the level of granularity, the question is, where do you start? At a department level? By project? By technology? First consider the two ends of the spectrum... One single classification across the entire business Imagine that instead of having separate contexts, one for engineering intellectual property, one for your financial data, one for human resources personally identifiable information, you create one context for all documents across the entire business. Whilst you may have immediate objections, there are some significant benefits in thinking about considering this. Document security classification decisions are simple. You only have one context to chose from! User provisioning is simple, just make sure everyone has a role in the only context in the business. Administration is very low, if you assign rights to groups from the business user repository you probably never have to touch IRM administration again. There are however some obvious downsides to this model.All users in have access to all IRM secured content. So potentially a sales person could access sensitive mergers and acquisition documents, if they can get their hands on a copy that is. You cannot delegate control of different documents to different parts of the business, this may not satisfy your regulatory requirements for the separation and delegation of duties. Changing a users role affects every single document ever secured. Even though it is very unlikely a business would ever use one single context to secure all their sensitive information, thinking about this scenario raises one very important point. Just having one single context and securing all confidential documents to it, whilst incurring some of the problems detailed above, has one huge value. Once secured, IRM protected content can ONLY be accessed by authorized users. Just think of all the sensitive documents in your business today, imagine if you could ensure that only everyone you trust could open them. Even if an employee lost a laptop or someone accidentally sent an email to the wrong recipient, only the right people could open that file. A context for each and every possible granular use case Now let's think about the total opposite of a single context design. What if you created a context for each and every single defined business need and created multiple contexts within this for each level of granularity? Let's take a use case where we need to protect engineering intellectual property. Imagine we have 6 different engineering groups, and in each we have a research department, a design department and manufacturing. The company information security policy defines 3 levels of information sensitivity... restricted, confidential and top secret. Then let's say that each group and department needs to define access to information from both internal and external users. Finally add into the mix that they want to review the rights model for each context every financial quarter. This would result in a huge amount of contexts. For example, lets just look at the resulting contexts for one engineering group. Q1FY2010 Restricted Internal - Engineering Group 1 - Research Q1FY2010 Restricted Internal - Engineering Group 1 - Design Q1FY2010 Restricted Internal - Engineering Group 1 - Manufacturing Q1FY2010 Restricted External- Engineering Group 1 - Research Q1FY2010 Restricted External - Engineering Group 1 - Design Q1FY2010 Restricted External - Engineering Group 1 - Manufacturing Q1FY2010 Confidential Internal - Engineering Group 1 - Research Q1FY2010 Confidential Internal - Engineering Group 1 - Design Q1FY2010 Confidential Internal - Engineering Group 1 - Manufacturing Q1FY2010 Confidential External - Engineering Group 1 - Research Q1FY2010 Confidential External - Engineering Group 1 - Design Q1FY2010 Confidential External - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret Internal - Engineering Group 1 - Research Q1FY2010 Top Secret Internal - Engineering Group 1 - Design Q1FY2010 Top Secret Internal - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret External - Engineering Group 1 - Research Q1FY2010 Top Secret External - Engineering Group 1 - Design Q1FY2010 Top Secret External - Engineering Group 1 - Manufacturing Now multiply the above by 6 for each engineering group, 18 contexts. You are then creating/reviewing another 18 every 3 months. After a year you've got 72 contexts. What would be the advantages of such a complex classification model? You can satisfy very granular rights requirements, for example only an authorized engineering group 1 researcher can create a top secret report for access internally, and his role will be reviewed on a very frequent basis. Your business may have very complex rights requirements and mapping this directly to IRM may be an obvious exercise. The disadvantages of such a classification model are significant...Huge administrative overhead. Someone in the business must manage, review and administrate each of these contexts. If the engineering group had a single administrator, they would have 72 classifications to reside over each year. From an end users perspective life will be very confusing. Imagine if a user has rights in just 6 of these contexts. They may be able to print content from one but not another, be able to edit content in 2 contexts but not the other 4. Such confusion at the end user level causes frustration and resistance to the use of the technology. Increased synchronization complexity. Imagine a user who after 3 years in the company ends up with over 300 rights in many different contexts across the business. This would result in long synchronization times as the client software updates all your offline rights. Hard to understand who can do what with what. Imagine being the VP of engineering and as part of an internal security audit you are asked the question, "What rights to researchers have to our top secret information?". In this complex model the answer is not simple, it would depend on many roles in many contexts. Of course this example is extreme, but it highlights that trying to build many barriers in your business can result in a nightmare of administration and confusion amongst users. In the real world what we need is a balance of the two. We need to seek an optimum number of contexts. Too many contexts are unmanageable and too few contexts does not give fine enough granularity. What makes a good context? Good context design derives mainly from how well you understand your business requirements to secure access to confidential information. Some customers I have worked with can tell me exactly the documents they wish to secure and know exactly who should be opening them. However there are some customers who know only of the government regulation that requires them to control access to certain types of information, they don't actually know where the documents are, how they are created or understand exactly who should have access. Therefore you need to know how to ask the business the right questions that lead to information which help you define a context. First ask these questions about a set of documentsWhat is the topic? Who are legitimate contributors on this topic? Who are the authorized readership? If the answer to any one of these is significantly different, then it probably merits a separate context. Remember that sealed documents are inherently secure and as such they cannot leak to your competitors, therefore it is better sealed to a broad context than not sealed at all. Simplicity is key here. Always revert to the first extreme example of a single classification, then work towards essential complexity. If there is any doubt, always prefer fewer contexts. Remember, Oracle IRM allows you to change your mind later on. You can implement a design now and continue to change and refine as you learn how the technology is used. It is easy to go from a simple model to a more complex one, it is much harder to take a complex model that is already embedded in the work practice of users and try to simplify it. It is also wise to take a single use case and address this first with the business. Don't try and tackle many different problems from the outset. Do one, learn from the process, refine it and then take what you have learned into the next use case, refine and continue. Once you have a good grasp of the technology and understand how your business will use it, you can then start rolling out the technology wider across the business. Deciding on the use of roles in the context Once you have decided on that first initial use case and a context to create let's look at the details you need to decide upon. For each context, identify; Administrative rolesBusiness owner, the person who makes decisions about who may or may not see content in this context. This is often the person who wanted to use IRM and drove the business purchase. They are the usually the person with the most at risk when sensitive information is lost. Point of contact, the person who will handle requests for access to content. Sometimes the same as the business owner, sometimes a trusted secretary or administrator. Context administrator, the person who will enact the decisions of the Business Owner. Sometimes the point of contact, sometimes a trusted IT person. Document related rolesContributors, the people who create and edit documents in this context. Reviewers, the people who are involved in reviewing documents but are not trusted to secure information to this classification. This role is not always necessary. (See later discussion on Published-work and Work-in-Progress) Readers, the people who read documents from this context. Some people may have several of the roles above, which is fine. What you are trying to do is understand and define how the business interacts with your sensitive information. These roles obviously map directly to roles available in Oracle IRM. Reviewing the features and security for context roles At this point we have decided on a classification of information, understand what roles people in the business will play when administrating this classification and how they will interact with content. The final piece of the puzzle in getting the information for our first context is to look at the permissions people will have to sealed documents. First think why are you protecting the documents in the first place? It is to prevent the loss of leaking of information to the wrong people. To control the information, making sure that people only access the latest versions of documents. You are not using Oracle IRM to prevent unauthorized people from doing legitimate work. This is an important point, with IRM you can erect many barriers to prevent access to content yet too many restrictions and authorized users will often find ways to circumvent using the technology and end up distributing unprotected originals. Because IRM is a security technology, it is easy to get carried away restricting different groups. However I would highly recommend starting with a simple solution with few restrictions. Ensure that everyone who reasonably needs to read documents can do so from the outset. Remember that with Oracle IRM you can change rights to content whenever you wish and tighten security. Always return to the fact that the greatest value IRM brings is that ONLY authorized users can access secured content, remember that simple "one context for the entire business" model. At the start of the deployment you really need to aim for user acceptance and therefore a simple model is more likely to succeed. As time passes and users understand how IRM works you can start to introduce more restrictions and complexity. Another key aspect to focus on is handling exceptions. If you decide on a context model where engineering can only access engineering information, and sales can only access sales data. Act quickly when a sales manager needs legitimate access to a set of engineering documents. Having a quick and effective process for permitting other people with legitimate needs to obtain appropriate access will be rewarded with acceptance from the user community. These use cases can often be satisfied by integrating IRM with a good Identity & Access Management technology which simplifies the process of assigning users the correct business roles. The big print issue... Printing is often an issue of contention, users love to print but the business wants to ensure sensitive information remains in the controlled digital world. There are many cases of physical document loss causing a business pain, it is often overlooked that IRM can help with this issue by limiting the ability to generate physical copies of digital content. However it can be hard to maintain a balance between security and usability when it comes to printing. Consider the following points when deciding about whether to give print rights. Oracle IRM sealed documents can contain watermarks that expose information about the user, time and location of access and the classification of the document. This information would reside in the printed copy making it easier to trace who printed it. Printed documents are slower to distribute in comparison to their digital counterparts, so time sensitive information in printed format may present a lower risk. Print activity is audited, therefore you can monitor and react to users abusing print rights. Summary In summary it is important to think carefully about the way you create your context model. As you ask the business these questions you may get a variety of different requirements. There may be special projects that require a context just for sensitive information created during the lifetime of the project. There may be a department that requires all information in the group is secured and you might have a few senior executives who wish to use IRM to exchange a small number of highly sensitive documents with a very small number of people. Oracle IRM, with its very flexible context classification system, can support all of these use cases. The trick is to introducing the complexity to deliver them at the right level. In another article i'm working on I will go through some examples of how Oracle IRM might map to existing business use cases. But for now, this article covers all the important questions you need to get your IRM service deployed and successfully protecting your most sensitive information.

    Read the article

  • Problem with initializing a type with WinsdorContainer

    - by the_drow
    public ApplicationView(string[] args) { InitializeComponent(); string configFilePath = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "log4net.config"); FileInfo configFileInfo = new FileInfo(configFilePath); XmlConfigurator.ConfigureAndWatch(configFileInfo); IConfigurationSource configSource = ConfigurationManager.GetSection("ActiveRecord") as IConfigurationSource; Assembly assembly = Assembly.Load("Danel.Nursing.Model"); ActiveRecordStarter.Initialize(assembly, configSource); WindsorContainer windsorContainer = ApplicationUtils.GetWindsorContainer(); windsorContainer.Kernel.AddComponentInstance<ApplicationView>(this); windsorContainer.Kernel.AddComponent(typeof(ApplicationController).Name, typeof(ApplicationController)); controller = windsorContainer.Resolve<ApplicationController>(); // exception is thrown here OnApplicationLoad(args); } The stack trace is this: Castle.MicroKernel.ComponentActivator.ComponentActivatorException was unhandled Message="ComponentActivator: could not instantiate Danel.Nursing.Scheduling.Actions.DataServices.NurseAbsenceDataService" Source="Castle.MicroKernel" StackTrace: at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.CreateInstance(CreationContext context, Object[] arguments, Type[] signature) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.Instantiate(CreationContext context) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.InternalCreate(CreationContext context) at Castle.MicroKernel.ComponentActivator.AbstractComponentActivator.Create(CreationContext context) at Castle.MicroKernel.Lifestyle.AbstractLifestyleManager.Resolve(CreationContext context) at Castle.MicroKernel.Lifestyle.SingletonLifestyleManager.Resolve(CreationContext context) at Castle.MicroKernel.Handlers.DefaultHandler.Resolve(CreationContext context) at Castle.MicroKernel.Resolvers.DefaultDependencyResolver.ResolveServiceDependency(CreationContext context, ComponentModel model, DependencyModel dependency) at Castle.MicroKernel.Resolvers.DefaultDependencyResolver.Resolve(CreationContext context, ISubDependencyResolver parentResolver, ComponentModel model, DependencyModel dependency) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.CreateConstructorArguments(ConstructorCandidate constructor, CreationContext context, Type[]& signature) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.Instantiate(CreationContext context) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.InternalCreate(CreationContext context) at Castle.MicroKernel.ComponentActivator.AbstractComponentActivator.Create(CreationContext context) at Castle.MicroKernel.Lifestyle.AbstractLifestyleManager.Resolve(CreationContext context) at Castle.MicroKernel.Lifestyle.SingletonLifestyleManager.Resolve(CreationContext context) at Castle.MicroKernel.Handlers.DefaultHandler.Resolve(CreationContext context) at Castle.MicroKernel.Resolvers.DefaultDependencyResolver.ResolveServiceDependency(CreationContext context, ComponentModel model, DependencyModel dependency) at Castle.MicroKernel.Resolvers.DefaultDependencyResolver.Resolve(CreationContext context, ISubDependencyResolver parentResolver, ComponentModel model, DependencyModel dependency) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.CreateConstructorArguments(ConstructorCandidate constructor, CreationContext context, Type[]& signature) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.Instantiate(CreationContext context) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.InternalCreate(CreationContext context) at Castle.MicroKernel.ComponentActivator.AbstractComponentActivator.Create(CreationContext context) at Castle.MicroKernel.Lifestyle.AbstractLifestyleManager.Resolve(CreationContext context) at Castle.MicroKernel.Lifestyle.SingletonLifestyleManager.Resolve(CreationContext context) at Castle.MicroKernel.Handlers.DefaultHandler.Resolve(CreationContext context) at Castle.MicroKernel.Resolvers.DefaultDependencyResolver.ResolveServiceDependency(CreationContext context, ComponentModel model, DependencyModel dependency) at Castle.MicroKernel.Resolvers.DefaultDependencyResolver.Resolve(CreationContext context, ISubDependencyResolver parentResolver, ComponentModel model, DependencyModel dependency) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.CreateConstructorArguments(ConstructorCandidate constructor, CreationContext context, Type[]& signature) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.Instantiate(CreationContext context) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.InternalCreate(CreationContext context) at Castle.MicroKernel.ComponentActivator.AbstractComponentActivator.Create(CreationContext context) at Castle.MicroKernel.Lifestyle.AbstractLifestyleManager.Resolve(CreationContext context) at Castle.MicroKernel.Lifestyle.SingletonLifestyleManager.Resolve(CreationContext context) at Castle.MicroKernel.Handlers.DefaultHandler.Resolve(CreationContext context) at Castle.MicroKernel.DefaultKernel.ResolveComponent(IHandler handler, Type service, IDictionary additionalArguments) at Castle.MicroKernel.DefaultKernel.ResolveComponent(IHandler handler, Type service) at Castle.MicroKernel.DefaultKernel.get_Item(Type service) at Castle.Windsor.WindsorContainer.Resolve(Type service) at Castle.Windsor.WindsorContainer.ResolveT at Danel.Nursing.Scheduling.ApplicationView..ctor(String[] args) in E:\Agile\Scheduling\Danel.Nursing.Scheduling\ApplicationView.cs:line 65 at Danel.Nursing.Scheduling.Program.Main(String[] args) in E:\Agile\Scheduling\Danel.Nursing.Scheduling\Program.cs:line 24 at System.AppDomain._nExecuteAssembly(Assembly assembly, String[] args) at System.AppDomain.ExecuteAssembly(String assemblyFile, Evidence assemblySecurity, String[] args) at Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly() at System.Threading.ThreadHelper.ThreadStart_Context(Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ThreadHelper.ThreadStart() InnerException: System.ArgumentNullException Message="Value cannot be null.\r\nParameter name: types" Source="mscorlib" ParamName="types" StackTrace: at System.Type.GetConstructor(BindingFlags bindingAttr, Binder binder, Type[] types, ParameterModifier[] modifiers) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.FastCreateInstance(Type implType, Object[] arguments, Type[] signature) at Castle.MicroKernel.ComponentActivator.DefaultComponentActivator.CreateInstance(CreationContext context, Object[] arguments, Type[] signature) InnerException: It actually says that the type that I'm trying to initialize does not exist, I think. This is the concreate type that it complains about: namespace Danel.Nursing.Scheduling.Actions.DataServices { using System; using Helpers; using Rhino.Commons; using Danel.Nursing.Model; using NHibernate.Expressions; using System.Collections.Generic; using DateUtil = Danel.Nursing.Scheduling.Actions.Helpers.DateUtil; using Danel.Nursing.Scheduling.Actions.DataServices.Interfaces; public class NurseAbsenceDataService : AbstractDataService<NurseAbsence>, INurseAbsenceDataService { NurseAbsenceDataService(IRepository<NurseAbsence> repository) : base(repository) { } //... } } The AbstractDataService only holds the IRepository for now. Anyone got an idea why the exception is thrown?

    Read the article

  • Core Data passing context between methods on secondary threads

    - by JK
    My app spawns a secondary thread for some core data store maintenance. In the secondary thread, I set up a context which I then pass to other methods e.g. [self editEntriesInContext:context]. However, this causes objects fetched from the context to become invalidated in editEntries... Why does this occur? I thought the only requirements were for the secondary thread to have its own context and managed objects, which I adhere to. (Note: The context is properly retained)

    Read the article

  • CoreGraphics taking a while to show on a large view - can i get it to repeat pixels?

    - by Andrew
    This is my coregraphics code: void drawTopPaperBackground(CGContextRef context, CGRect rect) { CGRect paper3 = CGRectMake(10, 14, 300, rect.size.height - 14); CGRect paper2 = CGRectMake(13, 12, 294, rect.size.height - 12); CGRect paper1 = CGRectMake(16, 10, 288, rect.size.height - 10); //Shadow CGContextSetShadowWithColor(context, CGSizeMake(0,0), 10, [[UIColor colorWithWhite:0 alpha:0.5]CGColor]); CGPathRef path = createRoundedRectForRect(paper3, 0); CGContextSetFillColorWithColor(context, [[UIColor blackColor] CGColor]); CGContextAddPath(context, path); CGContextFillPath(context); //Layers of paper //CGContextSaveGState(context); drawPaper(context, paper3); drawPaper(context, paper2); drawPaper(context, paper1); //CGContextRestoreGState(context); } void drawPaper(CGContextRef context, CGRect rect) { //Shadow CGContextSaveGState(context); CGContextSetShadowWithColor(context, CGSizeMake(0,0), 1, [[UIColor colorWithWhite:0 alpha:0.5]CGColor]); CGPathRef path = createRoundedRectForRect(rect, 0); CGContextSetFillColorWithColor(context, [[UIColor blackColor] CGColor]); CGContextAddPath(context, path); CGContextFillPath(context); //CGContextRestoreGState(context); //Gradient //CGContextSaveGState(context); CGColorRef startColor = [UIColor colorWithWhite:0.92 alpha:1.0].CGColor; CGColorRef endColor = [UIColor colorWithWhite:0.94 alpha:1.0].CGColor; CGRect firstHalf = CGRectMake(rect.origin.x, rect.origin.y, rect.size.width / 2, rect.size.height); CGRect secondHalf = CGRectMake(rect.origin.x + (rect.size.width / 2), rect.origin.y, rect.size.width / 2, rect.size.height); drawVerticalGradient(context, firstHalf, startColor, endColor); drawVerticalGradient(context, secondHalf, endColor, startColor); //CGContextRestoreGState(context); //CGContextSaveGState(context); CGRect redRect = rectForRectWithInset(rect, -1); CGMutablePathRef redPath = createRoundedRectForRect(redRect, 0); //CGContextSaveGState(context); CGContextSetStrokeColorWithColor(context, [[UIColor blackColor] CGColor]); CGContextAddPath(context, path); CGContextClip(context); CGContextAddPath(context, redPath); CGContextSetShadowWithColor(context, CGSizeMake(0, 0), 15.0, [[UIColor colorWithWhite:0 alpha:0.1] CGColor]); CGContextStrokePath(context); CGContextRestoreGState(context); } The view is a UIScrollView, which contains a textview. Every time the user types something and goes onto a new line, I call [self setNeedsDisplay]; and it redraws the code. But when the view starts to get long - around 1000 height, it has very noticeable lag. How can i make this code more efficient? Can i take a line of pixels and make it just repeat that, or stretch it, all the way down?

    Read the article

  • Why do two patterns (/.*) and (.*) match different strings? @per-directory (.htaccess) mod_rewrite RewriteRule

    - by Leftium
    Shouldn't the two patterns (/.*) and (.*) match the same string? My real question is actually: where did the "abc" go? Something funky seems to be happening inside the mod_rewrite engine... Given this .htaccess file in www/dir/: Options +FollowSymlinks RewriteEngine on RewriteRule (/.*) print_url_args.php?result=$1 A request for http://localhost/dir/abc/123/ results in: result ($1) = "/123/" $_REQUEST_URI = "/dir/abc/123/" If the / is removed from the pattern like RewriteRule (.*) print_url_args.php?result=$1 The same request for http://localhost/dir/abc/123/ results in: result ($1) = "print_url_args.php" $_REQUEST_URI = "/dir/abc/123/" update: posted rewrite log. 127.0.0.1 - - [15/Feb/2011:14:21:51 +0900] [localhost/sid#1333140][rid#23cd4a8/initial] (3) [perdir C:/db/www/dir/] add path info postfix: C:/db/www/dir/abc - C:/db/www/dir/abc/123/ 127.0.0.1 - - [15/Feb/2011:14:21:51 +0900] [localhost/sid#1333140][rid#23cd4a8/initial] (3) [perdir C:/db/www/dir/] strip per-dir prefix: C:/db/www/dir/abc/123/ - abc/123/ 127.0.0.1 - - [15/Feb/2011:14:21:51 +0900] [localhost/sid#1333140][rid#23cd4a8/initial] (3) [perdir C:/db/www/dir/] applying pattern '(/.*)$' to uri 'abc/123/' 127.0.0.1 - - [15/Feb/2011:14:21:51 +0900] [localhost/sid#1333140][rid#23cd4a8/initial] (2) [perdir C:/db/www/dir/] rewrite 'abc/123/' - 'print_url_args.php?result=/123/' 127.0.0.1 - - [15/Feb/2011:14:21:51 +0900] [localhost/sid#1333140][rid#23cd4a8/initial] (3) split uri=print_url_args.php?result=/123/ - uri=print_url_args.php, args=result=/123/ 127.0.0.1 - - [15/Feb/2011:14:21:51 +0900] [localhost/sid#1333140][rid#23cd4a8/initial] (3) [perdir C:/db/www/dir/] add per-dir prefix: print_url_args.php - C:/db/www/dir/print_url_args.php 127.0.0.1 - - [15/Feb/2011:14:21:51 +0900] [localhost/sid#1333140][rid#23cd4a8/initial] (2) [perdir C:/db/www/dir/] strip document_root prefix: C:/db/www/dir/print_url_args.php - /dir/print_url_args.php 127.0.0.1 - - [15/Feb/2011:14:21:51 +0900] [localhost/sid#1333140][rid#23cd4a8/initial] (1) [perdir C:/db/www/dir/] internal redirect with /dir/print_url_args.php [INTERNAL REDIRECT] 127.0.0.1 - - [15/Feb/2011:14:21:51 +0900] [localhost/sid#1333140][rid#43833c8/initial/redir#1] (3) [perdir C:/db/www/dir/] strip per-dir prefix: C:/db/www/dir/print_url_args.php - print_url_args.php 127.0.0.1 - - [15/Feb/2011:14:21:51 +0900] [localhost/sid#1333140][rid#43833c8/initial/redir#1] (3) [perdir C:/db/www/dir/] applying pattern '(/.*)$' to uri 'print_url_args.php' 127.0.0.1 - - [15/Feb/2011:14:21:51 +0900] [localhost/sid#1333140][rid#43833c8/initial/redir#1] (1) [perdir C:/db/www/dir/] pass through C:/db/www/dir/print_url_args.php 127.0.0.1 - - [15/Feb/2011:14:24:54 +0900] [localhost/sid#1333140][rid#23bf470/initial] (3) [perdir C:/db/www/dir/] add path info postfix: C:/db/www/dir/abc - C:/db/www/dir/abc/123/ 127.0.0.1 - - [15/Feb/2011:14:24:54 +0900] [localhost/sid#1333140][rid#23bf470/initial] (3) [perdir C:/db/www/dir/] strip per-dir prefix: C:/db/www/dir/abc/123/ - abc/123/ 127.0.0.1 - - [15/Feb/2011:14:24:54 +0900] [localhost/sid#1333140][rid#23bf470/initial] (3) [perdir C:/db/www/dir/] applying pattern '(.*)$' to uri 'abc/123/' 127.0.0.1 - - [15/Feb/2011:14:24:54 +0900] [localhost/sid#1333140][rid#23bf470/initial] (2) [perdir C:/db/www/dir/] rewrite 'abc/123/' - 'print_url_args.php?result=abc/123/' 127.0.0.1 - - [15/Feb/2011:14:24:54 +0900] [localhost/sid#1333140][rid#23bf470/initial] (3) split uri=print_url_args.php?result=abc/123/ - uri=print_url_args.php, args=result=abc/123/ 127.0.0.1 - - [15/Feb/2011:14:24:54 +0900] [localhost/sid#1333140][rid#23bf470/initial] (3) [perdir C:/db/www/dir/] add per-dir prefix: print_url_args.php - C:/db/www/dir/print_url_args.php 127.0.0.1 - - [15/Feb/2011:14:24:54 +0900] [localhost/sid#1333140][rid#23bf470/initial] (2) [perdir C:/db/www/dir/] strip document_root prefix: C:/db/www/dir/print_url_args.php - /dir/print_url_args.php 127.0.0.1 - - [15/Feb/2011:14:24:54 +0900] [localhost/sid#1333140][rid#23bf470/initial] (1) [perdir C:/db/www/dir/] internal redirect with /dir/print_url_args.php [INTERNAL REDIRECT] 127.0.0.1 - - [15/Feb/2011:14:24:54 +0900] [localhost/sid#1333140][rid#23fda10/initial/redir#1] (3) [perdir C:/db/www/dir/] strip per-dir prefix: C:/db/www/dir/print_url_args.php - print_url_args.php 127.0.0.1 - - [15/Feb/2011:14:24:54 +0900] [localhost/sid#1333140][rid#23fda10/initial/redir#1] (3) [perdir C:/db/www/dir/] applying pattern '(.*)$' to uri 'print_url_args.php' 127.0.0.1 - - [15/Feb/2011:14:24:54 +0900] [localhost/sid#1333140][rid#23fda10/initial/redir#1] (2) [perdir C:/db/www/dir/] rewrite 'print_url_args.php' - 'print_url_args.php?result=print_url_args.php' 127.0.0.1 - - [15/Feb/2011:14:24:54 +0900] [localhost/sid#1333140][rid#23fda10/initial/redir#1] (3) split uri=print_url_args.php?result=print_url_args.php - uri=print_url_args.php, args=result=print_url_args.php 127.0.0.1 - - [15/Feb/2011:14:24:54 +0900] [localhost/sid#1333140][rid#23fda10/initial/redir#1] (3) [perdir C:/db/www/dir/] add per-dir prefix: print_url_args.php - C:/db/www/dir/print_url_args.php 127.0.0.1 - - [15/Feb/2011:14:24:54 +0900] [localhost/sid#1333140][rid#23fda10/initial/redir#1] (1) [perdir C:/db/www/dir/] initial URL equal rewritten URL: C:/db/www/dir/print_url_args.php [IGNORING REWRITE]

    Read the article

  • Keep context-configuration when redeploying via Cargo

    - by Björn Pollex
    I am using Tomcat 7 to host a web-application that requires a JNDI datasource to be set up. Because this resource is specific to this application, I would like to configure it inside the application-specific context-descriptor in $CATALINA_BASE/conf/[enginename]/[hostname]/. I am also using Cargo from Maven to deploy the web-application to Tomcat. The problem is that when I do a redeploy with Cargo, it first undeploys the application, before deploying it again. When undeploying it, Tomcat deletes the context-descriptor of the application, so it won't work after redeploying. I could of course package the context-descriptor with the application, but I would like to keep any such container-specifics out of the .war. Another alternative is to configure the datasource in the global context-descriptor, but that too seems wrong, because the datasource is supposed to be exclusive to my application. Is my approach fundamentally wrong? What is the best practice here? Is there any way to prevent Tomcat from deleting the descriptor when undeploying?

    Read the article

  • The ugly evolution of running a background operation in the context of an ASP.NET app

    - by Jeff
    If you’re one of the two people who has followed my blog for many years, you know that I’ve been going at POP Forums now for over almost 15 years. Publishing it as an open source app has been a big help because it helps me understand how people want to use it, and having it translated to six languages is pretty sweet. Despite this warm and fuzzy group hug, there has been an ugly hack hiding in there for years. One of the things we find ourselves wanting to do is hide some kind of regular process inside of an ASP.NET application that runs periodically. The motivation for this has always been that a lot of people simply don’t have a choice, because they’re running the app on shared hosting, or don’t otherwise have access to a box that can run some kind of regular background service. In POP Forums, I “solved” this problem years ago by hiding some static timers in an HttpModule. Truthfully, this works well as long as you don’t run multiple instances of the app, which in the cloud world, is always a possibility. With the arrival of WebJobs in Azure, I’m going to solve this problem. This post isn’t about that. The other little hacky problem that I “solved” was spawning a background thread to queue emails to subscribed users of the forum. This evolved quite a bit over the years, starting with a long running page to mail users in real-time, when I had only a few hundred. By the time it got into the thousands, or tens of thousands, I needed a better way. What I did is launched a new thread that read all of the user data in, then wrote a queued email to the database (as in, the entire body of the email, every time), with the properly formatted opt-out link. It was super inefficient, but it worked. Then I moved my biggest site using it, CoasterBuzz, to an Azure Website, and it stopped working. So let’s start with the first stupid thing I was doing. The new thread was simply created with delegate code inline. As best I can tell, Azure Websites are more aggressive about garbage collection, because that thread didn’t queue even one message. When the calling server response went out of scope, so went the magic background thread. Duh, all I had to do was move the thread to a private static variable in the class. That’s the way I was able to keep stuff running from the HttpModule. (And yes, I know this is still prone to failure, particularly if the app recycles. For as infrequently as it’s used, I have not, however, experienced this.) It was still failing, but this time I wasn’t sure why. It would queue a few dozen messages, then die. Running in Azure, I had to turn on the application logging and FTP in to see what was going on. That led me to a helper method I was using as delegate to build the unsubscribe links. The idea here is that I didn’t want yet another config entry to describe the base URL, appended with the right path that would match the routing table. No, I wanted the app to figure it out for you, so I came up with this little thing: public static string FullUrlHelper(this Controller controller, string actionName, string controllerName, object routeValues = null) { var helper = new UrlHelper(controller.Request.RequestContext); var requestUrl = controller.Request.Url; if (requestUrl == null) return String.Empty; var url = requestUrl.Scheme + "://"; url += requestUrl.Host; url += (requestUrl.Port != 80 ? ":" + requestUrl.Port : ""); url += helper.Action(actionName, controllerName, routeValues); return url; } And yes, that should have been done with a string builder. This is useful for sending out the email verification messages, too. As clever as I thought I was with this, I was using a delegate in the admin controller to format these unsubscribe links for tens of thousands of users. I passed that delegate into a service class that did the email work: Func<User, string> unsubscribeLinkGenerator = user => this.FullUrlHelper("Unsubscribe", AccountController.Name, new { id = user.UserID, key = _profileService.GetUnsubscribeHash(user) }); _mailingListService.MailUsers(subject, body, htmlBody, unsubscribeLinkGenerator); Cool, right? Actually, not so much. If you look back at the helper, this delegate then will depend on the controller context to learn the routing and format for the URL. As you might have guessed, those things were turning null after a few dozen formatted links, when the original request to the admin controller went away. That this wasn’t already happening on my dedicated server is surprising, but again, I understand why the Azure environment might be eager to reclaim a thread after servicing the request. It’s already inefficient that I’m building the entire email for every user, but going back to check the routing table for the right link every time isn’t a win either. I put together a little hack to look up one generic URL, and use that as the basis for a string format. If you’re wondering why I didn’t just use the curly braces up front, it’s because they get URL formatted: var baseString = this.FullUrlHelper("Unsubscribe", AccountController.Name, new { id = "--id--", key = "--key--" }); baseString = baseString.Replace("--id--", "{0}").Replace("--key--", "{1}"); Func unsubscribeLinkGenerator = user => String.Format(baseString, user.UserID, _profileService.GetUnsubscribeHash(user)); _mailingListService.MailUsers(subject, body, htmlBody, unsubscribeLinkGenerator); And wouldn’t you know it, the new solution works just fine. It’s still kind of hacky and inefficient, but it will work until this somehow breaks too.

    Read the article

  • How can I make a custom layout / change header background color … with Tex, Latex, ConTeXt ?

    - by harobed
    Hi, currently I produce dynamically this document http://download.stephane-klein.info/exemple_document.png with Python Report Labs… to produce pdf documents. Now, I would like try to produce this document with Tex / Latex / ConTeXt… I've some questions : how can I make the layout ? how can I make header background color ? how can I define my custom title (with blue box) ? what is the better choice for my project : Latex or ConTeXt ? What package I need to use ? geometry ? fancyhdr ? Have you some example ? some resource ? Yesterday, I've read many many documentation… and I don't found a solution / example for my questions. Thanks for your help, Stephane

    Read the article

  • Can my thread help the OS decide when to context switch it out?

    - by WilliamKF
    I am working on a threaded application on Linux in C++ which attempts to be real time, doing an action on a heartbeat, or as close to it as possible. In practice, I find the OS is swapping out my thread and causing delays of up to a tenth of a second while it is switched out, causing the heartbeat to be irregular. Is there a way my thread can hint to the OS that now is a good time to context switch it out? I could make this call right after doing a heartbeat, and thus minimize the delay due to an ill timed context switch.

    Read the article

  • Can a function/class know the context from where it is being invoked or instantiated?

    - by vrode
    Let's take this class as example and assume that get_context() returns the source of the call: class A { public function __construct( ) { if( get_class( get_context( ) ) == B ) { return true; } else { return false; } } } class B { function __construct( ) { $a = new A( ); } } $a = new B( ); // returns true, as B is the invoking class of A $a = new A( ); // returns false, as B is invoked outside of any class So, my questions are: 1) can a function know the context that calls it? 2) can a object know context from where it has been instantiated? Or am I dreaming up new features not implementable in PHP?

    Read the article

  • STOP: c000021a {Fatal System Error} The initial session process or system process terminated unexpectedly

    - by christof
    I'm encountering such an error after expanding disk space on a virtual machine using Hyper-V. STOP: c000021a {Fatal System Error} The initial session process or system process terminated unexpectedly with a status of (0x00000000) (0xc000012d 0x001003f0). The virtual server there is Windows Server 2008 R2 Enterprise Edition, which is also Domain Controller. I've tried to repair Windows but there is no restore point, and using the command line. I've tried the sfc /SCANNOW /OFFBOOTDIR /OFFWINDIR command, but I got the error Windows Resource Protection could not perform the requested operation.

    Read the article

  • Windows File Sharing - Long Initial Delay

    - by Isaac Sutherland
    I have two Windows 7 machines connected to a router. I created a shared folder on machine A, and I can access it from machine B. The transfer speed is great. However, there is sometimes a long initial delay when I try to access the shared folder from machine B. I'll click to open the folder, and windows explorer pauses for a few minutes before actually loading the contents of the folder. After it loads, however, I can navigate the subfolders and edit files with no noticeable delay. Then, some time later, I will get the huge delay on saving a file, after which subsequent saves have no delay. What is the problem here, and how can I fix it?

    Read the article

  • Website loading until initial script finishes

    - by wardy277
    Hi, i have a highly used server (running plesk). I have some long scripts that take a while to process (huge mysql database). I have found then in 1 browser, i run the script and while it is loading i cannot view any other parts of the site until the script finishes, it seems that all the requests go off, but they don't get served until the initial script finishes. i thought this may be a server wide issue, but it is not. If i use another computer i can view the site fine, even on the same computer with a different browser i can navigate fine, while the script still loads. I think it much limit the number of requests per session. Is this correct? is there any way to configure this to allow for 2-3 other requests per session? It is really bad that when i am on the phone to a client, i have just run a long report, but cannot use the site or follow what they are saying until the page has loaded? Chris

    Read the article

  • Dell monitors keep blank after initial start

    - by offler
    We have Dell T1650 PCs with 2 nVidia graphic adapters / Windows 7 and 4 attached monitors. At initial start all screens are blank, the computer does not show anything. If powered off by pressing the hardware power button and then restarting all monitors show a picture. The Windows event log shows only the errors, that the machine was shut down unexpectedly. The last entry with blank screen seems to be that user specific dlls for every application are loaded. How can I find out the real problem?

    Read the article

  • Animation with Initial Velocity

    - by abustin
    I've been trying to solve this problem for a number of days now but I must be missing something. Known Variables: vi = Initial Velocity t = Animation Duration d = Distance The function I'm trying to create: D(t) = the current distance for a given time Using this information I want to be able to create a smooth animation curve with varying velocity (ease-in/ease-out). The animation must be able ease-in from an initial velocity. The animation must be exactly t seconds and must be travel exactly d units. The curve should lean towards the average velocity with acceleration occurring at the beginning and the end portions of the curve. I'm open to extra configuration variables. The best I've been able to come up with is something that doesn't factor in the initial velocity. I'm hoping someone smarter can help me out. ;) Thank you! p.s. I'm working with an ECMAScript variant

    Read the article

  • Initial conditions with a non-linear ODE in Mathematica

    - by buggy
    Hi, I'm trying to use Mathematica's NDSolve[] to compute a geodesic along a sphere using the coupled ODE: x" - (x" . x) x = 0 The problem is that I can only enter initial conditions for x(0) and x'(0) and the solver is happy with the solution where x" = 0. The problem is that my geodesic on the sphere has the initial condition that x"(0) = -x(0), which I have no idea how to tell mathematica. If I add this as a condition, it says I'm adding True to the list of conditions. Here is my code: s1 = NDSolve[{x1''[t] - (x1[t] * x1''[t] + x2[t] * x2''[t] + x3[t]*x3''[t]) * x1[t] == 0, x2''[t] - (x1[t] * x1''[t] + x2[t] * x2''[t] + x3[t]*x3''[t]) * x2[t] == 0, x3''[t] - (x1[t] * x1''[t] + x2[t] * x2''[t] + x3[t]*x3''[t]) * x3[t] == 0, x1[0] == 1, x2[0] == 0, x3[0] == 0, x1'[0] == 0, x2'[0] == 0, x3'[0] == 1} , { x1, x2, x3}, {t, -1, 1}][[1]] I would like to modify this so that the initial acceleration is not zero but -x(0). Thanks

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Intermittent "Lost connection to MySQL server at 'reading initial communication packet'"

    - by db2
    Our web environment consists of two servers. Web front-end. Dell PowerEdge R610, RHEL 5.5, Apache 2.2.17, php 5.2.14. Database server. Dell PowerEdge R710, Windows 2008 R2 Standard x64, MySQL 5.5.11-log x64. Normally these two work perfectly fine together. However, when I try to get them talking via a dedicated LAN on their secondary NICs (each machine has four of them), things get flaky. I have NIC #2 on both machines configured on the 172.16.1.0/24 subnet, with no gateway or DNS servers (obviously, since it's just those two systems), and I put the private IP address of each machine into the hosts file of the other. The routing tables on both machines look okay after I do this. I've tried this with both a crossover cable draped directly between the two NICs, and also via a dedicated vlan on the switch in the rack. In either case, I get intermittent connection problems. It's a fairly small percentage of connections that fail, but it's enough to cause a significant problem, and I have to switch back to the main network connection, which will contend with all the other traffic and hosts on the switch. The full error message that appears in the application log: SQLSTATE[HY000] [2013] Lost connection to MySQL server at 'reading initial communication packet', system error: 110 Am I doing something really dumb that's causing this to not work properly? Anything I can check in MySQL that would explain why it's failing to connect occasionally?

    Read the article

< Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >