Search Results

Search found 2180 results on 88 pages for 'projection matrix'.

Page 8/88 | < Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >

  • Building a world matrix

    - by DeadMG
    When building a world projection matrix from scale, rotate, translate matrices, then the translation matrix must be the last in the process, right? Else you'll be scaling or rotating your translations. Do scale and rotate need to go in a specific order? Right now I've got std::for_each(objects.begin(), objects.end(), [&, this](D3D93DObject* ptr) { D3DXMATRIX WVP; D3DXMATRIX translation, rotationX, rotationY, rotationZ, scale; D3DXMatrixTranslation(&translation, ptr->position.x, ptr->position.y, ptr->position.z); D3DXMatrixRotationX(&rotationX, ptr->rotation.x); D3DXMatrixRotationY(&rotationY, ptr->rotation.y); D3DXMatrixRotationZ(&rotationZ, ptr->rotation.z); D3DXMatrixScaling(&translation, ptr->scale.x, ptr->scale.y, ptr->scale.z); WVP = rotationX * rotationY * rotationZ * scale * translation * ViewProjectionMatrix; });

    Read the article

  • MATLAB - Index exceeds matrix dimensions

    - by Jessy
    Hi I have problem with matrix.. I have many .txt files with different number of rows but have the same number of column (1 column) e.g. s1.txt = 1234 rows s2.txt = 1200 rows s2.txt = 1100 rows I wanted to combine the three files. Since its have different rows .. when I write it to a new file I got this error = Index exceeds matrix dimensions. How I can solved this problem? .

    Read the article

  • How to extract a submatrix from a matrix .. ?

    - by ZaZu
    Hello, I have a matrix in a txt file and I want to load the matrix based on my input of number of rows and columns For example, I have a 5 by 5 matrix in the file. I want to extract a 3 by 3 matrix, how can I do that ? I created a nested loop using : FILE *sample sample=fopen("randomfile.txt","r"); for(i=0;i<rows;i++){ for(j=0;j<cols;j++){ fscanf(sample,"%f",&matrix[i][j]); } fscanf(sample,"\n",&matrix[i][j]); } fclose(sample); Sadly the code does not work .. If I have this matrix : 5.00 4.00 5.00 6.00 5.00 4.00 3.00 25.00 5.00 3.00 4.00 23.00 5.00 2.00 352.00 6.00 And inputting 3 for rows and 3 for columns, I get : 5.00 4.00 5.00 6.00 5.00 4.00 3.00 25.00 5.00 Which is obviously wrong , its reading line by line rather than skipping the unmentioned column ... What am I doing wrong ? Thanks !

    Read the article

  • Converting a Matrix to a grid of colors

    - by Zach
    I'm currently making a console application in C# (will be going to a Windows Form application in the future. Sooner if needed). My current objective is to have a matrix (current size 52x42) be exported as an image (bitmap, jpeg, png, I'm flexible) where each value in the matrix (0, 1, 2, 3) is portrayed as a white, black, blue, or red square of size 20px x 20px with a grid 1px wide seperating each 'cell'. Can this even be done in a console application, and if so how? If not, what would I need to get it working in a Windows Form application?

    Read the article

  • matrix multiplication with MPI [on hold]

    - by user3695701
    I'm working on an assignment on matrix multiplication with MPI. A*B=C. the requirement is that B should be vertically partitioned. Here's what I intend to do: broadcast matrix A to all processes and scatter B into several slices with each slice containing n/p columns. The following code only works when the number of process(p) is 1. when p1(say 2), I got [cluster2:21080] *** Process received signal *** [cluster2:21080] Signal: Segmentation fault (11) [cluster2:21080] Signal code: Address not mapped (1) [cluster2:21080] Failing at address: (nil) [cluster2:21080] [ 0] /lib/libpthread.so.0(+0xf8f0) [0x7f49f38108f0] [cluster2:21080] [ 1] /lib/libc.so.6(memcpy+0xe1) [0x7f49f35024c1] [cluster2:21080] [ 2] /usr/lib/libmpi.so.0(ompi_convertor_unpack+0x121)[0x7f49f47c88e1] [cluster2:21080] [ 3] /usr/lib/openmpi/lib/openmpi/mca_pml_ob1.so(+0x8a26) [0x7f49f0dcea26] [cluster2:21080] [ 4] /usr/lib/openmpi/lib/openmpi/mca_btl_tcp.so(+0x662c) [0x7f49efce462c] [cluster2:21080] [ 5] /usr/lib/libopen-pal.so.0(+0x1ede8) [0x7f49f42e0de8] [cluster2:21080] [ 6] /usr/lib/libopen-pal.so.0(opal_progress+0x99) [0x7f49f42d5369] [cluster2:21080] [ 7] /usr/lib/openmpi/lib/openmpi/mca_pml_ob1.so(+0x5585) [0x7f49f0dcb585] [cluster2:21080] [ 8] /usr/lib/openmpi/lib/openmpi/mca_coll_tuned.so(+0xcc01) [0x7f49eeeb1c01] [cluster2:21080] [ 9] /usr/lib/openmpi/lib/openmpi/mca_coll_tuned.so(+0x266c) [0x7f49eeea766c] [cluster2:21080] [10] /usr/lib/openmpi/lib/openmpi/mca_coll_sync.so(+0x1388) [0x7f49ef0c0388] [cluster2:21080] [11] /usr/lib/libmpi.so.0(MPI_Bcast+0x10e) [0x7f49f47d025e] [cluster2:21080] [12] ./out(main+0x259) [0x401571] [cluster2:21080] [13] /lib/libc.so.6(__libc_start_main+0xfd) [0x7f49f3498c8d] [cluster2:21080] [14] ./out() [0x400f29] [cluster2:21080] *** End of error message *** Can someone help me? Thanks. //matrices A and B //double* A =(double *)malloc(n*n*sizeof(double)); //double* B =(double *)malloc(n*n*sizeof(double)); //code initializing A,B... //n is the size of the matrix //p is the number of processes //myrank is the rank of calling process MPI_Init (&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &myrank); MPI_Comm_size(MPI_COMM_WORLD, &p); //broadcast A to all processes MPI_Bcast (A, n*n, MPI_DOUBLE, 0, MPI_COMM_WORLD); MPI_Datatype tmp_type, col_type; // extract a slice from B MPI_Type_vector(n, num_of_col_per_slice, n, MPI_DOUBLE, &tmp_type); // position of the first (0) and each next (stride * sizeof(double) ) slice MPI_Type_create_resized(tmp_type, 0, n * sizeof(double), &col_type); MPI_Type_commit(&col_type); //scatter a slice of B to each process MPI_Scatter(B, 1, col_type, B+myrank*n/p, n * n/p, MPI_DOUBLE, 0, MPI_COMM_WORLD); //use blas function to calculate A*sliceOfB and store the resulting slice to C cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, n, n/p, n, 1.0, A, n, B+myrank*n/p, n, 0.0, C+myrank*n/p, n); //gather all those resulting slices into C MPI_Gather (C+myrank*n/p, n*n/p, MPI_DOUBLE, C, n*n/p, MPI_DOUBLE, 0, MPI_COMM_WORLD);

    Read the article

  • importing animations in Blender, weird rotations/locations

    - by user975135
    This is for the Blender 2.6 API. There are two problems: 1. When I import a single animation frame from my animation file to Blender, all bones look fine. But when I import multiple (all of the frames), just the first one looks right, seems like newer frames are affected by older ones, so you get slightly off positions/rotations. This is true when both assigning PoseBone.matrix and PoseBone.matrix_basis. bone_index = 0 # for each frame: for frame_index in range(frame_count): # for each pose bone: add a key for bone_name in bone_names: # "bone_names" - a list of bone names I got earlier pose.bones[bone_name].matrix = animation_matrices[frame_index][bone_index] # "animation_matrices" - a nested list of matrices generated from reading a file # create the 'keys' for the Action from the poses pose.bones[bone_name].keyframe_insert('location', frame = frame_index+1) pose.bones[bone_name].keyframe_insert('rotation_euler', frame = frame_index+1) pose.bones[bone_name].keyframe_insert('scale', frame = frame_index+1) bone_index += 1 bone_index = 0 Again, it seems like previous frames are affecting latter ones, because if I import a single frame from the middle of the animation, it looks fine. 2. I can't assign armature-space animation matrices read from a file to a skeleton with hierarchy (parenting). In Blender 2.4 you could just assign them to PoseBone.poseMatrix and bones would deform perfectly whether the bones had a hierarchy or none at all. In Blender 2.6, there's PoseBone.matrix_basis and PoseBone.matrix. While matrix_basis is relative to parent bone, matrix isn't, the API says it's in object space. So it should have worked, but doesn't. So I guess we need to calculate a local space matrix from our armature-space animation matrices from the files. So I tried multiplying it ( PoseBone.matrix ) with PoseBone.parent.matrix.inverted() in both possible orders with no luck, still weird deformations.

    Read the article

  • Can someone explain the (reasons for the) implications of colum vs row major in multiplication/concatenation?

    - by sebf
    I am trying to learn how to construct view and projection matrices, and keep reaching difficulties in my implementation owing to my confusion about the two standards for matrices. I know how to multiply a matrix, and I can see that transposing before multiplication would completely change the result, hence the need to multiply in a different order. What I don't understand though is whats meant by only 'notational convention' - from the articles here and here the authors appear to assert that it makes no difference to how the matrix is stored, or transferred to the GPU, but on the second page that matrix is clearly not equivalent to how it would be laid out in memory for row-major; and if I look at a populated matrix in my program I see the translation components occupying the 4th, 8th and 12th elements. Given that: "post-multiplying with column-major matrices produces the same result as pre-multiplying with row-major matrices. " Why in the following snippet of code: Matrix4 r = t3 * t2 * t1; Matrix4 r2 = t1.Transpose() * t2.Transpose() * t3.Transpose(); Does r != r2 and why does pos3 != pos for: Vector4 pos = wvpM * new Vector4(0f, 15f, 15f, 1); Vector4 pos3 = wvpM.Transpose() * new Vector4(0f, 15f, 15f, 1); Does the multiplication process change depending on whether the matrices are row or column major, or is it just the order (for an equivalent effect?) One thing that isn't helping this become any clearer, is that when provided to DirectX, my column major WVP matrix is used successfully to transform vertices with the HLSL call: mul(vector,matrix) which should result in the vector being treated as row-major, so how can the column major matrix provided by my math library work?

    Read the article

  • Keystone Correction using 3D-Points of Kinect

    - by philllies
    With XNA, I am displaying a simple rectangle which is projected onto the floor. The projector can be placed at an arbitrary position. Obviously, the projected rectangle gets distorted according to the projectors position and angle. A Kinect scans the floor looking for the four corners. Now my goal is to transform the original rectangle such that the projection is no longer distorted by basically pre-warping the rectangle. My first approach was to do everything in 2D: First compute a perspective transformation (using OpenCV's warpPerspective()) from the scanned points to the internal rectangle's points und apply the inverse to the rectangle. This seemed to work but was too slow as it couldn't be rendered on the GPU. The second approach was to do everything in 3D in order to use XNA's rendering features. First, I would display a plane, scan its corners with Kinect and map the received 3D-Points to the original plane. Theoretically, I could apply the inverse of the perspective transformation to the plane, as I did in the 2D-approach. However, in since XNA works with a view and projection matrix, I can't just call a function such as warpPerspective() and get the desired result. I would need to compute the new parameters for the camera's view and projection matrix. Question: Is it possible to compute these parameters and split them into two matrices (view and projection)? If not, is there another approach I could use?

    Read the article

  • Do I need the 'w' component in my Vector class?

    - by bobobobo
    Assume you're writing matrix code that handles rotation, translation etc for 3d space. Now the transformation matrices have to be 4x4 to fit the translation component in. However, you don't actually need to store a w component in the vector do you? Even in perspective division, you can simply compute and store w outside of the vector, and perspective divide before returning from the method. For example: // post multiply vec2=matrix*vector Vector operator*( const Matrix & a, const Vector& v ) { Vector r ; // do matrix mult r.x = a._11*v.x + a._12*v.y ... real w = a._41*v.x + a._42*v.y ... // perspective divide r /= w ; return r ; } Is there a point in storing w in the Vector class?

    Read the article

  • VFP Unit Matrix Multiply problem on the iPhone

    - by Ian Copland
    Hi. I'm trying to write a Matrix3x3 multiply using the Vector Floating Point on the iPhone, however i'm encountering some problems. This is my first attempt at writing any ARM assembly, so it could be a faily simple solution that i'm not seeing. I've currently got a small application running using a maths library that i've written. I'm investigating into the benifits using the Vector Floating Point Unit would provide so i've taken my matrix multiply and converted it to asm. Previously the application would run without a problem, however now my objects will all randomly disappear. This seems to be caused by the results from my matrix multiply becoming NAN at some point. Heres the code IMatrix3x3 operator*(IMatrix3x3 & _A, IMatrix3x3 & _B) { IMatrix3x3 C; //C++ code for the simulator #if TARGET_IPHONE_SIMULATOR == true C.A0 = _A.A0 * _B.A0 + _A.A1 * _B.B0 + _A.A2 * _B.C0; C.A1 = _A.A0 * _B.A1 + _A.A1 * _B.B1 + _A.A2 * _B.C1; C.A2 = _A.A0 * _B.A2 + _A.A1 * _B.B2 + _A.A2 * _B.C2; C.B0 = _A.B0 * _B.A0 + _A.B1 * _B.B0 + _A.B2 * _B.C0; C.B1 = _A.B0 * _B.A1 + _A.B1 * _B.B1 + _A.B2 * _B.C1; C.B2 = _A.B0 * _B.A2 + _A.B1 * _B.B2 + _A.B2 * _B.C2; C.C0 = _A.C0 * _B.A0 + _A.C1 * _B.B0 + _A.C2 * _B.C0; C.C1 = _A.C0 * _B.A1 + _A.C1 * _B.B1 + _A.C2 * _B.C1; C.C2 = _A.C0 * _B.A2 + _A.C1 * _B.B2 + _A.C2 * _B.C2; //VPU ARM asm for the device #else //create a pointer to the Matrices IMatrix3x3 * pA = &_A; IMatrix3x3 * pB = &_B; IMatrix3x3 * pC = &C; //asm code asm volatile( //turn on a vector depth of 3 "fmrx r0, fpscr \n\t" "bic r0, r0, #0x00370000 \n\t" "orr r0, r0, #0x00020000 \n\t" "fmxr fpscr, r0 \n\t" //load matrix B into the vector bank "fldmias %1, {s8-s16} \n\t" //load the first row of A into the scalar bank "fldmias %0!, {s0-s2} \n\t" //calulate C.A0, C.A1 and C.A2 "fmuls s17, s8, s0 \n\t" "fmacs s17, s11, s1 \n\t" "fmacs s17, s14, s2 \n\t" //save this into the output "fstmias %2!, {s17-s19} \n\t" //load the second row of A into the scalar bank "fldmias %0!, {s0-s2} \n\t" //calulate C.B0, C.B1 and C.B2 "fmuls s17, s8, s0 \n\t" "fmacs s17, s11, s1 \n\t" "fmacs s17, s14, s2 \n\t" //save this into the output "fstmias %2!, {s17-s19} \n\t" //load the third row of A into the scalar bank "fldmias %0!, {s0-s2} \n\t" //calulate C.C0, C.C1 and C.C2 "fmuls s17, s8, s0 \n\t" "fmacs s17, s11, s1 \n\t" "fmacs s17, s14, s2 \n\t" //save this into the output "fstmias %2!, {s17-s19} \n\t" //set the vector depth back to 1 "fmrx r0, fpscr \n\t" "bic r0, r0, #0x00370000 \n\t" "orr r0, r0, #0x00000000 \n\t" "fmxr fpscr, r0 \n\t" //pass the inputs and set the clobber list : "+r"(pA), "+r"(pB), "+r" (pC) : :"cc", "memory","s0", "s1", "s2", "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15", "s16", "s17", "s18", "s19" ); #endif return C; } As far as i can see that makes sence. While debugging i've managed to notice that if i were to say _A = C prior to the return and after the ASM, _A will not necessarily be equal to C which has only increased my confusion. I had thought it was possibly due to the pointers I'm giving to the VFPU being incrimented by lines such as "fldmias %0!, {s0-s2} \n\t" however my understanding of asm is not good enough to properly understand the problem, nor to see an alternative approach to that line of code. Anyway, I was hoping someone with a greater understanding than me would be able to see a solution, and any help would be greatly appreciated, thank you :-)

    Read the article

  • How to find same-value rectangular areas of a given size in a matrix most efficiently?

    - by neo
    My problem is very simple but I haven't found an efficient implementation yet. Suppose there is a matrix A like this: 0 0 0 0 0 0 0 4 4 2 2 2 0 0 4 4 2 2 2 0 0 0 0 2 2 2 1 1 0 0 0 0 0 1 1 Now I want to find all starting positions of rectangular areas in this matrix which have a given size. An area is a subset of A where all numbers are the same. Let's say width=2 and height=3. There are 3 areas which have this size: 2 2 2 2 0 0 2 2 2 2 0 0 2 2 2 2 0 0 The result of the function call would be a list of starting positions (x,y starting with 0) of those areas. List((2,1),(3,1),(5,0)) The following is my current implementation. "Areas" are called "surfaces" here. case class Dimension2D(width: Int, height: Int) case class Position2D(x: Int, y: Int) def findFlatSurfaces(matrix: Array[Array[Int]], surfaceSize: Dimension2D): List[Position2D] = { val matrixWidth = matrix.length val matrixHeight = matrix(0).length var resultPositions: List[Position2D] = Nil for (y <- 0 to matrixHeight - surfaceSize.height) { var x = 0 while (x <= matrixWidth - surfaceSize.width) { val topLeft = matrix(x)(y) val topRight = matrix(x + surfaceSize.width - 1)(y) val bottomLeft = matrix(x)(y + surfaceSize.height - 1) val bottomRight = matrix(x + surfaceSize.width - 1)(y + surfaceSize.height - 1) // investigate further if corners are equal if (topLeft == bottomLeft && topLeft == topRight && topLeft == bottomRight) { breakable { for (sx <- x until x + surfaceSize.width; sy <- y until y + surfaceSize.height) { if (matrix(sx)(sy) != topLeft) { x = if (x == sx) sx + 1 else sx break } } // found one! resultPositions ::= Position2D(x, y) x += 1 } } else if (topRight != bottomRight) { // can skip x a bit as there won't be a valid match in current row in this area x += surfaceSize.width } else { x += 1 } } } return resultPositions } I already tried to include some optimizations in it but I am sure that there are far better solutions. Is there a matlab function existing for it which I could port? I'm also wondering whether this problem has its own name as I didn't exactly know what to google for. Thanks for thinking about it! I'm excited to see your proposals or solutions :)

    Read the article

  • glm matrix conversion for DirectX

    - by niktehpui
    For on of the coursework specification I need to work with DirectX, so I tried to implement a DirectX Renderer in my small cross-platform framework (to have it optionally available for Windows). Since I want to stick to my dependencies I want use glm for vector/matrix/quaternions math. The vectors seem to be fully compatible with DirectX, but the glm::mat4 is not working properly in DirectX Effects Framework. I assumed the reason is that DirectX uses row majors layouts and OpenGL column majors (although if I remember right internally in HLSL DX uses column major as well), so I transposed the matrix, but I still get no proper results compared to using XNA-Math. XNA-Version of the code (works): XMMATRIX world = XMMatrixIdentity(); XMMATRIX view = XMMatrixLookAtLH(XMVectorSet(5.0, 5.0, 5.0, 1.0f), XMVectorZero(), XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f)); XMMATRIX proj = XMMatrixPerspectiveFovLH(0.25f*3.14f, 1.25f, 1.0f, 1000.0f); XMMATRIX worldViewProj = world*view*proj; m_fxWorldViewProj->SetMatrix(reinterpret_cast<float*>(&worldViewProj)); This works flawlessly and displays the expected colored cube. GLM-Version (does not work): glm::mat4 world(1.0f); glm::mat4 view = glm::lookAt(glm::vec3(5.0f, 5.0f, 5.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f)); glm::mat4 proj = glm::perspective(0.25f*3.14f, 1.25f, 1.0f, 1000.0f); glm::mat4 worldViewProj = glm::transpose(world*view*proj); m_fxWorldViewProj->SetMatrix(glm::value_ptr(worldViewProj)); Displays nothing, screen stays black. I really would like to stick to glm on all platforms.

    Read the article

  • HTML to 'pretty' text conversion for printing on text only printer (dot matrix)

    - by Gala101
    Hi, I have a web-site that generates some simple tabular data as html tables, many of my users print the web-page on a laser/inkjet printer; however some like to print on legacy Dot Matrix printers (text only) and there-in lies the problem. When giving Print from web-browser onto dot-matrix printer, the printer actually perceives data as 'graphic'/image and proceeds to print it dot-by-dot. i.e If printing a character 'C', printer slices it horizontally and prints in 3-4 passes. Same printer prints a text from an ASCII file (say from notepad) as complete characters in single pass, thereby being 5 times faster and much quieter than when printing a web-page. (Even tried 'generic text-only driver' but Mozilla Firefox has a know bug that it does not print anything over this particular driver since 2.0+) So is there some clean way of formatting an already generated HTML (say method takes the entire html table as string) and generates a corresponding text file with properly aligned columns? I have tried stripping the html tags, but the major issue there is performing good 'wrapping' of a cell's data and maintaining integrity of other cells' data (from same row). eg: ( '|' and '_' not really required) Col1 | Col2 | Colum_Name3 | Col4 | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 | this cell | this column | smaller | | is in three| spans 2 rows | | | rows | | | - - - - - - - - - - - - - - - - - - - - - - - - 2 | smaller now| this also | but this| | | | cell's | | | | data is | | | | now | | | | bigger | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Could you please suggest preferred approach? I've thought of using xslt and somehow outputting text (instead of more prevalent pdf), but Apache FOP's text renderer is really broken and perhaps forgotten in development path. Commercial one's are way too costly.

    Read the article

  • Custom Calculations in a Matrix - Reporting Services 2005

    - by bfrancis
    I am writing a report to show gas usage (in gallons) used by each department. The request is to view each month and the gallons used by each department. A column is required to display what each departments target goal is, based on the gallons of gas they have used in a past time frame. Each departments target goal is x percent less than the total gallons used for said time frame. I currently have a matrix in Reporting Services with departments making up rows, months making up columns, and gallons filling the details. The matrix is being filled by dataset1. I have the data grouping as is requested for each month by each department. My problem is calculating the target goal. My thought was to create a second dataset (dataset2) that returns the gallons used based on the time frame requested. I grouped this data by department. I was hoping I could use the department field in each dataset to make sure the appropriate numbers were used. I added a new column which shows up next to the gallons field. As I attempted to build the Expression I found out that I could only grab the gallons used from dataset2 if I was summing the gallons field. This gives me the total gallons used by every department combined. I have tried to find resources with similar examples of what I am trying to accomplish but I cannot seem to come across one. I am trying to keep this as detailed as possible without making it too wordy. I would be more than happy to clarify or explain into further detail what I have written above if it is needed. If anyone has links, comments, or suggestions they would be greatly appreciated. A very simple visual or what I am hoping to accomplish is below. The months and departments would expand based on the data returned. months ------------------------------ departments| gallons/month | target goal

    Read the article

  • Matlab matrix translation and rotation multiple times

    - by pinnacler
    I have a map of individual trees from a forest stored as x,y points in a matrix. I call it fixedPositions. It's cartesian and (0,0) is the origin. I would like 0/360 degrees to be the top of the screen and 90 degrees to be to the right. Given a velocity and a heading, i.e. .5 m/s and 60 degrees (2 o'clock equivalent on a watch), how do I rotate that x,y points, so that the new origin is centered at (.5cos(60),.5sin(60)) and 60 degrees is now at the top of the screen? Then if I were to give you another heading and speed, i.e. 0 degrees and 2m/s, it should calculate it from the last point, not the original fixedPositions origin. I've wasted my day trying to figure this out. I wish I took matrix algebra but I'm at a loss. I tried doing cos(30) and even those wouldn't compute correctly, which after an hour I realize were in radians.

    Read the article

  • Better way to compare neighboring cells in matrix

    - by HyperCube
    Suppose I have a matrix of size 100x100 and I would like to compare each pixel to its direct neighbor (left, upper, right, lower) and then do some operations on the current matrix or a new one of the same size. A sample code in Python/Numpy could look like the following: (the comparison 0.5 has no meaning, I just want to give a working example for some operation while comparing the neighbors) import numpy as np my_matrix = np.random.rand(100,100) new_matrix = np.array((100,100)) my_range = np.arange(1,99) for i in my_range: for j in my_range: if my_matrix[i,j+1] > 0.5: new_matrix[i,j+1] = 1 if my_matrix[i,j-1] > 0.5: new_matrix[i,j-1] = 1 if my_matrix[i+1,j] > 0.5: new_matrix[i+1,j] = 1 if my_matrix[i-1,j] > 0.5: new_matrix[i-1,j] = 1 if my_matrix[i+1,j+1] > 0.5: new_matrix[i+1,j+1] = 1 if my_matrix[i+1,j-1] > 0.5: new_matrix[i+1,j-1] = 1 if my_matrix[i-1,j+1] > 0.5: new_matrix[i-1,j+1] = 1 This can get really nasty if I want to step into one neighboring cell and start from it to do a similar task... Do you have some suggestions how this can be done in a more efficient manner? Is this even possible?

    Read the article

  • Unexpected results for projection on to plane

    - by ravenspoint
    I want to use this projection matrix: GLfloat shadow[] = { -1,0,0,0, 1,0,-1,1, 0,0,-1,0, 0,0,0,-1 }; It should cast object shadows onto the y = 0 plane from a point light at 1,1,-1. I create a rectangle in the x = 0.5 plane glBegin( GL_QUADS ); glVertex3f( 0.5,0.2,-0.5); glVertex3f( 0.5,0.2,-1.5); glVertex3f( 0.5,0.5,-1.5); glVertex3f( 0.5,0.5,-0.5); glEnd(); Now if I manually multiply these vertices with the matrix, I get. glBegin( GL_QUADS ); glVertex3f( 0.375,0,-0.375); glVertex3f( 0.375,0,-1.625); glVertex3f( 0,0,-2); glVertex3f( 0,0,0); glEnd(); Which produces a reasonable display ( camera at 0,5,0 looking down y axis ) So rather than do the calculation manually, I should be able to use the opengl model transormation. I write this code: glMatrixMode (GL_MODELVIEW); GLfloat shadow[] = { -1,0,0,0, 1,0,-1,1, 0,0,-1,0, 0,0,0,-1 }; glLoadMatrixf( shadow ); glBegin( GL_QUADS ); glVertex3f( 0.5,0.2,-0.5); glVertex3f( 0.5,0.2,-1.5); glVertex3f( 0.5,0.5,-1.5); glVertex3f( 0.5,0.5,-0.5); glEnd(); But this produces a blank screen! What am I doing wrong? Is there some debug mode where I can print out the transformed vertices, so I can see where they are ending up? Note: People have suggested that using glMultMatrixf() might make a difference. It doesn't. Replacing glLoadMatrixf( shadow ); with glLoadIdentity(); glMultMatrixf( shadow ); gives the identical result ( of course! )

    Read the article

  • How to solve linker error in matrix multiplication in c using lapack library?

    - by Malar
    I did Matrix multiplication using lapack library, I am getting an error like below. Can any one help me? "error LNK2019: unresolved external symbol "void __cdecl dgemm(char,char,int *,int *,int *,double *,double *,int *,double *,int *,double *,double *,int *)" (?dgemm@@YAXDDPAH00PAN1010110@Z) referenced in function _main" 1..\bin\matrixMultiplicationUsingLapack.exe : fatal error LNK1120: 1 unresolved externals I post my code below # define matARowSize 2 // -- Matrix 1 number of rows # define matAColSize 2 // -- Matrix 1 number of cols # define matBRowSize 2 // -- Matrix 2 number of rows # define matBColSize 2 // -- Matrix 2 number of cols using namespace std; void dgemm(char, char, int *, int *, int *, double *, double *, int *, double *, int *, double *, double *, int *); int main() { double iMatrixA[matARowSize*matAColSize]; // -- Input matrix 1 {m x n} double iMatrixB[matBRowSize*matBColSize]; // -- Input matrix 2 {n x k} double iMatrixC[matARowSize*matBColSize]; // -- Output matrix {m x n * n x k = m x k} double alpha = 1.0f; double beta = 0.0f; int n = 2; iMatrixA[0] = 1; iMatrixA[1] = 1; iMatrixA[2] = 1; iMatrixA[3] = 1; iMatrixB[0] = 1; iMatrixB[1] = 1; iMatrixB[2] = 1; iMatrixB[3] = 1; //dgemm('N','N',&n,&n,&n,&alpha,iMatrixA,&n,iMatrixB,&n,&beta,iMatrixC,&n); dgemm('N','N',&n,&n,&n,&alpha,iMatrixA,&n,iMatrixB,&n,&beta,iMatrixC,&n); std::cin.get(); return 0; }

    Read the article

  • Orthographic Zooming with 0,0 at top/left

    - by Sean M.
    I'm trying to implement zooming on my 2D game. Since it's using orthographic projection, I thought it would be easy to implement zooming. After looking around the internet, I found a bunch of explanations and samples on how to do this if (0,0) is the center of the screen with the orthographic projection. The problem is, my ortho projection has (0,0) at the top-left (similar to XNA/Monogame, and a couple others). I could not find any examples about how to implement zooming to the center of the screen when the center is not (0,0). And help/links/code examples would be greatly appreciated.

    Read the article

  • Using 'new' in a projection?

    - by davenewza
    I wish to project a collection from one type (Something) to another type (SomethingElse). Yes, this is a very open-eneded question, but which of the two options below do you prefer? Creating a new instance using new: var result = query.Select(something => new SomethingElse(something)); Using a factory: var result = query.Select(something => SomethingElse.FromSomething(something)); When I think of a projection, I generally think of it as a conversion. Using new gives me this idea that I'm creating new objects during a conversion, which doesn't feel right. Semantically, SomethingElse.FromSomething() most definitely fits better. Although, the second option does require addition code to setup a factory, which could become unnecessarily compulsive.

    Read the article

  • Portal View/Projection Matrix near plane

    - by melak47
    For RenderToTexture/Camera based portal rendering, the basics seems simple enough. However, with a free camera, most of the time it is going to be looking at such portals at an angle: Now a regular near clipping plane will not always work here, it will either intersect with the wall the portal is sitting on, or possibly with objects in front of the wall. The desired near clipping plane would be aligned like the portal, producing a view volume more like this: or this in 3D: So here is my question: How does one construct or "truncate" a view/projection matrix to achieve such an off-camera-normal (near) clipping plane?

    Read the article

  • Numpy ‘smart’ symmetric matrix

    - by Debilski
    Is there a smart and space-efficient symmetric matrix in numpy which automatically fills [j][i] when [i][j] is written to? a = numpy.symmetric((3, 3)) a[0][1] = 1 print a # [[0 1 0], [1 0 0], [0 0 0]] An automatic Hermitian would also be nice, although I won’t need that at the time of writing.

    Read the article

  • What does it mean to "preconcat" a matrix?

    - by Brad Hein
    In reviewing: http://developer.android.com/reference/android/graphics/Canvas.html I'm wondering translate(): "preconcat the current matrix with the specified translation" -- what does this mean? I can't find a good definition of "preconcat" anywhere on the internet! The only place I can find it is in the Android Source - I'm starting to wonder if they made it up? :) I'm familiar with "concat" or concatenate, which is to append to, so what is a pre-concat?

    Read the article

< Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >