Search Results

Search found 63341 results on 2534 pages for 'pillar data systems'.

Page 8/2534 | < Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >

  • Data Flow Diagrams - Difference between Lines and Arrows

    - by Howdy_McGee
    I'm currently working with Visio to create Data Flow Diagrams for a System Analysis and Design class but I'm unsure what the difference between ------ and ------> is. I can connect 2 shapes together with a line (process, entity, data store) but does the single line connecting the two mean data flow? Do I need to explicitly use the data flow arrow to show which way data is flowing? (There doesn't seem to be tags for this topic, maybe im in the wrong place?)

    Read the article

  • Big Data Videos

    - by Jean-Pierre Dijcks
    You can view them all on YouTube using the following links: Overview for the Boss: http://youtu.be/ikJyrmKdJWc Hadoop: http://youtu.be/acWtid-OOWM Acquiring Big Data: http://youtu.be/TfuhuA_uaho Organizing Big Data: http://youtu.be/IC6jVRO2Hq4 Analyzing Big Data: http://youtu.be/2yf_jrBhz5w These videos are a great place to start learning about big data, the value it can bring to your organisation and how Oracle can help you start working with big data today.

    Read the article

  • Protecting Consolidated Data on Engineered Systems

    - by Steve Enevold
    In this time of reduced budgets and cost cutting measures in Federal, State and Local governments, the requirement to provide services continues to grow. Many agencies are looking at consolidating their infrastructure to reduce cost and meet budget goals. Oracle's engineered systems are ideal platforms for accomplishing these goals. These systems provide unparalleled performance that is ideal for running applications and databases that traditionally run on separate dedicated environments. However, putting multiple critical applications and databases in a single architecture makes security more critical. You are putting a concentrated set of sensitive data on a single system, making it a more tempting target.  The environments were previously separated by iron so now you need to provide assurance that one group, department, or application's information is not visible to other personnel or applications resident in the Exadata system. Administration of the environments requires formal separation of duties so an administrator of one application environment cannot view or negatively impact others. Also, these systems need to be in protected environments just like other critical production servers. They should be in a data center protected by physical controls, network firewalls, intrusion detection and prevention, etc Exadata also provides unique security benefits, including a reducing attack surface by minimizing packages and services to only those required. In addition to reducing the possible system areas someone may attempt to infiltrate, Exadata has the following features: 1.    Infiniband, which functions as a secure private backplane 2.    IPTables  to perform stateful packet inspection for all nodes               Cellwall implements firewall services on each cell using IPTables 3.    Hardware accelerated encryption for data at rest on storage cells Oracle is uniquely positioned to provide the security necessary for implementing Exadata because security has been a core focus since the company's beginning. In addition to the security capabilities inherent in Exadata, Oracle security products are all certified to run in an Exadata environment. Database Vault Oracle Database Vault helps organizations increase the security of existing applications and address regulatory mandates that call for separation-of-duties, least privilege and other preventive controls to ensure data integrity and data privacy. Oracle Database Vault proactively protects application data stored in the Oracle database from being accessed by privileged database users. A unique feature of Database Vault is the ability to segregate administrative tasks including when a command can be executed, or that the DBA can manage the health of the database and objects, but may not see the data Advanced Security  helps organizations comply with privacy and regulatory mandates by transparently encrypting all application data or specific sensitive columns, such as credit cards, social security numbers, or personally identifiable information (PII). By encrypting data at rest and whenever it leaves the database over the network or via backups, Oracle Advanced Security provides the most cost-effective solution for comprehensive data protection. Label Security  is a powerful and easy-to-use tool for classifying data and mediating access to data based on its classification. Designed to meet public-sector requirements for multi-level security and mandatory access control, Oracle Label Security provides a flexible framework that both government and commercial entities worldwide can use to manage access to data on a "need to know" basis in order to protect data privacy and achieve regulatory compliance  Data Masking reduces the threat of someone in the development org taking data that has been copied from production to the development environment for testing, upgrades, etc by irreversibly replacing the original sensitive data with fictitious data so that production data can be shared safely with IT developers or offshore business partners  Audit Vault and Database Firewall Oracle Audit Vault and Database Firewall serves as a critical detective and preventive control across multiple operating systems and database platforms to protect against the abuse of legitimate access to databases responsible for almost all data breaches and cyber attacks.  Consolidation, cost-savings, and performance can now be achieved without sacrificing security. The combination of built in protection and Oracle’s industry-leading data protection solutions make Exadata an ideal platform for Federal, State, and local governments and agencies.

    Read the article

  • SQL Server and the XML Data Type : Data Manipulation

    The introduction of the xml data type, with its own set of methods for processing xml data, made it possible for SQL Server developers to create columns and variables of the type xml. Deanna Dicken examines the modify() method, which provides for data manipulation of the XML data stored in the xml data type via XML DML statements.

    Read the article

  • Behavior of <- NULL on lists versus data.frames for removing data

    - by Ananda Mahto
    Many R users eventually figure out lots of ways to remove elements from their data. One way is to use NULL, particularly when you want to do something like drop a column from a data.frame or drop an element from a list. Eventually, a user comes across a situation where they want to drop several columns from a data.frame at once, and they hit upon <- list(NULL) as the solution (since using <- NULL will result in an error). A data.frame is a special type of list, so it wouldn't be too tough to imagine that the approaches for removing items from a list should be the same as removing columns from a data.frame. However, they produce different results, as can be seen in the example below. ## Make some small data--two data.frames and two lists cars1 <- cars2 <- head(mtcars)[1:4] cars3 <- cars4 <- as.list(cars2) ## Demonstration that the `list(NULL)` approach works cars1[c("mpg", "cyl")] <- list(NULL) cars1 # disp hp # Mazda RX4 160 110 # Mazda RX4 Wag 160 110 # Datsun 710 108 93 # Hornet 4 Drive 258 110 # Hornet Sportabout 360 175 # Valiant 225 105 ## Demonstration that simply using `NULL` does not work cars2[c("mpg", "cyl")] <- NULL # Error in `[<-.data.frame`(`*tmp*`, c("mpg", "cyl"), value = NULL) : # replacement has 0 items, need 12 Switch to applying the same concept to a list, and compare the difference in behavior. ## Does not fully drop the items, but sets them to `NULL` cars3[c("mpg", "cyl")] <- list(NULL) # $mpg # NULL # # $cyl # NULL # # $disp # [1] 160 160 108 258 360 225 # # $hp # [1] 110 110 93 110 175 105 ## *Does* drop the `list` items while this would ## have produced an error with a `data.frame` cars4[c("mpg", "cyl")] <- NULL # $disp # [1] 160 160 108 258 360 225 # # $hp # [1] 110 110 93 110 175 105 The main questions I have are, if a data.frame is a list, why does it behave so differently in this scenario? Is there a foolproof way of knowing when an element will be dropped, when it will produce an error, and when it will simply be given a NULL value? Or do we depend on trial-and-error for this?

    Read the article

  • How does jQuery stores data with .data()?

    - by TK
    I am a little confused how jQuery stores data with .data() functions. Is this something called expando? Or is this using HTML5 Web Storage although I think this is very unlikely? The documentation says: The .data() method allows us to attach data of any type to DOM elements in a way that is safe from circular references and therefore from memory leaks. As I read about expando, it seems to have a rick of memory leak. Unfortunately my skills are not enough to read and understand jQuery code itself, but I want to know how jQuery stores such data by using data(). http://api.jquery.com/data/

    Read the article

  • ASP.Net Layered app - Share Entity Data Model amongst layers

    - by Chris Klepeis
    How can I share the auto-generated entity data model (generated object classes) amongst all layers of my C# web app whilst only granting query access in the data layer? This uses the typical 3 layer approach: data, business, presentation. My data layer returns an IEnumerable<T> to my business layer, but I cannot return type T to the presentation layer because I do not want the presentation layer to know of the existence of the data layer - which is where the entity framework auto-generated my classes. It was recommended to have a seperate layer with just the data model, but I'm unsure how to seperate the data model from the query functionality the entity framework provides.

    Read the article

  • How does jQuery store data with .data()?

    - by TK
    I am a little confused how jQuery stores data with .data() functions. Is this something called expando? Or is this using HTML5 Web Storage although I think this is very unlikely? The documentation says: The .data() method allows us to attach data of any type to DOM elements in a way that is safe from circular references and therefore from memory leaks. As I read about expando, it seems to have a rick of memory leak. Unfortunately my skills are not enough to read and understand jQuery code itself, but I want to know how jQuery stores such data by using data(). http://api.jquery.com/data/

    Read the article

  • Accessing and Updating Data in ASP.NET: Filtering Data Using a CheckBoxList

    Filtering Database Data with Parameters, an earlier installment in this article series, showed how to filter the data returned by ASP.NET's data source controls. In a nutshell, the data source controls can include parameterized queries whose parameter values are defined via parameter controls. For example, the SqlDataSource can include a parameterized SelectCommand, such as: SELECT * FROM Books WHERE Price > @Price. Here, @Price is a parameter; the value for a parameter can be defined declaratively using a parameter control. ASP.NET offers a variety of parameter controls, including ones that use hard-coded values, ones that retrieve values from the querystring, and ones that retrieve values from session, and others. Perhaps the most useful parameter control is the ControlParameter, which retrieves its value from a Web control on the page. Using the ControlParameter we can filter the data returned by the data source control based on the end user's input. While the ControlParameter works well with most types of Web controls, it does not work as expected with the CheckBoxList control. The ControlParameter is designed to retrieve a single property value from the specified Web control, but the CheckBoxList control does not have a property that returns all of the values of its selected items in a form that the CheckBoxList control can use. Moreover, if you are using the selected CheckBoxList items to query a database you'll quickly find that SQL does not offer out of the box functionality for filtering results based on a user-supplied list of filter criteria. The good news is that with a little bit of effort it is possible to filter data based on the end user's selections in a CheckBoxList control. This article starts with a look at how to get SQL to filter data based on a user-supplied, comma-delimited list of values. Next, it shows how to programmatically construct a comma-delimited list that represents the selected CheckBoxList values and pass that list into the SQL query. Finally, we'll explore creating a custom parameter control to handle this logic declaratively. Read on to learn more! Read More >

    Read the article

  • SQLAuthority News – Fast Track Data Warehouse 3.0 Reference Guide

    - by pinaldave
    http://msdn.microsoft.com/en-us/library/gg605238.aspx I am very excited that Fast Track Data Warehouse 3.0 reference guide has been announced. As a consultant I have always enjoyed working with Fast Track Data Warehouse project as it truly expresses the potential of the SQL Server Engine. Here is few details of the enhancement of the Fast Track Data Warehouse 3.0 reference architecture. The SQL Server Fast Track Data Warehouse initiative provides a basic methodology and concrete examples for the deployment of balanced hardware and database configuration for a data warehousing workload. Balance is measured across the key components of a SQL Server installation; storage, server, application settings, and configuration settings for each component are evaluated. Description Note FTDW 3.0 Architecture Basic component architecture for FT 3.0 based systems. New Memory Guidelines Minimum and maximum tested memory configurations by server socket count. Additional Startup Options Notes for T-834 and setting for Lock Pages in Memory. Storage Configuration RAID1+0 now standard (RAID1 was used in FT 2.0). Evaluating Fragmentation Query provided for evaluating logical fragmentation. Loading Data Additional options for CI table loads. MCR Additional detail and explanation of FTDW MCR Rating. Read white paper on fast track data warehousing. Reference: Pinal Dave (http://blog.SQLAuthority.com)   Filed under: Business Intelligence, Data Warehousing, PostADay, SQL, SQL Authority, SQL Documentation, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, SQL White Papers, SQLAuthority News, T SQL, Technology

    Read the article

  • Accessing and Updating Data in ASP.NET: Filtering Data Using a CheckBoxList

    Filtering Database Data with Parameters, an earlier installment in this article series, showed how to filter the data returned by ASP.NET's data source controls. In a nutshell, the data source controls can include parameterized queries whose parameter values are defined via parameter controls. For example, the SqlDataSource can include a parameterized SelectCommand, such as: SELECT * FROM Books WHERE Price > @Price. Here, @Price is a parameter; the value for a parameter can be defined declaratively using a parameter control. ASP.NET offers a variety of parameter controls, including ones that use hard-coded values, ones that retrieve values from the querystring, and ones that retrieve values from session, and others. Perhaps the most useful parameter control is the ControlParameter, which retrieves its value from a Web control on the page. Using the ControlParameter we can filter the data returned by the data source control based on the end user's input. While the ControlParameter works well with most types of Web controls, it does not work as expected with the CheckBoxList control. The ControlParameter is designed to retrieve a single property value from the specified Web control, but the CheckBoxList control does not have a property that returns all of the values of its selected items in a form that the CheckBoxList control can use. Moreover, if you are using the selected CheckBoxList items to query a database you'll quickly find that SQL does not offer out of the box functionality for filtering results based on a user-supplied list of filter criteria. The good news is that with a little bit of effort it is possible to filter data based on the end user's selections in a CheckBoxList control. This article starts with a look at how to get SQL to filter data based on a user-supplied, comma-delimited list of values. Next, it shows how to programmatically construct a comma-delimited list that represents the selected CheckBoxList values and pass that list into the SQL query. Finally, we'll explore creating a custom parameter control to handle this logic declaratively. Read on to learn more! Read More >

    Read the article

  • Advantages of Thread pooling in embedded systems

    - by Microkernel
    I am looking at the advantages of threadpooling design pattern in Embedded systems. I have listed few advantages, please go through them, comment and please suggest any other possible advantages that I am missing. Scalability in systems like ucos-2 where there is limit on number of threads. Increasing capability of any task when necessary like Garbage collection (say in normal systems if garbage collection is running under one task, its not possible to speed it up, but in threadpooling we can easily speed it up). Can set limit on the max system load. Please suggest if I am missing anything.

    Read the article

  • extjs data store load data on fly

    - by CKeven
    I'm trying to create a data store that will load the data schema and records on fly. Here is the current code i have and I'm not sure how to setup the array reader properly since i don't have the schema before query returns. ds = new Ext.data.Store({ url: 'http://10.10.97.83/cgi-bin/cgiip.exe/WService=wsdev/majax/jsbrdgx.p', baseParams: { cr: Ext.util.JSON.encode(omgtobxParms) }, reader: new Ext.data.ArrayReader({ //root:data.value.records }, col_names) }); {"name": "tmp_buy_book", "schema": [ { "name": "a", "type": "C"}, { "name": "b", "type": "C"} "records": [["1", ""], ["1",""]]}

    Read the article

  • Big Data – Buzz Words: What is MapReduce – Day 7 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned what is Hadoop. In this article we will take a quick look at one of the four most important buzz words which goes around Big Data – MapReduce. What is MapReduce? MapReduce was designed by Google as a programming model for processing large data sets with a parallel, distributed algorithm on a cluster. Though, MapReduce was originally Google proprietary technology, it has been quite a generalized term in the recent time. MapReduce comprises a Map() and Reduce() procedures. Procedure Map() performance filtering and sorting operation on data where as procedure Reduce() performs a summary operation of the data. This model is based on modified concepts of the map and reduce functions commonly available in functional programing. The library where procedure Map() and Reduce() belongs is written in many different languages. The most popular free implementation of MapReduce is Apache Hadoop which we will explore tomorrow. Advantages of MapReduce Procedures The MapReduce Framework usually contains distributed servers and it runs various tasks in parallel to each other. There are various components which manages the communications between various nodes of the data and provides the high availability and fault tolerance. Programs written in MapReduce functional styles are automatically parallelized and executed on commodity machines. The MapReduce Framework takes care of the details of partitioning the data and executing the processes on distributed server on run time. During this process if there is any disaster the framework provides high availability and other available modes take care of the responsibility of the failed node. As you can clearly see more this entire MapReduce Frameworks provides much more than just Map() and Reduce() procedures; it provides scalability and fault tolerance as well. A typical implementation of the MapReduce Framework processes many petabytes of data and thousands of the processing machines. How do MapReduce Framework Works? A typical MapReduce Framework contains petabytes of the data and thousands of the nodes. Here is the basic explanation of the MapReduce Procedures which uses this massive commodity of the servers. Map() Procedure There is always a master node in this infrastructure which takes an input. Right after taking input master node divides it into smaller sub-inputs or sub-problems. These sub-problems are distributed to worker nodes. A worker node later processes them and does necessary analysis. Once the worker node completes the process with this sub-problem it returns it back to master node. Reduce() Procedure All the worker nodes return the answer to the sub-problem assigned to them to master node. The master node collects the answer and once again aggregate that in the form of the answer to the original big problem which was assigned master node. The MapReduce Framework does the above Map () and Reduce () procedure in the parallel and independent to each other. All the Map() procedures can run parallel to each other and once each worker node had completed their task they can send it back to master code to compile it with a single answer. This particular procedure can be very effective when it is implemented on a very large amount of data (Big Data). The MapReduce Framework has five different steps: Preparing Map() Input Executing User Provided Map() Code Shuffle Map Output to Reduce Processor Executing User Provided Reduce Code Producing the Final Output Here is the Dataflow of MapReduce Framework: Input Reader Map Function Partition Function Compare Function Reduce Function Output Writer In a future blog post of this 31 day series we will explore various components of MapReduce in Detail. MapReduce in a Single Statement MapReduce is equivalent to SELECT and GROUP BY of a relational database for a very large database. Tomorrow In tomorrow’s blog post we will discuss Buzz Word – HDFS. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • SQL Developer Data Modeler v3.3 Early Adopter: Search

    - by thatjeffsmith
    photo: Stuck in Customs via photopin cc The next version of Oracle SQL Developer Data Modeler is now available as an Early Adopter (read, beta) release. There are many new major feature enhancements to talk about, but today’s focus will be on the brand new Search mechanism. Data, data, data – SO MUCH data Google has made countless billions of dollars around a very efficient and intelligent search business. People have become accustomed to having their data accessible AND searchable. Data models can have thousands of entities or tables, each having dozens of attributes or columns. Imagine how hard it could be to find what you’re looking for here. This is the challenge we have tackled head-on in v3.3. Same location as the Search toolbar in Oracle SQL Developer (and most web browsers) Here’s how it works: Search as you type – wicked fast as the entire model is loaded into memory Supports regular expressions (regex) Results loaded to a new panel below Search across designs, models Search EVERYTHING, or filter by type Save your frequent searches Save your search results as a report Open common properties of object in search results and edit basic properties on-the-fly Want to just watch the video? We have a new Oracle Learning Library resource available now which introduces the new and improved Search mechanism in SQL Developer Data Modeler. Go watch the video and then come back. Some Screenshots This will be a pretty easy feature to pick up. Search is intuitive – we’ve already learned how to do search. Now we just have a better interface for it in SQL Developer Data Modeler. But just in case you need a couple of pointers… The SYS data dictionary in model form with Search Results If I type ‘translation’ in the search dialog, then the results will come up as hits are ‘resolved.’ By default, everything is searched, although I can filter the results after-the-fact. You can see where the search finds a match in the ‘Content’ column Save the Results as a Report If you limit the search results to a category and a model, then you can save the results as a report. All of the usual suspects You can optionally include the search string, which displays in the top of of the report as ‘PATTERN.’ You can save you common reporting setups as a template and reuse those as well. Here’s a sample HTML report: Yes, I like to search my search results report! Two More Ways to Search You can search ‘in context’ by opening the ‘Find’ dialog from an active design. You can do this using the ‘Search’ toolbar button or from a model context menu. Searching a specific model Instead of bringing up the old modal Find dialog, you now get to use the new and improved Search panel. Notice there’s no ‘Model’ drop-down to select and that the active Search form is now in the Search panel versus the search toolbar up top. What else is new in SQL Developer Data Modeler version 3.3? All kinds of goodies. You can send your model to Excel for quick edits/reviews and suck the changes back into your model, you can share objects between models, and much much more. You’ll find new videos and blog posts on the subject in the new few days and weeks. Enjoy! If you have any feedback or want to report bugs, please visit our forums.

    Read the article

  • Big Data – Operational Databases Supporting Big Data – Key-Value Pair Databases and Document Databases – Day 13 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the Relational Database and NoSQL database in the Big Data Story. In this article we will understand the role of Key-Value Pair Databases and Document Databases Supporting Big Data Story. Now we will see a few of the examples of the operational databases. Relational Databases (Yesterday’s post) NoSQL Databases (Yesterday’s post) Key-Value Pair Databases (This post) Document Databases (This post) Columnar Databases (Tomorrow’s post) Graph Databases (Tomorrow’s post) Spatial Databases (Tomorrow’s post) Key Value Pair Databases Key Value Pair Databases are also known as KVP databases. A key is a field name and attribute, an identifier. The content of that field is its value, the data that is being identified and stored. They have a very simple implementation of NoSQL database concepts. They do not have schema hence they are very flexible as well as scalable. The disadvantages of Key Value Pair (KVP) database are that they do not follow ACID (Atomicity, Consistency, Isolation, Durability) properties. Additionally, it will require data architects to plan for data placement, replication as well as high availability. In KVP databases the data is stored as strings. Here is a simple example of how Key Value Database will look like: Key Value Name Pinal Dave Color Blue Twitter @pinaldave Name Nupur Dave Movie The Hero As the number of users grow in Key Value Pair databases it starts getting difficult to manage the entire database. As there is no specific schema or rules associated with the database, there are chances that database grows exponentially as well. It is very crucial to select the right Key Value Pair Database which offers an additional set of tools to manage the data and provides finer control over various business aspects of the same. Riak Rick is one of the most popular Key Value Database. It is known for its scalability and performance in high volume and velocity database. Additionally, it implements a mechanism for collection key and values which further helps to build manageable system. We will further discuss Riak in future blog posts. Key Value Databases are a good choice for social media, communities, caching layers for connecting other databases. In simpler words, whenever we required flexibility of the data storage keeping scalability in mind – KVP databases are good options to consider. Document Database There are two different kinds of document databases. 1) Full document Content (web pages, word docs etc) and 2) Storing Document Components for storage. The second types of the document database we are talking about over here. They use Javascript Object Notation (JSON) and Binary JSON for the structure of the documents. JSON is very easy to understand language and it is very easy to write for applications. There are two major structures of JSON used for Document Database – 1) Name Value Pairs and 2) Ordered List. MongoDB and CouchDB are two of the most popular Open Source NonRelational Document Database. MongoDB MongoDB databases are called collections. Each collection is build of documents and each document is composed of fields. MongoDB collections can be indexed for optimal performance. MongoDB ecosystem is highly available, supports query services as well as MapReduce. It is often used in high volume content management system. CouchDB CouchDB databases are composed of documents which consists fields and attachments (known as description). It supports ACID properties. The main attraction points of CouchDB are that it will continue to operate even though network connectivity is sketchy. Due to this nature CouchDB prefers local data storage. Document Database is a good choice of the database when users have to generate dynamic reports from elements which are changing very frequently. A good example of document usages is in real time analytics in social networking or content management system. Tomorrow In tomorrow’s blog post we will discuss about various other Operational Databases supporting Big Data. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Efficiently separating Read/Compute/Write steps for concurrent processing of entities in Entity/Component systems

    - by TravisG
    Setup I have an entity-component architecture where Entities can have a set of attributes (which are pure data with no behavior) and there exist systems that run the entity logic which act on that data. Essentially, in somewhat pseudo-code: Entity { id; map<id_type, Attribute> attributes; } System { update(); vector<Entity> entities; } A system that just moves along all entities at a constant rate might be MovementSystem extends System { update() { for each entity in entities position = entity.attributes["position"]; position += vec3(1,1,1); } } Essentially, I'm trying to parallelise update() as efficiently as possible. This can be done by running entire systems in parallel, or by giving each update() of one system a couple of components so different threads can execute the update of the same system, but for a different subset of entities registered with that system. Problem In reality, these systems sometimes require that entities interact(/read/write data from/to) each other, sometimes within the same system (e.g. an AI system that reads state from other entities surrounding the current processed entity), but sometimes between different systems that depend on each other (i.e. a movement system that requires data from a system that processes user input). Now, when trying to parallelize the update phases of entity/component systems, the phases in which data (components/attributes) from Entities are read and used to compute something, and the phase where the modified data is written back to entities need to be separated in order to avoid data races. Otherwise the only way (not taking into account just "critical section"ing everything) to avoid them is to serialize parts of the update process that depend on other parts. This seems ugly. To me it would seem more elegant to be able to (ideally) have all processing running in parallel, where a system may read data from all entities as it wishes, but doesn't write modifications to that data back until some later point. The fact that this is even possible is based on the assumption that modification write-backs are usually very small in complexity, and don't require much performance, whereas computations are very expensive (relatively). So the overhead added by a delayed-write phase might be evened out by more efficient updating of entities (by having threads work more % of the time instead of waiting). A concrete example of this might be a system that updates physics. The system needs to both read and write a lot of data to and from entities. Optimally, there would be a system in place where all available threads update a subset of all entities registered with the physics system. In the case of the physics system this isn't trivially possible because of race conditions. So without a workaround, we would have to find other systems to run in parallel (which don't modify the same data as the physics system), other wise the remaining threads are waiting and wasting time. However, that has disadvantages Practically, the L3 cache is pretty much always better utilized when updating a large system with multiple threads, as opposed to multiple systems at once, which all act on different sets of data. Finding and assembling other systems to run in parallel can be extremely time consuming to design well enough to optimize performance. Sometimes, it might even not be possible at all because a system just depends on data that is touched by all other systems. Solution? In my thinking, a possible solution would be a system where reading/updating and writing of data is separated, so that in one expensive phase, systems only read data and compute what they need to compute, and then in a separate, performance-wise cheap, write phase, attributes of entities that needed to be modified are finally written back to the entities. The Question How might such a system be implemented to achieve optimal performance, as well as making programmer life easier? What are the implementation details of such a system and what might have to be changed in the existing EC-architecture to accommodate this solution?

    Read the article

  • The data reader returned by the store data provider does not have enough columns

    - by molgan
    Hello I get the following error when I try to execute a stored procedure: "The data reader returned by the store data provider does not have enough columns" When I in the sql-manager execute it like this: DECLARE @return_value int, @EndDate datetime EXEC @return_value = [dbo].[GetSomeDate] @SomeID = 91, @EndDate = @EndDate OUTPUT SELECT @EndDate as N'@EndDate' SELECT 'Return Value' = @return_value GO It returns the value properly.... @SomeDate = '2010-03-24 09:00' And in my app I have: if (_entities.Connection.State == System.Data.ConnectionState.Closed) _entities.Connection.Open(); using (EntityCommand c = new EntityCommand("MyAppEntities.GetSomeDate", (EntityConnection)this._entities.Connection)) { c.CommandType = System.Data.CommandType.StoredProcedure; EntityParameter paramSomeID = new EntityParameter("SomeID", System.Data.DbType.Int32); paramSomeID.Direction = System.Data.ParameterDirection.Input; paramSomeID.Value = someID; c.Parameters.Add(paramSomeID); EntityParameter paramSomeDate = new EntityParameter("SomeDate", System.Data.DbType.DateTime); SomeDate.Direction = System.Data.ParameterDirection.Output; c.Parameters.Add(paramSomeDate); int retval = c.ExecuteNonQuery(); return (DateTime?)c.Parameters["SomeDate"].Value; Why does it complain about columns? I googled on error and someone said something about removing RETURN in sp, but I dont have any RETURN there. last like is like SELECT @SomeDate = D.SomeDate FROM .... /M

    Read the article

  • ASP.NET server data persistence

    - by Wayne Werner
    Hi, I'm not really sure exactly how the question should be phrased, so please be patient if I ask the wrong thing. I'm writing an ASP.NET application using VB as the code behind language. I have a data access class that connects to the DB to run the query (parameterized, of course), and another class to perform the validation tasks - I access this class from my aspx page. What I would like is to be able to store the data server side and wait for the user to choose from a few options based on the validity of the data. But unless my understanding is completely off, having persistent data objects on the server will give problems when multiple users connect? My ultimate goal is that once the data has been validated the end user can't modify it. Currently I'm validating the data, but I still have to retrieve it from the web form AFTER the user says OK, which obviously leaves open the possibility of injecting bad data either accidentally (unlikely) or on purpose (also unlikely for the use, but I'd prefer not to take the chance). So am I completely off in my understanding? If so, can someone point me to a resource that provides some instructions on keeping persistent data on the server, or provide instruction? Thanks!

    Read the article

  • SQLAuthority News – Best Practices for Data Warehousing with SQL Server 2008 R2

    - by pinaldave
    An integral part of any BI system is the data warehouse—a central repository of data that is regularly refreshed from the source systems. The new data is transferred at regular intervals  by extract, transform, and load (ETL) processes. This whitepaper talks about what are best practices for Data Warehousing. This whitepaper discusses ETL, Analysis, Reporting as well relational database. The main focus of this whitepaper is on mainly ‘architecture’ and ‘performance’. Download Best Practices for Data Warehousing with SQL Server 2008 R2 Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Best Practices, Data Warehousing, PostADay, SQL, SQL Authority, SQL Documentation, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Nagy dobás készül az Oracle adatányászati felületen, Oracle Data Mining

    - by Fekete Zoltán
    Ahogyan már a tavaly oszi Oracle OpenWorld hírekben és eloadásokban is láthattuk a beharangozót, az Oracle nagy dobásra készül az adatbányászati fronton (Oracle Data Mining), mégpedig a remekül használható adatbányászati motor grafikus felületének a kiterjesztésével. Ha jól megfigyeljük ezt az utóbbi linket, az eddigi grafikus felület már Oracle Data Miner Classic néven fut. Hogyan is lehet használni az Oracle Data Mining-ot? - Oracle Data Miner (ingyenesen letöltheto GUI az OTN-rol) - Java-ból és PL/SQL-bol, Oracle Data Mining JDeveloper and SQL Developer Extensions - Excel felületrol, Oracle Spreadsheet Add-In for Predictive Analytics - ODM Connector for mySAP BW Oracle Data Mining technikai információ.

    Read the article

  • Google I/O 2012 - Big Data: Turning Your Data Problem Into a Competitive Advantage

    Google I/O 2012 - Big Data: Turning Your Data Problem Into a Competitive Advantage Ju-kay Kwek, Navneet Joneja Can businesses get practical value from web-scale data without building proprietary web-scale infrastructure? This session will explore how new Google data services can be used to solve key data storage, transformation and analysis challenges. We will look at concrete case studies demonstrating how real life businesses have successfully used these solutions to turn data into a competitive business asset. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 1 0 ratings Time: 52:39 More in Science & Technology

    Read the article

  • Data-Driven SOA with Oracle Data Integrator

    - by Irem Radzik
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Cambria","serif"; mso-fareast-font-family:"MS Mincho";} By Mike Eisterer, Data integration is more than simply moving data in bulk or in real-time, it is also about unifying information for improved business agility and integrating it in today’s service-oriented architectures. SOA enables organizations to easily define services which may then be discovered and leveraged by varying consumers. These consumers may be applications, customer facing portals, or complex business rules which are assembling services to automate process. Data as a foundational service provider is a key component of today’s successful SOA implementations. Oracle offers the broadest and most integrated portfolio of products to help you define, organize, orchestrate and consume data services. If you are attending Oracle OpenWorld next week, you will have ample opportunity to see the latest Oracle Data Integrator live in action and work with it yourself in two offered Hands-on Labs. Visit the hands-on lab to gain experience firsthand: Oracle Data Integrator and Oracle SOA Suite: Hands-on- Lab (HOL10480) Wed Oct 3rd 11:45AM Marriott Marquis- Salon 1/2 To learn more about Oracle Data Integrator, please visit our Introduction Hands-on LAB: Introduction to Oracle Data Integrator (HOL10481) Mon Oct 1st 3:15PM, Marriott Marquis- Salon 1/2 If you are not able to attend OpenWorld, please check out our latest resources for Data Integration.

    Read the article

  • Do different operating systems have different read and write speeds?

    - by Ivan
    If I have two different operating systems, such as Windows 8 and Ubuntu, running on the same hardware, will the two operating systems have different read and write speeds? My guess is that there would be minimal difference between operating systems and read and write speeds to the hard disk since the major limited factor is seeking; however, different operating systems may use different file systems in order to attempt to reduce seek time in the hard disk. Likewise, I'm sure that modern operating systems will not actually write directly to the hard disk, and instead will just have it in memory and marked with a dirty bit. Are there any studies that show differences in read and write speeds between OSs? Or would the file system being used by the OS matter more than the OS itself?

    Read the article

  • EMEA Engineered Systems Partner Update Call&ndash;October 30th 2013

    - by JuergenKress
    EMEA Engineered Systems Partner Update Call: Engineered Systems (Including Exalogic) updates from Oracle OpenWorld on 30th October, 2013 at 15:00 CET (UTC/GMT +1 Hour) We are pleased to invite you to the next Webcast from our Engineered Systems Partner Update Series. This time it will be all around "Engineered Systems updates from Oracle OpenWorld – all the news from Exalogic included" on Wednesday 30th October, 2013 at 15:00 CET (UTC/GMT +1 Hour). One more year, San Francisco hosted the Oracle OpenWorld, in the month of September. Every year, thousands of partners and customers attend this event to discover new products and solutions, improve their technical proficiency and knowledge, learn tips and tricks for currently installed products and understand where the industry is headed. In case you could not make it to San Francisco this time, we want to provide you with the key updates announced at Oracle OpenWorld around Engineered Systems. Please mark your diaries. You can also attend Larry’s keynote around the Oracle Database 12c In-Memory Database and M6 Big Memory Machine and many more on the Oracle OpenWorld On Demand website. Agenda: Overview of latest Engineered Systems including Exalogic and how Oracle Fusion Middleware performs on the machine How to articulate their value to customers Webcast Joining details: To Join the webcast CLICK HERE For audio reception please use the following details: Global Dial-in Numbers Session/Conference ID: 595 534 979 Password: 12385 WebLogic Partner Community For regular information become a member in the WebLogic Partner Community please visit: http://www.oracle.com/partners/goto/wls-emea ( OPN account required). If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Wiki Technorati Tags: Engineered Systems,Exalogic,OOW,Oracle OpenWorld,WebLogic,WebLogic Community,Oracle,OPN,Jürgen Kress

    Read the article

< Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >