Search Results

Search found 10044 results on 402 pages for 'apartment state'.

Page 81/402 | < Previous Page | 77 78 79 80 81 82 83 84 85 86 87 88  | Next Page >

  • Flex list-controls - maintain remote data

    - by artemb
    Hello. I have a TileList which represents some remote data. I also have a form which allows me to change the data. And the data may be changed by someone else too. What is the best way to maintain data in the list in an up-to-date state? The simplest option I see is the following: Select an item in the list Edit it in the form Save it. The form submits the data to the server When the server reports success the list re-fetches it's data The very bad thing about this workflow is that the list loses selection (a tree would also loose the nodes' expanded/collapsed state). I would really love to find out another option which would enable the list to maintain it's selection state. Any guesses on how it may be done?

    Read the article

  • Rails validation issue with before_validation

    - by Chance
    I'm still fairly new to rails so I'm not sure what I'm missing here. I'm using GeoKit to geocode an address upon saving. I have a method that geocodes an address and if it fails to find it, it adds an error to the errors list. I've tested it in the console and it is failing on the geocode (presumably adding the error) but still saving successfully. acts_as_mappable before_validation_on_create :geocode_address before_validation_on_update :geocode_address validates_presence_of :street validates_presence_of :city validates_presence_of :state validates_presence_of :zip validates_presence_of :name validates_uniqueness_of :name def geocode_address geo=Geokit::Geocoders::MultiGeocoder.geocode ("#{street}, #{city}, #{state}, #{zip}") puts "geocoded: #{street}, #{city}, #{state}, #{zip}" if geo.success self.lat, self.lng = geo.lat,geo.lng else errors.add(:street, "Could not Geocode address") end puts "geo status: #{geo.success}" end Any help would be greatly appreciated, thanks :)

    Read the article

  • How Android retrieves info of the Stacked Activities which are killed when memory goes low.

    - by taranfx
    I was reading on how Activities communicate and how the calls stack up on top of each other. But at any instant when the OS(or dalvik) is low on resources, it can choose to kill Paused or Stopped Activities. In this scenario, how do we restore previous state of the activity(in which it was before getting killed) when we reach the same activity on our way back. Does stack store the state as well as references to the Activity? Aren't their chances of achieving a different state when we re-constuct activity (onCreate)?

    Read the article

  • linq with Include and criteria

    - by JMarsch
    How would I translate this into LINQ? Say I have A parent table (Say, customers), and child (addresses). I want to return all of the Parents who have addresses in California, and just the california address. (but I want to do it in LINQ and get an object graph of Entity objects) Here's the old fashioned way: SELECT c.blah, a.blah FROM Customer c INNER JOIN Address a on c.CustomerId = a.CustomerId where a.State = 'CA' The problem I'm having with LINQ is that i need an object graph of concrete Entity types (and it can't be lazy loaded. Here's what I've tried so far: // this one doesn't filter the addresses -- I get the right customers, but I get all of their addresses, and not just the CA address object. from c in Customer.Include(c = c.Addresses) where c.Addresses.Any(a = a.State == "CA") select c // this one seems to work, but the Addresses collection on Customers is always null from c in Customer.Include(c = c.Addresses) from a in c.Addresses where a.State == "CA" select c; Any ideas?

    Read the article

  • How to define an array inside a function in C?

    - by Arunav Dev
    So in my source file I have the folowin function: void update(state* old_state, state* measurement, uint32_t size) { state new_state[size]; //some function using measurement and old_state and returning the result in newstate arm_fadd_32(measurement,old_state,newstate,size); // rest of the code } Now the compiler throws an error saying that error#28:expression must have a constant value. I think it's due to the fact that even though inside the method the size local variable is not changing the compiler is expecting a constant while defining the size. I have tried the following: int const a = size; and then tried to reinitialize it says constant value is not known. I did some research in internet and it appears that there is no easier way without using malloc, which I don't want to since I am using the code for some embedded application. Is there a way to avoid this problem without really using malloc? Thanks in advance guys!

    Read the article

  • Firefox back issue

    - by wikiz
    Hello, I am using a menu that switches from standard state to select state for an item by reading the current url var where = document.location.href; My issue is that when using Firefox, if I switch to some items from the menu (for instance, I click home, donwload, contact) and press the back button the url is not read correctly so 2 items remain on the selected state. This only happens in Firefox (I've tested already in Explorer, Chrome and Opera) So what I'm trying to ask: is there a way to handle the so called back button action in/for Firefox so I can fix my menu issue ?

    Read the article

  • Java Thread wait() => blocked?

    - by Chris
    According to http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.State.html calling wait() will result a thread to go in BLOCKED state. However this piece of code will result (after being called) in a Thread in WAITING State. class bThread extends Thread { public synchronized void run() { try { wait(); } catch (InterruptedException e) { e.printStackTrace(); } } } Have I got something wrong? Can anybody explain this behaviour to me? Any help would be appreciated!

    Read the article

  • How to get an item value of json using C#?

    - by user3487837
    How to get an item value of json using C#? json: [{ ID: '6512', fd: [{ titie: 'Graph-01', type: 'graph', views: { graph: { show: true, state: { group: 'DivisionName', series: ['FieldWeight', 'FactoryWeight', 'Variance'], graphType: 'lines-and-points' } } } }, { titie: 'Graph-02', type: 'Graph', views: { graph: { show: true, state: { group: 'DivisionName', series: ['FieldWeight', 'FactoryWeight', 'Variance'], graphType: 'lines-and-points' } } } }] }, { ID: '6506', fd: [{ titie: 'Map-01', type: 'map', views: { map: { show: true, state: { kpiField: 'P_BudgetAmount', kpiSlabs: [{ id: 'P_BudgetAmount', hues: ['#0fff03', '#eb0707'], scales: '10' }] } } } }] }] Above mentioned one is json, Here titie value will be get in a list please help me... my code is: string dashletsConfigPath = Url.Content("~/Content/Dashlets/Dashlets.json"); string jArray = System.IO.File.ReadAllText(Server.MapPath(dashletsConfigPath)) List<string> lists = new List<string>(); JArray list = JArray.Parse(jArray); var ll = list.Select(j => j["dashlets"]).ToList();

    Read the article

  • how do i move txt from one column to another

    - by bodhi926
    I need to take an address that consists of "city, state" from column "location" and populate 2 new columns "city" and "state" but leave location the way it is, now I have done this with a SUBSTRING_INDEX command but I have to run the command everytime to do this, how can I make it stick? thanks in advance. also here is my substring code.... SELECT distinct id, first_name, last_name, SUBSTRING_INDEX(location, ' ,', 1) AS City, SUBSTRING_INDEX(location, ' ,', -1) AS State, SUBSTRING_INDEX(seeking, ' ,', 1) AS Seeking_1, SUBSTRING_INDEX(seeking, ' ,', -1) AS Seeking_2, SUBSTRING_INDEX(interests,' ,', 1) AS Interests_1, SUBSTRING_INDEX(interests,' ,', -1) AS Interests_2, SUBSTRING_INDEX(interests,' ,', 1) AS Interests_3 FROM my_contacts

    Read the article

  • LSI 9285-8e and Supermicro SC837E26-RJBOD1 duplicate enclosure ID and slot numbers

    - by Andy Shinn
    I am working with 2 x Supermicro SC837E26-RJBOD1 chassis connected to a single LSI 9285-8e card in a Supermicro 1U host. There are 28 drives in each chassis for a total of 56 drives in 28 RAID1 mirrors. The problem I am running in to is that there are duplicate slots for the 2 chassis (the slots list twice and only go from 0 to 27). All the drives also show the same enclosure ID (ID 36). However, MegaCLI -encinfo lists the 2 enclosures correctly (ID 36 and ID 65). My question is, why would this happen? Is there an option I am missing to use 2 enclosures effectively? This is blocking me rebuilding a drive that failed in slot 11 since I can only specify enclosure and slot as parameters to replace a drive. When I do this, it picks the wrong slot 11 (device ID 46 instead of device ID 19). Adapter #1 is the LSI 9285-8e, adapter #0 (which I removed due to space limitations) is the onboard LSI. Adapter information: Adapter #1 ============================================================================== Versions ================ Product Name : LSI MegaRAID SAS 9285-8e Serial No : SV12704804 FW Package Build: 23.1.1-0004 Mfg. Data ================ Mfg. Date : 06/30/11 Rework Date : 00/00/00 Revision No : 00A Battery FRU : N/A Image Versions in Flash: ================ BIOS Version : 5.25.00_4.11.05.00_0x05040000 WebBIOS Version : 6.1-20-e_20-Rel Preboot CLI Version: 05.01-04:#%00001 FW Version : 3.140.15-1320 NVDATA Version : 2.1106.03-0051 Boot Block Version : 2.04.00.00-0001 BOOT Version : 06.253.57.219 Pending Images in Flash ================ None PCI Info ================ Vendor Id : 1000 Device Id : 005b SubVendorId : 1000 SubDeviceId : 9285 Host Interface : PCIE ChipRevision : B0 Number of Frontend Port: 0 Device Interface : PCIE Number of Backend Port: 8 Port : Address 0 5003048000ee8e7f 1 5003048000ee8a7f 2 0000000000000000 3 0000000000000000 4 0000000000000000 5 0000000000000000 6 0000000000000000 7 0000000000000000 HW Configuration ================ SAS Address : 500605b0038f9210 BBU : Present Alarm : Present NVRAM : Present Serial Debugger : Present Memory : Present Flash : Present Memory Size : 1024MB TPM : Absent On board Expander: Absent Upgrade Key : Absent Temperature sensor for ROC : Present Temperature sensor for controller : Absent ROC temperature : 70 degree Celcius Settings ================ Current Time : 18:24:36 3/13, 2012 Predictive Fail Poll Interval : 300sec Interrupt Throttle Active Count : 16 Interrupt Throttle Completion : 50us Rebuild Rate : 30% PR Rate : 30% BGI Rate : 30% Check Consistency Rate : 30% Reconstruction Rate : 30% Cache Flush Interval : 4s Max Drives to Spinup at One Time : 2 Delay Among Spinup Groups : 12s Physical Drive Coercion Mode : Disabled Cluster Mode : Disabled Alarm : Enabled Auto Rebuild : Enabled Battery Warning : Enabled Ecc Bucket Size : 15 Ecc Bucket Leak Rate : 1440 Minutes Restore HotSpare on Insertion : Disabled Expose Enclosure Devices : Enabled Maintain PD Fail History : Enabled Host Request Reordering : Enabled Auto Detect BackPlane Enabled : SGPIO/i2c SEP Load Balance Mode : Auto Use FDE Only : No Security Key Assigned : No Security Key Failed : No Security Key Not Backedup : No Default LD PowerSave Policy : Controller Defined Maximum number of direct attached drives to spin up in 1 min : 10 Any Offline VD Cache Preserved : No Allow Boot with Preserved Cache : No Disable Online Controller Reset : No PFK in NVRAM : No Use disk activity for locate : No Capabilities ================ RAID Level Supported : RAID0, RAID1, RAID5, RAID6, RAID00, RAID10, RAID50, RAID60, PRL 11, PRL 11 with spanning, SRL 3 supported, PRL11-RLQ0 DDF layout with no span, PRL11-RLQ0 DDF layout with span Supported Drives : SAS, SATA Allowed Mixing: Mix in Enclosure Allowed Mix of SAS/SATA of HDD type in VD Allowed Status ================ ECC Bucket Count : 0 Limitations ================ Max Arms Per VD : 32 Max Spans Per VD : 8 Max Arrays : 128 Max Number of VDs : 64 Max Parallel Commands : 1008 Max SGE Count : 60 Max Data Transfer Size : 8192 sectors Max Strips PerIO : 42 Max LD per array : 16 Min Strip Size : 8 KB Max Strip Size : 1.0 MB Max Configurable CacheCade Size: 0 GB Current Size of CacheCade : 0 GB Current Size of FW Cache : 887 MB Device Present ================ Virtual Drives : 28 Degraded : 0 Offline : 0 Physical Devices : 59 Disks : 56 Critical Disks : 0 Failed Disks : 0 Supported Adapter Operations ================ Rebuild Rate : Yes CC Rate : Yes BGI Rate : Yes Reconstruct Rate : Yes Patrol Read Rate : Yes Alarm Control : Yes Cluster Support : No BBU : No Spanning : Yes Dedicated Hot Spare : Yes Revertible Hot Spares : Yes Foreign Config Import : Yes Self Diagnostic : Yes Allow Mixed Redundancy on Array : No Global Hot Spares : Yes Deny SCSI Passthrough : No Deny SMP Passthrough : No Deny STP Passthrough : No Support Security : No Snapshot Enabled : No Support the OCE without adding drives : Yes Support PFK : Yes Support PI : No Support Boot Time PFK Change : Yes Disable Online PFK Change : No PFK TrailTime Remaining : 0 days 0 hours Support Shield State : Yes Block SSD Write Disk Cache Change: Yes Supported VD Operations ================ Read Policy : Yes Write Policy : Yes IO Policy : Yes Access Policy : Yes Disk Cache Policy : Yes Reconstruction : Yes Deny Locate : No Deny CC : No Allow Ctrl Encryption: No Enable LDBBM : No Support Breakmirror : No Power Savings : Yes Supported PD Operations ================ Force Online : Yes Force Offline : Yes Force Rebuild : Yes Deny Force Failed : No Deny Force Good/Bad : No Deny Missing Replace : No Deny Clear : No Deny Locate : No Support Temperature : Yes Disable Copyback : No Enable JBOD : No Enable Copyback on SMART : No Enable Copyback to SSD on SMART Error : Yes Enable SSD Patrol Read : No PR Correct Unconfigured Areas : Yes Enable Spin Down of UnConfigured Drives : Yes Disable Spin Down of hot spares : No Spin Down time : 30 T10 Power State : Yes Error Counters ================ Memory Correctable Errors : 0 Memory Uncorrectable Errors : 0 Cluster Information ================ Cluster Permitted : No Cluster Active : No Default Settings ================ Phy Polarity : 0 Phy PolaritySplit : 0 Background Rate : 30 Strip Size : 64kB Flush Time : 4 seconds Write Policy : WB Read Policy : Adaptive Cache When BBU Bad : Disabled Cached IO : No SMART Mode : Mode 6 Alarm Disable : Yes Coercion Mode : None ZCR Config : Unknown Dirty LED Shows Drive Activity : No BIOS Continue on Error : No Spin Down Mode : None Allowed Device Type : SAS/SATA Mix Allow Mix in Enclosure : Yes Allow HDD SAS/SATA Mix in VD : Yes Allow SSD SAS/SATA Mix in VD : No Allow HDD/SSD Mix in VD : No Allow SATA in Cluster : No Max Chained Enclosures : 16 Disable Ctrl-R : Yes Enable Web BIOS : Yes Direct PD Mapping : No BIOS Enumerate VDs : Yes Restore Hot Spare on Insertion : No Expose Enclosure Devices : Yes Maintain PD Fail History : Yes Disable Puncturing : No Zero Based Enclosure Enumeration : No PreBoot CLI Enabled : Yes LED Show Drive Activity : Yes Cluster Disable : Yes SAS Disable : No Auto Detect BackPlane Enable : SGPIO/i2c SEP Use FDE Only : No Enable Led Header : No Delay during POST : 0 EnableCrashDump : No Disable Online Controller Reset : No EnableLDBBM : No Un-Certified Hard Disk Drives : Allow Treat Single span R1E as R10 : No Max LD per array : 16 Power Saving option : Don't Auto spin down Configured Drives Max power savings option is not allowed for LDs. Only T10 power conditions are to be used. Default spin down time in minutes: 30 Enable JBOD : No TTY Log In Flash : No Auto Enhanced Import : No BreakMirror RAID Support : No Disable Join Mirror : No Enable Shield State : Yes Time taken to detect CME : 60s Exit Code: 0x00 Enclosure information: # /opt/MegaRAID/MegaCli/MegaCli64 -encinfo -a1 Number of enclosures on adapter 1 -- 3 Enclosure 0: Device ID : 36 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port B Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 65 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11820 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 48 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 1: Device ID : 65 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port A Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 36 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11760 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 47 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 2: Device ID : 252 Number of Slots : 8 Number of Power Supplies : 0 Number of Fans : 0 Number of Temperature Sensors : 0 Number of Alarms : 0 Number of SIM Modules : 1 Number of Physical Drives : 0 Status : Normal Position : 1 Connector Name : Unavailable Enclosure type : SGPIO Failed in first Inquiry commnad FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : Unavailable Inquiry data : Vendor Identification : LSI Product Identification : SGPIO Product Revision Level : N/A Vendor Specific : Exit Code: 0x00 Now, notice that each slot 11 device shows an enclosure ID of 36, I think this is where the discrepancy happens. One should be 36. But the other should be on enclosure 65. Drives in slot 11: Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 5, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 48 WWN: Sequence Number: 11 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : YES Device Firmware Level: A5C0 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8a53 Connected Port Number: 1(path0) Inquiry Data: MJ1311YNG6YYXAHitachi HDS5C3030ALA630 MEAOA5C0 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 19, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 19 WWN: Sequence Number: 4 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : NO Device Firmware Level: A580 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8e53 Connected Port Number: 0(path0) Inquiry Data: MJ1313YNG1VA5CHitachi HDS5C3030ALA630 MEAOA580 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Update 06/28/12: I finally have some new information about (what we think) the root cause of this problem so I thought I would share. After getting in contact with a very knowledgeable Supermicro tech, they provided us with a tool called Xflash (doesn't appear to be readily available on their FTP). When we gathered some information using this utility, my colleague found something very strange: root@mogile2 test]# ./xflash.dat -i get avail Initializing Interface. Expander: SAS2X36 (SAS2x36) 1) SAS2X36 (SAS2x36) (50030480:00EE917F) (0.0.0.0) 2) SAS2X36 (SAS2x36) (50030480:00E9D67F) (0.0.0.0) 3) SAS2X36 (SAS2x36) (50030480:0112D97F) (0.0.0.0) This lists the connected enclosures. You see the 3 connected (we have since added a 3rd and a 4th which is not yet showing up) with their respective SAS address / WWN (50030480:00EE917F). Now we can use this address to get information on the individual enclosures: [root@mogile2 test]# ./xflash.dat -i 5003048000EE917F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00EE917F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 5003048000E9D67F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00E9D67F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 500304800112D97F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:0112D97F Enclosure Logical Id: 50030480:0112D97F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 Did you catch it? The first 2 enclosures logical ID is partially masked out where the 3rd one (which has a correct unique enclosure ID) is not. We pointed this out to Supermicro and were able to confirm that this address is supposed to be set during manufacturing and there was a problem with a certain batch of these enclosures where the logical ID was not set. We believe that the RAID controller is determining the ID based on the logical ID and since our first 2 enclosures have the same logical ID, they get the same enclosure ID. We also confirmed that 0000007F is the default which comes from LSI as an ID. The next pointer that helps confirm this could be a manufacturing problem with a run of JBODs is the fact that all 6 of the enclosures that have this problem begin with 00E. I believe that between 00E8 and 00EE Supermicro forgot to program the logical IDs correctly and neglected to recall or fix the problem post production. Fortunately for us, there is a tool to manage the WWN and logical ID of the devices from Supermicro: ftp://ftp.supermicro.com/utility/ExpanderXtools_Lite/. Our next step is to schedule a shutdown of these JBODs (after data migration) and reprogram the logical ID and see if it solves the problem. Update 06/28/12 #2: I just discovered this FAQ at Supermicro while Google searching for "lsi 0000007f": http://www.supermicro.com/support/faqs/faq.cfm?faq=11805. I still don't understand why, in the last several times we contacted Supermicro, they would have never directed us to this article :\

    Read the article

  • Nullpointerexcption & abrupt IOStream closure with inheritence and subclasses

    - by user1401652
    A brief background before so we can communicate on the same wave length. I've had about 8-10 university courses on programming from data structure, to one on all languages, to specific ones such as java & c++. I'm a bit rusty because i usually take 2-3 month breaks from coding. This is a personal project that I started thinking of two years back. Okay down to the details, and a specific question, I'm having problems with my mutator functions. It seems to be that I am trying to access a private variable incorrectly. The question is, am I nesting my classes too much and trying to mutate a base class variable the incorrect way. If so point me in the way of the correct literature, or confirm this is my problem so I can restudy this information. Thanks package GroceryReceiptProgram; import java.io.*; import java.util.Vector; public class Date { private int hour, minute, day, month, year; Date() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What's the hour? (Use 1-24 military notation"); hour = Integer.parseInt(keyboard.readLine()); System.out.println("what's the minute? "); minute = Integer.parseInt(keyboard.readLine()); System.out.println("What's the day of the month?"); day = Integer.parseInt(keyboard.readLine()); System.out.println("Which month of the year is it, use an integer"); month = Integer.parseInt(keyboard.readLine()); System.out.println("What year is it?"); year = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (IOException e) { System.out.println("Yo houston we have a problem"); } } public void setHour(int hour) { this.hour = hour; } public void setHour() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What hour, use military notation?"); this.hour = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public int getHour() { return hour; } public void setMinute(int minute) { this.minute = minute; } public void setMinute() { try (BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in))) { System.out.println("What minute?"); this.minute = Integer.parseInt(keyboard.readLine()); } catch (NumberFormatException e) { System.out.println(e.toString() + ": doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString() + ": minute shall not cooperate"); } catch (NullPointerException e) { System.out.println(e.toString() + ": in the setMinute function of the Date class"); } } public int getMinute() { return minute; } public void setDay(int day) { this.day = day; } public void setDay() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What day 0-6?"); this.day = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public int getDay() { return day; } public void setMonth(int month) { this.month = month; } public void setMonth() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What month 0-11?"); this.month = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public int getMonth() { return month; } public void setYear(int year) { this.year = year; } public void setYear() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What year?"); this.year = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public int getYear() { return year; } public void set() { setMinute(); setHour(); setDay(); setMonth(); setYear(); } public Vector<Integer> get() { Vector<Integer> holder = new Vector<Integer>(5); holder.add(hour); holder.add(minute); holder.add(month); holder.add(day); holder.add(year); return holder; } }; That is the Date class obviously, next is the other base class Location. package GroceryReceiptProgram; import java.io.*; import java.util.Vector; public class Location { String streetName, state, city, country; int zipCode, address; Location() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What is the street name"); streetName = keyboard.readLine(); System.out.println("Which state?"); state = keyboard.readLine(); System.out.println("Which city?"); city = keyboard.readLine(); System.out.println("Which country?"); country = keyboard.readLine(); System.out.println("Which zipcode?");//if not u.s. continue around this step zipCode = Integer.parseInt(keyboard.readLine()); System.out.println("What address?"); address = Integer.parseInt(keyboard.readLine()); } catch (IOException e) { System.out.println(e.toString()); } } public void setZipCode(int zipCode) { this.zipCode = zipCode; } public void setZipCode() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What zipCode?"); this.zipCode = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public void set() { setAddress(); setCity(); setCountry(); setState(); setStreetName(); setZipCode(); } public int getZipCode() { return zipCode; } public void setAddress(int address) { this.address = address; } public void setAddress() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.address = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public int getAddress() { return address; } public void setStreetName(String streetName) { this.streetName = streetName; } public void setStreetName() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.streetName = keyboard.readLine(); keyboard.close(); } catch (IOException e) { System.out.println(e.toString()); } } public String getStreetName() { return streetName; } public void setState(String state) { this.state = state; } public void setState() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.state = keyboard.readLine(); keyboard.close(); } catch (IOException e) { System.out.println(e.toString()); } } public String getState() { return state; } public void setCity(String city) { this.city = city; } public void setCity() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.city = keyboard.readLine(); keyboard.close(); } catch (IOException e) { System.out.println(e.toString()); } } public String getCity() { return city; } public void setCountry(String country) { this.country = country; } public void setCountry() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.country = keyboard.readLine(); keyboard.close(); } catch (IOException e) { System.out.println(e.toString()); } } public String getCountry() { return country; } }; their parent(What is the proper name?) class package GroceryReceiptProgram; import java.io.*; public class FoodGroup { private int price, count; private Date purchaseDate, expirationDate; private Location location; private String name; public FoodGroup() { try { setPrice(); setCount(); expirationDate.set(); purchaseDate.set(); location.set(); } catch (NullPointerException e) { System.out.println(e.toString() + ": in the constructor of the FoodGroup class"); } } public void setPrice(int price) { this.price = price; } public void setPrice() { try (BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in))) { System.out.println("What Price?"); price = Integer.parseInt(keyboard.readLine()); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString() + ": in the FoodGroup class, setPrice function"); } catch (NullPointerException e) { System.out.println(e.toString() + ": in FoodGroup class. SetPrice()"); } } public int getPrice() { return price; } public void setCount(int count) { this.count = count; } public void setCount() { try (BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in))) { System.out.println("What count?"); count = Integer.parseInt(keyboard.readLine()); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString() + ": in the FoodGroup class, setCount()"); } catch (NullPointerException e) { System.out.println(e.toString() + ": in FoodGroup class, setCount"); } } public int getCount() { return count; } public void setName(String name) { this.name = name; } public void setName() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.name = keyboard.readLine(); } catch (IOException e) { System.out.println(e.toString()); } } public String getName() { return name; } public void setLocation(Location location) { this.location = location; } public Location getLocation() { return location; } public void setPurchaseDate(Date purchaseDate) { this.purchaseDate = purchaseDate; } public void setPurchaseDate() { this.purchaseDate.set(); } public Date getPurchaseDate() { return purchaseDate; } public void setExpirationDate(Date expirationDate) { this.expirationDate = expirationDate; } public void setExpirationDate() { this.expirationDate.set(); } public Date getExpirationDate() { return expirationDate; } } and finally the main class, so I can get access to all of this work. package GroceryReceiptProgram; public class NewMain { public static void main(String[] args) { FoodGroup test = new FoodGroup(); } } If anyone is further interested, here is a link the UML for this. https://www.dropbox.com/s/1weigjnxih70tbv/GRP.dia

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • Identifier for the “completed” stage of a process: 0, 99, something else?

    - by Arnold Sakhnov
    Say, that you are handling a multi-step process (like a complex registration form, with a number of steps the user has go through in order). You need to be able to save the current state of the process (e.g. so the user can come back to that registration form later and continue form the step where they were left off). Obviously, you’ll probably want to give each “step” an identifier you can refer to: 1, 2, 3, 4, etc. You logic will check for this step_id (or whatever you call it) to render the appropriate data. The question: how would you identify the stage after the final step, like the completed registration state (say, that you have to give that last “step” its own id, that’s how your logic is structured). Would it be a 0, 999, a non-integer value, something else entirely?

    Read the article

  • What is New in ASP.NET 4 Web Development Overview

    - by Aamir Hasan
     Microsoft Recently Microsoft introduce Visual  studio 2010 which have new feature's Name of some new Features are given below. In ASP.NET 4.O has focus on performance and Search Engine Optimization. I'll be taking a look at what I think are the most important new features in ASP.NET 4.Output cache extensibility Session state compression View state mode for individual control Page.MetaKeyword and Page.MetaDescription properties Response.RedirectPermanent method Routing in ASP.NET Increase the URL character length New syntax for Html Encode Predictable Client IDs Web.config file refactoring Auto-Start ASP.NET applications Improvements on Microsoft Ajax LibraryReference:ASP.NET 4 and Visual Studio 2010 Web Development Overview 

    Read the article

  • CQRS &ndash; Questions and Concerns

    - by Dylan Smith
    I’ve been doing a lot of learning on CQRS and Event Sourcing over the last little while and I have a number of questions that I haven’t been able to answer. 1. What is the benefit of CQRS when compared to a typical DDD architecture that uses Event Sourcing and properly captures intent and behavior via verb-based commands? (other than Scalability) 2. When using CQRS what do you do with complex query-based logic? I’m going to elaborate on #1 in this blog post and I’ll do a follow-up post on #2. I watched through Greg Young’s video on the business benefits of CQRS + Event Sourcing and first let me say that I thought it was an excellent presentation that really drives home a lot of the benefits to this approach to architecture (I watched it twice in a row I enjoyed it so much!). But it didn’t answer some of my questions fully (I wish I had been there to ask these of Greg in person!). So let me pick apart some of the points he makes and how they relate to my first question above. I’m completely sold on the idea of event sourcing and have a clear understanding of the benefits that it brings to the table, so I’m not going to question that. But you can use event sourcing without going to a CQRS architecture, so my main question is around the benefits of CQRS + Event Sourcing vs Event Sourcing + Typical DDD architecture Architecture with Event Sourcing + Commands on Left, CQRS on Right Greg talks about how the stereotypical architecture doesn’t support DDD, but is that only because his diagram shows DTO’s coming up from the client. If we use the same diagram but allow the client to send commands doesn’t that remove a lot of the arguments that Greg makes against the stereotypical architecture? We can now introduce verbs into the system. We can capture intent now (storing it still requires event sourcing, but you can implement event sourcing without doing CQRS) We can create a rich domain model (as opposed to an anemic domain model) Scalability is obviously a benefit that CQRS brings to the table, but like Greg says, very few of the systems we create truly need significant scalability Greg talks about the ability to scale your development efforts. He says CQRS allows you to split the system into 3 parts (Client, Domain/Commands, Reads) and assign 3 teams of developers to work on them in parallel; letting you scale your development efforts by 3x with nearly linear gains. But in the stereotypical architecture don’t you already have 2 separate modules that you can split your dev efforts between: The client that sends commands/queries and receives DTO’s, and the Domain which accepts commands/queries, and generates events/DTO’s. If this is true it’s not really a 3x scaling you achieve with CQRS but merely a 1.5x scaling which while great doesn’t sound nearly as dramatic (“I can do it with 10 devs in 12 months – let me hire 5 more and we can have it done in 8 months”). Making the Query side “stupid simple” such that you can assign junior developers (or even outsource it) sounds like a valid benefit, but I have some concerns over what you do with complex query-based logic/behavior. I’m going to go into more detail on this in a follow-up blog post shortly. He also seemed to focus on how “stupid-simple” it is doing queries against the de-normalized data store, but I imagine there is still significant complexity in the event handlers that interpret the events and apply them to the de-normalized tables. It sounds like Greg suggests that because we’re doing CQRS that allows us to apply Event Sourcing when we otherwise wouldn’t be able to (~33:30 in the video). I don’t believe this is true. I don’t see why you wouldn’t be able to apply Event Sourcing without separating out the Commands and Queries. The queries would just operate against the domain model instead of the database. But you’d still get the benefits of Event Sourcing. Without CQRS the queries would only be able to operate against the current state rather than the event history, but even in CQRS the domain behaviors can only operate against the current state and I don’t see that being a big limiting factor. If some query needs to operate against something that is not captured by the current state you would just have to update the domain model to capture that information (no different than if that statement were made about a Command under CQRS). Some of the benefits I do see being applicable are that your domain model might end up being simpler/smaller since it only needs to represent the state needed to process commands and not worry about the reads (like the Deactivate Inventory Item and associated comment example that Greg provides). And also commands that can be handled in a Transaction Script style manner by the command handler simply generating events and not touching the domain model. It also makes it easier for your senior developers to focus on the command behavior and ignore the queries, which is usually going to be a better use of their time. And of course scalability. If anybody out there has any thoughts on this and can help educate me further, please either leave a comment or feel free to get in touch with me via email:

    Read the article

  • BizTalk host throttling &ndash; Singleton pattern and High database size

    - by S.E.R.
    Originally posted on: http://geekswithblogs.net/SERivas/archive/2013/06/30/biztalk-host-throttling-ndash-singleton-pattern-and-high-database-size.aspxI have worked for some days around the singleton pattern (for those unfamiliar with it, read this post by Victor Fehlberg) and have come across a few very interesting posts, among which one dealt with performance issues (here, also by Victor Fehlberg). Simply put: if you have an orchestration which implements the singleton pattern, then performances will continuously decrease as the orchestration receives and consumes messages, and that behavior is more obvious when the orchestration never ends (ie : it keeps looping and never terminates or completes). As I experienced the same kind of problem (actually I was alerted by SCOM, which told me that the host was being throttled because of High database size), I thought it would be a good idea to dig a little bit a see what happens deep inside BizTalk and thus understand the reasons for this behavior. NOTE: in this article, I will focus on this High database size throttling condition. I will try and work on the other conditions in some not too distant future… Test conditions The singleton orchestration For the purpose of this study, I have created the following orchestration, which is a very basic implementation of a singleton that piles up incoming messages, then does something else when a certain timeout has been reached without receiving another message: Throttling settings I have two distinct hosts : one that hosts the receive port (basic FILE port) : Ports_ReceiveHostone that hosts the orchestration : ProcessingHost In order to emphasize the throttling mechanism, I have modified the throttling settings for each of these hosts are as follows (all other parameters are set to the default value): [Throttling thresholds] Message count in database: 500 (default value : 50000) Evolution of performance counters when submitting messages Since we are investigating the High database size throttling condition, here are the performance counter that we should take a look at (all of them are in the BizTalk:Message Agent performance object): Database sizeHigh database sizeMessage delivery throttling stateMessage publishing throttling stateMessage delivery delay (ms)Message publishing delay (ms)Message delivery throttling state durationMessage publishing throttling state duration (If you are not used to Perfmon, I strongly recommend that you start using it right now: it is a wonderful tool that allows you to open the hood and see what is going on inside BizTalk – and other systems) Database size It is quite obvious that we will start by watching the database size and high database size counters, just to see when the first reaches the configured threshold (500) and when the second rings the alarm. NOTE : During this test I submitted 600 messages, one message at a time every 10ms to see the evolution of the counters we have previously selected. It might not show very well on this screenshot, but here is what happened: From 15:46:50 to 15:47:50, the database size for the Ports_ReceiveHost host (blue line) kept growing until it reached a maximum of 504.At 15:47:50, the high database size alert fires At first I was surprised by this result: why is it the database size of the receiving host that keeps growing since it is the processing host that piles up messages? Actually, it makes total sense. This counter measures the size of the database queue that is being filled by the host, not consumed. Therefore, the high database size alert is raised on the host that fills the queue: Ports_ReceiveHost. More information is available on the Public MPWiki page. Now, looking at the Message publishing throttling state for the receiving host (green line), we can see that a throttling condition has been reached at 15:47:50: We can also see that the Message publishing delay(ms) (blue line) has begun growing slowly from this point. All of this explains why performances keep decreasing when a singleton keeps processing new messages: the database size grows and when it has exceeded the Message count in database threshold, the host is throttled and the publishing delay keeps increasing. Digging further So, what happens to the database queue then? Is it flushed some day or does it keep growing and growing indefinitely? The real question being: will the host be throttled forever because of this singleton? To answer this question, I set the Message count in database threshold to 20 (this value is very low in order not to wait for too long, otherwise I certainly would have fallen asleep in front of my screen) and I submitted 30 messages. The test was started at 18:26. At 18:56 (ie : exactly 30min later) the throttling was stopped and the database size was divided by 2. 30 min later again, the database size had dropped to almost zero: I guess I’ll have to find some documentation and do some more testing before I sort this out! My guess is that some maintenance job is at work here, though I cannot tell which one Digging even further If we take a look at the Message delivery throttling state counter for the processing host, we can see that this host was also throttled during the submission of the 600 documents: The value for the counter was 1, meaning that Message delivery incoming rate for the host instance exceeds the Message delivery outgoing rate * the specified Rate overdrive factor (percent) value. We will see this another day… :) A last word Let’s end this article with a warning: DO NOT CHANGE THE THROTTLING SETTINGS LIGHTLY! The temptation can be great to just bypass throttling by setting very high values for each parameter (or zero in some cases, which simply disables throttling). Nevertheless, always keep in mind that this mechanism is here for a very good reason: prevent your BizTalk infrastructure from exploding!! So whatever you do with those settings, do a lot of testing and benchmarking!

    Read the article

  • SQL Spatial: Getting “nearest” calculations working properly

    - by Rob Farley
    If you’ve ever done spatial work with SQL Server, I hope you’ve come across the ‘nearest’ problem. You have five thousand stores around the world, and you want to identify the one that’s closest to a particular place. Maybe you want the store closest to the LobsterPot office in Adelaide, at -34.925806, 138.605073. Or our new US office, at 42.524929, -87.858244. Or maybe both! You know how to do this. You don’t want to use an aggregate MIN or MAX, because you want the whole row, telling you which store it is. You want to use TOP, and if you want to find the closest store for multiple locations, you use APPLY. Let’s do this (but I’m going to use addresses in AdventureWorks2012, as I don’t have a list of stores). Oh, and before I do, let’s make sure we have a spatial index in place. I’m going to use the default options. CREATE SPATIAL INDEX spin_Address ON Person.Address(SpatialLocation); And my actual query: WITH MyLocations AS (SELECT * FROM (VALUES ('LobsterPot Adelaide', geography::Point(-34.925806, 138.605073, 4326)),                        ('LobsterPot USA', geography::Point(42.524929, -87.858244, 4326))                ) t (Name, Geo)) SELECT l.Name, a.AddressLine1, a.City, s.Name AS [State], c.Name AS Country FROM MyLocations AS l CROSS APPLY (     SELECT TOP (1) *     FROM Person.Address AS ad     ORDER BY l.Geo.STDistance(ad.SpatialLocation)     ) AS a JOIN Person.StateProvince AS s     ON s.StateProvinceID = a.StateProvinceID JOIN Person.CountryRegion AS c     ON c.CountryRegionCode = s.CountryRegionCode ; Great! This is definitely working. I know both those City locations, even if the AddressLine1s don’t quite ring a bell. I’m sure I’ll be able to find them next time I’m in the area. But of course what I’m concerned about from a querying perspective is what’s happened behind the scenes – the execution plan. This isn’t pretty. It’s not using my index. It’s sucking every row out of the Address table TWICE (which sucks), and then it’s sorting them by the distance to find the smallest one. It’s not pretty, and it takes a while. Mind you, I do like the fact that it saw an indexed view it could use for the State and Country details – that’s pretty neat. But yeah – users of my nifty website aren’t going to like how long that query takes. The frustrating thing is that I know that I can use the index to find locations that are within a particular distance of my locations quite easily, and Microsoft recommends this for solving the ‘nearest’ problem, as described at http://msdn.microsoft.com/en-au/library/ff929109.aspx. Now, in the first example on this page, it says that the query there will use the spatial index. But when I run it on my machine, it does nothing of the sort. I’m not particularly impressed. But what we see here is that parallelism has kicked in. In my scenario, it’s split the data up into 4 threads, but it’s still slow, and not using my index. It’s disappointing. But I can persuade it with hints! If I tell it to FORCESEEK, or use my index, or even turn off the parallelism with MAXDOP 1, then I get the index being used, and it’s a thing of beauty! Part of the plan is here: It’s massive, and it’s ugly, and it uses a TVF… but it’s quick. The way it works is to hook into the GeodeticTessellation function, which is essentially finds where the point is, and works out through the spatial index cells that surround it. This then provides a framework to be able to see into the spatial index for the items we want. You can read more about it at http://msdn.microsoft.com/en-us/library/bb895265.aspx#tessellation – including a bunch of pretty diagrams. One of those times when we have a much more complex-looking plan, but just because of the good that’s going on. This tessellation stuff was introduced in SQL Server 2012. But my query isn’t using it. When I try to use the FORCESEEK hint on the Person.Address table, I get the friendly error: Msg 8622, Level 16, State 1, Line 1 Query processor could not produce a query plan because of the hints defined in this query. Resubmit the query without specifying any hints and without using SET FORCEPLAN. And I’m almost tempted to just give up and move back to the old method of checking increasingly large circles around my location. After all, I can even leverage multiple OUTER APPLY clauses just like I did in my recent Lookup post. WITH MyLocations AS (SELECT * FROM (VALUES ('LobsterPot Adelaide', geography::Point(-34.925806, 138.605073, 4326)),                        ('LobsterPot USA', geography::Point(42.524929, -87.858244, 4326))                ) t (Name, Geo)) SELECT     l.Name,     COALESCE(a1.AddressLine1,a2.AddressLine1,a3.AddressLine1),     COALESCE(a1.City,a2.City,a3.City),     s.Name AS [State],     c.Name AS Country FROM MyLocations AS l OUTER APPLY (     SELECT TOP (1) *     FROM Person.Address AS ad     WHERE l.Geo.STDistance(ad.SpatialLocation) < 1000     ORDER BY l.Geo.STDistance(ad.SpatialLocation)     ) AS a1 OUTER APPLY (     SELECT TOP (1) *     FROM Person.Address AS ad     WHERE l.Geo.STDistance(ad.SpatialLocation) < 5000     AND a1.AddressID IS NULL     ORDER BY l.Geo.STDistance(ad.SpatialLocation)     ) AS a2 OUTER APPLY (     SELECT TOP (1) *     FROM Person.Address AS ad     WHERE l.Geo.STDistance(ad.SpatialLocation) < 20000     AND a2.AddressID IS NULL     ORDER BY l.Geo.STDistance(ad.SpatialLocation)     ) AS a3 JOIN Person.StateProvince AS s     ON s.StateProvinceID = COALESCE(a1.StateProvinceID,a2.StateProvinceID,a3.StateProvinceID) JOIN Person.CountryRegion AS c     ON c.CountryRegionCode = s.CountryRegionCode ; But this isn’t friendly-looking at all, and I’d use the method recommended by Isaac Kunen, who uses a table of numbers for the expanding circles. It feels old-school though, when I’m dealing with SQL 2012 (and later) versions. So why isn’t my query doing what it’s supposed to? Remember the query... WITH MyLocations AS (SELECT * FROM (VALUES ('LobsterPot Adelaide', geography::Point(-34.925806, 138.605073, 4326)),                        ('LobsterPot USA', geography::Point(42.524929, -87.858244, 4326))                ) t (Name, Geo)) SELECT l.Name, a.AddressLine1, a.City, s.Name AS [State], c.Name AS Country FROM MyLocations AS l CROSS APPLY (     SELECT TOP (1) *     FROM Person.Address AS ad     ORDER BY l.Geo.STDistance(ad.SpatialLocation)     ) AS a JOIN Person.StateProvince AS s     ON s.StateProvinceID = a.StateProvinceID JOIN Person.CountryRegion AS c     ON c.CountryRegionCode = s.CountryRegionCode ; Well, I just wasn’t reading http://msdn.microsoft.com/en-us/library/ff929109.aspx properly. The following requirements must be met for a Nearest Neighbor query to use a spatial index: A spatial index must be present on one of the spatial columns and the STDistance() method must use that column in the WHERE and ORDER BY clauses. The TOP clause cannot contain a PERCENT statement. The WHERE clause must contain a STDistance() method. If there are multiple predicates in the WHERE clause then the predicate containing STDistance() method must be connected by an AND conjunction to the other predicates. The STDistance() method cannot be in an optional part of the WHERE clause. The first expression in the ORDER BY clause must use the STDistance() method. Sort order for the first STDistance() expression in the ORDER BY clause must be ASC. All the rows for which STDistance returns NULL must be filtered out. Let’s start from the top. 1. Needs a spatial index on one of the columns that’s in the STDistance call. Yup, got the index. 2. No ‘PERCENT’. Yeah, I don’t have that. 3. The WHERE clause needs to use STDistance(). Ok, but I’m not filtering, so that should be fine. 4. Yeah, I don’t have multiple predicates. 5. The first expression in the ORDER BY is my distance, that’s fine. 6. Sort order is ASC, because otherwise we’d be starting with the ones that are furthest away, and that’s tricky. 7. All the rows for which STDistance returns NULL must be filtered out. But I don’t have any NULL values, so that shouldn’t affect me either. ...but something’s wrong. I do actually need to satisfy #3. And I do need to make sure #7 is being handled properly, because there are some situations (eg, differing SRIDs) where STDistance can return NULL. It says so at http://msdn.microsoft.com/en-us/library/bb933808.aspx – “STDistance() always returns null if the spatial reference IDs (SRIDs) of the geography instances do not match.” So if I simply make sure that I’m filtering out the rows that return NULL… …then it’s blindingly fast, I get the right results, and I’ve got the complex-but-brilliant plan that I wanted. It just wasn’t overly intuitive, despite being documented. @rob_farley

    Read the article

  • Powershell STA watin

    - by Mike Koerner
    Wow, two posts on the same day. I was working on a quick DLL project to do some web scripting using the awsome power of Watin.  In the past I use to create a vbscript as the test handler to call the DLL but lately I got a Powershell bug to call .NET DLLs. When I tried to debug the Watin call I received: The CurrentThread needs to have it's ApartmentState set to ApartmentState.STA to be able to automate Internet Explorer. I couldn't find a quick google answer to powershell apartmentstate .  Apparently you can set the powershell apartment state by the command line -STA.  http://technet.microsoft.com/en-us/library/dd315276.aspx I've found that the powershell documentation and examples is lacking compared to the Microsoft support I've come to expect.  Why is the Powershell v2.0 in C:\WINDOWS\SYSTEM32\windowspowershell\v1.0 ?

    Read the article

  • Messaging Systems – Handshaking, Reconciliation and Tracking for Data Transparency

    - by Ahsan Alam
    As many corporations build business partnerships with other organizations, the need to share information becomes necessary. Large amount of data sharing using snail mail, email and/or fax are quickly becoming a thing of the past. More and more organizations are relying heavily on Ftp and/or Web Service to exchange data. Corporations apply wide range of technologies and techniques based on available resources and data transfer needs. Sometimes, it involves simple home-grown applications. Other times, large investments are made on products like BizTalk, TIBCO etc. Complexity of information management also varies significantly from one organizations to another. Some may deal with handful of simple steps to process and manage shared data; whereas others may rely on fairly complex processes with heavy interaction with internal and external systems in order to serve the business needs. It is not surprising that many of these systems end up becoming black boxes over a period of time. Consequently, people and business start to rely more and more on developers and support personnel just to extract simple information adding to the loss of productivity. One of the most important factor in any business is transparency to data irrespective of technology preferences and the complexity of business processes. Not knowing the state of data could become very costly to the business. Being involved in messaging systems for some time now, I have heard the same type of questions over and over again. Did we transmit messages successfully? Did we get responses back? What is the expected turn-around-time? Did the system experience any errors? When one company transmits data to one or more company, it may invoke a set of processes that could complete in matter of seconds, or it could days. As data travels from one organizations to another, the uncertainty grows, and the longer it takes to track uncertain state of the data the costlier it gets for the business, So, in every business scenario, it's extremely important to be aware of the state of the data.   Architects of messaging systems can take several steps to aid with data transparency. Some forms of data handshaking and reconciliation mechanism as well as extensive data tracking can be incorporated into the system to provide clear visibility to the data. What do I mean by handshaking and reconciliation? Some might consider these to be a single concept; however, I like to consider them in two unique categories. Handshaking serves as message receipts or acknowledgment. When one transmits messages to another, the receiver must acknowledge each message by sending immediate responses for each transaction. Whenever we use Web Services, handshaking is often achieved utilizing request/reply pattern. Similarly, if Ftp is used, a receiver can acknowledge by dropping messages for the sender as soon as the files are picked up. These forms of handshaking or acknowledgment informs the message sender and receiver that a successful transaction has occurred. I have mentioned earlier that it could take anywhere from a few seconds to a number of days before shared data is completely processed. In addition, whenever a batched transaction is used, processing time for each data element inside the batch could also vary significantly. So, in order to successfully manage data processing, reconciliation becomes extremely important; otherwise it may result into data loss or in some cases hefty penalty. Reconciliation can be done in many ways. Partner organizations can share and compare ad hoc reports to achieve reconciliation. On the other hand, partners can agree on some type of systematic reconciliation messages. Systems within responsible parties can trigger messages to partners as soon as the data process completes.   Next step in the data transparency is extensive data tracking. Some products such as BizTalk and TIBCO provide built-in functionality for data tracking; however, built-in functionality may not always be adequate. Sometimes additional tracking system (or databases) needs to be built in order monitor all types of data flow including, message transactions, handshaking, reconciliation, system errors and many more. If these types of data are captured, then these can be presented to business users in any forms or fashion. When business users are empowered with such information, then the reliance on developers and support teams decreases dramatically.   In today's collaborative world of information sharing, data transparency is key to the success of every business. The state of business data will constantly change. However, when people have easier access to various states of data, it allows them to make better and quicker decisions. Therefore, I feel that data handshaking, reconciliation and tracking is very important aspect of messaging systems.

    Read the article

  • newly added files don't sync down

    - by poolie
    I added some files into my Ubuntu One/My Files folder on my desktop machine. I can see them in the U1 web ui. My laptop is connected to the same U1 account, and in the Ubuntu One preference pane I can see it's connected to the account. However, my new files never download. In syncdaemon.log I can see it checking a bunch of other existing files, and then the file ends with many repetitions of 2011-01-04 11:05:42,277 - ubuntuone.SyncDaemon.Main - NOTE - ---- MARK (state: <State: 'READY' (queues WORKING_ON_METADATA connection 'Not User With Network')>; queues: metadata: 1; content: 0; hash: 0, fsm-cache: hit=5086 miss=69) ---- I do have a working network connection. What do I do now?

    Read the article

  • GDC 2012: Best practices in developing a web game

    GDC 2012: Best practices in developing a web game (Pre-recorded GDC content) There's a new wave of console/pc/mobile game developers moving to the web looking to take advantage of the massive user base, along side of the powerful social graphs available there. The web as a platform is a very different technology stack than consoles / mobile, and as such, requires different development processes. This talk is targeted towards game developers who are looking to understand more about the development processes for web development including where to host your assets, proper techniques in caching to the persistant file store; dealing with sessions, storing user state, user login, game state storage, social graph integration, localization, audio, rendering, hardware detection and testing / distribution. If you're interested in developing a web game, you need to attend this talk! Speaker: Colt McAnlis From: GoogleDevelopers Views: 5149 131 ratings Time: 01:03:52 More in Science & Technology

    Read the article

  • Ogre 3d and bullet physics interaction

    - by Tim
    I have been playing around with Ogre3d and trying to integrate bullet physics. I have previously somewhat successfully got this functionality working with irrlicht and bullet and I am trying to base this on what I had done there, but modifying it to fit with Ogre. It is working but not correctly and I would like some help to understand what it is I am doing wrong. I have a state system and when I enter the "gamestate" I call some functions such as setting up a basic scene, creating the physics simulation. I am doing that as follows. void GameState::enter() { ... // Setup Physics btBroadphaseInterface *BroadPhase = new btAxisSweep3(btVector3(-1000,-1000,-1000), btVector3(1000,1000,1000)); btDefaultCollisionConfiguration *CollisionConfiguration = new btDefaultCollisionConfiguration(); btCollisionDispatcher *Dispatcher = new btCollisionDispatcher(CollisionConfiguration); btSequentialImpulseConstraintSolver *Solver = new btSequentialImpulseConstraintSolver(); World = new btDiscreteDynamicsWorld(Dispatcher, BroadPhase, Solver, CollisionConfiguration); ... createScene(); } In the createScene method I add a light and try to setup a "ground" plane to act as the ground for things to collide with.. as follows. I expect there is issues with this as I get objects colliding with the ground but half way through it and they glitch around like crazy on collision. void GameState::createScene() { m_pSceneMgr->createLight("Light")->setPosition(75,75,75); // Physics // As a test we want a floor plane for things to collide with Ogre::Entity *ent; Ogre::Plane p; p.normal = Ogre::Vector3(0,1,0); p.d = 0; Ogre::MeshManager::getSingleton().createPlane( "FloorPlane", Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME, p, 200000, 200000, 20, 20, true, 1, 9000,9000,Ogre::Vector3::UNIT_Z); ent = m_pSceneMgr->createEntity("floor", "FloorPlane"); ent->setMaterialName("Test/Floor"); Ogre::SceneNode *node = m_pSceneMgr->getRootSceneNode()->createChildSceneNode(); node->attachObject(ent); btTransform Transform; Transform.setIdentity(); Transform.setOrigin(btVector3(0,1,0)); // Give it to the motion state btDefaultMotionState *MotionState = new btDefaultMotionState(Transform); btCollisionShape *Shape = new btStaticPlaneShape(btVector3(0,1,0),0); // Add Mass btVector3 LocalInertia; Shape->calculateLocalInertia(0, LocalInertia); // CReate the rigid body object btRigidBody *RigidBody = new btRigidBody(0, MotionState, Shape, LocalInertia); // Store a pointer to the Ogre Node so we can update it later RigidBody->setUserPointer((void *) (node)); // Add it to the physics world World->addRigidBody(RigidBody); Objects.push_back(RigidBody); m_pNumEntities++; // End Physics } I then have a method to create a cube and give it rigid body physics properties. I know there will be errors here as I get the items colliding with the ground but not with each other properly. So I would appreciate some input on what I am doing wrong. void GameState::CreateBox(const btVector3 &TPosition, const btVector3 &TScale, btScalar TMass) { Ogre::Vector3 size = Ogre::Vector3::ZERO; Ogre::Vector3 pos = Ogre::Vector3::ZERO; Ogre::Vector3 scale = Ogre::Vector3::ZERO; pos.x = TPosition.getX(); pos.y = TPosition.getY(); pos.z = TPosition.getZ(); scale.x = TScale.getX(); scale.y = TScale.getY(); scale.z = TScale.getZ(); Ogre::Entity *entity = m_pSceneMgr->createEntity( "Box" + Ogre::StringConverter::toString(m_pNumEntities), "cube.mesh"); entity->setCastShadows(true); Ogre::AxisAlignedBox boundingB = entity->getBoundingBox(); size = boundingB.getSize(); //size /= 2.0f; // Only the half needed? //size *= 0.96f; // Bullet margin is a bit bigger so we need a smaller size entity->setMaterialName("Test/Cube"); Ogre::SceneNode *node = m_pSceneMgr->getRootSceneNode()->createChildSceneNode(); node->attachObject(entity); node->setPosition(pos); //node->scale(scale); // Physics btTransform Transform; Transform.setIdentity(); Transform.setOrigin(TPosition); // Give it to the motion state btDefaultMotionState *MotionState = new btDefaultMotionState(Transform); btVector3 HalfExtents(TScale.getX()*0.5f,TScale.getY()*0.5f,TScale.getZ()*0.5f); btCollisionShape *Shape = new btBoxShape(HalfExtents); // Add Mass btVector3 LocalInertia; Shape->calculateLocalInertia(TMass, LocalInertia); // CReate the rigid body object btRigidBody *RigidBody = new btRigidBody(TMass, MotionState, Shape, LocalInertia); // Store a pointer to the Ogre Node so we can update it later RigidBody->setUserPointer((void *) (node)); // Add it to the physics world World->addRigidBody(RigidBody); Objects.push_back(RigidBody); m_pNumEntities++; } Then in the GameState::update() method which which runs every frame to handle input and render etc I call an UpdatePhysics method to update the physics simulation. void GameState::UpdatePhysics(unsigned int TDeltaTime) { World->stepSimulation(TDeltaTime * 0.001f, 60); btRigidBody *TObject; for(std::vector<btRigidBody *>::iterator it = Objects.begin(); it != Objects.end(); ++it) { // Update renderer Ogre::SceneNode *node = static_cast<Ogre::SceneNode *>((*it)->getUserPointer()); TObject = *it; // Set position btVector3 Point = TObject->getCenterOfMassPosition(); node->setPosition(Ogre::Vector3((float)Point[0], (float)Point[1], (float)Point[2])); // set rotation btVector3 EulerRotation; QuaternionToEuler(TObject->getOrientation(), EulerRotation); node->setOrientation(1,(Ogre::Real)EulerRotation[0], (Ogre::Real)EulerRotation[1], (Ogre::Real)EulerRotation[2]); //node->rotate(Ogre::Vector3(EulerRotation[0], EulerRotation[1], EulerRotation[2])); } } void GameState::QuaternionToEuler(const btQuaternion &TQuat, btVector3 &TEuler) { btScalar W = TQuat.getW(); btScalar X = TQuat.getX(); btScalar Y = TQuat.getY(); btScalar Z = TQuat.getZ(); float WSquared = W * W; float XSquared = X * X; float YSquared = Y * Y; float ZSquared = Z * Z; TEuler.setX(atan2f(2.0f * (Y * Z + X * W), -XSquared - YSquared + ZSquared + WSquared)); TEuler.setY(asinf(-2.0f * (X * Z - Y * W))); TEuler.setZ(atan2f(2.0f * (X * Y + Z * W), XSquared - YSquared - ZSquared + WSquared)); TEuler *= RADTODEG; } I seem to have issues with the cubes not colliding with each other and colliding strangely with the ground. I have tried to capture the effect with the attached image. I would appreciate any help in understanding what I have done wrong. Thanks. EDIT : Solution The following code shows the changes I made to get accurate physics. void GameState::createScene() { m_pSceneMgr->createLight("Light")->setPosition(75,75,75); // Physics // As a test we want a floor plane for things to collide with Ogre::Entity *ent; Ogre::Plane p; p.normal = Ogre::Vector3(0,1,0); p.d = 0; Ogre::MeshManager::getSingleton().createPlane( "FloorPlane", Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME, p, 200000, 200000, 20, 20, true, 1, 9000,9000,Ogre::Vector3::UNIT_Z); ent = m_pSceneMgr->createEntity("floor", "FloorPlane"); ent->setMaterialName("Test/Floor"); Ogre::SceneNode *node = m_pSceneMgr->getRootSceneNode()->createChildSceneNode(); node->attachObject(ent); btTransform Transform; Transform.setIdentity(); // Fixed the transform vector here for y back to 0 to stop the objects sinking into the ground. Transform.setOrigin(btVector3(0,0,0)); // Give it to the motion state btDefaultMotionState *MotionState = new btDefaultMotionState(Transform); btCollisionShape *Shape = new btStaticPlaneShape(btVector3(0,1,0),0); // Add Mass btVector3 LocalInertia; Shape->calculateLocalInertia(0, LocalInertia); // CReate the rigid body object btRigidBody *RigidBody = new btRigidBody(0, MotionState, Shape, LocalInertia); // Store a pointer to the Ogre Node so we can update it later RigidBody->setUserPointer((void *) (node)); // Add it to the physics world World->addRigidBody(RigidBody); Objects.push_back(RigidBody); m_pNumEntities++; // End Physics } void GameState::CreateBox(const btVector3 &TPosition, const btVector3 &TScale, btScalar TMass) { Ogre::Vector3 size = Ogre::Vector3::ZERO; Ogre::Vector3 pos = Ogre::Vector3::ZERO; Ogre::Vector3 scale = Ogre::Vector3::ZERO; pos.x = TPosition.getX(); pos.y = TPosition.getY(); pos.z = TPosition.getZ(); scale.x = TScale.getX(); scale.y = TScale.getY(); scale.z = TScale.getZ(); Ogre::Entity *entity = m_pSceneMgr->createEntity( "Box" + Ogre::StringConverter::toString(m_pNumEntities), "cube.mesh"); entity->setCastShadows(true); Ogre::AxisAlignedBox boundingB = entity->getBoundingBox(); // The ogre bounding box is slightly bigger so I am reducing it for // use with the rigid body. size = boundingB.getSize()*0.95f; entity->setMaterialName("Test/Cube"); Ogre::SceneNode *node = m_pSceneMgr->getRootSceneNode()->createChildSceneNode(); node->attachObject(entity); node->setPosition(pos); node->showBoundingBox(true); //node->scale(scale); // Physics btTransform Transform; Transform.setIdentity(); Transform.setOrigin(TPosition); // Give it to the motion state btDefaultMotionState *MotionState = new btDefaultMotionState(Transform); // I got the size of the bounding box above but wasn't using it to set // the size for the rigid body. This now does. btVector3 HalfExtents(size.x*0.5f,size.y*0.5f,size.z*0.5f); btCollisionShape *Shape = new btBoxShape(HalfExtents); // Add Mass btVector3 LocalInertia; Shape->calculateLocalInertia(TMass, LocalInertia); // CReate the rigid body object btRigidBody *RigidBody = new btRigidBody(TMass, MotionState, Shape, LocalInertia); // Store a pointer to the Ogre Node so we can update it later RigidBody->setUserPointer((void *) (node)); // Add it to the physics world World->addRigidBody(RigidBody); Objects.push_back(RigidBody); m_pNumEntities++; } void GameState::UpdatePhysics(unsigned int TDeltaTime) { World->stepSimulation(TDeltaTime * 0.001f, 60); btRigidBody *TObject; for(std::vector<btRigidBody *>::iterator it = Objects.begin(); it != Objects.end(); ++it) { // Update renderer Ogre::SceneNode *node = static_cast<Ogre::SceneNode *>((*it)->getUserPointer()); TObject = *it; // Set position btVector3 Point = TObject->getCenterOfMassPosition(); node->setPosition(Ogre::Vector3((float)Point[0], (float)Point[1], (float)Point[2])); // Convert the bullet Quaternion to an Ogre quaternion btQuaternion btq = TObject->getOrientation(); Ogre::Quaternion quart = Ogre::Quaternion(btq.w(),btq.x(),btq.y(),btq.z()); // use the quaternion with setOrientation node->setOrientation(quart); } } The QuaternionToEuler function isn't needed so that was removed from code and header files. The objects now collide with the ground and each other appropriately.

    Read the article

  • Why might login failures cause SQL 2005 to dump and ditch?

    - by Byron Sommardahl
    Our SQL 2005 server began timing out and finally stopped responding on Oct 26th. The application logs showed a ton of 17883 events leading up to a reboot. After the reboot everything was fine but we were still scratching our heads. Fast forward 6 days... it happened again. Then again 2 days later. The last night. Today it has happened three times to far. The timeline is fairly predictable when it happens: Trans log backups. Login failure for "user2". Minidump Another minidump for the scheduler Repeated 17883 events. Server fails little by little until it won't accept any requests. Reboot is all that gets us going again (a band-aid) Interesting, though, is that the server box itself doesn't seem to have any problems. CPU usage is normal. Network connectivity is fine. We can remote in and look at logs. Management studio does eventually bog down, though. Today, for the first time, we tried stopping services instead of a reboot. All services stopped on their own except for the SQL Server service. We finally did an "end task" on that one and were able to bring everything back up. It worked fine for about 30 minutes until we started seeing timeouts and 17883's again. This time, probably because we didn't reboot all the way, we saw a bunch of 844 events mixed in with the 17883's. Our entire tech team here is scratching heads... some ideas we're kicking around: MS Cumulative Update hit around the same time as when we first had a problem. Since then, we've rolled it back. Maybe it didn't rollback all the way. The situation looks and feels like an unhandled "stack overflow" (no relation) in that it starts small and compounds over time. Problem with this is that there isn't significant CPU usage. At any rate, we're not ruling SQL 2005 bug out at all. Maybe we added one too many import processes and have reached our limit on this box. (hard to believe). Looking at SQLDUMP0151.log at the time of one of the crashes. There are some "login failures" and then there are two stack dumps. 1st a normal stack dump, 2nd for a scheduler dump. Here's a snippet: (sorry for the lack of line breaks) 2009-11-10 11:59:14.95 spid63 Using 'xpsqlbot.dll' version '2005.90.3042' to execute extended stored procedure 'xp_qv'. This is an informational message only; no user action is required. 2009-11-10 11:59:15.09 spid63 Using 'xplog70.dll' version '2005.90.3042' to execute extended stored procedure 'xp_msver'. This is an informational message only; no user action is required. 2009-11-10 12:02:33.24 Logon Error: 18456, Severity: 14, State: 16. 2009-11-10 12:02:33.24 Logon Login failed for user 'standard_user2'. [CLIENT: 50.36.172.101] 2009-11-10 12:08:21.12 Logon Error: 18456, Severity: 14, State: 16. 2009-11-10 12:08:21.12 Logon Login failed for user 'standard_user2'. [CLIENT: 50.36.172.101] 2009-11-10 12:13:49.38 Logon Error: 18456, Severity: 14, State: 16. 2009-11-10 12:13:49.38 Logon Login failed for user 'standard_user2'. [CLIENT: 50.36.172.101] 2009-11-10 12:15:16.88 Logon Error: 18456, Severity: 14, State: 16. 2009-11-10 12:15:16.88 Logon Login failed for user 'standard_user2'. [CLIENT: 50.36.172.101] 2009-11-10 12:18:24.41 Logon Error: 18456, Severity: 14, State: 16. 2009-11-10 12:18:24.41 Logon Login failed for user 'standard_user2'. [CLIENT: 50.36.172.101] 2009-11-10 12:18:38.88 spid111 Using 'dbghelp.dll' version '4.0.5' 2009-11-10 12:18:39.02 spid111 *Stack Dump being sent to C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\LOG\SQLDump0149.txt 2009-11-10 12:18:39.02 spid111 SqlDumpExceptionHandler: Process 111 generated fatal exception c0000005 EXCEPTION_ACCESS_VIOLATION. SQL Server is terminating this process. 2009-11-10 12:18:39.02 spid111 * ***************************************************************************** 2009-11-10 12:18:39.02 spid111 * 2009-11-10 12:18:39.02 spid111 * BEGIN STACK DUMP: 2009-11-10 12:18:39.02 spid111 * 11/10/09 12:18:39 spid 111 2009-11-10 12:18:39.02 spid111 * 2009-11-10 12:18:39.02 spid111 * 2009-11-10 12:18:39.02 spid111 * Exception Address = 0159D56F Module(sqlservr+0059D56F) 2009-11-10 12:18:39.02 spid111 * Exception Code = c0000005 EXCEPTION_ACCESS_VIOLATION 2009-11-10 12:18:39.02 spid111 * Access Violation occurred writing address 00000000 2009-11-10 12:18:39.02 spid111 * Input Buffer 138 bytes - 2009-11-10 12:18:39.02 spid111 * " N R S C _ P T A 22 00 4e 00 52 00 53 00 43 00 5f 00 50 00 54 00 41 00 2009-11-10 12:18:39.02 spid111 * C _ Q A . d b o . 43 00 5f 00 51 00 41 00 2e 00 64 00 62 00 6f 00 2e 00 2009-11-10 12:18:39.02 spid111 * U s p S e l N e x 55 00 73 00 70 00 53 00 65 00 6c 00 4e 00 65 00 78 00 2009-11-10 12:18:39.02 spid111 * t A c c o u n t 74 00 41 00 63 00 63 00 6f 00 75 00 6e 00 74 00 00 00 2009-11-10 12:18:39.02 spid111 * @ i n t F o r m I 0a 40 00 69 00 6e 00 74 00 46 00 6f 00 72 00 6d 00 49 2009-11-10 12:18:39.02 spid111 * D & 8 @ t x 00 44 00 00 26 04 04 38 00 00 00 09 40 00 74 00 78 00 2009-11-10 12:18:39.02 spid111 * t A l i a s § 74 00 41 00 6c 00 69 00 61 00 73 00 00 a7 0f 00 09 04 2009-11-10 12:18:39.02 spid111 * Ð GQE9732 d0 00 00 07 00 47 51 45 39 37 33 32 2009-11-10 12:18:39.02 spid111 * 2009-11-10 12:18:39.02 spid111 * 2009-11-10 12:18:39.02 spid111 * MODULE BASE END SIZE 2009-11-10 12:18:39.02 spid111 * sqlservr 01000000 02C09FFF 01c0a000 2009-11-10 12:18:39.02 spid111 * ntdll 7C800000 7C8C1FFF 000c2000 2009-11-10 12:18:39.02 spid111 * kernel32 77E40000 77F41FFF 00102000

    Read the article

  • How do you decide site availability requirements?

    - by Nathan Long
    I work on a web application to file a specific kind of county taxes. Our company wants our state to mandate that counties must accept electronic filings (as opposed to paper) from any system that meets some sensible requirements for uptime, security, data validation, etc. (Yes, this would help us as a business, but it would also force county governments to be more efficient.) We're creating a draft of those requirements to be reviewed and tweaked with the state. One of the sections is "availability." We want to specify something reasonably high, but not so high that any unexpected problem will get us (or a competitor) penalized. How do we decide what's reasonable for availability requirements?

    Read the article

  • Unable install cmake and ccmake?

    - by user159618
    So the thing is I'm trying to install Cmake and cmake-curses-gui. I have updated the system with apt-get-update. sudo apt-get install cmake Reading package lists... Done Building dependency tree Reading state information... Done Package cmake is not available, but is referred to by another package. This may mean that the package is missing, has been obsoleted, or is only available from another source E: Package 'cmake' has no installation candidate sudo apt-get install cmake-curses-gui Reading package lists... Done Building dependency tree Reading state information... Done E: Unable to locate package cmake-curses-gui That's strange. Can anyone give some pointers? Pastbin sources.list :- http://pastebin.com/DufycYfZ

    Read the article

< Previous Page | 77 78 79 80 81 82 83 84 85 86 87 88  | Next Page >