Search Results

Search found 3077 results on 124 pages for 'rendering'.

Page 8/124 | < Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >

  • Rendering order in an Entity System

    - by Daedalus
    Say I use a basic ES approach, and also inside Systems I hold lists of all entities that Systems are required to process. How do I maintain this list of entities in desired rendering order, i.e. for a dumb 2D RenderingSystem? I saw this discussion, and what they suggest is to do something like Z ordering - what I would probably do is just to store a "layer" int in DrawableComponent and then, inside RenderingSystem, just sort entities by mentioned "layer" whenever the entity list for RenderingSystem changes. They also say we could just delete and recreate the entity whenever we want it on the top, but it seems too inflexible to me. How is this problem usually solved?

    Read the article

  • Rendering problems with Java LWJGL

    - by pangaea
    I'm new to rendering and so I don't know if I can speed up the code or that what I'm doing is bad. This is what it looks like But, if I have say 100-200 triangles everything is fine. Yet, when I get to 400 triangles it becomes very laggy. At 1,000 triangles it becomes 5fps at max. Also, when I try to close it everything becomes extremely laggy and the game breaks my computer. Is this normal? The code is here http://pastebin.com/9N6qdEbd game http://pastebin.com/fdkSrPGT mobs I haven't even adding collision detection.

    Read the article

  • Rendering citations and references in HTML using PHP/Perl/Python/

    - by Nick
    Is there a PHP/Perl/Python/... library for picking citations out of an HTML file and rendering a nice list of references at the bottom, like in Wikipedia? I'm developing a website with heavily-sourced content, and I'd really like to have automatically-generated lists of formatted references, like in Wikipedia. (Check out their philosophy page, and see how the superscript numbered citations interact with the references at the bottom. This is all dynamically generated, automatically ordered & linked.) They do it really well: the citations are linked to the references (which are backlinked to the citations), when you click on one of the links, the target is highlighted, etc. I'm tempted to build the site on MediaWiki just for this one feature, but it seems like overkill. Do I have any options?

    Read the article

  • How can I get textures on edge of walls like in Super Metroid and Aquaria?

    - by meds
    Games like Super Metroid and Aquaria present the terrain with the other facing parts having rocks and stuff while deeper behind them (i.e. underground) there's different detail or just black. I would like to do something similar using polygons. Terrain is created in my current level as a set of overlapping square boxes. I'm not sure if this rendering method will work such a system for creating terrain but if anyone has ideas I'd love to hear them. Otherwise I'd like to know how I should re-write the terrain rendering system so it actually works to draw terrain in this manner...

    Read the article

  • FBO rendering different result between Glaxay S2 and S3

    - by BruceJones
    I'm working on a pong game and have recently set up FBO rendering so that I can apply some post-processing shaders. This proceeds as so: Bind texture A to framebuffer Draw balls Bind texture B to framebuffer Draw texture A using fade shader on fullscreen quad Bind screen to framebuffer Draw texture B using normal textured quad shader Neither texture A or B are cleared at any point, this way the balls leave trails on screen, see below for the fade shader. Fade Shader private final String fragmentShaderCode = "precision highp float;" + "uniform sampler2D u_Texture;" + "varying vec2 v_TexCoordinate;" + "vec4 color;" + "void main(void)" + "{" + " color = texture2D(u_Texture, v_TexCoordinate);" + " color.a *= 0.8;" + " gl_FragColor = color;" + "}"; This works fine with the Samsung Galaxy S3/ Note2, but cause a strange effect doesnt work on Galaxy S2 or Note1. See pictures: Galaxy S3/Note2 Galaxy S3/Note2 Galaxy S2/Note Galaxy S2/Note Can anyone explain the difference?

    Read the article

  • FBO rendering different result between Galaxy S2 and S3

    - by BruceJones
    I'm working on a pong game and have recently set up FBO rendering so that I can apply some post-processing shaders. This proceeds as so: Bind texture A to framebuffer Draw balls Bind texture B to framebuffer Draw texture A using fade shader on fullscreen quad Bind screen to framebuffer Draw texture B using normal textured quad shader Neither texture A or B are cleared at any point, this way the balls leave trails on screen, see below for the fade shader. Fade Shader private final String fragmentShaderCode = "precision highp float;" + "uniform sampler2D u_Texture;" + "varying vec2 v_TexCoordinate;" + "vec4 color;" + "void main(void)" + "{" + " color = texture2D(u_Texture, v_TexCoordinate);" + " color.a *= 0.8;" + " gl_FragColor = color;" + "}"; This works fine with the Samsung Galaxy S3/ Note2, but cause a strange effect doesnt work on Galaxy S2 or Note1. See pictures: Galaxy S3/Note2 Galaxy S3/Note2 Galaxy S2/Note Galaxy S2/Note Can anyone explain the difference?

    Read the article

  • 3d js map rendering

    - by gotha
    In the past I've done a 2D tile map using HTML, CSS and Javascript. Now I have the task of creating a 3D version using the same technologies - think of it like a space map where all planets have x/y/z positions. Currently, I have no idea to do this. Is there an existing library or something I can modify to do my job? If not, what method of rendering the map should I use? It needs to be as browser independent as possible, so I can't use webgl, flash or canvas. I'm considering plain JS & HTML or SVG (using Raphael for compatibility).

    Read the article

  • Rendering of Oracle Secure Global Desktop's Administration Console on Modern Browser Versions

    - by Mohan Prabhala
    For customers using Oracle Secure Global Desktop version 4.6x, one of the issues reported is the improper rendering of the administration console when using modern browser versions such as Safari 5, Firefox 4+ or Internet Explorer 9. We are pleased to provide a fix for use of these modern browser versions when using Oracle Secure Global Desktop 4.6x. Please refer to Doc ID 1367923.1 on My Oracle Support. The solution involves a new .jar file, oracletheme.jar and following a few simple instructions. Download the new oracletheme.jar to /tmp and backup the existing one located at  /opt/tarantella/webserver/tomcat/<tomcat_ver>/webapps/sgdadmin/WEB-INF/lib/oracletheme.jar Stop the webserver  /opt/tarantella/bin/tarantella stop webserver Copy the new oracletheme.jar to the correct directory cp /tmp/oracletheme.jar /opt/tarantella/webserver/tomcat/<tomcat_ver>/webapps/sgdadmin/WEB- INF/lib/oracletheme.jar Verify permissions for the file -rw-r----- 1 root ttaserv 280449 Sep 9 2010 oracletheme.jar Finally, restart the webserver /opt/tarantella/bin/tarantella start webserver

    Read the article

  • Rendering trillions of "atoms" instead of polygons?

    - by Baring
    I just saw a video about what the publishers call the "next major step after the invention of 3D". According to the person speaking in it, they use a huge amount of atoms grouped into clouds instead of polygons, to reach a level of unlimited detail. They tried their best to make the video understandable for persons with no knowledge of any rendering techniques, and therefore or for other purposes left out all details of how their engine works. The level of detail in their video does look quite impressive to me. How is it possible to render scenes using custom atoms instead of polygons on current hardware? (Speed, memory-wise) If this is real, why has nobody else even thought about it so far? I'm, as an OpenGL developer, really baffled by this and would really like to hear what experts have to say. Therefore I also don't want this to look like a cheap advert and will include the link to the video only if requested, in the comments section.

    Read the article

  • 3D primitive rendering library

    - by tomzx
    Hi, I am looking for a library which would easily allow me to render shapes (cubes, spheres, lines, circles, etc.) in 3D3 and OpenGL if possible. I want to be able to rapidly design visual debugging tools and I am not proefficient enough in graphics rendering to do it myself (writing the low level stuff that is). The library would have to be for C/C++. I've already taken a look at the open-source 3d engine, but I feel those are too big for what I really need. Do any of you know if such library exist? If so, links would be appreciated!

    Read the article

  • Problem rendering VBO

    - by Onno
    I'm developing a game engine using OpenTK. I'm trying to get to grips with the use of VBO's. I've run into some trouble because somehow it doesn't render correctly. Thus far I've used immediate mode to render a test object, a test cube with a texture. namespace SharpEngine.Utility.Mesh { using System; using System.Collections.Generic; using OpenTK; using OpenTK.Graphics; using OpenTK.Graphics.OpenGL; using SharpEngine.Utility; using System.Drawing; public class ImmediateFaceBasedCube : IMesh { private IList<Face> faces = new List<Face>(); public ImmediateFaceBasedCube() { IList<Vector3> allVertices = new List<Vector3>(); //rechtsbovenvoor allVertices.Add(new Vector3(1.0f, 1.0f, 1.0f)); //0 //rechtsbovenachter allVertices.Add(new Vector3(1.0f, 1.0f, -1.0f)); //1 //linksbovenachter allVertices.Add(new Vector3(-1.0f, 1.0f, -1.0f)); //2 //linksbovenvoor allVertices.Add(new Vector3(-1.0f, 1.0f, 1.0f)); //3 //rechtsondervoor allVertices.Add(new Vector3(1.0f, -1.0f, 1.0f)); //4 //rechtsonderachter allVertices.Add(new Vector3(1.0f, -1.0f, -1.0f)); //5 //linksonderachter allVertices.Add(new Vector3(-1.0f, -1.0f, -1.0f)); //6 //linksondervoor allVertices.Add(new Vector3(-1.0f, -1.0f, 1.0f)); //7 IList<Vector2> textureCoordinates = new List<Vector2>(); textureCoordinates.Add(new Vector2(0, 0)); //AA - 0 textureCoordinates.Add(new Vector2(0, 0.3333333f)); //AB - 1 textureCoordinates.Add(new Vector2(0, 0.6666666f)); //AC - 2 textureCoordinates.Add(new Vector2(0, 1)); //AD - 3 textureCoordinates.Add(new Vector2(0.3333333f, 0)); //BA - 4 textureCoordinates.Add(new Vector2(0.3333333f, 0.3333333f)); //BB - 5 textureCoordinates.Add(new Vector2(0.3333333f, 0.6666666f)); //BC - 6 textureCoordinates.Add(new Vector2(0.3333333f, 1)); //BD - 7 textureCoordinates.Add(new Vector2(0.6666666f, 0)); //CA - 8 textureCoordinates.Add(new Vector2(0.6666666f, 0.3333333f)); //CB - 9 textureCoordinates.Add(new Vector2(0.6666666f, 0.6666666f)); //CC -10 textureCoordinates.Add(new Vector2(0.6666666f, 1)); //CD -11 textureCoordinates.Add(new Vector2(1, 0)); //DA -12 textureCoordinates.Add(new Vector2(1, 0.3333333f)); //DB -13 textureCoordinates.Add(new Vector2(1, 0.6666666f)); //DC -14 textureCoordinates.Add(new Vector2(1, 1)); //DD -15 Vector3 copy1 = new Vector3(-2.0f, -2.5f, -3.5f); IList<Vector3> normals = new List<Vector3>(); normals.Add(new Vector3(0, 1.0f, 0)); //0 normals.Add(new Vector3(0, 0, 1.0f)); //1 normals.Add(new Vector3(1.0f, 0, 0)); //2 normals.Add(new Vector3(0, 0, -1.0f)); //3 normals.Add(new Vector3(-1.0f, 0, 0)); //4 normals.Add(new Vector3(0, -1.0f, 0)); //5 //todo: move vertex normal and texture data to datastructure //todo: VBO based rendering //top face //1 IList<VertexData> verticesT1 = new List<VertexData>(); VertexData T1a = new VertexData(); T1a.Normal = normals[0]; T1a.TexCoord = textureCoordinates[5]; T1a.Position = allVertices[3]; verticesT1.Add(T1a); VertexData T1b = new VertexData(); T1b.Normal = normals[0]; T1b.TexCoord = textureCoordinates[9]; T1b.Position = allVertices[0]; verticesT1.Add(T1b); VertexData T1c = new VertexData(); T1c.Normal = normals[0]; T1c.TexCoord = textureCoordinates[10]; T1c.Position = allVertices[1]; verticesT1.Add(T1c); Face F1 = new Face(verticesT1); faces.Add(F1); //2 IList<VertexData> verticesT2 = new List<VertexData>(); VertexData T2a = new VertexData(); T2a.Normal = normals[0]; T2a.TexCoord = textureCoordinates[10]; T2a.Position = allVertices[1]; verticesT2.Add(T2a); VertexData T2b = new VertexData(); T2b.Normal = normals[0]; T2b.TexCoord = textureCoordinates[6]; T2b.Position = allVertices[2]; verticesT2.Add(T2b); VertexData T2c = new VertexData(); T2c.Normal = normals[0]; T2c.TexCoord = textureCoordinates[5]; T2c.Position = allVertices[3]; verticesT2.Add(T2c); Face F2 = new Face(verticesT2); faces.Add(F2); //front face //3 IList<VertexData> verticesT3 = new List<VertexData>(); VertexData T3a = new VertexData(); T3a.Normal = normals[1]; T3a.TexCoord = textureCoordinates[1]; T3a.Position = allVertices[3]; verticesT3.Add(T3a); VertexData T3b = new VertexData(); T3b.Normal = normals[1]; T3b.TexCoord = textureCoordinates[0]; T3b.Position = allVertices[7]; verticesT3.Add(T3b); VertexData T3c = new VertexData(); T3c.Normal = normals[1]; T3c.TexCoord = textureCoordinates[5]; T3c.Position = allVertices[0]; verticesT3.Add(T3c); Face F3 = new Face(verticesT3); faces.Add(F3); //4 IList<VertexData> verticesT4 = new List<VertexData>(); VertexData T4a = new VertexData(); T4a.Normal = normals[1]; T4a.TexCoord = textureCoordinates[5]; T4a.Position = allVertices[0]; verticesT4.Add(T4a); VertexData T4b = new VertexData(); T4b.Normal = normals[1]; T4b.TexCoord = textureCoordinates[0]; T4b.Position = allVertices[7]; verticesT4.Add(T4b); VertexData T4c = new VertexData(); T4c.Normal = normals[1]; T4c.TexCoord = textureCoordinates[4]; T4c.Position = allVertices[4]; verticesT4.Add(T4c); Face F4 = new Face(verticesT4); faces.Add(F4); //right face //5 IList<VertexData> verticesT5 = new List<VertexData>(); VertexData T5a = new VertexData(); T5a.Normal = normals[2]; T5a.TexCoord = textureCoordinates[2]; T5a.Position = allVertices[0]; verticesT5.Add(T5a); VertexData T5b = new VertexData(); T5b.Normal = normals[2]; T5b.TexCoord = textureCoordinates[1]; T5b.Position = allVertices[4]; verticesT5.Add(T5b); VertexData T5c = new VertexData(); T5c.Normal = normals[2]; T5c.TexCoord = textureCoordinates[6]; T5c.Position = allVertices[1]; verticesT5.Add(T5c); Face F5 = new Face(verticesT5); faces.Add(F5); //6 IList<VertexData> verticesT6 = new List<VertexData>(); VertexData T6a = new VertexData(); T6a.Normal = normals[2]; T6a.TexCoord = textureCoordinates[1]; T6a.Position = allVertices[4]; verticesT6.Add(T6a); VertexData T6b = new VertexData(); T6b.Normal = normals[2]; T6b.TexCoord = textureCoordinates[5]; T6b.Position = allVertices[5]; verticesT6.Add(T6b); VertexData T6c = new VertexData(); T6c.Normal = normals[2]; T6c.TexCoord = textureCoordinates[6]; T6c.Position = allVertices[1]; verticesT6.Add(T6c); Face F6 = new Face(verticesT6); faces.Add(F6); //back face //7 IList<VertexData> verticesT7 = new List<VertexData>(); VertexData T7a = new VertexData(); T7a.Normal = normals[3]; T7a.TexCoord = textureCoordinates[4]; T7a.Position = allVertices[5]; verticesT7.Add(T7a); VertexData T7b = new VertexData(); T7b.Normal = normals[3]; T7b.TexCoord = textureCoordinates[9]; T7b.Position = allVertices[2]; verticesT7.Add(T7b); VertexData T7c = new VertexData(); T7c.Normal = normals[3]; T7c.TexCoord = textureCoordinates[5]; T7c.Position = allVertices[1]; verticesT7.Add(T7c); Face F7 = new Face(verticesT7); faces.Add(F7); //8 IList<VertexData> verticesT8 = new List<VertexData>(); VertexData T8a = new VertexData(); T8a.Normal = normals[3]; T8a.TexCoord = textureCoordinates[9]; T8a.Position = allVertices[2]; verticesT8.Add(T8a); VertexData T8b = new VertexData(); T8b.Normal = normals[3]; T8b.TexCoord = textureCoordinates[4]; T8b.Position = allVertices[5]; verticesT8.Add(T8b); VertexData T8c = new VertexData(); T8c.Normal = normals[3]; T8c.TexCoord = textureCoordinates[8]; T8c.Position = allVertices[6]; verticesT8.Add(T8c); Face F8 = new Face(verticesT8); faces.Add(F8); //left face //9 IList<VertexData> verticesT9 = new List<VertexData>(); VertexData T9a = new VertexData(); T9a.Normal = normals[4]; T9a.TexCoord = textureCoordinates[8]; T9a.Position = allVertices[6]; verticesT9.Add(T9a); VertexData T9b = new VertexData(); T9b.Normal = normals[4]; T9b.TexCoord = textureCoordinates[13]; T9b.Position = allVertices[3]; verticesT9.Add(T9b); VertexData T9c = new VertexData(); T9c.Normal = normals[4]; T9c.TexCoord = textureCoordinates[9]; T9c.Position = allVertices[2]; verticesT9.Add(T9c); Face F9 = new Face(verticesT9); faces.Add(F9); //10 IList<VertexData> verticesT10 = new List<VertexData>(); VertexData T10a = new VertexData(); T10a.Normal = normals[4]; T10a.TexCoord = textureCoordinates[8]; T10a.Position = allVertices[6]; verticesT10.Add(T10a); VertexData T10b = new VertexData(); T10b.Normal = normals[4]; T10b.TexCoord = textureCoordinates[12]; T10b.Position = allVertices[7]; verticesT10.Add(T10b); VertexData T10c = new VertexData(); T10c.Normal = normals[4]; T10c.TexCoord = textureCoordinates[13]; T10c.Position = allVertices[3]; verticesT10.Add(T10c); Face F10 = new Face(verticesT10); faces.Add(F10); //bottom face //11 IList<VertexData> verticesT11 = new List<VertexData>(); VertexData T11a = new VertexData(); T11a.Normal = normals[5]; T11a.TexCoord = textureCoordinates[10]; T11a.Position = allVertices[7]; verticesT11.Add(T11a); VertexData T11b = new VertexData(); T11b.Normal = normals[5]; T11b.TexCoord = textureCoordinates[9]; T11b.Position = allVertices[6]; verticesT11.Add(T11b); VertexData T11c = new VertexData(); T11c.Normal = normals[5]; T11c.TexCoord = textureCoordinates[14]; T11c.Position = allVertices[4]; verticesT11.Add(T11c); Face F11 = new Face(verticesT11); faces.Add(F11); //12 IList<VertexData> verticesT12 = new List<VertexData>(); VertexData T12a = new VertexData(); T12a.Normal = normals[5]; T12a.TexCoord = textureCoordinates[13]; T12a.Position = allVertices[5]; verticesT12.Add(T12a); VertexData T12b = new VertexData(); T12b.Normal = normals[5]; T12b.TexCoord = textureCoordinates[14]; T12b.Position = allVertices[4]; verticesT12.Add(T12b); VertexData T12c = new VertexData(); T12c.Normal = normals[5]; T12c.TexCoord = textureCoordinates[9]; T12c.Position = allVertices[6]; verticesT12.Add(T12c); Face F12 = new Face(verticesT12); faces.Add(F12); } public void draw() { GL.Begin(BeginMode.Triangles); foreach (Face face in faces) { foreach (VertexData datapoint in face.verticesWithTexCoords) { GL.Normal3(datapoint.Normal); GL.TexCoord2(datapoint.TexCoord); GL.Vertex3(datapoint.Position); } } GL.End(); } } } Gets me this very nice picture: The immediate mode cube renders nicely and taught me a bit on how to use OpenGL, but VBO's are the way to go. Since I read on the OpenTK forums that OpenTK has problems doing VA's or DL's, I decided to skip using those. Now, I've tried to change this cube to a VBO by using the same vertex, normal and tc collections, and making float arrays from them by using the coordinates in combination with uint arrays which contain the index numbers from the immediate cube. (see the private functions at end of the code sample) Somehow this only renders two triangles namespace SharpEngine.Utility.Mesh { using System; using System.Collections.Generic; using OpenTK; using OpenTK.Graphics; using OpenTK.Graphics.OpenGL; using SharpEngine.Utility; using System.Drawing; public class VBOFaceBasedCube : IMesh { private int VerticesVBOID; private int VerticesVBOStride; private int VertexCount; private int ELementBufferObjectID; private int textureCoordinateVBOID; private int textureCoordinateVBOStride; //private int textureCoordinateArraySize; private int normalVBOID; private int normalVBOStride; public VBOFaceBasedCube() { IList<Vector3> allVertices = new List<Vector3>(); //rechtsbovenvoor allVertices.Add(new Vector3(1.0f, 1.0f, 1.0f)); //0 //rechtsbovenachter allVertices.Add(new Vector3(1.0f, 1.0f, -1.0f)); //1 //linksbovenachter allVertices.Add(new Vector3(-1.0f, 1.0f, -1.0f)); //2 //linksbovenvoor allVertices.Add(new Vector3(-1.0f, 1.0f, 1.0f)); //3 //rechtsondervoor allVertices.Add(new Vector3(1.0f, -1.0f, 1.0f)); //4 //rechtsonderachter allVertices.Add(new Vector3(1.0f, -1.0f, -1.0f)); //5 //linksonderachter allVertices.Add(new Vector3(-1.0f, -1.0f, -1.0f)); //6 //linksondervoor allVertices.Add(new Vector3(-1.0f, -1.0f, 1.0f)); //7 IList<Vector2> textureCoordinates = new List<Vector2>(); textureCoordinates.Add(new Vector2(0, 0)); //AA - 0 textureCoordinates.Add(new Vector2(0, 0.3333333f)); //AB - 1 textureCoordinates.Add(new Vector2(0, 0.6666666f)); //AC - 2 textureCoordinates.Add(new Vector2(0, 1)); //AD - 3 textureCoordinates.Add(new Vector2(0.3333333f, 0)); //BA - 4 textureCoordinates.Add(new Vector2(0.3333333f, 0.3333333f)); //BB - 5 textureCoordinates.Add(new Vector2(0.3333333f, 0.6666666f)); //BC - 6 textureCoordinates.Add(new Vector2(0.3333333f, 1)); //BD - 7 textureCoordinates.Add(new Vector2(0.6666666f, 0)); //CA - 8 textureCoordinates.Add(new Vector2(0.6666666f, 0.3333333f)); //CB - 9 textureCoordinates.Add(new Vector2(0.6666666f, 0.6666666f)); //CC -10 textureCoordinates.Add(new Vector2(0.6666666f, 1)); //CD -11 textureCoordinates.Add(new Vector2(1, 0)); //DA -12 textureCoordinates.Add(new Vector2(1, 0.3333333f)); //DB -13 textureCoordinates.Add(new Vector2(1, 0.6666666f)); //DC -14 textureCoordinates.Add(new Vector2(1, 1)); //DD -15 Vector3 copy1 = new Vector3(-2.0f, -2.5f, -3.5f); IList<Vector3> normals = new List<Vector3>(); normals.Add(new Vector3(0, 1.0f, 0)); //0 normals.Add(new Vector3(0, 0, 1.0f)); //1 normals.Add(new Vector3(1.0f, 0, 0)); //2 normals.Add(new Vector3(0, 0, -1.0f)); //3 normals.Add(new Vector3(-1.0f, 0, 0)); //4 normals.Add(new Vector3(0, -1.0f, 0)); //5 //todo: VBO based rendering uint[] vertexElements = { 3,0,1, //01 1,2,3, //02 3,7,0, //03 0,7,4, //04 0,4,1, //05 4,5,1, //06 5,2,1, //07 2,5,6, //08 6,3,2, //09 6,7,5, //10 7,6,4, //11 5,4,6 //12 }; VertexCount = vertexElements.Length; IList<uint> vertexElementList = new List<uint>(vertexElements); uint[] normalElements = { 0,0,0, 0,0,0, 1,1,1, 1,1,1, 2,2,2, 2,2,2, 3,3,3, 3,3,3, 4,4,4, 4,4,4, 5,5,5, 5,5,5 }; IList<uint> normalElementList = new List<uint>(normalElements); uint[] textureIndexArray = { 5,9,10, 10,6,5, 1,0,5, 5,0,4, 2,1,6, 1,5,6, 4,9,5, 9,4,8, 8,13,9, 8,12,13, 10,9,14, 13,14,9 }; //textureCoordinateArraySize = textureIndexArray.Length; IList<uint> textureIndexList = new List<uint>(textureIndexArray); LoadVBO(allVertices, normals, textureCoordinates, vertexElements, normalElementList, textureIndexList); } public void draw() { //bind vertices //bind elements //bind normals //bind texture coordinates GL.EnableClientState(ArrayCap.VertexArray); GL.EnableClientState(ArrayCap.NormalArray); GL.EnableClientState(ArrayCap.TextureCoordArray); GL.BindBuffer(BufferTarget.ArrayBuffer, VerticesVBOID); GL.VertexPointer(3, VertexPointerType.Float, VerticesVBOStride, 0); GL.BindBuffer(BufferTarget.ArrayBuffer, normalVBOID); GL.NormalPointer(NormalPointerType.Float, normalVBOStride, 0); GL.BindBuffer(BufferTarget.ArrayBuffer, textureCoordinateVBOID); GL.TexCoordPointer(2, TexCoordPointerType.Float, textureCoordinateVBOStride, 0); GL.BindBuffer(BufferTarget.ElementArrayBuffer, ELementBufferObjectID); GL.DrawElements(BeginMode.Polygon, VertexCount, DrawElementsType.UnsignedShort, 0); } //loads a static VBO void LoadVBO(IList<Vector3> vertices, IList<Vector3> normals, IList<Vector2> texcoords, uint[] elements, IList<uint> normalIndices, IList<uint> texCoordIndices) { int size; //todo // To create a VBO: // 1) Generate the buffer handles for the vertex and element buffers. // 2) Bind the vertex buffer handle and upload your vertex data. Check that the buffer was uploaded correctly. // 3) Bind the element buffer handle and upload your element data. Check that the buffer was uploaded correctly. float[] verticesArray = convertVector3fListToFloatArray(vertices); float[] normalsArray = createFloatArrayFromListOfVector3ElementsAndIndices(normals, normalIndices); float[] textureCoordinateArray = createFloatArrayFromListOfVector2ElementsAndIndices(texcoords, texCoordIndices); GL.GenBuffers(1, out VerticesVBOID); GL.BindBuffer(BufferTarget.ArrayBuffer, VerticesVBOID); Console.WriteLine("load 1 - vertices"); VerticesVBOStride = BlittableValueType.StrideOf(verticesArray); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(verticesArray.Length * sizeof(float)), verticesArray, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ArrayBuffer, BufferParameterName.BufferSize, out size); if (verticesArray.Length * BlittableValueType.StrideOf(verticesArray) != size) { throw new ApplicationException("Vertex data not uploaded correctly"); } else { Console.WriteLine("load 1 finished ok"); size = 0; } Console.WriteLine("load 2 - elements"); GL.GenBuffers(1, out ELementBufferObjectID); GL.BindBuffer(BufferTarget.ElementArrayBuffer, ELementBufferObjectID); GL.BufferData(BufferTarget.ElementArrayBuffer, (IntPtr)(elements.Length * sizeof(uint)), elements, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ElementArrayBuffer, BufferParameterName.BufferSize, out size); if (elements.Length * sizeof(uint) != size) { throw new ApplicationException("Element data not uploaded correctly"); } else { size = 0; Console.WriteLine("load 2 finished ok"); } GL.GenBuffers(1, out normalVBOID); GL.BindBuffer(BufferTarget.ArrayBuffer, normalVBOID); Console.WriteLine("load 3 - normals"); normalVBOStride = BlittableValueType.StrideOf(normalsArray); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(normalsArray.Length * sizeof(float)), normalsArray, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ArrayBuffer, BufferParameterName.BufferSize, out size); Console.WriteLine("load 3 - pre check"); if (normalsArray.Length * BlittableValueType.StrideOf(normalsArray) != size) { throw new ApplicationException("Normal data not uploaded correctly"); } else { Console.WriteLine("load 3 finished ok"); size = 0; } GL.GenBuffers(1, out textureCoordinateVBOID); GL.BindBuffer(BufferTarget.ArrayBuffer, textureCoordinateVBOID); Console.WriteLine("load 4- texture coordinates"); textureCoordinateVBOStride = BlittableValueType.StrideOf(textureCoordinateArray); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(textureCoordinateArray.Length * textureCoordinateVBOStride), textureCoordinateArray, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ArrayBuffer, BufferParameterName.BufferSize, out size); if (textureCoordinateArray.Length * BlittableValueType.StrideOf(textureCoordinateArray) != size) { throw new ApplicationException("texture coordinate data not uploaded correctly"); } else { Console.WriteLine("load 3 finished ok"); size = 0; } } //used to convert vertex arrayss for use with VBO's private float[] convertVector3fListToFloatArray(IList<Vector3> input) { int arrayElementCount = input.Count * 3; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (Vector3 v in input) { output[fillCount] = v.X; output[fillCount + 1] = v.Y; output[fillCount + 2] = v.Z; fillCount += 3; } return output; } //used for converting texture coordinate arrays for use with VBO's private float[] convertVector2List_to_floatArray(IList<Vector2> input) { int arrayElementCount = input.Count * 2; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (Vector2 v in input) { output[fillCount] = v.X; output[fillCount + 1] = v.Y; fillCount += 2; } return output; } //used to create an array of floats from private float[] createFloatArrayFromListOfVector3ElementsAndIndices(IList<Vector3> inputVectors, IList<uint> indices) { int arrayElementCount = inputVectors.Count * indices.Count * 3; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (int i in indices) { output[fillCount] = inputVectors[i].X; output[fillCount + 1] = inputVectors[i].Y; output[fillCount + 2] = inputVectors[i].Z; fillCount += 3; } return output; } private float[] createFloatArrayFromListOfVector2ElementsAndIndices(IList<Vector2> inputVectors, IList<uint> indices) { int arrayElementCount = inputVectors.Count * indices.Count * 2; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (int i in indices) { output[fillCount] = inputVectors[i].X; output[fillCount + 1] = inputVectors[i].Y; fillCount += 2; } return output; } } } This code will only render two triangles and they're nothing like I had in mind: I've done some searching. In some other questions I read that, if I did something wrong, I'd get no rendering at all. Clearly, something gets sent to the GFX card, but it might be that I'm not sending the right data. I've tried altering the sequence in which the triangles are rendered by swapping some of the index numbers in the vert, tc and normal index arrays, but this doesn't seem to be of any effect. I'm slightly lost here. What am I doing wrong here?

    Read the article

  • OpenGL font rendering

    - by DEElekgolo
    I am trying to make an openGL text rendering class using FreeType. I was originally following this code but it doesn't seem to work out for me. I get nothing reguardless of what parameters I put for Draw(). class Font { public: Font() { if (FT_Init_FreeType(&ftLibrary)) { printf("Could not initialize FreeType library\n"); return; } glGenBuffers(1,&iVerts); } bool Load(std::string sFont, unsigned int Size = 12.0f) { if (FT_New_Face(ftLibrary,sFont.c_str(),0,&ftFace)) { printf("Could not open font: %s\n",sFont.c_str()); return true; } iSize = Size; FT_Set_Pixel_Sizes(ftFace,0,(int)iSize); FT_GlyphSlot gGlyph = ftFace->glyph; //Generating the texture atlas. //Rather than some amazing rectangular packing method, I'm just going //to have one long strip of letters with the height being that of the font size. int width = 0; int height = 0; for (int i = 32; i < 128; i++) { if (FT_Load_Char(ftFace,i,FT_LOAD_RENDER)) { printf("Error rendering letter %c for font %s.\n",i,sFont.c_str()); } width += gGlyph->bitmap.width; height += std::max(height,gGlyph->bitmap.rows); } //Generate the openGL texture glActiveTexture(GL_TEXTURE0); //if I texture exists then delete it. iTexture ? glDeleteBuffers(1,&iTexture):0; glGenTextures(1,&iTexture); glBindTexture(GL_TEXTURE_2D,iTexture); glPixelStorei(GL_UNPACK_ALIGNMENT,1); glTexImage2D(GL_TEXTURE_2D,0,GL_ALPHA,width,height,0,GL_ALPHA,GL_UNSIGNED_BYTE,0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); //load the glyphs and set the glyph data int x = 0; for (int i = 32; i < 128; i++) { if (FT_Load_Char(ftFace,i,FT_LOAD_RENDER)) { //if it cant load the character continue; } //load the glyph map into the texture glTexSubImage2D(GL_TEXTURE_2D,0,x,0, gGlyph->bitmap.width, gGlyph->bitmap.rows, GL_ALPHA, GL_UNSIGNED_BYTE, gGlyph->bitmap.buffer); //move the "pen" down the strip x += gGlyph->bitmap.width; chars[i].ax = (float)(gGlyph->advance.x >> 6); chars[i].ay = (float)(gGlyph->advance.y >> 6); chars[i].bw = (float)gGlyph->bitmap.width; chars[i].bh = (float)gGlyph->bitmap.rows; chars[i].bl = (float)gGlyph->bitmap_left; chars[i].bt = (float)gGlyph->bitmap_top; chars[i].tx = (float)x/width; } printf("Loaded font: %s\n",sFont.c_str()); return true; } void Draw(std::string sString,Vector2f vPos = Vector2f(0,0),Vector2f vScale = Vector2f(1,1)) { struct pPoint { pPoint() { x = y = s = t = 0; } pPoint(float a,float b,float c,float d) { x = a; y = b; s = c; t = d; } float x,y; float s,t; }; pPoint* cCoordinates = new pPoint[6*sString.length()]; int n = 0; for (const char *p = sString.c_str(); *p; p++) { float x2 = vPos.x() + chars[*p].bl * vScale.x(); float y2 = -vPos.y() - chars[*p].bt * vScale.y(); float w = chars[*p].bw * vScale.x(); float h = chars[*p].bh * vScale.y(); float x = vPos.x() + chars[*p].ax * vScale.x(); float y = vPos.y() + chars[*p].ay * vScale.y(); //skip characters with no pixels //still advances though if (!w || !h) { continue; } //triangle one cCoordinates[n++] = pPoint( x2 , -y2 , chars[*p].tx , 0); cCoordinates[n++] = pPoint( x2+w , -y2 , chars[*p].tx + chars[*p].bw / w , 0); cCoordinates[n++] = pPoint( x2 , -y2-h , chars[*p].tx , chars[*p].bh / h); cCoordinates[n++] = pPoint( x2+w , -y2 , chars[*p].tx + chars[*p].bw / w , 0); cCoordinates[n++] = pPoint( x2 , -y2-h , chars[*p].tx , chars[*p].bh / h); cCoordinates[n++] = pPoint( x2+w , -y2-h , chars[*p].tx + chars[*p].bw / w , chars[*p].bh / h); } glBindBuffer(GL_ARRAY_BUFFER,iVerts); glBindBuffer(GL_TEXTURE_2D,iTexture); //Vertices glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(2,GL_FLOAT,sizeof(pPoint),&cCoordinates[0].x); //TexCoord 0 glClientActiveTexture(GL_TEXTURE0); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2,GL_FLOAT,sizeof(pPoint),&cCoordinates[0].s); glCullFace(GL_NONE); glBufferData(GL_ARRAY_BUFFER,6*sString.length(),cCoordinates,GL_DYNAMIC_DRAW); glDrawArrays(GL_TRIANGLES,0,n); glCullFace(GL_BACK); glBindBuffer(GL_ARRAY_BUFFER,0); glBindBuffer(GL_TEXTURE_2D,0); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } ~Font() { glDeleteBuffers(1,&iVerts); glDeleteBuffers(1,&iTexture); } private: unsigned int iSize; //openGL texture atlas unsigned int iTexture; //openGL geometry buffer; unsigned int iVerts; FT_Library ftLibrary; FT_Face ftFace; struct Character { float ax,ay;//Advance float bw,bh;//bitmap size float bl,bt;//bitmap left and top float tx; } chars[128]; };

    Read the article

  • Fast multi-window rendering with C#

    - by seb
    I've been searching and testing different kind of rendering libraries for C# days for many weeks now. So far I haven't found a single library that works well on multi-windowed rendering setups. The requirement is to be able to run the program on 12+ monitor setups (financial charting) without latencies on a fast computer. Each window needs to update multiple times every second. While doing this CPU needs to do lots of intensive and time critical tasks so some of the burden has to be shifted to GPUs. That's where hardware rendering steps in, in another words DirectX or OpenGL. I have tried GDI+ with windows forms and figured it's way too slow for my needs. I have tried OpenGL via OpenTK (on windows forms control) which seemed decently quick (I still have some tests to run on it) but painfully difficult to get working properly (hard to find/program good text rendering libraries). Recently I tried DirectX9, DirectX10 and Direct2D with Windows forms via SharpDX. I tried a separate device for each window and a single device/multiple swap chains approaches. All of these resulted in very poor performance on multiple windows. For example if I set target FPS to 20 and open 4 full screen windows on different monitors the whole operating system starts lagging very badly. Rendering is simply clearing the screen to black, no primitives rendered. CPU usage on this test was about 0% and GPU usage about 10%, I don't understand what is the bottleneck here? My development computer is very fast, i7 2700k, AMD HD7900, 16GB ram so the tests should definitely run on this one. In comparison I did some DirectX9 tests on C++/Win32 API one device/multiple swap chains and I could open 100 windows spread all over the 4-monitor workspace (with 3d teapot rotating on them) and still had perfectly responsible operating system (fps was dropping of course on the rendering windows quite badly to around 5 which is what I would expect running 100 simultaneous renderings). Does anyone know any good ways to do multi-windowed rendering on C# or am I forced to re-write my program in C++ to get that performance (major pain)? I guess I'm giving OpenGL another shot before I go the C++ route... I'll report any findings here. Test methods for reference: For C# DirectX one-device multiple swapchain test I used the method from this excellent answer: Display Different images per monitor directX 10 Direct3D10 version: I created the d3d10device and DXGIFactory like this: D3DDev = new SharpDX.Direct3D10.Device(SharpDX.Direct3D10.DriverType.Hardware, SharpDX.Direct3D10.DeviceCreationFlags.None); DXGIFac = new SharpDX.DXGI.Factory(); Then initialized the rendering windows like this: var scd = new SwapChainDescription(); scd.BufferCount = 1; scd.ModeDescription = new ModeDescription(control.Width, control.Height, new Rational(60, 1), Format.R8G8B8A8_UNorm); scd.IsWindowed = true; scd.OutputHandle = control.Handle; scd.SampleDescription = new SampleDescription(1, 0); scd.SwapEffect = SwapEffect.Discard; scd.Usage = Usage.RenderTargetOutput; SC = new SwapChain(Parent.DXGIFac, Parent.D3DDev, scd); var backBuffer = Texture2D.FromSwapChain<Texture2D>(SC, 0); _rt = new RenderTargetView(Parent.D3DDev, backBuffer); Drawing command executed on each rendering iteration is simply: Parent.D3DDev.ClearRenderTargetView(_rt, new Color4(0, 0, 0, 0)); SC.Present(0, SharpDX.DXGI.PresentFlags.None); DirectX9 version is very similar: Device initialization: PresentParameters par = new PresentParameters(); par.PresentationInterval = PresentInterval.Immediate; par.Windowed = true; par.SwapEffect = SharpDX.Direct3D9.SwapEffect.Discard; par.PresentationInterval = PresentInterval.Immediate; par.AutoDepthStencilFormat = SharpDX.Direct3D9.Format.D16; par.EnableAutoDepthStencil = true; par.BackBufferFormat = SharpDX.Direct3D9.Format.X8R8G8B8; // firsthandle is the handle of first rendering window D3DDev = new SharpDX.Direct3D9.Device(new Direct3D(), 0, DeviceType.Hardware, firsthandle, CreateFlags.SoftwareVertexProcessing, par); Rendering window initialization: if (parent.D3DDev.SwapChainCount == 0) { SC = parent.D3DDev.GetSwapChain(0); } else { PresentParameters pp = new PresentParameters(); pp.Windowed = true; pp.SwapEffect = SharpDX.Direct3D9.SwapEffect.Discard; pp.BackBufferFormat = SharpDX.Direct3D9.Format.X8R8G8B8; pp.EnableAutoDepthStencil = true; pp.AutoDepthStencilFormat = SharpDX.Direct3D9.Format.D16; pp.PresentationInterval = PresentInterval.Immediate; SC = new SharpDX.Direct3D9.SwapChain(parent.D3DDev, pp); } Code for drawing loop: SharpDX.Direct3D9.Surface bb = SC.GetBackBuffer(0); Parent.D3DDev.SetRenderTarget(0, bb); Parent.D3DDev.Clear(ClearFlags.Target, Color.Black, 1f, 0); SC.Present(Present.None, new SharpDX.Rectangle(), new SharpDX.Rectangle(), HWND); bb.Dispose(); C++ DirectX9/Win32 API test with multiple swapchains and one device code is here: http://pastebin.com/tjnRvATJ It's a modified version from Kevin Harris's nice example code.

    Read the article

  • Direct2d off-screen rendering and hardware acceleration

    - by Goran
    I'm trying to use direct2d to render images off-screen using WindowsAPICodePack. This is easily achieved using WicBitmapRenderTarget but sadly it's not hardware accelerated. So I'm trying this route: Create direct3d device Create texture2d Use texture surface to create render target using CreateDxgiSurfaceRenderTarget Draw some shapes While this renders the image it appears GPU isn't being used at all while CPU is used heavily. Am I doing something wrong? Is there a way to check whether hardware or software rendering is used? Code sample: var device = D3DDevice1.CreateDevice1( null, DriverType.Hardware, null, CreateDeviceOptions.SupportBgra ,FeatureLevel.Ten ); var txd = new Texture2DDescription(); txd.Width = 256; txd.Height = 256; txd.MipLevels = 1; txd.ArraySize = 1; txd.Format = Format.B8G8R8A8UNorm; //DXGI_FORMAT_R32G32B32A32_FLOAT; txd.SampleDescription = new SampleDescription(1,0); txd.Usage = Usage.Default; txd.BindingOptions = BindingOptions.RenderTarget | BindingOptions.ShaderResource; txd.MiscellaneousResourceOptions = MiscellaneousResourceOptions.None; txd.CpuAccessOptions = CpuAccessOptions.None; var tx = device.CreateTexture2D(txd); var srfc = tx.GraphicsSurface; var d2dFactory = D2DFactory.CreateFactory(); var renderTargetProperties = new RenderTargetProperties { PixelFormat = new PixelFormat(Format.Unknown, AlphaMode.Premultiplied), DpiX = 96, DpiY = 96, RenderTargetType = RenderTargetType.Default, }; using(var renderTarget = d2dFactory.CreateGraphicsSurfaceRenderTarget(srfc, renderTargetProperties)) { renderTarget.BeginDraw(); var clearColor = new ColorF(1f,1f,1f,1f); renderTarget.Clear(clearColor); using (var strokeBrush = renderTarget.CreateSolidColorBrush(new ColorF(0.2f,0.2f,0.2f,1f))) { for (var i = 0; i < 100000; i++) { renderTarget.DrawEllipse(new Ellipse(new Point2F(i, i), 10, 10), strokeBrush, 2); } } var hr = renderTarget.EndDraw(); }

    Read the article

  • Large invoice database structure and rendering

    - by user132624
    Our client has a MS SQL database that has 1 million customer invoice records in it. Using the database, our client wants its customers to be able to log into a frontend web site and then be able to view, modify and download their company’s invoices. Given the size of the database and the large number of customers who may log into the web site at any time, we are concerned about data base engine performance and web page invoice rendering performance. The 1 million invoice database is for just 90 days sales, so we will remove invoices over 90 days old from the database. Most of the invoices have multiple line items. We can easily convert our invoices into various data formats so for example it is easy for us to convert to and from SQL to XML with related schema and XSLT. Any data conversion would be done on another server so as not to burden the web interface server. We have tentatively decided to run the web site on a .NET Framework IIS web server using MS SQL on MS Azure. How would you suggest we structure our database for best performance? For example, should we put all the invoices of all customers located within the same 5 digit or 6 digit zip codes into the same table? Or could we set up a separate home directory for each customer on IIS and place each customer’s invoices in each customer’s home directory in XML format? And secondly what would you suggest would be the best method to render customer invoices on a web page and allow customers to modify for best performance? The ADO.net XML Data Set looks intriguing to us as a method, but we have never used it.

    Read the article

  • Order of operations to render VBO to FBO texture and then rendering FBO texture full quad

    - by cyberdemon
    I've just started using OpenGL with C# via the OpenTK library. I've managed to successfully render my game world using VBOs. I now want to create a pixellated affect by rendering the frame to an offscreen FBO with a size half of my GameWindow size and then render that FBO to a full screen quad. I've been looking at the OpenTK example here: http://www.opentk.com/doc/graphics/frame-buffer-objects ...but the result is a black form. I'm not sure which parts of the example code belongs in the OnLoad event and OnRenderFrame. Can someone please tell me if the below code shows the correct order of operations? OnLoad { // VBO. // DataArrayBuffer GenBuffers/BindBuffer/BufferData // ElementArrayBuffer GenBuffers/BindBuffer/BufferData // ColourArrayBuffer GenBuffers/BindBuffer/BufferData // FBO. // ColourTexture GenTextures/BindTexture/TexParameterx4/TexImage2D // Create FBO. // Textures Ext.GenFramebuffers/Ext.BindFramebuffer/Ext.FramebufferTexture2D/Ext.FramebufferRenderbuffer } OnRenderFrame { // Use FBO buffer. Ext.BindFramebuffer(FBO) GL.Clear // Set viewport to FBO dimensions. GL.DrawBuffer((DrawBufferMode)FramebufferAttachment.ColorAttachment0Ext) // Bind VBO arrays. GL.BindBuffer(ColourArrayBuffer) GL.ColorPointer GL.EnableClientState(ColorArray) GL.BindBuffer(DataArrayBuffer) // If world changed GL.BufferData(DataArrayBuffer) GL.VertexPointer GL.EnableClientState(VertexArray) GL.BindBuffer(ElementArrayBuffer) // Render VBO. GL.DrawElements // Bind visible buffer. GL.Ext.BindFramebuffer(0) GL.DrawBuffer(Back) GL.Clear // Set camera to view texture. GL.BindTexture(ColourTexture) // Render FBO texture GL.Begin(Quads) // Draw texture on quad // TexCoord2/Vertex2 GL.End SwapBuffers }

    Read the article

  • Google Chrome not rendering webpages correctly

    - by sumit_gt
    I am facing some serious web page rendering issues with Chrome. It is more prominent during javascript based animations and stuff on websites like youtube. I have tried removing chrome using (sudo apt-get purge google-chrome-stable) and then reinstalling it. But the problems still persist. The same webpages work correctly on firefox on ubuntu and chrome on windows. The problem only shows up when I use chrome on ubuntu. I think the issue has started after I updated to the latest version of Chrome. I have used Chrome previously on this machine without any problems. I have attached a image that demonstrates the issue. What could possibly be the problem? PS: here's the output of lshw -c video: *-display description: VGA compatible controller product: Madison [Radeon HD 5000M Series] vendor: Hynix Semiconductor (Hyundai Electronics) physical id: 0 bus info: pci@0000:01:00.0 version: 00 width: 64 bits clock: 33MHz capabilities: pm pciexpress msi vga_controller bus_master cap_list rom configuration: driver=fglrx_pci latency=0 resources: irq:46 memory:e0000000-efffffff memory:f0020000-f003ffff ioport:d000(size=256) memory:f0000000-f001ffff Here's the output of lspci -nn: output of lspci -nn

    Read the article

  • Deferred rendering with both Clockwise and CounterClockwise culling

    - by user1423893
    I have a deferred rendering system that works well with objects that appear solid and drawn using CounterClockwise culling. I have a problem with Clockwise culled objects that are supposed to represent hollow that display their inside faces only. The image below shows a CounterClockwise culled object (left) Clockwise culled object (right). The Clockwise culled object faces display what would be displayed on the CounterClockwise face. How can I get the lighting to light the inner faces for Clockwise culled objects and continue lighting the outer CounterClockwise faces as normal? My lighting method is below private void DeferredLighting(GameTime gameTime) { // Set the render target for the lights game.GraphicsDevice.SetRenderTarget(lightMap); // Clear the render target to (0, 0, 0, 0) game.GraphicsDevice.Clear(Color.Transparent); // Set the render states game.GraphicsDevice.BlendState = BlendState.Additive; game.GraphicsDevice.DepthStencilState = DepthStencilState.None; game.GraphicsDevice.RasterizerState = RasterizerState.CullCounterClockwise; // Set sampler state to Point as the Surface type requires it in XNA 4.0 game.GraphicsDevice.SamplerStates[0] = SamplerState.PointClamp; // Set the camera properties for all lights BaseLight.SetCameraProperties(game.ActiveCamera); // Draw the lights int numLights = lights.Count; for (int i = 0; i < numLights; ++i) { if (lights[i].Diffuse.W > 0f) { lights[i].Render(gameTime, ref normalMap, ref depthMap, ref sgrMap); } } // Resolve the render target game.GraphicsDevice.SetRenderTarget(null); } I have tried adjusting the render states but no combination works for both objects.

    Read the article

  • How to handle wildly varying rendering hardware / getting baseline

    - by edA-qa mort-ora-y
    I've recently started with mobile programming (cross-platform, also with desktop) and am encountering wildly differing hardware performance, in particular with OpenGL and the GPU. I know I'll basically have to adjust my rendering code but I'm uncertain of how to detect performance and what reasonable default settings are. I notice that certain shader functions are basically free in a desktop implemenation but can be unusable in a mobile device. The problem is I have no way of knowing what features will cause what performance issues on all the devices. So my first issue is that even if I allow configuring options I'm uncertain of which options I have to make configurable. I'm wondering also wheher one just writes one very configurable pipeline, or whether I should have 2 distinct options (high/low). I'm also unsure of where to set the default. If I set to the poorest performer the graphics will be so minimal that any user with a modern device would dismiss the game. If I set them even at some moderate point, the low end devices will basically become a slide-show. I was thinking perhaps that I just run some benchmarks when the user first installs and randomly guess what works, but I've not see a game do this before.

    Read the article

  • XNA Skinned Animated Mesh Rendering Exported from Maya

    - by Devin Garner
    I am working on translating an old RTS game engine I wrote from DirectX9 to XNA. My old models didn't have animation & are an old format, so I'm trying with an FBX file. I temporarily "borrowed" a model from League of Legends just to test if my rendering is working correctly. I imported the mesh/bones/skin/animation into Maya 2012 using an "unnamed" 3rd-party import tool. (obviously I'll have to get legit models later, but I just want to test if my programming is correct). Everything looks correct in maya and it renders the animations flawlessly. I exported everything into a single FBX file (with only a single animation). I then tried to load this model using the example at the following site: http://create.msdn.com/en-US/education/catalog/sample/skinned_model With my exported FBX, the animation looks correct for most of the frames, however at random times it screws up for a split second. Basically, the body/arms/head will look right, but the leg/foot will shoot out to a random point in space for a second & then go back to the normal position. The original FBX from the sample looks correct in my program. It seems odd that my model was imported into maya wrong, since it displays fine in Maya. So, I'm thinking either I'm exporting it wrong, or the sample code is bad & the model from the sample caters to the samples bad code. I'm new to 3D programming & maya, so chances are I'm doing something wrong in the export. I'm using mostly the defaults, but I've tried all 3 interpolation modes (quaternion, euler, resample). Thanks

    Read the article

  • Rendering different materials in a voxel terrain

    - by MaelmDev
    Each voxel datapoint in my terrain model is made up of two properties: density and material type. Each is stored as an unsigned integer value (but the density is interpreted as a decimal value between 0 and 1). My current idea for rendering these different materials on the terrain mesh is to store eleven extra attributes in each vertex: six material values corresponding to the materials of the voxels that the vertices lie between, three decimal values that correspond to the interpolation each vertex has between each voxel, and two decimal values that are used to determine where the fragment lies on the triangle. The material and interpolation attributes are the exact same for each vertex in the triangle. The fragment shader samples each texture that corresponds to each material and then uses the aforementioned couple of decimal values to interpolate between these samples and obtain the final textured color of the fragment. It should work fine, but it seems like a big memory hog. I won't be able to reuse vertices in the mesh with indexing, and each vertex will have a lot of data associated with it. It also seems pretty slow. What are some ways to improve or replace this technique for drawing materials on a voxel terrain mesh?

    Read the article

  • Sprites rendering blurry with velocity

    - by ashes999
    After adding velocity to my game, I feel like my textures are twitching. I thought it was just my eyes, until I finally captured it in a screenshot: The one on the left is what renders in my game; the one on the right is the original sprite, pasted over. (This is a screenshot from Photoshop, zoomed in 6x.) Notice the edges are aliasing -- it looks almost like sub-pixel rendering. In fact, if I had not forced my sprites (which have position and velocity as ints) to draw using integer values, I would swear that MonoGame is drawing with floating point values. But it isn't. What could be the cause of these things appearing blurry? It doesn't happen without velocity applied. To be precise, my SpriteComponent class has a Vector2 Position field. When I call Draw, I essentially use new Vector2((int)Math.Round(this.Position.X), (int)Math.Round(this.Position.Y)) for the position. I had a bug before where even stationary objects would jitter -- that was due to me using the straight Position vector and not rounding the values to ints. If I use Floor/Ceiling instead of round, the sprite sinks/hovers (one pixel difference either way) but still draws blurry.

    Read the article

  • Drawing a sprite or text causes the OpenGl rendering to 'disappear' in SFML

    - by Ken
    I'm using some SFML built in functions to draw sprites and text as an overlay on top of some OpenGL rending in an SFML RenderWindow. The opengl rendering appears fine until I add the code to draw the sprites or text. The sprite or text drawing causes the OpenGL stuff to disappear. The follow code show what I'm trying to do sf::RenderWindow window(sf::VideoMode(viewport.width,viewport.height,32), "SFML Window"); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(0,viewport.width,0,viewport.height,0,1); while (window.pollEvent(Event)) { //event handling... //begin drawing glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glBegin(GL_TRIANGLES); glColor3f(col.x,col.y,col.z); for(int i=0;i<3;i++) glVertex2f(pos.x+verts[i].x,pos.y+verts[i].y); glEnd(); // adding this line causes all the previous opengl triangles not to appear window.draw("Sometext"); window.display(); }

    Read the article

  • Efficiently rendering to 3D texture

    - by TravisG
    I have an existing depth texture and some other color textures, and want to process the information in them by rendering to a 3D texture (based on the depth contained in the depth texture, i.e. a point at (x/y) in the depth texture will be rendered to (x/y/texture(depth,uv)) in the 3D texture). Simply doing one manual draw call for each slice of the 3D texture (via glFramebufferTextureLayer) is terribly slow, since I don't know beforehand to what slice of the 3D texture a given texel from one of the color textures or the depth texture belongs. This means the entire process is effectively for each slice for each texel in depth texture process color textures and render to slice So I have to sample the depth texture completely per each slice, and I also have to go through the processing (at least until to discard;) for all texels in it. It would be much faster if I could rearrange the process to for each texel in depth texture figure out what slice it should end up in process color textures and render to slice Is this possible? If so, how? What I'm actually trying to do: the color textures contain lighting information (as seen from light view, it's a reflective shadow map). I want to accumulate that information in the 3D texture and then later use it to light the scene. More specifically I'm trying to implement Cryteks Light Propagation Volumes algorithm.

    Read the article

  • Mobile Web Framework that will only control rendering and page transitions

    - by rlemon
    I have been using jQueryMobile for a bit now, and there are some things I like about it and others I do not. First I will give a bit of background. I have a light weight mobile application that has a few configurations and 6 pages. Ideally I Would like to load all pages into the DOM (they interact with each other quite often and pages will be switched in the same frequency). The application will post for some JSON every n seconds and refresh the values on the page (yes it is primarily a information display app). with the jQuery Mobile framework the only real thing I like is how easy it is to have a standardized UI a crossed all devices and browsers, I'm really not using too much else out of the framework other than the basic page navigation (if you are familiar with the framework; a bare-bone multi-page design is all i need). Why I want to step away from jQueryMobile is how weighty it is. Not only do you need to include the mobile library, but also the base jQuery libraries. This I do not like because I'm not using jQuery anywhere else on the site. Any suggestions on light-weight mobile frameworks that have a similar rendering as jQueryMobile?

    Read the article

< Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >