Search Results

Search found 28325 results on 1133 pages for 'test cases'.

Page 8/1133 | < Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >

  • Test Doubles : Do they go in "source packages" or "test packages"?

    - by sbrattla
    I've got a couple of data access objects (DefaultPersonServices.class, DefaultAddressServices.class) which is responsible for various CRUD operations in a database. A few different classes use these services, but as the services requires that a connection is established with a database I can't really use them in unit tests as they take too long. Thus, I'd like to create a test doubles for them and simply do FakePersonServices.class and FakeAddressService.class implementations which I can use throughout testing. Now, this is all good (I assume)...but my question relates to where I put the test doubles. Should I keep them along with the default implementations (aka "real" implementations) or should I keep them in a corresponding test package. The default implementations are found in Source Packages : com.company.data.services. Should I keep the test doubles here too, or should the test doubles rather be in Test Packages : com.company.data.services?

    Read the article

  • How do people maintain their test suite?

    - by Ida
    In particular, I'm curious about the following aspects: How do you know that your test cases are wrong (or out-of-date) and needed to be repaired (or discarded)? I mean, even if a test case became invalid, it might still pass and remain silent, which could let you falsely believe that your software works okay. So how do you realize such problems of your test suite? How do you know that your test suite is no longer sufficient and that new test cases should be added? I guess this has something to do with the requirement changes, but is there any systematic approach to check the adequacy of test suite?

    Read the article

  • How do I use test Perl modules from test Perl scripts?

    - by DVK
    If my Perl code has a production code location and "test" code location (e.g. production Perl code us in /usr/code/scripts, test Perl code is in /usr/code/test/scripts; production Perl libraries are in /usr/code/lib/perl and test versions of those libraries are in /usr/code/test/lib/perl, is there an easy way for me to achieve such a setup? The exact requirements are: The code must be THE SAME in production and test location. To clarify, to promote any code (library or script) from test to production, the ONLY thing which needs to happen is literally issuing cp command from test to prod location - both the file name AND file contents must remain identical. Test versions of scripts must call other test scripts and test libraries (if exist) or production libraries (if test libraries do not exist) The code paths must be the same between test and production with the exception of base directory (/usr/code/ vs /usr/code/test/) I will present how we solved the problem as an answer to this question, but I'd like to know if there's a better way.

    Read the article

  • Stress Test tool for Password Protected Website

    - by Jason
    We need to run a stress test on a password protection section of a website we host. What tool (paid or free) would be best for us to use for this? We'd like to be able to create several 'scripts' and then have the stress test simulate X number of users. Each script will have us login as a specific user and then click on some links and submit forms to simulate an actual user. Ideally the software would also create some nice data exports/charts. Server is a linux web server, but we could run this on linux or Windows so software that will run on either is fine.

    Read the article

  • Is there a way to undo Mocha stubbing of any_instance in Test::Unit

    - by Craig Walker
    Much like this question, I too am using Ryan Bates's nifty_scaffold. It has the desirable aspect of using Mocha's any_instance method to force an "invalid" state in model objects buried behind the controller. Unlike the question I linked to, I'm not using RSpec, but Test::Unit. That means that the two RSpec-centric solutions there won't work for me. Is there a general (ie: works with Test::Unit) way to remove the any_instance stubbing? I believe that it's causing a bug in my tests, and I'd like to verify that.

    Read the article

  • at what point in the test cycle are the test results written to a file?

    - by jcollum
    I'd like to take the entirety of the test results and publish it to a database. Got the database, got the table, got the script to publish it. Question is, at what point in the ms-test cycle would the results be fully written to the file? And how can I get the path to that file? I'd especially like to grab the "TextMessages" node and put it into my database. I assumed AssemblyCleanup, but the TestContext doesn't seem to be available then.

    Read the article

  • "rake test" doesn't load fixtures?

    - by Pavel K.
    when i run rake test --trace here's what happens ** Invoke test (first_time) ** Execute test ** Invoke test:units (first_time) ** Invoke db:test:prepare (first_time) ** Invoke db:abort_if_pending_migrations (first_time) ** Invoke environment (first_time) ** Execute environment ** Execute db:abort_if_pending_migrations ** Execute db:test:prepare ** Invoke db:test:load (first_time) ** Invoke db:test:purge (first_time) ** Invoke environment ** Execute db:test:purge ** Execute db:test:load ** Invoke db:schema:load (first_time) ** Invoke environment ** Execute db:schema:load ** Execute test:units /usr/bin/ruby1.8 -I"lib:test".... (and after that fails because there's no fixtures loaded) why doesn't it load fixtures (i thought that would be default behaviour) and how do i make it load fixtures before executing tests??? p.s. my test/test_helper.rb content is: ENV["RAILS_ENV"] = "test" require File.expand_path(File.dirname(__FILE__) + "/../config/environment") require 'test_help' class ActiveSupport::TestCase self.use_transactional_fixtures = true self.use_instantiated_fixtures = false fixtures :all end (rails 2.3.4)

    Read the article

  • How can I use that?

    - by user289220
    test test testtest test testtest test testtest test testtest test testtest test testtest test testtest test testtest test testtest test testtest test testtest test testtest test testtest test testtest test testtest test testtest test testtest test test

    Read the article

  • Windows Azure Use Case: Fast Acquisitions

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Many organizations absorb, take over or merge with other organizations. In these cases, one of the most difficult parts of the process is the merging or changing of the IT systems that the employees use to do their work, process payments, and even get paid. Normally this means that the two companies have disparate systems, and several approaches can be used to have the two organizations use technology between them. An organization may choose to retain both systems, and manage them separately. The advantage here is speed, and keeping the profit/loss sheets separate. Another choice is to slowly “sunset” or stop using one organization’s system, and cutting to the other system immediately or at a later date. Although a popular choice, one of the most difficult methods is to extract data and processes from one system and import it into the other. Employees at the transitioning system have to be trained on the new one, the data must be examined and cleansed, and there is inevitable disruption when this happens. Still another option is to integrate the systems. This may prove to be as much work as a transitional strategy, but may have less impact on the users or the balance sheet. Implementation: A distributed computing paradigm can be a good strategic solution to most of these strategies. Retaining both systems is made more simple by allowing the users at the second organization immediate access to the new system, because security accounts can be created quickly inside an application. There is no need to set up a VPN or any other connections than just to the Internet. Having the users stop using one system and start with the other is also simple in Windows Azure for the same reason. Extracting data to Azure holds the same limitations as an on-premise system, and may even be more problematic because of the large data transfers that might be required. In a distributed environment, you pay for the data transfer, so a mixed migration strategy is not recommended. However, if the data is slowly migrated over time with a defined cutover, this can be an effective strategy. If done properly, an integration strategy works very well for a distributed computing environment like Windows Azure. If the Azure code is architected as a series of services, then endpoints can expose the service into and out of not only the Azure platform, but internally as well. This is a form of the Hybrid Application use-case documented here. References: Designing for Cloud Optimized Architecture: http://blogs.msdn.com/b/dachou/archive/2011/01/23/designing-for-cloud-optimized-architecture.aspx 5 Enterprise steps for adopting a Platform as a Service: http://blogs.msdn.com/b/davidmcg/archive/2010/12/02/5-enterprise-steps-for-adopting-a-platform-as-a-service.aspx?wa=wsignin1.0

    Read the article

  • Windows Azure Use Case: Infrastructure Limits

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Physical hardware components take up room, use electricity, create heat and therefore need cooling, and require wiring and special storage units. all of these requirements cost money to rent at a data-center or to build out at a local facility. In some cases, this can be a catalyst for evaluating options to remove this infrastructure requirement entirely by moving to a distributed computing environment. Implementation: There are three main options for moving to a distributed computing environment. Infrastructure as a Service (IaaS) The first option is simply to virtualize the current hardware and move the VM’s to a provider. You can do this with Microsoft’s Hyper-V product or other software, build the systems and host them locally on fewer physical machines. This is a good option for canned-applications (where you have to type setup.exe) but not as useful for custom applications, as you still have to license and patch those servers, and there are hard limits on the VM sizes. Software as a Service (SaaS) If there is already software available that does what you need, it may make sense to simply purchase not only the software license but the use of it on the vendor’s servers. Microsoft’s Exchange Online is an example of simply using an offering from a vendor on their servers. If you do not need a great deal of customization, have no interest in owning or extending the source code, and need to implement a solution quickly, this is a good choice. Platform as a Service (PaaS) If you do need to write software for your environment, your next choice is a Platform as a Service such as Windows Azure. In this case you no longer manager physical or even virtual servers. You start at the code and data level of control and responsibility, and your focus is more on the design and maintenance of the application itself. In this case you own the source code and can extend or change it as you see fit. An interesting side-benefit to using Windows Azure as a PaaS is that the Application Fabric component allows a hybrid approach, which gives you a basis to allow on-premise applications to leverage distributed computing paradigms. No one solution fits every situation. It’s common to see organizations pick a mixture of on-premise, IaaS, SaaS and PaaS components. In fact, that’s a great advantage to this form of computing - choice. References: 5 Enterprise steps for adopting a Platform as a Service: http://blogs.msdn.com/b/davidmcg/archive/2010/12/02/5-enterprise-steps-for-adopting-a-platform-as-a-service.aspx?wa=wsignin1.0  Application Patterns for the Cloud: http://blogs.msdn.com/b/kashif/archive/2010/08/07/application-patterns-for-the-cloud.aspx

    Read the article

  • Guide to reduce TFS database growth using the Test Attachment Cleaner

    - by terje
    Recently there has been several reports on TFS databases growing too fast and growing too big.  Notable this has been observed when one has started to use more features of the Testing system.  Also, the TFS 2010 handles test results differently from TFS 2008, and this leads to more data stored in the TFS databases. As a consequence of this there has been released some tools to remove unneeded data in the database, and also some fixes to correct for bugs which has been found and corrected during this process.  Further some preventive practices and maintenance rules should be adopted. A lot of people have blogged about this, among these are: Anu’s very important blog post here describes both the problem and solutions to handle it.  She describes both the Test Attachment Cleaner tool, and also some QFE/CU releases to fix some underlying bugs which prevented the tool from being fully effective. Brian Harry’s blog post here describes the problem too This forum thread describes the problem with some solution hints. Ravi Shanker’s blog post here describes best practices on solving this (TBP) Grant Holidays blogpost here describes strategies to use the Test Attachment Cleaner both to detect space problems and how to rectify them.   The problem can be divided into the following areas: Publishing of test results from builds Publishing of manual test results and their attachments in particular Publishing of deployment binaries for use during a test run Bugs in SQL server preventing total cleanup of data (All the published data above is published into the TFS database as attachments.) The test results will include all data being collected during the run.  Some of this data can grow rather large, like IntelliTrace logs and video recordings.   Also the pushing of binaries which happen for automated test runs, including tests run during a build using code coverage which will include all the files in the deployment folder, contributes a lot to the size of the attached data.   In order to handle this systematically, I have set up a 3-stage process: Find out if you have a database space issue Set up your TFS server to minimize potential database issues If you have the “problem”, clean up the database and otherwise keep it clean   Analyze the data Are your database( s) growing ?  Are unused test results growing out of proportion ? To find out about this you need to query your TFS database for some of the information, and use the Test Attachment Cleaner (TAC) to obtain some  more detailed information. If you don’t have too many databases you can use the SQL Server reports from within the Management Studio to analyze the database and table sizes. Or, you can use a set of queries . I find queries often faster to use because I can tweak them the way I want them.  But be aware that these queries are non-documented and non-supported and may change when the product team wants to change them. If you have multiple Project Collections, find out which might have problems: (Disclaimer: The queries below work on TFS 2010. They will not work on Dev-11, since the table structure have been changed.  I will try to update them for Dev-11 when it is released.) Open a SQL Management Studio session onto the SQL Server where you have your TFS Databases. Use the query below to find the Project Collection databases and their sizes, in descending size order.  use master select DB_NAME(database_id) AS DBName, (size/128) SizeInMB FROM sys.master_files where type=0 and substring(db_name(database_id),1,4)='Tfs_' and DB_NAME(database_id)<>'Tfs_Configuration' order by size desc Doing this on one of our SQL servers gives the following results: It is pretty easy to see on which collection to start the work   Find out which tables are possibly too large Keep a special watch out for the Tfs_Attachment table. Use the script at the bottom of Grant’s blog to find the table sizes in descending size order. In our case we got this result: From Grant’s blog we learnt that the tbl_Content is in the Version Control category, so the major only big issue we have here is the tbl_AttachmentContent.   Find out which team projects have possibly too large attachments In order to use the TAC to find and eventually delete attachment data we need to find out which team projects have these attachments. The team project is a required parameter to the TAC. Use the following query to find this, replace the collection database name with whatever applies in your case:   use Tfs_DefaultCollection select p.projectname, sum(a.compressedlength)/1024/1024 as sizeInMB from dbo.tbl_Attachment as a inner join tbl_testrun as tr on a.testrunid=tr.testrunid inner join tbl_project as p on p.projectid=tr.projectid group by p.projectname order by sum(a.compressedlength) desc In our case we got this result (had to remove some names), out of more than 100 team projects accumulated over quite some years: As can be seen here it is pretty obvious the “Byggtjeneste – Projects” are the main team project to take care of, with the ones on lines 2-4 as the next ones.  Check which attachment types takes up the most space It can be nice to know which attachment types takes up the space, so run the following query: use Tfs_DefaultCollection select a.attachmenttype, sum(a.compressedlength)/1024/1024 as sizeInMB from dbo.tbl_Attachment as a inner join tbl_testrun as tr on a.testrunid=tr.testrunid inner join tbl_project as p on p.projectid=tr.projectid group by a.attachmenttype order by sum(a.compressedlength) desc We then got this result: From this it is pretty obvious that the problem here is the binary files, as also mentioned in Anu’s blog. Check which file types, by their extension, takes up the most space Run the following query use Tfs_DefaultCollection select SUBSTRING(filename,len(filename)-CHARINDEX('.',REVERSE(filename))+2,999)as Extension, sum(compressedlength)/1024 as SizeInKB from tbl_Attachment group by SUBSTRING(filename,len(filename)-CHARINDEX('.',REVERSE(filename))+2,999) order by sum(compressedlength) desc This gives a result like this:   Now you should have collected enough information to tell you what to do – if you got to do something, and some of the information you need in order to set up your TAC settings file, both for a cleanup and for scheduled maintenance later.    Get your TFS server and environment properly set up Even if you have got the problem or if have yet not got the problem, you should ensure the TFS server is set up so that the risk of getting into this problem is minimized.  To ensure this you should install the following set of updates and components. The assumption is that your TFS Server is at SP1 level. Install the QFE for KB2608743 – which also contains detailed instructions on its use, download from here. The QFE changes the default settings to not upload deployed binaries, which are used in automated test runs. Binaries will still be uploaded if: Code coverage is enabled in the test settings. You change the UploadDeploymentItem to true in the testsettings file. Be aware that this might be reset back to false by another user which haven't installed this QFE. The hotfix should be installed to The build servers (the build agents) The machine hosting the Test Controller Local development computers (Visual Studio) Local test computers (MTM) It is not required to install it to the TFS Server, test agents or the build controller – it has no effect on these programs. If you use the SQL Server 2008 R2 you should also install the CU 10 (or later).  This CU fixes a potential problem of hanging “ghost” files.  This seems to happen only in certain trigger situations, but to ensure it doesn’t bite you, it is better to make sure this CU is installed. There is no such CU for SQL Server 2008 pre-R2 Work around:  If you suspect hanging ghost files, they can be – with some mental effort, deduced from the ghost counters using the following SQL query: use master SELECT DB_NAME(database_id) as 'database',OBJECT_NAME(object_id) as 'objectname', index_type_desc,ghost_record_count,version_ghost_record_count,record_count,avg_record_size_in_bytes FROM sys.dm_db_index_physical_stats (DB_ID(N'<DatabaseName>'), OBJECT_ID(N'<TableName>'), NULL, NULL , 'DETAILED') The problem is a stalled ghost cleanup process.  Restarting the SQL server after having stopped all components that depends on it, like the TFS Server and SPS services – that is all applications that connect to the SQL server. Then restart the SQL server, and finally start up all dependent processes again.  (I would guess a complete server reboot would do the trick too.) After this the ghost cleanup process will run properly again. The fix will come in the next CU cycle for SQL Server R2 SP1.  The R2 pre-SP1 and R2 SP1 have separate maintenance cycles, and are maintained individually. Each have its own set of CU’s. When it comes I will add the link here to that CU. The "hanging ghost file” issue came up after one have run the TAC, and deleted enourmes amount of data.  The SQL Server can get into this hanging state (without the QFE) in certain cases due to this. And of course, install and set up the Test Attachment Cleaner command line power tool.  This should be done following some guidelines from Ravi Shanker: “When you run TAC, ensure that you are deleting small chunks of data at regular intervals (say run TAC every night at 3AM to delete data that is between age 730 to 731 days) – this will ensure that small amounts of data are being deleted and SQL ghosted record cleanup can catch up with the number of deletes performed. “ This rule minimizes the risk of the ghosted hang problem to occur, and further makes it easier for the SQL server ghosting process to work smoothly. “Run DBCC SHRINKDB post the ghosted records are cleaned up to physically reclaim the space on the file system” This is the last step in a 3 step process of removing SQL server data. First they are logically deleted. Then they are cleaned out by the ghosting process, and finally removed using the shrinkdb command. Cleaning out the attachments The TAC is run from the command line using a set of parameters and controlled by a settingsfile.  The parameters point out a server uri including the team project collection and also point at a specific team project. So in order to run this for multiple team projects regularly one has to set up a script to run the TAC multiple times, once for each team project.  When you install the TAC there is a very useful readme file in the same directory. When the deployment binaries are published to the TFS server, ALL items are published up from the deployment folder. That often means much more files than you would assume are necessary. This is a brute force technique. It works, but you need to take care when cleaning up. Grant has shown how their settings file looks in his blog post, removing all attachments older than 180 days , as long as there are no active workitems connected to them. This setting can be useful to clean out all items, both in a clean-up once operation, and in a general There are two scenarios we need to consider: Cleaning up an existing overgrown database Maintaining a server to avoid an overgrown database using scheduled TAC   1. Cleaning up a database which has grown too big due to these attachments. This job is a “Once” job.  We do this once and then move on to make sure it won’t happen again, by taking the actions in 2) below.  In this scenario you should only consider the large files. Your goal should be to simply reduce the size, and don’t bother about  the smaller stuff. That can be left a scheduled TAC cleanup ( 2 below). Here you can use a very general settings file, and just remove the large attachments, or you can choose to remove any old items.  Grant’s settings file is an example of the last one.  A settings file to remove only large attachments could look like this: <!-- Scenario : Remove large files --> <DeletionCriteria> <TestRun /> <Attachment> <SizeInMB GreaterThan="10" /> </Attachment> </DeletionCriteria> Or like this: If you want only to remove dll’s and pdb’s about that size, add an Extensions-section.  Without that section, all extensions will be deleted. <!-- Scenario : Remove large files of type dll's and pdb's --> <DeletionCriteria> <TestRun /> <Attachment> <SizeInMB GreaterThan="10" /> <Extensions> <Include value="dll" /> <Include value="pdb" /> </Extensions> </Attachment> </DeletionCriteria> Before you start up your scheduled maintenance, you should clear out all older items. 2. Scheduled maintenance using the TAC If you run a schedule every night, and remove old items, and also remove them in small batches.  It is important to run this often, like every night, in order to keep the number of deleted items low. That way the SQL ghost process works better. One approach could be to delete all items older than some number of days, let’s say 180 days. This could be combined with restricting it to keep attachments with active or resolved bugs.  Doing this every night ensures that only small amounts of data is deleted. <!-- Scenario : Remove old items except if they have active or resolved bugs --> <DeletionCriteria> <TestRun> <AgeInDays OlderThan="180" /> </TestRun> <Attachment /> <LinkedBugs> <Exclude state="Active" /> <Exclude state="Resolved"/> </LinkedBugs> </DeletionCriteria> In my experience there are projects which are left with active or resolved workitems, akthough no further work is done.  It can be wise to have a cleanup process with no restrictions on linked bugs at all. Note that you then have to remove the whole LinkedBugs section. A approach which could work better here is to do a two step approach, use the schedule above to with no LinkedBugs as a sweeper cleaning task taking away all data older than you could care about.  Then have another scheduled TAC task to take out more specifically attachments that you are not likely to use. This task could be much more specific, and based on your analysis clean out what you know is troublesome data. <!-- Scenario : Remove specific files early --> <DeletionCriteria> <TestRun > <AgeInDays OlderThan="30" /> </TestRun> <Attachment> <SizeInMB GreaterThan="10" /> <Extensions> <Include value="iTrace"/> <Include value="dll"/> <Include value="pdb"/> <Include value="wmv"/> </Extensions> </Attachment> <LinkedBugs> <Exclude state="Active" /> <Exclude state="Resolved" /> </LinkedBugs> </DeletionCriteria> The readme document for the TAC says that it recognizes “internal” extensions, but it does recognize any extension. To run the tool do the following command: tcmpt attachmentcleanup /collection:your_tfs_collection_url /teamproject:your_team_project /settingsfile:path_to_settingsfile /outputfile:%temp%/teamproject.tcmpt.log /mode:delete   Shrinking the database You could run a shrink database command after the TAC has run in cases where there are a lot of data being deleted.  In this case you SHOULD do it, to free up all that space.  But, after the shrink operation you should do a rebuild indexes, since the shrink operation will leave the database in a very fragmented state, which will reduce performance. Note that you need to rebuild indexes, reorganizing is not enough. For smaller amounts of data you should NOT shrink the database, since the data will be reused by the SQL server when it need to add more records.  In fact, it is regarded as a bad practice to shrink the database regularly.  So on a daily maintenance schedule you should NOT shrink the database. To shrink the database you do a DBCC SHRINKDATABASE command, and then follow up with a DBCC INDEXDEFRAG afterwards.  I find the easiest way to do this is to create a SQL Maintenance plan including the Shrink Database Task and the Rebuild Index Task and just execute it when you need to do this.

    Read the article

  • vim does not preserve symlink over sshfs

    - by HighCommander4
    I'm having some trouble with symlinks and sshfs. I use the '-o follow_symlinks' option to follow symlinks on the server side, but whenever I edit a symlinked file on the client side with vim, a copy of it is made on the server side, i.e. it's no longer a symlink. Set up a symlink on the server side: me@machine1:~$ echo foo > test.txt me@machine1:~$ mkdir test me@machine1:~$ cd test me@machine1:~/test$ ln -s ../test.txt test.txt me@machine1:~/test$ ls -al test.txt lrwxrwxrwx 1 me me 11 Jan 5 21:13 test.txt -> ../test.txt me@machine1:~/test$ cat test.txt foo me@machine1:~/test$ cat ../test.txt foo So far so good. Now: me@machine2:~$ mkdir test me@machine2:~$ sshfs me@machine1:test test -o follow_symlinks me@machine2:~$ cd test me@machine2:~/test$ vim test.txt [in vim, add a new line "bar" to the file] me@machine2:~/test$ cat test.txt foo bar Now observe what this does to the file on the server side: me@machine1:~/test$ ls -al test.txt -rw-r--r-- 1 me me 19 Jan 5 21:24 test.txt me@machine1:~/test$ cat test.txt foo bar me@machine1:~/test$ cat ../test.txt foo As you can see, it made a copy and only edited the copy. How can I get it to work so it actually follows the symlink when editing the file?

    Read the article

  • Eclipse JUnit Plugin Test very slow to re-execute Test Suite on Windows

    - by soundasleepful
    I'm having an odd, and stressing, problem with running a large JUnit Plugin test suite in Eclipse. When I try to re-run a JUnit plugin suite that has just been executed, Eclipse hangs for quite some time before it eventually wakes up and launches. It can take up to 5 minutes sometimes, and increases with the size of the suite. Visually, it appears as a GC cleanup, except that I have plenty of GC space available (400 MB freely allocated). The size of the workspace that is has to delete is well under 1 GB, and there are not too many files - definitely less than 20,000. While I was waiting for a new run to start, I decided to manually kill explorer.exe to see if it had any effect. Surprisingly, Eclipse instantly fell out of its freeze and ran as normal. This makes me think that Windows is somehow interfering with the deletion of these workspace files. They're not being put into the Recycle Bin though. The workspace is in C: which I think is out of the range of any workspace/domain stuff. Any ideas?

    Read the article

  • How to feature-detect/test for specific jQuery (and Javascript) methods/functions used

    - by Zildjoms
    good day everyone, hope yer all doin awesome am very new to javascript and jquery, and i (think) i have come up with a simple fade-in/out implementation on a site am workin on (check out http://www.s5ent.com/expandjs.html - if you have the time to check it for inefficiency or what that'd be real sweet). i use the following functions/methods/collections and i would like to do a feature test before using them. uhm.. how? or is there a better way to go about this? jQuery $ .fadeIn([duration]) .fadeOut([duration]) .attr(attributeName,value) .append(content) .each(function(index,Element)) .css(propertyName,value) .hover(handlerIn(eventObject),handlerOut(eventObject)) .stop([clearQueue],[jumpToEnd]) .parent() .eq(index) JavaScript setInterval(expression,timeout) clearInterval(timeoutId) setTimeout(expression,timeout) clearTimeout(timeoutId) i tried looking into jquery.support for the jquery ones, but i find myself running into conceptual problems with it, i.e. for fadein/fadeout, i (think i) should test for $.support.opacity, but that would be false in ie whereas ie6+ could still fairly render the fades. also am using jquery 1.2.6 coz that's enough for what i need. the support object is in 1.3. so i'm hoping to avoid dragging-in more unnecessary code if i can. i also worked with browser sniffing, no matter how frowned-upon. but that's also a bigger problem for me because of non-standard ua strings and spoofing and everything else am not aware of. so how do you guys think i should go about this? or should i even? is there a better way to go about making sure that i don't run code that'll eventually break the page? i've set it up to degrade into a css hover when javascript ain't there.. expertise needed. much appreciated, thanks guyz!

    Read the article

  • How fast are my services? Comparing basicHttpBinding and ws2007HttpBinding using the SO-Aware Test Workbench

    - by gsusx
    When working on real world WCF solutions, we become pretty aware of the performance implications of the binding and behavior configuration of WCF services. However, whether it’s a known fact the different binding and behavior configurations have direct reflections on the performance of WCF services, developers often struggle to figure out the real performance behavior of the services. We can attribute this to the lack of tools for correctly testing the performance characteristics of WCF services...(read more)

    Read the article

  • Windows Azure Use Case: Web Applications

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Many applications have a requirement to be located outside of the organization’s internal infrastructure control. For instance, the company website for a brick-and-mortar retail company may want to post not only static but interactive content to be available to their external customers, and not want the customers to have access inside the organization’s firewall. There are also cases of pure web applications used for a great many of the internal functions of the business. This allows for remote workers, shared customer/employee workloads and data and other advantages. Some firms choose to host these web servers internally, others choose to contract out the infrastructure to an “ASP” (Application Service Provider) or an Infrastructure as a Service (IaaS) company. In any case, the design of these applications often resembles the following: In this design, a server (or perhaps more than one) hosts the presentation function (http or https) access to the application, and this same system may hold the computational aspects of the program. Authorization and Access is controlled programmatically, or is more open if this is a customer-facing application. Storage is either placed on the same or other servers, hosted within an RDBMS or NoSQL database, or a combination of the options, all coded into the application. High-Availability within this scenario is often the responsibility of the architects of the application, and by purchasing more hosting resources which must be built, licensed and configured, and manually added as demand requires, although some IaaS providers have a partially automatic method to add nodes for scale-out, if the architecture of the application supports it. Disaster Recovery is the responsibility of the system architect as well. Implementation: In a Windows Azure Platform as a Service (PaaS) environment, many of these architectural considerations are designed into the system. The Azure “Fabric” (not to be confused with the Azure implementation of Application Fabric - more on that in a moment) is designed to provide scalability. Compute resources can be added and removed programmatically based on any number of factors. Balancers at the request-level of the Fabric automatically route http and https requests. The fabric also provides High-Availability for storage and other components. Disaster recovery is a shared responsibility between the facilities (which have the ability to restore in case of catastrophic failure) and your code, which should build in recovery. In a Windows Azure-based web application, you have the ability to separate out the various functions and components. Presentation can be coded for multiple platforms like smart phones, tablets and PC’s, while the computation can be a single entity shared between them. This makes the applications more resilient and more object-oriented, and lends itself to a SOA or Distributed Computing architecture. It is true that you could code up a similar set of functionality in a traditional web-farm, but the difference here is that the components are built into the very design of the architecture. The API’s and DLL’s you call in a Windows Azure code base contains components as first-class citizens. For instance, if you need storage, it is simply called within the application as an object.  Computation has multiple options and the ability to scale linearly. You also gain another component that you would either have to write or bolt-in to a typical web-farm: the Application Fabric. This Windows Azure component provides communication between applications or even to on-premise systems. It provides authorization in either person-based or claims-based perspectives. SQL Azure provides relational storage as another option, and can also be used or accessed from on-premise systems. It should be noted that you can use all or some of these components individually. Resources: Design Strategies for Scalable Active Server Applications - http://msdn.microsoft.com/en-us/library/ms972349.aspx  Physical Tiers and Deployment  - http://msdn.microsoft.com/en-us/library/ee658120.aspx

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Creating a Corporate Data Hub

    - by BuckWoody
    The Windows Azure Marketplace has a rich assortment of data and software offerings for you to use – a type of Software as a Service (SaaS) for IT workers, not necessarily for end-users. Among those offerings is the “Data Hub” – a  codename for a project that ironically actually does what the codename says. In many of our organizations, we have multiple data quality issues. Finding data is one problem, but finding it just once is often a bigger problem. Lots of departments and even individuals have stored the same data more than once, and in some cases, made changes to one of the copies. It’s difficult to know which location or version of the data is authoritative. Then there’s the problem of accessing the data. It’s fairly straightforward to publish a database, share or other location internally to store the data. But then you have to figure out who owns it, how it is controlled, and pass out the various connection strings to those who want to use it. And then you need to figure out how to let folks access the internal data externally – bringing up all kinds of security issues. Finally, in many cases our user community wants us to combine data from the internally sources with external data, bringing up the security, strings, and exploration features up all over again. Enter the Data Hub. This is an online offering, where you assign an administrator and data stewards. You import the data into the service, and it’s available to you - and only you and your organization if you wish. The basic steps for this service are to set up the portal for your company, assign administrators and permissions, and then you assign data areas and import data into them. From there you make them discoverable, and then you have multiple options that you or your users can access that data. You’re then able, if you wish, to combine that data with other data in one location. So how does all that work? What about security? Is it really that easy? And can you really move the data definition off to the Subject Matter Experts (SME’s) that know the particular data stack better than the IT team does? Well, nothing good is easy – but using the Data Hub is actually pretty simple. I’ll give you a link in a moment where you can sign up and try this yourself. Once you sign up, you assign an administrator. From there you’ll create data areas, and then use a simple interface to bring the data in. All of this is done in a portal interface – nothing to install, configure, update or manage. After the data is entered in, and you’ve assigned meta-data to describe it, your users have multiple options to access it. They can simply use the portal – which actually has powerful visualizations you can use on any platform, even mobile phones or tablets.     Your users can also hit the data with Excel – which gives them ultimate flexibility for display, all while using an authoritative, single reference for the data. Since the service is online, they can do this wherever they are – given the proper authentication and permissions. You can also hit the service with simple API calls, like this one from C#: http://msdn.microsoft.com/en-us/library/hh921924  You can make HTTP calls instead of code, and the data can even be exposed as an OData Feed. As you can see, there are a lot of options. You can check out the offering here: http://www.microsoft.com/en-us/sqlazurelabs/labs/data-hub.aspx and you can read the documentation here: http://msdn.microsoft.com/en-us/library/hh921938

    Read the article

  • Should we test all our methods?

    - by Zenzen
    So today I had a talk with my teammate about unit testing. The whole thing started when he asked me "hey, where are the tests for that class, I see only one?". The whole class was a manager (or a service if you prefer to call it like that) and almost all the methods were simply delegating stuff to a DAO so it was similar to: SomeClass getSomething(parameters) { return myDao.findSomethingBySomething(parameters); } A kind of boilerplate with no logic (or at least I do not consider such simple delegation as logic) but a useful boilerplate in most cases (layer separation etc.). And we had a rather lengthy discussion whether or not I should unit test it (I think that it is worth mentioning that I did fully unit test the DAO). His main arguments being that it was not TDD (obviously) and that someone might want to see the test to check what this method does (I do not know how it could be more obvious) or that in the future someone might want to change the implementation and add new (or more like "any") logic to it (in which case I guess someone should simply test that logic). This made me think, though. Should we strive for the highest test coverage %? Or is it simply an art for art's sake then? I simply do not see any reason behind testing things like: getters and setters (unless they actually have some logic in them) "boilerplate" code Obviously a test for such a method (with mocks) would take me less than a minute but I guess that is still time wasted and a millisecond longer for every CI. Are there any rational/not "flammable" reasons to why one should test every single (or as many as he can) line of code?

    Read the article

  • Creating a Corporate Data Hub

    - by BuckWoody
    The Windows Azure Marketplace has a rich assortment of data and software offerings for you to use – a type of Software as a Service (SaaS) for IT workers, not necessarily for end-users. Among those offerings is the “Data Hub” – a  codename for a project that ironically actually does what the codename says. In many of our organizations, we have multiple data quality issues. Finding data is one problem, but finding it just once is often a bigger problem. Lots of departments and even individuals have stored the same data more than once, and in some cases, made changes to one of the copies. It’s difficult to know which location or version of the data is authoritative. Then there’s the problem of accessing the data. It’s fairly straightforward to publish a database, share or other location internally to store the data. But then you have to figure out who owns it, how it is controlled, and pass out the various connection strings to those who want to use it. And then you need to figure out how to let folks access the internal data externally – bringing up all kinds of security issues. Finally, in many cases our user community wants us to combine data from the internally sources with external data, bringing up the security, strings, and exploration features up all over again. Enter the Data Hub. This is an online offering, where you assign an administrator and data stewards. You import the data into the service, and it’s available to you - and only you and your organization if you wish. The basic steps for this service are to set up the portal for your company, assign administrators and permissions, and then you assign data areas and import data into them. From there you make them discoverable, and then you have multiple options that you or your users can access that data. You’re then able, if you wish, to combine that data with other data in one location. So how does all that work? What about security? Is it really that easy? And can you really move the data definition off to the Subject Matter Experts (SME’s) that know the particular data stack better than the IT team does? Well, nothing good is easy – but using the Data Hub is actually pretty simple. I’ll give you a link in a moment where you can sign up and try this yourself. Once you sign up, you assign an administrator. From there you’ll create data areas, and then use a simple interface to bring the data in. All of this is done in a portal interface – nothing to install, configure, update or manage. After the data is entered in, and you’ve assigned meta-data to describe it, your users have multiple options to access it. They can simply use the portal – which actually has powerful visualizations you can use on any platform, even mobile phones or tablets.     Your users can also hit the data with Excel – which gives them ultimate flexibility for display, all while using an authoritative, single reference for the data. Since the service is online, they can do this wherever they are – given the proper authentication and permissions. You can also hit the service with simple API calls, like this one from C#: http://msdn.microsoft.com/en-us/library/hh921924  You can make HTTP calls instead of code, and the data can even be exposed as an OData Feed. As you can see, there are a lot of options. You can check out the offering here: http://www.microsoft.com/en-us/sqlazurelabs/labs/data-hub.aspx and you can read the documentation here: http://msdn.microsoft.com/en-us/library/hh921938

    Read the article

  • How to make the tokenizer detect empty spaces while using strtok()

    - by Shadi Al Mahallawy
    I am designing a c++ program, somewhere in the program i need to detect if there is a blank(empty token) next to the token used know eg. if(token1==start) { token2=strtok(NULL," "); if(token2==NULL) {LCCTR=0;} else {LCCTR=atoi(token2);} so in the previous peice token1 is pointing to start , and i want to check if there is anumber next to the start , so I used token2=strtok(NULL," ") to point to the next token but unfortunattly the strtok function cannot detect empty spaces so it gives me an error at run time"INVALID NULL POINTER" how can i fix it or is there another function to use to detect empty spaces #include <iostream> #include<string> #include<map> #include<iomanip> #include<fstream> #include<ctype.h> using namespace std; const int MAX=300; int LCCTR; int START(char* token1); char* PASS1(char*token1); void tokinizer() { ifstream in; ofstream out; char oneline[MAX]; in.open("infile.txt"); out.open("outfile.txt"); if(in.is_open()) { char *token1; in.getline(oneline,MAX); token1 = strtok(oneline," \t"); START (token1); //cout<<'\t'; while(token1!=NULL) { //PASS1(token1); //cout<<token1<<" "; token1=strtok(NULL," \t"); if(NULL==token1) {//cout<<endl; //cout<<LCCTR<<'\t'; in.getline(oneline,MAX); token1 = strtok(oneline," \t"); } } } in.close(); out.close(); } int START(char* token1) { string start("START"); char*token2; if(token1 != start) {LCCTR=0;} else if(token1==start) { token2=strchr(token1+2,' '); cout<<token2; if(token2==NULL) {LCCTR=0;} else {LCCTR=atoi(token2); if(atoi(token2)>9999||atoi(token2)<0){cout<<"IVALID STARTING ADDRESS"<<endl;exit(1);} } } return LCCTR; } char* PASS1 (char*token1) { map<string,int> operations; map<string,int>symtable; map<string,int>::iterator it; pair<map<string,int>::iterator,bool> ret; char*token3=NULL; char*token2=NULL; string test; string comp(" "); string start("START"); string word("WORD"); string byte("BYTE"); string resb("RESB"); string resw("RESW"); string end("END"); operations["ADD"] = 18; operations["AND"] = 40; operations["COMP"] = 28; operations["DIV"] = 24; operations["J"] = 0X3c; operations["JEQ"] =30; operations["JGT"] =34; operations["JLT"] =38; operations["JSUB"] =48; operations["LDA"] =00; operations["LDCH"] =50; operations["LDL"] =55; operations["LDX"] =04; operations["MUL"] =20; operations["OR"] =44; operations["RD"] =0xd8; operations["RSUB"] =0x4c; operations["STA"] =0x0c; operations["STCH"] =54; operations["STL"] =14; operations["STSW"] =0xe8; operations["STX"] =10; operations["SUB"] =0x1c; operations["TD"] =0xe0; operations["TIX"] =0x2c; operations["WD"] =0xdc; if(operations.find("ADD")->first==token1) { token2=strtok(NULL," "); //test=token2; cout<<token2; //if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} //else{LCCTR=LCCTR+3;} } /*else if(operations.find("AND")->first==token1) { token2=strtok(NULL," "); test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("COMP")->first==token1) { token2=token1+5; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("DIV")->first==token1) { token2=token1+4; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("J")->first==token1) { token2=token1+2; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("JEQ")->first==token1) { token2=token1+5; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("JGT")->first==token1) { token2=strtok(NULL," "); test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("JLT")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("JSUB")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("LDA")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("LDCH")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("LDL")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("LDX")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("MUL")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("OR")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("RD")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("RSUB")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("STA")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("STCH")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("STL")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("STSW")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("STX")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("SUB")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("TD")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("TIX")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} } else if(operations.find("WD")->first==token1) { token2=token1+6; test=token2; if(test.empty()){cout<<"MISSING OPERAND"<<endl;exit(1);} else{LCCTR=LCCTR+3;} }*/ //else if( if(word==token1) {LCCTR=LCCTR+3;} else if(byte==token1) {string test; token2=token1+7; test=token2; if(test[0]=='C') {token3=token1+10; test=token3; if(test.length()>15) {cout<<"ERROR"<<endl; exit(1);} } else if(test[0]=='X') {token3=token1+10; test=token3; if(test.length()>14) {cout<<"ERROR"<<endl; exit(1);} } LCCTR=LCCTR+test.length(); } else if(resb==token1) {token3=token1+5; LCCTR=LCCTR+atoi(token3);} else if(resw==token1) {token3=token1+5; LCCTR=LCCTR+3*atoi(token3);} else if(end==token1) {exit(1);} /*else { test=token1; int last=test.length(); if(token1==start||test[0]=='C'||test[0]=='X'||ispunct(test[last])||isdigit(test[0])||isdigit(test[1])||isdigit(test[2])||isdigit(test[3])){} else { token2=strtok(NULL," "); //test=token2; cout<<token2; if(token2!=NULL) { symtable.insert( pair<string,int>(token1,LCCTR)); for(it=symtable.begin() ;it!=symtable.end() ;++it) {/*cout<<"symbol: "<<it->first<<" LCCTR: "<<it->second<<endl;} } else{} } }*/ return token3; } int main() { tokinizer(); return 0; }

    Read the article

< Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >