Search Results

Search found 59626 results on 2386 pages for 'raw data'.

Page 8/2386 | < Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >

  • extjs data store load data on fly

    - by CKeven
    I'm trying to create a data store that will load the data schema and records on fly. Here is the current code i have and I'm not sure how to setup the array reader properly since i don't have the schema before query returns. ds = new Ext.data.Store({ url: 'http://10.10.97.83/cgi-bin/cgiip.exe/WService=wsdev/majax/jsbrdgx.p', baseParams: { cr: Ext.util.JSON.encode(omgtobxParms) }, reader: new Ext.data.ArrayReader({ //root:data.value.records }, col_names) }); {"name": "tmp_buy_book", "schema": [ { "name": "a", "type": "C"}, { "name": "b", "type": "C"} "records": [["1", ""], ["1",""]]}

    Read the article

  • Big Data – Buzz Words: What is MapReduce – Day 7 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned what is Hadoop. In this article we will take a quick look at one of the four most important buzz words which goes around Big Data – MapReduce. What is MapReduce? MapReduce was designed by Google as a programming model for processing large data sets with a parallel, distributed algorithm on a cluster. Though, MapReduce was originally Google proprietary technology, it has been quite a generalized term in the recent time. MapReduce comprises a Map() and Reduce() procedures. Procedure Map() performance filtering and sorting operation on data where as procedure Reduce() performs a summary operation of the data. This model is based on modified concepts of the map and reduce functions commonly available in functional programing. The library where procedure Map() and Reduce() belongs is written in many different languages. The most popular free implementation of MapReduce is Apache Hadoop which we will explore tomorrow. Advantages of MapReduce Procedures The MapReduce Framework usually contains distributed servers and it runs various tasks in parallel to each other. There are various components which manages the communications between various nodes of the data and provides the high availability and fault tolerance. Programs written in MapReduce functional styles are automatically parallelized and executed on commodity machines. The MapReduce Framework takes care of the details of partitioning the data and executing the processes on distributed server on run time. During this process if there is any disaster the framework provides high availability and other available modes take care of the responsibility of the failed node. As you can clearly see more this entire MapReduce Frameworks provides much more than just Map() and Reduce() procedures; it provides scalability and fault tolerance as well. A typical implementation of the MapReduce Framework processes many petabytes of data and thousands of the processing machines. How do MapReduce Framework Works? A typical MapReduce Framework contains petabytes of the data and thousands of the nodes. Here is the basic explanation of the MapReduce Procedures which uses this massive commodity of the servers. Map() Procedure There is always a master node in this infrastructure which takes an input. Right after taking input master node divides it into smaller sub-inputs or sub-problems. These sub-problems are distributed to worker nodes. A worker node later processes them and does necessary analysis. Once the worker node completes the process with this sub-problem it returns it back to master node. Reduce() Procedure All the worker nodes return the answer to the sub-problem assigned to them to master node. The master node collects the answer and once again aggregate that in the form of the answer to the original big problem which was assigned master node. The MapReduce Framework does the above Map () and Reduce () procedure in the parallel and independent to each other. All the Map() procedures can run parallel to each other and once each worker node had completed their task they can send it back to master code to compile it with a single answer. This particular procedure can be very effective when it is implemented on a very large amount of data (Big Data). The MapReduce Framework has five different steps: Preparing Map() Input Executing User Provided Map() Code Shuffle Map Output to Reduce Processor Executing User Provided Reduce Code Producing the Final Output Here is the Dataflow of MapReduce Framework: Input Reader Map Function Partition Function Compare Function Reduce Function Output Writer In a future blog post of this 31 day series we will explore various components of MapReduce in Detail. MapReduce in a Single Statement MapReduce is equivalent to SELECT and GROUP BY of a relational database for a very large database. Tomorrow In tomorrow’s blog post we will discuss Buzz Word – HDFS. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • SQL Developer Data Modeler v3.3 Early Adopter: Search

    - by thatjeffsmith
    photo: Stuck in Customs via photopin cc The next version of Oracle SQL Developer Data Modeler is now available as an Early Adopter (read, beta) release. There are many new major feature enhancements to talk about, but today’s focus will be on the brand new Search mechanism. Data, data, data – SO MUCH data Google has made countless billions of dollars around a very efficient and intelligent search business. People have become accustomed to having their data accessible AND searchable. Data models can have thousands of entities or tables, each having dozens of attributes or columns. Imagine how hard it could be to find what you’re looking for here. This is the challenge we have tackled head-on in v3.3. Same location as the Search toolbar in Oracle SQL Developer (and most web browsers) Here’s how it works: Search as you type – wicked fast as the entire model is loaded into memory Supports regular expressions (regex) Results loaded to a new panel below Search across designs, models Search EVERYTHING, or filter by type Save your frequent searches Save your search results as a report Open common properties of object in search results and edit basic properties on-the-fly Want to just watch the video? We have a new Oracle Learning Library resource available now which introduces the new and improved Search mechanism in SQL Developer Data Modeler. Go watch the video and then come back. Some Screenshots This will be a pretty easy feature to pick up. Search is intuitive – we’ve already learned how to do search. Now we just have a better interface for it in SQL Developer Data Modeler. But just in case you need a couple of pointers… The SYS data dictionary in model form with Search Results If I type ‘translation’ in the search dialog, then the results will come up as hits are ‘resolved.’ By default, everything is searched, although I can filter the results after-the-fact. You can see where the search finds a match in the ‘Content’ column Save the Results as a Report If you limit the search results to a category and a model, then you can save the results as a report. All of the usual suspects You can optionally include the search string, which displays in the top of of the report as ‘PATTERN.’ You can save you common reporting setups as a template and reuse those as well. Here’s a sample HTML report: Yes, I like to search my search results report! Two More Ways to Search You can search ‘in context’ by opening the ‘Find’ dialog from an active design. You can do this using the ‘Search’ toolbar button or from a model context menu. Searching a specific model Instead of bringing up the old modal Find dialog, you now get to use the new and improved Search panel. Notice there’s no ‘Model’ drop-down to select and that the active Search form is now in the Search panel versus the search toolbar up top. What else is new in SQL Developer Data Modeler version 3.3? All kinds of goodies. You can send your model to Excel for quick edits/reviews and suck the changes back into your model, you can share objects between models, and much much more. You’ll find new videos and blog posts on the subject in the new few days and weeks. Enjoy! If you have any feedback or want to report bugs, please visit our forums.

    Read the article

  • Big Data – Operational Databases Supporting Big Data – Key-Value Pair Databases and Document Databases – Day 13 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the Relational Database and NoSQL database in the Big Data Story. In this article we will understand the role of Key-Value Pair Databases and Document Databases Supporting Big Data Story. Now we will see a few of the examples of the operational databases. Relational Databases (Yesterday’s post) NoSQL Databases (Yesterday’s post) Key-Value Pair Databases (This post) Document Databases (This post) Columnar Databases (Tomorrow’s post) Graph Databases (Tomorrow’s post) Spatial Databases (Tomorrow’s post) Key Value Pair Databases Key Value Pair Databases are also known as KVP databases. A key is a field name and attribute, an identifier. The content of that field is its value, the data that is being identified and stored. They have a very simple implementation of NoSQL database concepts. They do not have schema hence they are very flexible as well as scalable. The disadvantages of Key Value Pair (KVP) database are that they do not follow ACID (Atomicity, Consistency, Isolation, Durability) properties. Additionally, it will require data architects to plan for data placement, replication as well as high availability. In KVP databases the data is stored as strings. Here is a simple example of how Key Value Database will look like: Key Value Name Pinal Dave Color Blue Twitter @pinaldave Name Nupur Dave Movie The Hero As the number of users grow in Key Value Pair databases it starts getting difficult to manage the entire database. As there is no specific schema or rules associated with the database, there are chances that database grows exponentially as well. It is very crucial to select the right Key Value Pair Database which offers an additional set of tools to manage the data and provides finer control over various business aspects of the same. Riak Rick is one of the most popular Key Value Database. It is known for its scalability and performance in high volume and velocity database. Additionally, it implements a mechanism for collection key and values which further helps to build manageable system. We will further discuss Riak in future blog posts. Key Value Databases are a good choice for social media, communities, caching layers for connecting other databases. In simpler words, whenever we required flexibility of the data storage keeping scalability in mind – KVP databases are good options to consider. Document Database There are two different kinds of document databases. 1) Full document Content (web pages, word docs etc) and 2) Storing Document Components for storage. The second types of the document database we are talking about over here. They use Javascript Object Notation (JSON) and Binary JSON for the structure of the documents. JSON is very easy to understand language and it is very easy to write for applications. There are two major structures of JSON used for Document Database – 1) Name Value Pairs and 2) Ordered List. MongoDB and CouchDB are two of the most popular Open Source NonRelational Document Database. MongoDB MongoDB databases are called collections. Each collection is build of documents and each document is composed of fields. MongoDB collections can be indexed for optimal performance. MongoDB ecosystem is highly available, supports query services as well as MapReduce. It is often used in high volume content management system. CouchDB CouchDB databases are composed of documents which consists fields and attachments (known as description). It supports ACID properties. The main attraction points of CouchDB are that it will continue to operate even though network connectivity is sketchy. Due to this nature CouchDB prefers local data storage. Document Database is a good choice of the database when users have to generate dynamic reports from elements which are changing very frequently. A good example of document usages is in real time analytics in social networking or content management system. Tomorrow In tomorrow’s blog post we will discuss about various other Operational Databases supporting Big Data. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • The data reader returned by the store data provider does not have enough columns

    - by molgan
    Hello I get the following error when I try to execute a stored procedure: "The data reader returned by the store data provider does not have enough columns" When I in the sql-manager execute it like this: DECLARE @return_value int, @EndDate datetime EXEC @return_value = [dbo].[GetSomeDate] @SomeID = 91, @EndDate = @EndDate OUTPUT SELECT @EndDate as N'@EndDate' SELECT 'Return Value' = @return_value GO It returns the value properly.... @SomeDate = '2010-03-24 09:00' And in my app I have: if (_entities.Connection.State == System.Data.ConnectionState.Closed) _entities.Connection.Open(); using (EntityCommand c = new EntityCommand("MyAppEntities.GetSomeDate", (EntityConnection)this._entities.Connection)) { c.CommandType = System.Data.CommandType.StoredProcedure; EntityParameter paramSomeID = new EntityParameter("SomeID", System.Data.DbType.Int32); paramSomeID.Direction = System.Data.ParameterDirection.Input; paramSomeID.Value = someID; c.Parameters.Add(paramSomeID); EntityParameter paramSomeDate = new EntityParameter("SomeDate", System.Data.DbType.DateTime); SomeDate.Direction = System.Data.ParameterDirection.Output; c.Parameters.Add(paramSomeDate); int retval = c.ExecuteNonQuery(); return (DateTime?)c.Parameters["SomeDate"].Value; Why does it complain about columns? I googled on error and someone said something about removing RETURN in sp, but I dont have any RETURN there. last like is like SELECT @SomeDate = D.SomeDate FROM .... /M

    Read the article

  • ASP.NET server data persistence

    - by Wayne Werner
    Hi, I'm not really sure exactly how the question should be phrased, so please be patient if I ask the wrong thing. I'm writing an ASP.NET application using VB as the code behind language. I have a data access class that connects to the DB to run the query (parameterized, of course), and another class to perform the validation tasks - I access this class from my aspx page. What I would like is to be able to store the data server side and wait for the user to choose from a few options based on the validity of the data. But unless my understanding is completely off, having persistent data objects on the server will give problems when multiple users connect? My ultimate goal is that once the data has been validated the end user can't modify it. Currently I'm validating the data, but I still have to retrieve it from the web form AFTER the user says OK, which obviously leaves open the possibility of injecting bad data either accidentally (unlikely) or on purpose (also unlikely for the use, but I'd prefer not to take the chance). So am I completely off in my understanding? If so, can someone point me to a resource that provides some instructions on keeping persistent data on the server, or provide instruction? Thanks!

    Read the article

  • SQLAuthority News – Best Practices for Data Warehousing with SQL Server 2008 R2

    - by pinaldave
    An integral part of any BI system is the data warehouse—a central repository of data that is regularly refreshed from the source systems. The new data is transferred at regular intervals  by extract, transform, and load (ETL) processes. This whitepaper talks about what are best practices for Data Warehousing. This whitepaper discusses ETL, Analysis, Reporting as well relational database. The main focus of this whitepaper is on mainly ‘architecture’ and ‘performance’. Download Best Practices for Data Warehousing with SQL Server 2008 R2 Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Best Practices, Data Warehousing, PostADay, SQL, SQL Authority, SQL Documentation, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Nagy dobás készül az Oracle adatányászati felületen, Oracle Data Mining

    - by Fekete Zoltán
    Ahogyan már a tavaly oszi Oracle OpenWorld hírekben és eloadásokban is láthattuk a beharangozót, az Oracle nagy dobásra készül az adatbányászati fronton (Oracle Data Mining), mégpedig a remekül használható adatbányászati motor grafikus felületének a kiterjesztésével. Ha jól megfigyeljük ezt az utóbbi linket, az eddigi grafikus felület már Oracle Data Miner Classic néven fut. Hogyan is lehet használni az Oracle Data Mining-ot? - Oracle Data Miner (ingyenesen letöltheto GUI az OTN-rol) - Java-ból és PL/SQL-bol, Oracle Data Mining JDeveloper and SQL Developer Extensions - Excel felületrol, Oracle Spreadsheet Add-In for Predictive Analytics - ODM Connector for mySAP BW Oracle Data Mining technikai információ.

    Read the article

  • Google I/O 2012 - Big Data: Turning Your Data Problem Into a Competitive Advantage

    Google I/O 2012 - Big Data: Turning Your Data Problem Into a Competitive Advantage Ju-kay Kwek, Navneet Joneja Can businesses get practical value from web-scale data without building proprietary web-scale infrastructure? This session will explore how new Google data services can be used to solve key data storage, transformation and analysis challenges. We will look at concrete case studies demonstrating how real life businesses have successfully used these solutions to turn data into a competitive business asset. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 1 0 ratings Time: 52:39 More in Science & Technology

    Read the article

  • Data-Driven SOA with Oracle Data Integrator

    - by Irem Radzik
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Cambria","serif"; mso-fareast-font-family:"MS Mincho";} By Mike Eisterer, Data integration is more than simply moving data in bulk or in real-time, it is also about unifying information for improved business agility and integrating it in today’s service-oriented architectures. SOA enables organizations to easily define services which may then be discovered and leveraged by varying consumers. These consumers may be applications, customer facing portals, or complex business rules which are assembling services to automate process. Data as a foundational service provider is a key component of today’s successful SOA implementations. Oracle offers the broadest and most integrated portfolio of products to help you define, organize, orchestrate and consume data services. If you are attending Oracle OpenWorld next week, you will have ample opportunity to see the latest Oracle Data Integrator live in action and work with it yourself in two offered Hands-on Labs. Visit the hands-on lab to gain experience firsthand: Oracle Data Integrator and Oracle SOA Suite: Hands-on- Lab (HOL10480) Wed Oct 3rd 11:45AM Marriott Marquis- Salon 1/2 To learn more about Oracle Data Integrator, please visit our Introduction Hands-on LAB: Introduction to Oracle Data Integrator (HOL10481) Mon Oct 1st 3:15PM, Marriott Marquis- Salon 1/2 If you are not able to attend OpenWorld, please check out our latest resources for Data Integration.

    Read the article

  • Subsetting a data frame in a function using another data frame as parameter

    - by lecodesportif
    I would like to submit a data frame to a function and use it to subset another data frame. This is the basic data frame: foo <- data.frame(var1= c('1', '1', '1', '2', '2', '3'), var2=c('A', 'A', 'B', 'B', 'C', 'C')) I use the following function to find out the frequencies of var2 for specified values of var1. foobar <- function(x, y, z){ a <- subset(x, (x$var1 == y)) b <- subset(a, (a$var2 == z)) n=nrow(b) return(n) } Examples: foobar(foo, 1, "A") # returns 2 foobar(foo, 1, "B") # returns 1 foobar(foo, 3, "C") # returns 1 This works. But now I want to submit a data frame of values to foobar. Instead of the above examples, I would like to submit df to foobar and get the same results as above (2, 1, 1) df <- data.frame(var1=c('1','1','3'), var2=c("A", "B", "C")) When I change foobar to accept two arguments like foobar(foo, df) and use y[, c(var1)] and y[, c(var2)] instead of the two parameters x and y it still doesn't work. Which way is there to do this?

    Read the article

  • Managing Data Dependecies of Java Classes that Load Data from the Classpath at Runtime

    - by Martin Potthast
    What is the simplest way to manage dependencies of Java classes to data files present in the classpath? More specifically: How should data dependencies be annotated? Perhaps using Java annotations (e.g., @Data)? Or rather some build entries in a build script or a properties file? Is there build tool that integrates and evaluates such information (Ant, Scons, ...)? Do you have examples? Consider the following scenario: A few lines of Ant create a Jar from my sources that includes everything found on the classpath. Then jarjar is used to remove all .class files that are not necessary to execute, say, class Foo. The problem is that all the data files that class Bar depends upon are still there in the Jar. The ideal deployment script, however, would recognize that the data files on which only class Bar depends can be removed while data files on which class Foo depends must be retained. Any hints?

    Read the article

  • Best way to implement user-powered data validation

    - by vegetables
    I run a product recommendation engine and I'm hitting a few snags. I'm looking to see if anyone has any recommendations on what I should do to minimize these issues. Here's how the site works: Users come to the site and are presented with product recommendations based on some criteria. If a user knows of a product that is not in our system, they can add it by providing the product name and manufacturer. We take that information, and: Hit one API to gather all the product meta-data (and to validate the product spelling, etc). If the product is not in this first API, we do not allow it in our system. Use the information from step 1 to hit another API for pricing information (gathered from many places online). For the sake of discussion, assume that I am searching both APIs in the most efficient/successful manner possible. For the most part, this works very well. I'd say ~80% of our data is perfectly accurate, but there are a few issues: Sometimes the pricing API (Step 2) doesn't have any information for the product. The way the pricing API is built, it will always return something (theoretically, the closest possible match), and there's no guarantee that the product name is spelled exactly the same way in both APIs, so there's no automated way of knowing if it's the right product. When the pricing API finds the right product, occasionally it has outdated, or even invalid pricing data (e.g. if it screen-scraped the wrong price from a website). Since the site was fairly small at first, I was able to manually verify every product that was added to the website. However, the site has grown to the point where this is taking several hours per day, and is just not efficient use of my time. So, my question is: Aside from hiring someone (or getting an intern) to validate all the data manually, what would be the best system of letting my userbase self-manage the data. Specifically, how can I allow users to edit the data while minimizing the risk of someone ambushing my website, or accidentally setting the data incorrectly.

    Read the article

  • data handling with javascript

    - by Vincent Warmerdam
    Python has a very neat package called pandas which allows for quick data transformation; tables, aggregation, that sort of thing. A lot of these types of functionality can also be found in the python itertools module. The plyR package in R is also very similar. Usually one woud use this functionality to produce a table which is later visualized with a plot. I am personally very fond of d3, and I would like to allow the user to first indicate what type of data aggregation he wants on the dataset before it is visualized. The visualisation in question involves making a heatmap where the user gets to select the size of the bins of the heatmap beforehand (I want d3 to project this through leaflet). I want to visually select the ideal size of the bins for the heatmap. The way I work now is that I take the dataset, aggregate it with python and then manually load it in d3. This is a process that takes a lot of human effort and I was wondering if the data aggregation can be done through the javascript of the browser. I couldn't find a package for javascript specifically built for data, suggesting (to me) that this is a bad idea and that one should not use javascript for the data handling. Is there a good module/package for javascript to handle data aggregation? Is it a good/bad idea to do the data aggregation in javascript (performance wise)?

    Read the article

  • Customizing the NUnit GUI for data-driven testing

    - by rwong
    My test project consists of a set of input data files which is fed into a piece of legacy third-party software. Since the input data files for this software are difficult to construct (not something that can be done intentionally), I am not going to add new input data files. Each input data file will be subject to a set of "test functions". Some of the test functions can be invoked independently. Other test functions represent the stages of a sequential operation - if an earlier stage fails, the subsequent stages do not need to be executed. I have experimented with the NUnit parametrized test case (TestCaseAttribute and TestCaseSourceAttribute), passing in the list of data files as test cases. I am generally satisfied with the the ability to select the input data for testing. However, I would like to see if it is possible to customize its GUI's tree structure, so that the "test functions" become the children of the "input data". For example: File #1 CheckFileTypeTest GetFileTopLevelStructureTest CompleteProcessTest StageOneTest StageTwoTest StageThreeTest File #2 CheckFileTypeTest GetFileTopLevelStructureTest CompleteProcessTest StageOneTest StageTwoTest StageThreeTest This will be useful for identifying the stage that failed during the processing of a particular input file. Is there any tips and tricks that will enable the new tree layout? Do I need to customize NUnit to get this layout?

    Read the article

  • Test Data in a Distributed System

    - by Davin Tryon
    A question that has been vexing me lately has been about how to effectively test (end-to-end) features in a distributed system. Particuarly, how to effectively manage (through time) test data for feature testing. The system in question is a typical SOA setup. The composition is done in JavaScript when call to several REST APIs. Each service is built as an independent block. Each service has some kind of persistent storage (SQL Server in most cases). The main issue at the moment is how to approach test data when testing end-to-end features. Functional end-to-end testing occurs through the UI, and it is therefore necessary for test data to be set up before the test run (this could be manual or automated testing). As is typical in a distributed system, identifiers from one service are used as a link in another service. So, some level of synchronization needs to be present in the data to effectively test. What is the best way to manage and set up this data after a successful deployment to a test environment? For example, is it better to manage this test data inside each service? Or package it together with the testing suite? Does that testing suite exist as a separate project? I'm interested in design guidance about how to store and manage this test data as the application features evolve.

    Read the article

  • Data Management Business Continuity Planning

    Business Continuity Governance In order to ensure data continuity for an organization, they need to ensure they know how to handle a data or network emergency because all systems have the potential to fail. Data Continuity Checklist: Disaster Recovery Plan/Policy Backups Redundancy Trained Staff Business Continuity Policies In order to protect data in case of any emergency a company needs to put in place a Disaster recovery plan and policies that can be executed by IT staff to ensure the continuity of the existing data and/or limit the amount of data that is not contiguous.  A disaster recovery plan is a comprehensive statement of consistent actions to be taken before, during and after a disaster, according to Geoffrey H. Wold. He also states that the primary objective of disaster recovery planning is to protect the organization in the event that all or parts of its operations and/or computer services are rendered unusable. Furthermore, companies can mandate through policies that IT must maintain redundant hardware in case of any hardware failures and redundant network connectivity incase the primary internet service provider goes down.  Additionally, they can require that all staff be trained in regards to the Disaster recovery policy to ensure that all parties evolved are knowledgeable to execute the recovery plan. Business Continuity Procedures Business continuity procedure vary from organization to origination, however there are standard procedures that most originations should follow. Standard Business Continuity Procedures Backup and Test Backups to ensure that they work Hire knowledgeable and trainable staff  Offer training on new and existing systems Regularly monitor, test, maintain, and upgrade existing system hardware and applications Maintain redundancy regarding all data, and critical business functionality

    Read the article

  • How to choose how to store data?

    - by Eldros
    Give a man a fish and you feed him for a day. Teach a man to fish and you feed him for a lifetime. - Chinese Proverb I could ask what kind of data storage I should use for my actual project, but I want to learn to fish, so I don't need to ask for a fish each time I begin a new project. So, until I used two methods to store data on my non-game project: XML files, and relational databases. I know that there is also other kind of database, of the NoSQL kind. However I wouldn't know if there is more choice available to me, or how to choose in the first place, aside arbitrary picking one. So the question is the following: How should I choose the kind of data storage for a game project? And I would be interested on the following criterion when choosing: The size of the project. The platform targeted by the game. The complexity of the data structure. Added Portability of data amongst many project. Added How often should the data be accessed Added Multiple type of data for a same application Any other point you think is of interest when deciding what to use. EDIT I know about Would it be better to use XML/JSON/Text or a database to store game content?, but thought it didn't address exactly my point. Now if I am wrong, I would gladely be shown the error in my ways.

    Read the article

  • Data Masking Pack 12.1.0.3 Certified with E-Business Suite 12.1.3

    - by Elke Phelps (Oracle Development)
    I'm pleased to announce the certification of the E-Business Suite 12.1.3 Data Masking Template for the Data Masking Pack with Enterprise Manager Cloud Control 12.1.0.3. You can use the Oracle Data Masking Pack with Oracle Enterprise Manager Grid Control 12c to scramble sensitive data in cloned E-Business Suite environments.     You may scramble data in E-Business Suite cloned environments with EM12.1.0.3 using the following template: E-Business Suite 12.1.3 Data Masking Template for Data Masking Pack with EM12c (Patch 18462641) What does data masking do in E-Business Suite environments? Application data masking does the following: De-identify the data:  Scramble identifiers of individuals, also known as personally identifiable information or PII.  Examples include information such as name, account, address, location, and driver's license number. Mask sensitive data:  Mask data that, if associated with personally identifiable information (PII), would cause privacy concerns.  Examples include compensation, health and employment information.   Maintain data validity:  Provide a fully functional application.  How can EBS customers use data masking? The Oracle E-Business Suite Template for Data Masking Pack can be used in situations where confidential or regulated data needs to be shared with other non-production users who need access to some of the original data, but not necessarily every table.  Examples of non-production users include internal application developers or external business partners such as offshore testing companies, suppliers or customers.  Due to data dependencies, scrambling E-Business Suite data is not a trivial task.  The data needs to be scrubbed in such a way that allows the application to continue to function. The template works with the Oracle Data Masking Pack and Oracle Enterprise Manager to obscure sensitive E-Business Suite information that is copied from production to non-production environments.  The Oracle E-Business Suite Template for Data Masking Pack is applied to a non-production environment with the Enterprise Manager Grid Control Data Masking Pack.  When applied, the Oracle E-Business Suite Template for Data Masking Pack will create an irreversibly scrambled version of your production database for development and testing. Is there a charge for this? Yes. You must purchase licenses for the Oracle Data Masking Pack to use the Oracle E-Business Suite 12.1.3 template. The Oracle E-Business Suite 12.1.3 Template for the Data Masking Pack is included with the Oracle Data Masking Pack license.  You can contact your Oracle account manager for more details about licensing. References Additional details and requirements are provided in the following My Oracle Support Note: Using Oracle E-Business Suite Release 12.1.3 Template for the Data Masking Pack with Oracle Enterprise Manager 12.1 Data Masking Tool (Note 1481916.1) Masking Sensitive Data in the Oracle Database Real Application Testing User's Guide 11g Release 2 (11.2) Related Articles Scrambling Sensitive Data in E-Business Suite E-Business Suite 12.1.3 Data Masking Certified with Enterprise Manager 12c

    Read the article

  • ASP.NET Frameworks and Raw Throughput Performance

    - by Rick Strahl
    A few days ago I had a curious thought: With all these different technologies that the ASP.NET stack has to offer, what's the most efficient technology overall to return data for a server request? When I started this it was mere curiosity rather than a real practical need or result. Different tools are used for different problems and so performance differences are to be expected. But still I was curious to see how the various technologies performed relative to each just for raw throughput of the request getting to the endpoint and back out to the client with as little processing in the actual endpoint logic as possible (aka Hello World!). I want to clarify that this is merely an informal test for my own curiosity and I'm sharing the results and process here because I thought it was interesting. It's been a long while since I've done any sort of perf testing on ASP.NET, mainly because I've not had extremely heavy load requirements and because overall ASP.NET performs very well even for fairly high loads so that often it's not that critical to test load performance. This post is not meant to make a point  or even come to a conclusion which tech is better, but just to act as a reference to help understand some of the differences in perf and give a starting point to play around with this yourself. I've included the code for this simple project, so you can play with it and maybe add a few additional tests for different things if you like. Source Code on GitHub I looked at this data for these technologies: ASP.NET Web API ASP.NET MVC WebForms ASP.NET WebPages ASMX AJAX Services  (couldn't get AJAX/JSON to run on IIS8 ) WCF Rest Raw ASP.NET HttpHandlers It's quite a mixed bag, of course and the technologies target different types of development. What started out as mere curiosity turned into a bit of a head scratcher as the results were sometimes surprising. What I describe here is more to satisfy my curiosity more than anything and I thought it interesting enough to discuss on the blog :-) First test: Raw Throughput The first thing I did is test raw throughput for the various technologies. This is the least practical test of course since you're unlikely to ever create the equivalent of a 'Hello World' request in a real life application. The idea here is to measure how much time a 'NOP' request takes to return data to the client. So for this request I create the simplest Hello World request that I could come up for each tech. Http Handler The first is the lowest level approach which is an HTTP handler. public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public bool IsReusable { get { return true; } } } WebForms Next I added a couple of ASPX pages - one using CodeBehind and one using only a markup page. The CodeBehind page simple does this in CodeBehind without any markup in the ASPX page: public partial class HelloWorld_CodeBehind : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { Response.Write("Hello World. Time is: " + DateTime.Now.ToString() ); Response.End(); } } while the Markup page only contains some static output via an expression:<%@ Page Language="C#" AutoEventWireup="false" CodeBehind="HelloWorld_Markup.aspx.cs" Inherits="AspNetFrameworksPerformance.HelloWorld_Markup" %> Hello World. Time is <%= DateTime.Now %> ASP.NET WebPages WebPages is the freestanding Razor implementation of ASP.NET. Here's the simple HelloWorld.cshtml page:Hello World @DateTime.Now WCF REST WCF REST was the token REST implementation for ASP.NET before WebAPI and the inbetween step from ASP.NET AJAX. I'd like to forget that this technology was ever considered for production use, but I'll include it here. Here's an OperationContract class: [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World" + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } } WCF REST can return arbitrary results by returning a Stream object and a content type. The code above turns the string result into a stream and returns that back to the client. ASP.NET AJAX (ASMX Services) I also wanted to test ASP.NET AJAX services because prior to WebAPI this is probably still the most widely used AJAX technology for the ASP.NET stack today. Unfortunately I was completely unable to get this running on my Windows 8 machine. Visual Studio 2012  removed adding of ASP.NET AJAX services, and when I tried to manually add the service and configure the script handler references it simply did not work - I always got a SOAP response for GET and POST operations. No matter what I tried I always ended up getting XML results even when explicitly adding the ScriptHandler. So, I didn't test this (but the code is there - you might be able to test this on a Windows 7 box). ASP.NET MVC Next up is probably the most popular ASP.NET technology at the moment: MVC. Here's the small controller: public class MvcPerformanceController : Controller { public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } } ASP.NET WebAPI Next up is WebAPI which looks kind of similar to MVC. Except here I have to use a StringContent result to return the response: public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } } Testing Take a minute to think about each of the technologies… and take a guess which you think is most efficient in raw throughput. The fastest should be pretty obvious, but the others - maybe not so much. The testing I did is pretty informal since it was mainly to satisfy my curiosity - here's how I did this: I used Apache Bench (ab.exe) from a full Apache HTTP installation to run and log the test results of hitting the server. ab.exe is a small executable that lets you hit a URL repeatedly and provides counter information about the number of requests, requests per second etc. ab.exe and the batch file are located in the \LoadTests folder of the project. An ab.exe command line  looks like this: ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld which hits the specified URL 100,000 times with a load factor of 20 concurrent requests. This results in output like this:   It's a great way to get a quick and dirty performance summary. Run it a few times to make sure there's not a large amount of varience. You might also want to do an IISRESET to clear the Web Server. Just make sure you do a short test run to warm up the server first - otherwise your first run is likely to be skewed downwards. ab.exe also allows you to specify headers and provide POST data and many other things if you want to get a little more fancy. Here all tests are GET requests to keep it simple. I ran each test: 100,000 iterations Load factor of 20 concurrent connections IISReset before starting A short warm up run for API and MVC to make sure startup cost is mitigated Here is the batch file I used for the test: IISRESET REM make sure you add REM C:\Program Files (x86)\Apache Software Foundation\Apache2.2\bin REM to your path so ab.exe can be found REM Warm up ab.exe -n100 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJsonab.exe -n100 -c20 http://localhost/aspnetperf/api/HelloWorldJson ab.exe -n100 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld ab.exe -n100000 -c20 http://localhost/aspnetperf/handler.ashx > handler.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_CodeBehind.aspx > AspxCodeBehind.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_Markup.aspx > AspxMarkup.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld > Wcf.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldCode > Mvc.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld > WebApi.txt I ran each of these tests 3 times and took the average score for Requests/second, with the machine otherwise idle. I did see a bit of variance when running many tests but the values used here are the medians. Part of this has to do with the fact I ran the tests on my local machine - result would probably more consistent running the load test on a separate machine hitting across the network. I ran these tests locally on my laptop which is a Dell XPS with quad core Sandibridge I7-2720QM @ 2.20ghz and a fast SSD drive on Windows 8. CPU load during tests ran to about 70% max across all 4 cores (IOW, it wasn't overloading the machine). Ideally you can try running these tests on a separate machine hitting the local machine. If I remember correctly IIS 7 and 8 on client OSs don't throttle so the performance here should be Results Ok, let's cut straight to the chase. Below are the results from the tests… It's not surprising that the handler was fastest. But it was a bit surprising to me that the next fastest was WebForms and especially Web Forms with markup over a CodeBehind page. WebPages also fared fairly well. MVC and WebAPI are a little slower and the slowest by far is WCF REST (which again I find surprising). As mentioned at the start the raw throughput tests are not overly practical as they don't test scripting performance for the HTML generation engines or serialization performances of the data engines. All it really does is give you an idea of the raw throughput for the technology from time of request to reaching the endpoint and returning minimal text data back to the client which indicates full round trip performance. But it's still interesting to see that Web Forms performs better in throughput than either MVC, WebAPI or WebPages. It'd be interesting to try this with a few pages that actually have some parsing logic on it, but that's beyond the scope of this throughput test. But what's also amazing about this test is the sheer amount of traffic that a laptop computer is handling. Even the slowest tech managed 5700 requests a second, which is one hell of a lot of requests if you extrapolate that out over a 24 hour period. Remember these are not static pages, but dynamic requests that are being served. Another test - JSON Data Service Results The second test I used a JSON result from several of the technologies. I didn't bother running WebForms and WebPages through this test since that doesn't make a ton of sense to return data from the them (OTOH, returning text from the APIs didn't make a ton of sense either :-) In these tests I have a small Person class that gets serialized and then returned to the client. The Person class looks like this: public class Person { public Person() { Id = 10; Name = "Rick"; Entered = DateTime.Now; } public int Id { get; set; } public string Name { get; set; } public DateTime Entered { get; set; } } Here are the updated handler classes that use Person: Handler public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { var action = context.Request.QueryString["action"]; if (action == "json") JsonRequest(context); else TextRequest(context); } public void TextRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public void JsonRequest(HttpContext context) { var json = JsonConvert.SerializeObject(new Person(), Formatting.None); context.Response.ContentType = "application/json"; context.Response.Write(json); } public bool IsReusable { get { return true; } } } This code adds a little logic to check for a action query string and route the request to an optional JSON result method. To generate JSON, I'm using the same JSON.NET serializer (JsonConvert.SerializeObject) used in Web API to create the JSON response. WCF REST   [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World " + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } [OperationContract] [WebGet(ResponseFormat=WebMessageFormat.Json,BodyStyle=WebMessageBodyStyle.WrappedRequest)] public Person HelloWorldJson() { // Add your operation implementation here return new Person(); } } For WCF REST all I have to do is add a method with the Person result type.   ASP.NET MVC public class MvcPerformanceController : Controller { // // GET: /MvcPerformance/ public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } public JsonResult HelloWorldJson() { return Json(new Person(), JsonRequestBehavior.AllowGet); } } For MVC all I have to do for a JSON response is return a JSON result. ASP.NET internally uses JavaScriptSerializer. ASP.NET WebAPI public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } [HttpGet] public Person HelloWorldJson() { return new Person(); } [HttpGet] public HttpResponseMessage HelloWorldJson2() { var response = new HttpResponseMessage(HttpStatusCode.OK); response.Content = new ObjectContent<Person>(new Person(), GlobalConfiguration.Configuration.Formatters.JsonFormatter); return response; } } Testing and Results To run these data requests I used the following ab.exe commands:REM JSON RESPONSES ab.exe -n100000 -c20 http://localhost/aspnetperf/Handler.ashx?action=json > HandlerJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJson > MvcJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorldJson > WebApiJson.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorldJson > WcfJson.txt The results from this test run are a bit interesting in that the WebAPI test improved performance significantly over returning plain string content. Here are the results:   The performance for each technology drops a little bit except for WebAPI which is up quite a bit! From this test it appears that WebAPI is actually significantly better performing returning a JSON response, rather than a plain string response. Snag with Apache Benchmark and 'Length Failures' I ran into a little snag with Apache Benchmark, which was reporting failures for my Web API requests when serializing. As the graph shows performance improved significantly from with JSON results from 5580 to 6530 or so which is a 15% improvement (while all others slowed down by 3-8%). However, I was skeptical at first because the WebAPI test reports showed a bunch of errors on about 10% of the requests. Check out this report: Notice the Failed Request count. What the hey? Is WebAPI failing on roughly 10% of requests when sending JSON? Turns out: No it's not! But it took some sleuthing to figure out why it reports these failures. At first I thought that Web API was failing, and so to make sure I re-ran the test with Fiddler attached and runiisning the ab.exe test by using the -X switch: ab.exe -n100 -c10 -X localhost:8888 http://localhost/aspnetperf/api/HelloWorldJson which showed that indeed all requests where returning proper HTTP 200 results with full content. However ab.exe was reporting the errors. After some closer inspection it turned out that the dates varying in size altered the response length in dynamic output. For example: these two results: {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.841926-10:00"} {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.8519262-10:00"} are different in length for the number which results in 68 and 69 bytes respectively. The same URL produces different result lengths which is what ab.exe reports. I didn't notice at first bit the same is happening when running the ASHX handler with JSON.NET result since it uses the same serializer that varies the milliseconds. Moral: You can typically ignore Length failures in Apache Benchmark and when in doubt check the actual output with Fiddler. Note that the other failure values are accurate though. Another interesting Side Note: Perf drops over Time As I was running these tests repeatedly I was finding that performance steadily dropped from a startup peak to a 10-15% lower stable level. IOW, with Web API I'd start out with around 6500 req/sec and in subsequent runs it keeps dropping until it would stabalize somewhere around 5900 req/sec occasionally jumping lower. For these tests this is why I did the IIS RESET and warm up for individual tests. This is a little puzzling. Looking at Process Monitor while the test are running memory very quickly levels out as do handles and threads, on the first test run. Subsequent runs everything stays stable, but the performance starts going downwards. This applies to all the technologies - Handlers, Web Forms, MVC, Web API - curious to see if others test this and see similar results. Doing an IISRESET then resets everything and performance starts off at peak again… Summary As I stated at the outset, these were informal to satiate my curiosity not to prove that any technology is better or even faster than another. While there clearly are differences in performance the differences (other than WCF REST which was by far the slowest and the raw handler which was by far the highest) are relatively minor, so there is no need to feel that any one technology is a runaway standout in raw performance. Choosing a technology is about more than pure performance but also about the adequateness for the job and the easy of implementation. The strengths of each technology will make for any minor performance difference we see in these tests. However, to me it's important to get an occasional reality check and compare where new technologies are heading. Often times old stuff that's been optimized and designed for a time of less horse power can utterly blow the doors off newer tech and simple checks like this let you compare. Luckily we're seeing that much of the new stuff performs well even in V1.0 which is great. To me it was very interesting to see Web API perform relatively badly with plain string content, which originally led me to think that Web API might not be properly optimized just yet. For those that caught my Tweets late last week regarding WebAPI's slow responses was with String content which is in fact considerably slower. Luckily where it counts with serialized JSON and XML WebAPI actually performs better. But I do wonder what would make generic string content slower than serialized code? This stresses another point: Don't take a single test as the final gospel and don't extrapolate out from a single set of tests. Certainly Twitter can make you feel like a fool when you post something immediate that hasn't been fleshed out a little more <blush>. Egg on my face. As a result I ended up screwing around with this for a few hours today to compare different scenarios. Well worth the time… I hope you found this useful, if not for the results, maybe for the process of quickly testing a few requests for performance and charting out a comparison. Now onwards with more serious stuff… Resources Source Code on GitHub Apache HTTP Server Project (ab.exe is part of the binary distribution)© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Oracle Data Warehouse and Big Data Magazine MAY Edition for Customers + Partners

    - by KLaker
    Follow us on The latest edition of our monthly data warehouse and big data magazine for Oracle customers and partners is now available. The content for this magazine is taken from the various data warehouse and big data Oracle product management blogs, Oracle press releases, videos posted on Oracle Media Network and Oracle Facebook pages. Click here to view the May Edition Please share this link http://flip.it/fKOUS to our magazine with your customers and partners This magazine is optimized for display on tablets and smartphones using the Flipboard App which is available from the Apple App store and Google Play store

    Read the article

  • Version control and data provenance in charts, slides, and marketing materials that derive from code ouput

    - by EMS
    I develop as part of a small team that mostly does research and statistics stuff. But from the output of our code, other teams often create promotional materials, slides, presentations, etc. We run into a big problem because the marketing team (non-programmers) tend to use Excel, Adobe products, or other tools to carry out their work, and just want easy-to-use data formats from us. This leads to data provenance problems. We see email chains with attachments from 6 months ago and someone is saying "Hey, who generated this data. Can you generate more of it with the recent 6 months of results added in?" I want to help the other teams effectively use version control (my team uses it reasonably well for the code, but every other team classically comes up with many excuses to avoid it). For version controlling a software project where the participants are coders, I have some reasonable understanding of best practices and what to do. But for getting a team of marketing professionals to version control marketing materials and associate metadata about the software used to generate the data for the charts, I'm a bit at a loss. Some of the goals I'd like to achieve: Data that supported a material should never be associated with a person. As in, it should never be the case that someone says "Hey Person XYZ, I see you sent me this data as an attachment 6 months ago, can you update it for me?" Rather, data should be associated with the code and code-version of any code that was used to get it, and perhaps a team of many people who may maintain that code. Then references for data updates are about executing a specific piece of code, with a known version number. I'd like this to be a process that works easily with the tech that the marketing team already uses (e.g. Excel files, Adobe file, whatever). I don't want to burden them with needing to learn a bunch of new stuff just to use version control. They are capable folks, so learning something is fine. Ideally they could use our existing version control framework, but there are some issues around that. I think knowing some general best practices will be enough though, and I can handle patching that into the way our stuff works now. Are there any goals I am failing to think about? What are the time-tested ways to do something like this?

    Read the article

  • What does it mean to treat data as an asset?

    What does it mean to treat data as an asset? When considering this concept, we must define what data is and how it can be considered an asset. Data can easily be defined as a collection of stored truths that are open to interpretation and manipulation.  Expanding on this definition, data can be viewed as a set of captured facts, measurements, and ideas used to make decisions. Furthermore, InvestorsWords.com defines asset as any item of economic value owned by an individual or corporation. Now let’s apply this definition of asset to our definition of data, and ask the following question. Can facts, measurements and ideas be items that are of economic value owned by an individual or corporation? The obvious answer is yes; data can be bought and sold like commodities or analyzed to make smarter business decisions.  We can look at the economic value of data in one of two ways. First, data can be sold as a commodity that can take the form of goods like eBooks, Training, Music, Movies, and so on. Customers are willing to pay to gain access to this data for their consumption. This directly implies that there is an economic value for data in the form of a commodity because customers see a value in obtaining it.  Secondly data can be used in making smarter business decisions that allow for companies to become more profitable and/or reduce their potential for risk in regards to how they operate.  In the past I have worked at companies where we had to analyze previous sales activities in conjunction with current activities to determine how the company was preforming for the quarter.  In addition trends can be formulated based on existing data that allow companies to forecast data so that they can make strategic business decisions based sound forecasted data. Companies that truly value their data are constantly trying to grow and upgrade their data and supporting applications because it is the life blood of a company. If we look at an eBook retailer for example, imagine if they lost all of their data. They would be in essence forced out of business because they would have nothing to sell. In turn, if we look at a company that was using data to facilitate better decision making processes and they lost all of their data then they could be losing potential revenue and/ or increasing the company’s losses by making important business decisions virtually in the dark compared to when they were made on solid data.

    Read the article

< Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >