Search Results

Search found 12765 results on 511 pages for 'format'.

Page 81/511 | < Previous Page | 77 78 79 80 81 82 83 84 85 86 87 88  | Next Page >

  • Deterministic/Consistent Unique Masking

    - by Dinesh Rajasekharan-Oracle
    One of the key requirements while masking data in large databases or multi database environment is to consistently mask some columns, i.e. for a given input the output should always be the same. At the same time the masked output should not be predictable. Deterministic masking also eliminates the need to spend enormous amount of time spent in identifying data relationships, i.e. parent and child relationships among columns defined in the application tables. In this blog post I will explain different ways of consistently masking the data across databases using Oracle Data Masking and Subsetting The readers of post should have minimal knowledge on Oracle Enterprise Manager 12c, Application Data Modeling, Data Masking concepts. For more information on these concepts, please refer to Oracle Data Masking and Subsetting document Oracle Data Masking and Subsetting 12c provides four methods using which users can consistently yet irreversibly mask their inputs. 1. Substitute 2. SQL Expression 3. Encrypt 4. User Defined Function SUBSTITUTE The substitute masking format replaces the original value with a value from a pre-created database table. As the method uses a hash based algorithm in the back end the mappings are consistent. For example consider DEPARTMENT_ID in EMPLOYEES table is replaced with FAKE_DEPARTMENT_ID from FAKE_TABLE. The substitute masking transformation that all occurrences of DEPARTMENT_ID say ‘101’ will be replaced with ‘502’ provided same substitution table and column is used , i.e. FAKE_TABLE.FAKE_DEPARTMENT_ID. The following screen shot shows the usage of the Substitute masking format with in a masking definition: Note that the uniqueness of the masked value depends on the number of columns being used in the substitution table i.e. if the original table contains 50000 unique values, then for the masked output to be unique and deterministic the substitution column should also contain 50000 unique values without which only consistency is maintained but not uniqueness. SQL EXPRESSION SQL Expression replaces an existing value with the output of a specified SQL Expression. For example while masking an EMPLOYEES table the EMAIL_ID of an employee has to be in the format EMPLOYEE’s [email protected] while FIRST_NAME and LAST_NAME are the actual column names of the EMPLOYEES table then the corresponding SQL Expression will look like %FIRST_NAME%||’.’||%LAST_NAME%||’@COMPANY.COM’. The advantage of this technique is that if you are masking FIRST_NAME and LAST_NAME of the EMPLOYEES table than the corresponding EMAIL ID will be replaced accordingly by the masking scripts. One of the interesting aspect’s of a SQL Expressions is that you can use sub SQL expressions, which means that you can write a nested SQL and use it as SQL Expression to address a complex masking business use cases. SQL Expression can also be used to consistently replace value with hashed value using Oracle’s PL/SQL function ORA_HASH. The following SQL Expression will help in the previous example for replacing the DEPARTMENT_IDs with a hashed number ORA_HASH (%DEPARTMENT_ID%, 1000) The following screen shot shows the usage of encrypt masking format with in the masking definition: ORA_HASH takes three arguments: 1. Expression which can be of any data type except LONG, LOB, User Defined Type [nested table type is allowed]. In the above example I used the Original value as expression. 2. Number of hash buckets which can be number between 0 and 4294967295. The default value is 4294967295. You can also co-relate the number of hash buckets to a range of numbers. In the above example above the bucket value is specified as 1000, so the end result will be a hashed number in between 0 and 1000. 3. Seed, can be any number which decides the consistency, i.e. for a given seed value the output will always be same. The default seed is 0. In the above SQL Expression a seed in not specified, so it to 0. If you have to use a non default seed then the function will look like. ORA_HASH (%DEPARTMENT_ID%, 1000, 1234 The uniqueness depends on the input and the number of hash buckets used. However as ORA_HASH uses a 32 bit algorithm, considering birthday paradox or pigeonhole principle there is a 0.5 probability of collision after 232-1 unique values. ENCRYPT Encrypt masking format uses a blend of 3DES encryption algorithm, hashing, and regular expression to produce a deterministic and unique masked output. The format of the masked output corresponds to the specified regular expression. As this technique uses a key [string] to encrypt the data, the same string can be used to decrypt the data. The key also acts as seed to maintain consistent outputs for a given input. The following screen shot shows the usage of encrypt masking format with in the masking definition: Regular Expressions may look complex for the first time users but you will soon realize that it’s a simple language. There are many resources in internet, oracle documentation, oracle learning library, my oracle support on writing a Regular Expressions, out of all the following My Oracle Support document helped me to get started with Regular Expressions: Oracle SQL Support for Regular Expressions[Video](Doc ID 1369668.1) USER DEFINED FUNCTION [UDF] User Defined Function or UDF provides flexibility for the users to code their own masking logic in PL/SQL, which can be called from masking Defintion. The standard format of an UDF in Oracle Data Masking and Subsetting is: Function udf_func (rowid varchar2, column_name varchar2, original_value varchar2) returns varchar2; Where • rowid is the row identifier of the column that needs to be masked • column_name is the name of the column that needs to be masked • original_value is the column value that needs to be masked You can achieve deterministic masking by using Oracle’s built in hash functions like, ORA_HASH, DBMS_CRYPTO.MD4, DBMS_CRYPTO.MD5, DBMS_UTILITY. GET_HASH_VALUE.Please refers to the Oracle Database Documentation for more information on the Oracle Hash functions. For example the following masking UDF generate deterministic unique hexadecimal values for a given string input: CREATE OR REPLACE FUNCTION RD_DUX (rid varchar2, column_name varchar2, orig_val VARCHAR2) RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE IS stext varchar2 (26); no_of_characters number(2); BEGIN no_of_characters:=6; stext:=substr(RAWTOHEX(DBMS_CRYPTO.HASH(UTL_RAW.CAST_TO_RAW(text),1)),0,no_of_characters); RETURN stext; END; The uniqueness depends on the input and length of the string and number of bits used by hash algorithm. In the above function MD4 hash is used [denoted by argument 1 in the DBMS_CRYPTO.HASH function which is a 128 bit algorithm which produces 2^128-1 unique hashed values , however this is limited by the length of the input string which is 6, so only 6^6 unique values will be generated. Also do not forget about the birthday paradox/pigeonhole principle mentioned earlier in this post. An another example is to consistently replace characters or numbers preserving the length and special characters as shown below: CREATE OR REPLACE FUNCTION RD_DUS(rid varchar2,column_name varchar2,orig_val VARCHAR2) RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE IS stext varchar2(26); BEGIN DBMS_RANDOM.SEED(orig_val); stext:=TRANSLATE(orig_val,'ABCDEFGHILKLMNOPQRSTUVWXYZ',DBMS_RANDOM.STRING('U',26)); stext:=TRANSLATE(stext,'abcdefghijklmnopqrstuvwxyz',DBMS_RANDOM.STRING('L',26)); stext:=TRANSLATE(stext,'0123456789',to_char(DBMS_RANDOM.VALUE(1,9))); stext:=REPLACE(stext,'.','0'); RETURN stext; END; The following screen shot shows the usage of an UDF with in a masking definition: To summarize, Oracle Data Masking and Subsetting helps you to consistently mask data across databases using one or all of the methods described in this post. It saves the hassle of identifying the parent-child relationships defined in the application table. Happy Masking

    Read the article

  • How to use jQuery datepicker as a control parameter for SqlDataSource?

    - by Matt
    I have the need to display a date in this format: dd/mm/yyyy. This is actually being stored in an ASP.NET textbox and being used as a control parameter for a select on the GridView. When the query is run, though, the date format should change to 'd M y' (for Oracle). It is not working. Can someone tell me what I'm doing wrong? Right now I am pushing the "new" format to a invisible label and using the label as my control param: $(document).ready(function() { //datepicker for query, shown traditionally but holding an Oracle-needed format $('[id$=txtBeginDate]').datepicker({ minDate: -7 , altFormat: 'd M y' }); //get alt format var altFormat = $('[id$=txtBeginDate]').datepicker("option", "altFormat"); //set date to be altformat $('[id$=lblActualDate]').datepicker("option", "altFormat", 'd M y'); });

    Read the article

  • Improve the Quality of ePub eBooks with Sigil

    - by Matthew Guay
    Would you like to correct errors in your ePub formatted eBooks, or even split them into chapters and create a Table of Contents?  Here’s how you can with the free program Sigil. eBooks are increasingly popular with the rise of eBook readers and reading apps on mobile devices.  We recently showed you how to convert a PDF eBook to ePub format, but as you may have noticed, sometimes the converted file had some glitches or odd formatting.  Additionally, many of the many free ePub books available online from sources like the Project Guttenberg do not include a table of contents.  Sigil is a free application for Windows, OS X, and Linux that lets you edit ePub files, so let’s look at how you can use it to improve your eBooks. Note: Sigil took several moments to open files in our tests, and froze momentarily when we maximized the window.  Sigil is currently pre-release software in active development, so we would expect the bugs to be worked out in future versions.  As usual, only install if you’re comfortable testing pre-release software. Getting Started Download Sigil (link below), making sure to select the correct version for your computer.  Run the installer, and select your preferred setup language when prompted. After a moment the installer will appear; setup as normal. Launch Sigil when it’s finished installing.  It opens with a default blank ePub file, so you could actually start writing an eBook from scratch right here. Edit Your ePub eBooks Now you’re ready to edit your ePub books.  Click Open and browse to the file you want to edit. Now you can double-click any of the HTML or XHTML files on the left sidebar and edit them just like you would in Word. Or you can choose to view it in Code View and edit the actual HTML directly. The sidebar also gives you access to the other parts of the ePub file, such as Images and CSS styles. If your ePub file has a Table of Contents, you can edit it with Sigil as well.  Click Tools in the menu bar, and then select TOC Editor.  Strangely there is no way to create a new table of contents, but you can remove entries from existing one.   Convert TXT Files to ePub Many free eBooks online, especially older, out of copyright titles, are available in plain text format.  One problem with these files is that they usually use hard returns at the end of lines, so they don’t reflow to fill your screen efficiently. Sigil can easily convert these files to the more useful ePub format.  Open the text file in Sigil, and it will automatically reflow the text and convert it ePub.  As you can see in the screenshot below, the text in the eBook does not have hard line-breaks at the end of each line, and will be much more readable on mobile devices. Note that Sigil may take several moments opening the book, and may even become unresponsive while analyzing it.   Now you can edit your eBook, split it into chapters, or just save it as is.  Either way, make sure to select Save as to save your book as ePub format. Conclusion As mentioned before, Sigil seems to run slow at times, especially when editing large eBooks.  But it’s still a nice solution to edit and extend your ePub eBooks, and even convert plain text eBooks to the nicer ePub format.  Now you can make your eBooks work just like you want, and read them on your favorite device! If you feel comfortable editing HTML files, check out our article on how to edit ePub eBooks with your favorite HTML editor. Link Download Sigil from Google Code Download free ePub eBooks from Project Guttenberg Similar Articles Productive Geek Tips Edit ePub eBooks with Your Favorite HTML EditorConvert a PDF eBook to ePub Format for Your iPad, iPhone, or eReaderRead Mobi eBooks on Kindle for PCFriday Fun: Watch HD Video Content with MeevidPreview and Purchase Ebooks with Kindle for PC TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips HippoRemote Pro 2.2 Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Get Your Team’s World Cup Schedule In Google Calendar Backup Drivers With Driver Magician TubeSort: YouTube Playlist Organizer XPS file format & XPS Viewer Explained Microsoft Office Web Apps Guide Know if Someone Accessed Your Facebook Account

    Read the article

  • will_paginate undefined method error - Ruby on Rails

    - by bgadoci
    I just installed the gem for will_paginate and it says that it was installed successfully. I followed all the instructions listed with the plugin and I am getting an 'undefined method `paginate' for' error. Can't find much in the way of Google search and haven't been able to fix it myself (obviously). Here is the code: PostsController def index @tag_counts = Tag.count(:group => :tag_name, :order => 'updated_at DESC', :limit => 10) @posts = Post.paginate :page => params[:page], :per_page => 50 respond_to do |format| format.html # index.html.erb format.xml { render :xml => @posts } format.json { render :json => @posts } format.atom end end /model/post.rb class Post < ActiveRecord::Base validates_presence_of :body, :title has_many :comments, :dependent => :destroy has_many :tags, :dependent => :destroy cattr_reader :per_page @@per_page = 10 end /posts/views/index.html.erb <%= will_paginate @posts %>

    Read the article

  • How do I get a mp3 file's total time in Java?

    - by Tom Brito
    The answers provided in How do I get a sound file’s total time in Java? work well for wav files, but not for mp3 files. They are (given a file): AudioInputStream audioInputStream = AudioSystem.getAudioInputStream(file); AudioFormat format = audioInputStream.getFormat(); long frames = audioInputStream.getFrameLength(); double durationInSeconds = (frames+0.0) / format.getFrameRate(); and: AudioInputStream audioInputStream = AudioSystem.getAudioInputStream(file); AudioFormat format = audioInputStream.getFormat(); long audioFileLength = file.length(); int frameSize = format.getFrameSize(); float frameRate = format.getFrameRate(); float durationInSeconds = (audioFileLength / (frameSize * frameRate)); They give the same correct result for wav files, but wrong and different results for mp3 files. Any idea what do I have to do to get the mp3 file's duration?

    Read the article

  • How to list TODO: in Ant build output

    - by C. Ross
    Related: How to use ant to check for tags (TODO: etc) in java source How can I get ant to list TODO: tags found in my code in the build output when I run it. I would like build failure to be optional (ie: a setting) if they are found. I've tried Checkstyle as suggested in the related post, but it doesn't display the text of the TODO:. IE: [checkstyle] .../src/Game.java:36: warning: Comment matches to-do format 'TODO:'. [checkstyle] .../src/Game.java:41: warning: Comment matches to-do format 'TODO:'. [checkstyle] .../src/GameThread.java:25: warning: Comment matches to-do format 'TODO:'. [checkstyle] .../src/GameThread.java:30: warning: Comment matches to-do format 'TODO:'. [checkstyle] .../src/GameThread.java:44: warning: Comment matches to-do format 'TODO:'.

    Read the article

  • Assistance using respond_to to find the right actions to render PDF in ruby on rails

    - by Angela
    Hi, I am trying out Prince with the Princely plugin, which is supposed to format templates that have the .pdf into a PDF generator. Here is my controller: class TodoController < ApplicationController def show_date @date = Date.today @campaigns = Campaign.all @contacts = Contact.all @contacts.each do |contact| end respond_to do |format| format.html format.pdf do render :pdf => "filename", :stylesheets => ["application", "prince"], :layout => "pdf" end end end end I changed the routes.db to include the following: map.connect ':controller/:action.:format' map.todo "todo/today", :controller => "todo", :action => "show_date" My expected behavior is when I enter todo/today.pdf, it tries to execute show_date, but renders according to the princely plugin. Right now, it says cannot find action. What do I need to do to fix this?

    Read the article

  • Update User Info with restful_authentication plugin in Rails?

    - by benoror
    Hi people, I want to give the users the ability to change their account info with restful_authentication plugin in rails. I added this two methods to my users controller: def edit @user = User.find(params[:id]) end def update @user = User.find(params[:id]) # Only update password when necessary params[:user].delete(:password) if pàrams[:user][:password].blank? respond_to do |format| if @user.update_attributes(params[:user]) flash[:notice] = 'User was successfully updated.' format.html { redirect_to(@user) } format.xml { head :ok } else format.html { render :action => "edit" } format.xml { render :xml => @user.errors, :status => :unprocessable_entity } end end end Also, I copied new.html.erb to edit.html.erb. Considering that resources are already defined in routes.rb I was expecting it to work easily, bute somehow when I click the save button it calls the create method, instead of update, using a POST http request. Inmediatly after that it autocatically log out form the session. Any ideas?

    Read the article

  • Ruby on Rails - f.error_messages not showing up

    - by Brian Roisentul
    Hi, I've read many posts about this issue but I never got this to work. My model looks like this: class Announcement < ActiveRecord::Base validates_presence_of :title, :description end My controller's create method(only its relevant part) looks like this: def create respond_to do |format| if @announcement.save flash[:notice] = 'Announcement was successfully created.' format.html { redirect_to(@announcement) } format.xml { render :xml => @announcement, :status => :created, :location => @announcement } else @announcement = Announcement.new @provinces = Province.all @types = AnnouncementType.all @categories = Tag.find_by_sql 'select * from tags where parent_id=0 order by name asc' @subcategories= '' format.html { render :action => "new" } #new_announcement_path format.xml { render :xml => @announcement.errors, :status => :unprocessable_entity } end end end My form looks like this: <% form_for(@announcement) do |f| %> <%= error_messages_for 'announcement' %> <!--I've also treid f.error_messages--> ... What am I doing wrong?

    Read the article

  • How to update user info with restful_authentication plugin in Rails?

    - by benoror
    Hi people, I want to give the users to change their account info with restful_authentication plugin in rails. I added this two methods to my controller: def edit @user = User.find(params[:id]) end def update @user = User.find(params[:id]) # Only update password when necessary params[:user].delete(:password) if pàrams[:user][:password].blank? respond_to do |format| if @user.update_attributes(params[:user]) flash[:notice] = 'User was successfully updated.' format.html { redirect_to(@user) } format.xml { head :ok } else format.html { render :action => "edit" } format.xml { render :xml => @user.errors, :status => :unprocessable_entity } end end end Also, I copied new.html.erb to edit.html.erb. Considering that resources are already defined in routes.rb I was expecting it to work easily, bute somehow when I click the save button it calls the create method, instead of update, using a POST http request. Any ideas?

    Read the article

  • Python Importing object that originates in one module from a different module into a third module

    - by adewinter
    I was reading the sourcode for a python project and came across the following line: from couchexport.export import Format (source: https://github.com/wbnigeria/couchexport/blob/master/couchexport/views.py#L1 ) I went over to couchexport/export.py to see what Format was (Class? Dict? something else?). Unfortunately Format isn't in that file. export.py does however import a Format from couchexport.models where there is a Format class (source: https://github.com/wbnigeria/couchexport/blob/master/couchexport/models.py#L11). When I open up the original file in my IDE and have it look up the declaration, in line I mentioned at the start of this question, it leads directly to models.py. What's going on? How can an import from one file (export.py) actually be an import from another file (models.py) without being explicitly stated?

    Read the article

  • DecimalFormat and Double.valueOf()

    - by folone
    Hello. I'm trying to get rid of unnecessary symbols after decimal seperator of my double value. I'm doing it this way: DecimalFormat format = new DecimalFormat("#.#####"); value = Double.valueOf(format.format(41251.50000000012343)); But when I run this code, it throws: java.lang.NumberFormatException: For input string: "41251,5" at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:1224) at java.lang.Double.valueOf(Double.java:447) at ... As I see, Double.valueOf() works great with strings like "11.1", but it chokes on strings like "11,1". How do I work around this? Is there a more elegant way then something like Double.valueOf(format.format(41251.50000000012343).replaceAll(",", ".")); Is there a way to override the default decimal separator value of DecimalFormat class?

    Read the article

  • Formatting my String

    - by pringlesinn
    I need to write currency values like $35.40 (thirty five dollars and forty cents) and after that, i want to write some "****" so at the end it will be: thirty five dollars and forty cents********* in a maximun of 100 characters I've asked a question about something very likely but I couldn't understand the main command. String format = String.format("%%-%ds", 100); String valorPorExtenso = String.format(format, new Extenso(tituloTO.getValor()).toString()); What do I need to change on format to put *** at the end of my sentence? The way it is now it puts spaces.

    Read the article

  • How do I set up my @product=Product.find(params[:id]) to have a product_url?

    - by montooner
    Trying to recreate { script/generate scaffold }, and I've gotten thru a number of Rails basics. I suspect that I need to configure default product url somewhere. But where do I do this? Setup: Have: def edit { @product=Product.find(params[:id]) } Have edit.html.erb, with an edit form posting to action = :create Have def create { ... }, with the code redirect_to(@product, ...) Getting error: undefined method `product_url' for #< ProductsController:0x56102b0 My def update: def update @product = Product.find(params[:id]) respond_to do |format| if @product.update_attributes(params[:product]) format.html { redirect_to(@product, :notice => 'Product was successfully updated.') } format.xml { head :ok } else format.html { render :action => "edit" } format.xml { render :xml => @product.errors, :status => :unprocessable_entity } end end end

    Read the article

  • Undefined method 'total_entries' after upgrading Rails 2.2.2 to 2.3.5

    - by Trevor
    I am upgrading a Rails application from 2.2.2 to 2.3.5. The only remaining error is when I invoke total_entries for creating a jqgrid. Error: NoMethodError (undefined method `total_entries' for #<Array:0xbbe9ab0>) Code snippet: @route = Route.find( :all, :conditions => "id in (#{params[:id]})" ) { if params[:page].present? then paginate :page => params[:page], :per_page => params[:rows] order_by "#{params[:sidx]} #{params[:sord]}" end } respond_to do |format| format.html # show.html.erb format.xml { render :xml => @route } format.json { render :json => @route } format.jgrid { render :json => @route.to_jqgrid_json( [ :id, :name ], params[:page], params[:rows], @route.total_entries ) } end Any ideas? Thanks!

    Read the article

  • JSON is not nested in rails view

    - by SeanGeneva
    I have a several models in a heirarchy, 1:many at each level. Each class is associated only with the class above it and the one below it, ie: L1 course, L2 unit, L3 unit layout, L4 layout fields, L5 table fields (not in code, but a sibling of layout fields) I am trying to build a JSON response of the entire hierarchy. def show @course = Course.find(params[:id]) respond_to do |format| format.html # show.html.erb format.json do @course = Course.find(params[:id]) @units = @course.units.all @unit_layouts = UnitLayout.where(:unit_id => @units) @layout_fields = LayoutField.where(:unit_layout_id => @unit_layouts) response = {:course => @course, :units => @units, :unit_layouts => @unit_layouts, :layout_fields => @layout_fields} respond_to do |format| format.json {render :json => response } end end end end The code is bring back the correct values, but the units, unit_layouts and layout_fields are all nested at the same level under course. I would like them to be nested inside their parent.

    Read the article

  • What is the best way to handle dynamic content_type in Sinatra

    - by lusis
    I'm currently doing the following but it feels "kludgy": module Sinatra module DynFormat def dform(data,ct) if ct == 'xml';return data.to_xml;end if ct == 'json';return data.to_json;end end end helpers DynFormat end My goal is to plan ahead. Right now we're only working with XML for this particular web service but we want to move over to JSON as soon as all the components in our stack support it. Here's a sample route: get '/api/people/named/:name/:format' do format = params[:format] h = {'xml' => 'text/xml','json' => 'application/json'} content_type h[format], :charset => 'utf-8' person = params[:name] salesperson = Salespeople.find(:all, :conditions => ['name LIKE ?', "%#{person}%"]) "#{dform(salesperson,format)}" end It just feels like I'm not doing it the best way possible.

    Read the article

  • I cant get a field on report from a view

    - by felipedz
    When I get a field, this work good. But, when get a field from a 'VIEW', is a problem because the code of a VIEW is: CREATE OR REPLACE VIEW tabla_clientes AS SELECT id_cliente,nombre, CONCAT('$ ',FORMAT(monto_a_favor,0), '???'), CONCAT('$ ',FORMAT(calcular_monto_por_cobrar_cliente(id_cliente),0)) FROM cliente; When I compile this. Appears errors from the name of fields. Description | Object ---------------------------------------------------------------------------- Syntax error, insert ";" to complete BlockStatements | ${CONCAT('$ ',FORMAT(monto_a_favor,0)} Syntax error on tokens, delete these tokens | ${CONCAT('$ ',FORMAT(monto_a_favor,0)} Syntax error on token ",", delete this token | ${CONCAT('$ ',FORMAT(monto_a_favor,0)} If I change the name at this field appears other error.

    Read the article

  • Isses using function with variadic arguments

    - by Sausages
    I'm trying to write a logging function and have tried several different attempts at dealing with the variadic arguments, but am having problems with all of them. Here's the latest: - (void) log:(NSString *)format, ... { if (self.loggingEnabled) { va_list vl; va_start(vl, format); NSString* str = [[NSString alloc] initWithFormat:format arguments:vl]; va_end(vl); NSLog(format); } } If I call this like this: [self log:@"I like: %@", @"sausages"]; Then I get an EXC_BAD_ACCESS at the NSLog line (there's also a compiler warning that the format string is not a string literal). However if in XCode's console I do "po str" it displays "I like: sausages" so str seems ok.

    Read the article

  • django/python: is one view that handles two sibling models a good idea?

    - by clime
    I am using django multi-table inheritance: Video and Image are models derived from Media. I have implemented two views: video_list and image_list, which are just proxies to media_list. media_list returns images or videos (based on input parameter model) for a certain object, which can be of type Event, Member, or Crag. The view alters its behaviour based on input parameter action (better name would be mode), which can be of value "edit" or "view". The problem is that I need to ask whether the input parameter model contains Video or Image in media_list so that I can do the right thing. Similar condition is also in helper method media_edit_list that is called from the view. I don't particularly like it but the only alternative I can think of is to have separate (but almost the same) logic for video_list and image_list and then probably also separate helper methods for videos and images: video_edit_list, image_edit_list, video_view_list, image_view_list. So four functions instead of just two. That I like even less because the video functions would be very similar to the respective image functions. What do you recommend? Here is extract of relevant parts: http://pastebin.com/07t4bdza. I'll also paste the code here: #urls url(r'^media/images/(?P<rel_model_tag>(event|member|crag))/(?P<rel_object_id>\d+)/(?P<action>(view|edit))/$', views.image_list, name='image-list') url(r'^media/videos/(?P<rel_model_tag>(event|member|crag))/(?P<rel_object_id>\d+)/(?P<action>(view|edit))/$', views.video_list, name='video-list') #views def image_list(request, rel_model_tag, rel_object_id, mode): return media_list(request, Image, rel_model_tag, rel_object_id, mode) def video_list(request, rel_model_tag, rel_object_id, mode): return media_list(request, Video, rel_model_tag, rel_object_id, mode) def media_list(request, model, rel_model_tag, rel_object_id, mode): rel_model = tag_to_model(rel_model_tag) rel_object = get_object_or_404(rel_model, pk=rel_object_id) if model == Image: star_media = rel_object.star_image else: star_media = rel_object.star_video filter_params = {} if rel_model == Event: filter_params['event'] = rel_object_id elif rel_model == Member: filter_params['members'] = rel_object_id elif rel_model == Crag: filter_params['crag'] = rel_object_id media_list = model.objects.filter(~Q(id=star_media.id)).filter(**filter_params).order_by('date_added').all() context = { 'media_list': media_list, 'star_media': star_media, } if mode == 'edit': return media_edit_list(request, model, rel_model_tag, rel_object_id, context) return media_view_list(request, model, rel_model_tag, rel_object_id, context) def media_view_list(request, model, rel_model_tag, rel_object_id, context): if request.is_ajax(): context['base_template'] = 'boxes/base-lite.html' return render(request, 'media/list-items.html', context) def media_edit_list(request, model, rel_model_tag, rel_object_id, context): if model == Image: get_media_edit_record = get_image_edit_record else: get_media_edit_record = get_video_edit_record media_list = [get_media_edit_record(media, rel_model_tag, rel_object_id) for media in context['media_list']] if context['star_media']: star_media = get_media_edit_record(context['star_media'], rel_model_tag, rel_object_id) else: star_media = None json = simplejson.dumps({ 'star_media': star_media, 'media_list': media_list, }) return HttpResponse(json, content_type=json_response_mimetype(request)) def get_image_edit_record(image, rel_model_tag, rel_object_id): record = { 'url': image.image.url, 'name': image.title or image.filename, 'type': mimetypes.guess_type(image.image.path)[0] or 'image/png', 'thumbnailUrl': image.thumbnail_2.url, 'size': image.image.size, 'id': image.id, 'media_id': image.media_ptr.id, 'starUrl':reverse('image-star', kwargs={'image_id': image.id, 'rel_model_tag': rel_model_tag, 'rel_object_id': rel_object_id}), } return record def get_video_edit_record(video, rel_model_tag, rel_object_id): record = { 'url': video.embed_url, 'name': video.title or video.url, 'type': None, 'thumbnailUrl': video.thumbnail_2.url, 'size': None, 'id': video.id, 'media_id': video.media_ptr.id, 'starUrl': reverse('video-star', kwargs={'video_id': video.id, 'rel_model_tag': rel_model_tag, 'rel_object_id': rel_object_id}), } return record # models class Media(models.Model, WebModel): title = models.CharField('title', max_length=128, default='', db_index=True, blank=True) event = models.ForeignKey(Event, null=True, default=None, blank=True) crag = models.ForeignKey(Crag, null=True, default=None, blank=True) members = models.ManyToManyField(Member, blank=True) added_by = models.ForeignKey(Member, related_name='added_images') date_added = models.DateTimeField('date added', auto_now_add=True, null=True, default=None, editable=False) class Image(Media): image = ProcessedImageField(upload_to='uploads', processors=[ResizeToFit(width=1024, height=1024, upscale=False)], format='JPEG', options={'quality': 75}) thumbnail_1 = ImageSpecField(source='image', processors=[SmartResize(width=178, height=134)], format='JPEG', options={'quality': 75}) thumbnail_2 = ImageSpecField(source='image', #processors=[SmartResize(width=256, height=192)], processors=[ResizeToFit(height=164)], format='JPEG', options={'quality': 75}) class Video(Media): url = models.URLField('url', max_length=256, default='') embed_url = models.URLField('embed url', max_length=256, default='', blank=True) author = models.CharField('author', max_length=64, default='', blank=True) thumbnail = ProcessedImageField(upload_to='uploads', processors=[ResizeToFit(width=1024, height=1024, upscale=False)], format='JPEG', options={'quality': 75}, null=True, default=None, blank=True) thumbnail_1 = ImageSpecField(source='thumbnail', processors=[SmartResize(width=178, height=134)], format='JPEG', options={'quality': 75}) thumbnail_2 = ImageSpecField(source='thumbnail', #processors=[SmartResize(width=256, height=192)], processors=[ResizeToFit(height=164)], format='JPEG', options={'quality': 75}) class Crag(models.Model, WebModel): name = models.CharField('name', max_length=64, default='', db_index=True) normalized_name = models.CharField('normalized name', max_length=64, default='', editable=False) type = models.IntegerField('crag type', null=True, default=None, choices=crag_types) description = models.TextField('description', default='', blank=True) country = models.ForeignKey('country', null=True, default=None) #TODO: make this not null when db enables it latitude = models.FloatField('latitude', null=True, default=None) longitude = models.FloatField('longitude', null=True, default=None) location_index = FixedCharField('location index', length=24, default='', editable=False, db_index=True) # handled by db, used for marker clustering added_by = models.ForeignKey('member', null=True, default=None) #route_count = models.IntegerField('route count', null=True, default=None, editable=False) date_created = models.DateTimeField('date created', auto_now_add=True, null=True, default=None, editable=False) last_modified = models.DateTimeField('last modified', auto_now=True, null=True, default=None, editable=False) star_image = models.ForeignKey('Image', null=True, default=None, related_name='star_crags', on_delete=models.SET_NULL) star_video = models.ForeignKey('Video', null=True, default=None, related_name='star_crags', on_delete=models.SET_NULL)

    Read the article

  • django/python: is one view that handles two separate models a good idea?

    - by clime
    I am using django multi-table inheritance: Video and Image are models derived from Media. I have implemented two views: video_list and image_list, which are just proxies to media_list. media_list returns images or videos (based on input parameter model) for a certain object, which can be of type Event, Member, or Crag. It alters its behaviour based on input parameter action, which can be either "edit" or "view". The problem is that I need to ask whether the input parameter model contains Video or Image in media_list so that I can do the right thing. Similar condition is also in helper method media_edit_list that is called from the view. I don't particularly like it but the only alternative I can think of is to have separate logic for video_list and image_list and then probably also separate helper methods for videos and images: video_edit_list, image_edit_list, video_view_list, image_view_list. So four functions instead of just two. That I like even less because the video functions would be very similar to the respective image functions. What do you recommend? Here is extract of relevant parts: http://pastebin.com/07t4bdza. I'll also paste the code here: #urls url(r'^media/images/(?P<rel_model_tag>(event|member|crag))/(?P<rel_object_id>\d+)/(?P<action>(view|edit))/$', views.video_list, name='image-list') url(r'^media/videos/(?P<rel_model_tag>(event|member|crag))/(?P<rel_object_id>\d+)/(?P<action>(view|edit))/$', views.image_list, name='video-list') #views def image_list(request, rel_model_tag, rel_object_id, action): return media_list(request, Image, rel_model_tag, rel_object_id, action) def video_list(request, rel_model_tag, rel_object_id, action): return media_list(request, Video, rel_model_tag, rel_object_id, action) def media_list(request, model, rel_model_tag, rel_object_id, action): rel_model = tag_to_model(rel_model_tag) rel_object = get_object_or_404(rel_model, pk=rel_object_id) if model == Image: star_media = rel_object.star_image else: star_media = rel_object.star_video filter_params = {} if rel_model == Event: filter_params['media__event'] = rel_object_id elif rel_model == Member: filter_params['media__members'] = rel_object_id elif rel_model == Crag: filter_params['media__crag'] = rel_object_id media_list = model.objects.filter(~Q(id=star_media.id)).filter(**filter_params).order_by('media__date_added').all() context = { 'media_list': media_list, 'star_media': star_media, } if action == 'edit': return media_edit_list(request, model, rel_model_tag, rel_model_id, context) return media_view_list(request, model, rel_model_tag, rel_model_id, context) def media_view_list(request, model, rel_model_tag, rel_object_id, context): if request.is_ajax(): context['base_template'] = 'boxes/base-lite.html' return render(request, 'media/list-items.html', context) def media_edit_list(request, model, rel_model_tag, rel_object_id, context): if model == Image: get_media_record = get_image_record else: get_media_record = get_video_record media_list = [get_media_record(media, rel_model_tag, rel_object_id) for media in context['media_list']] if context['star_media']: star_media = get_media_record(star_media, rel_model_tag, rel_object_id) star_media['starred'] = True else: star_media = None json = simplejson.dumps({ 'star_media': star_media, 'media_list': media_list, }) return HttpResponse(json, content_type=json_response_mimetype(request)) # models class Media(models.Model, WebModel): title = models.CharField('title', max_length=128, default='', db_index=True, blank=True) event = models.ForeignKey(Event, null=True, default=None, blank=True) crag = models.ForeignKey(Crag, null=True, default=None, blank=True) members = models.ManyToManyField(Member, blank=True) added_by = models.ForeignKey(Member, related_name='added_images') date_added = models.DateTimeField('date added', auto_now_add=True, null=True, default=None, editable=False) def __unicode__(self): return self.title def get_absolute_url(self): return self.image.url if self.image else self.video.embed_url class Image(Media): image = ProcessedImageField(upload_to='uploads', processors=[ResizeToFit(width=1024, height=1024, upscale=False)], format='JPEG', options={'quality': 75}) thumbnail_1 = ImageSpecField(source='image', processors=[SmartResize(width=178, height=134)], format='JPEG', options={'quality': 75}) thumbnail_2 = ImageSpecField(source='image', #processors=[SmartResize(width=256, height=192)], processors=[ResizeToFit(height=164)], format='JPEG', options={'quality': 75}) class Video(Media): url = models.URLField('url', max_length=256, default='') embed_url = models.URLField('embed url', max_length=256, default='', blank=True) author = models.CharField('author', max_length=64, default='', blank=True) thumbnail = ProcessedImageField(upload_to='uploads', processors=[ResizeToFit(width=1024, height=1024, upscale=False)], format='JPEG', options={'quality': 75}, null=True, default=None, blank=True) thumbnail_1 = ImageSpecField(source='thumbnail', processors=[SmartResize(width=178, height=134)], format='JPEG', options={'quality': 75}) thumbnail_2 = ImageSpecField(source='thumbnail', #processors=[SmartResize(width=256, height=192)], processors=[ResizeToFit(height=164)], format='JPEG', options={'quality': 75}) class Crag(models.Model, WebModel): name = models.CharField('name', max_length=64, default='', db_index=True) normalized_name = models.CharField('normalized name', max_length=64, default='', editable=False) type = models.IntegerField('crag type', null=True, default=None, choices=crag_types) description = models.TextField('description', default='', blank=True) country = models.ForeignKey('country', null=True, default=None) #TODO: make this not null when db enables it latitude = models.FloatField('latitude', null=True, default=None) longitude = models.FloatField('longitude', null=True, default=None) location_index = FixedCharField('location index', length=24, default='', editable=False, db_index=True) # handled by db, used for marker clustering added_by = models.ForeignKey('member', null=True, default=None) #route_count = models.IntegerField('route count', null=True, default=None, editable=False) date_created = models.DateTimeField('date created', auto_now_add=True, null=True, default=None, editable=False) last_modified = models.DateTimeField('last modified', auto_now=True, null=True, default=None, editable=False) star_image = models.OneToOneField('Image', null=True, default=None, related_name='star_crags', on_delete=models.SET_NULL) star_video = models.OneToOneField('Video', null=True, default=None, related_name='star_crags', on_delete=models.SET_NULL)

    Read the article

  • creating objects from trivial graph format text file. java. dijkstra algorithm.

    - by user560084
    i want to create objects, vertex and edge, from trivial graph format txt file. one of programmers here suggested that i use trivial graph format to store data for dijkstra algorithm. the problem is that at the moment all the information, e.g., weight, links, is in the sourcecode. i want to have a separate text file for that and read it into the program. i thought about using a code for scanning through the text file by using scanner. but i am not quite sure how to create different objects from the same file. could i have some help please? the file is v0 Harrisburg v1 Baltimore v2 Washington v3 Philadelphia v4 Binghamton v5 Allentown v6 New York # v0 v1 79.83 v0 v5 81.15 v1 v0 79.75 v1 v2 39.42 v1 v3 103.00 v2 v1 38.65 v3 v1 102.53 v3 v5 61.44 v3 v6 96.79 v4 v5 133.04 v5 v0 81.77 v5 v3 62.05 v5 v4 134.47 v5 v6 91.63 v6 v3 97.24 v6 v5 87.94 and the dijkstra algorithm code is Downloaded from: http://en.literateprograms.org/Special:Downloadcode/Dijkstra%27s_algorithm_%28Java%29 */ import java.util.PriorityQueue; import java.util.List; import java.util.ArrayList; import java.util.Collections; class Vertex implements Comparable<Vertex> { public final String name; public Edge[] adjacencies; public double minDistance = Double.POSITIVE_INFINITY; public Vertex previous; public Vertex(String argName) { name = argName; } public String toString() { return name; } public int compareTo(Vertex other) { return Double.compare(minDistance, other.minDistance); } } class Edge { public final Vertex target; public final double weight; public Edge(Vertex argTarget, double argWeight) { target = argTarget; weight = argWeight; } } public class Dijkstra { public static void computePaths(Vertex source) { source.minDistance = 0.; PriorityQueue<Vertex> vertexQueue = new PriorityQueue<Vertex>(); vertexQueue.add(source); while (!vertexQueue.isEmpty()) { Vertex u = vertexQueue.poll(); // Visit each edge exiting u for (Edge e : u.adjacencies) { Vertex v = e.target; double weight = e.weight; double distanceThroughU = u.minDistance + weight; if (distanceThroughU < v.minDistance) { vertexQueue.remove(v); v.minDistance = distanceThroughU ; v.previous = u; vertexQueue.add(v); } } } } public static List<Vertex> getShortestPathTo(Vertex target) { List<Vertex> path = new ArrayList<Vertex>(); for (Vertex vertex = target; vertex != null; vertex = vertex.previous) path.add(vertex); Collections.reverse(path); return path; } public static void main(String[] args) { Vertex v0 = new Vertex("Nottinghill_Gate"); Vertex v1 = new Vertex("High_Street_kensignton"); Vertex v2 = new Vertex("Glouchester_Road"); Vertex v3 = new Vertex("South_Kensignton"); Vertex v4 = new Vertex("Sloane_Square"); Vertex v5 = new Vertex("Victoria"); Vertex v6 = new Vertex("Westminster"); v0.adjacencies = new Edge[]{new Edge(v1, 79.83), new Edge(v6, 97.24)}; v1.adjacencies = new Edge[]{new Edge(v2, 39.42), new Edge(v0, 79.83)}; v2.adjacencies = new Edge[]{new Edge(v3, 38.65), new Edge(v1, 39.42)}; v3.adjacencies = new Edge[]{new Edge(v4, 102.53), new Edge(v2, 38.65)}; v4.adjacencies = new Edge[]{new Edge(v5, 133.04), new Edge(v3, 102.53)}; v5.adjacencies = new Edge[]{new Edge(v6, 81.77), new Edge(v4, 133.04)}; v6.adjacencies = new Edge[]{new Edge(v0, 97.24), new Edge(v5, 81.77)}; Vertex[] vertices = { v0, v1, v2, v3, v4, v5, v6 }; computePaths(v0); for (Vertex v : vertices) { System.out.println("Distance to " + v + ": " + v.minDistance); List<Vertex> path = getShortestPathTo(v); System.out.println("Path: " + path); } } } and the code for scanning file is import java.util.Scanner; import java.io.File; import java.io.FileNotFoundException; public class DataScanner1 { //private int total = 0; //private int distance = 0; private String vector; private String stations; private double [] Edge = new double []; /*public int getTotal(){ return total; } */ /* public void getMenuInput(){ KeyboardInput in = new KeyboardInput; System.out.println("Enter the destination? "); String val = in.readString(); return val; } */ public void readFile(String fileName) { try { Scanner scanner = new Scanner(new File(fileName)); scanner.useDelimiter (System.getProperty("line.separator")); while (scanner.hasNext()) { parseLine(scanner.next()); } scanner.close(); } catch (FileNotFoundException e) { e.printStackTrace(); } } public void parseLine(String line) { Scanner lineScanner = new Scanner(line); lineScanner.useDelimiter("\\s*,\\s*"); vector = lineScanner.next(); stations = lineScanner.next(); System.out.println("The current station is " + vector + " and the destination to the next station is " + stations + "."); //total += distance; //System.out.println("The total distance is " + total); } public static void main(String[] args) { /* if (args.length != 1) { System.err.println("usage: java TextScanner2" + "file location"); System.exit(0); } */ DataScanner1 scanner = new DataScanner1(); scanner.readFile(args[0]); //int total =+ distance; //System.out.println(""); //System.out.println("The total distance is " + scanner.getTotal()); } }

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • How to make facebox popup remain open and the content inside the facebox changes after the submit

    - by Leonardo Dario Perna
    Hi, I'm a jQuery total n00b. In my rails app this what happen: I'm on the homepage, I click this link: <a href='/betas/new' rel='facebox'>Sign up</a> A beautiful facebox popup shows up and render this views and the containing form: # /app/views/invites/new <% form_tag({ :controller => 'registration_code', :action => 'create' }, :id => 'codeForm') do %> <%= text_field_tag :code %> <br /> <%= submit_tag 'Confirm' %> <% end %> I clink on submit and if the code is valid the user is taken on another page in another controller: def create # some stuff redirect_to :controller => 'users', :action => 'type' end Now I would like to render that page INSIDE the SAME popup contains the form, after the submit button is pressed but I have NO IDEA how to do it. I've tried FaceboxRender but this happens: Original version: # /controllers/users_controller def type end If I change it like that nothing happens: # /controllers/users_controller def type respond_to do |format| format.html format.js { render_to_facebox } end end If I change it like that (I know is wrong but I'm a n00b so it's ok :-): # /controllers/users_controller def type respond_to do |format| format.html { render_to_facebox } format.js end end I got this rendered: try { jQuery.facebox("my raw HTML from users/type.html.erb substituted here")'); throw e } Any solutions? THANK YOU SO MUCH!!

    Read the article

  • Manipulating columns of numbers in elisp

    - by ~unutbu
    I have text files with tables like this: Investment advisory and related fees receivable (161,570 ) (71,739 ) (73,135 ) Net purchases of trading investments (93,261 ) (30,701 ) (11,018 ) Other receivables 61,216 (10,352 ) (69,313 ) Restricted cash 20,658 (20,658 ) - Other current assets (39,643 ) 14,752 64 Other non-current assets 71,896 (26,639 ) (26,330 ) Since these are accounting numbers, parenthesized numbers indicate negative numbers. Dashes represent 0 or no number. I'd like to be able to mark a rectangular region such as third column above, call a function (format-column), and automatically have (-73135-11018-69313+64-26330)/1000 sitting in my kill-ring. Even better would be -73.135-11.018-69.313+0.064-26.330 but I couldn't figure out a way to transform 64 -- 0.064. This is what I've come up with: (defun format-column () "format accounting numbers in a rectangular column. format-column puts the result in the kill-ring" (interactive) (let ((p (point)) (m (mark)) ) (copy-rectangle-to-register 0 (min m p) (max m p) nil) (with-temp-buffer (insert-register 0) (goto-char (point-min)) (while (search-forward "-" nil t) (replace-match "" nil t)) (goto-char (point-min)) (while (search-forward "," nil t) (replace-match "" nil t)) (goto-char (point-min)) (while (search-forward ")" nil t) (replace-match "" nil t)) (goto-char (point-min)) (while (search-forward "(" nil t) (replace-match "-" nil t) (just-one-space) (delete-backward-char 1) ) (goto-char (point-min)) (while (search-forward "\n" nil t) (replace-match " " nil t)) (goto-char (point-min)) (kill-new (mapconcat 'identity (split-string (buffer-substring (point-min) (point-max))) "+")) (kill-region (point-min) (point-max)) (insert "(") (yank 2) (goto-char (point-min)) (while (search-forward "+-" nil t) (replace-match "-" nil t)) (goto-char (point-max)) (insert ")/1000") (kill-region (point-min) (point-max)) ) ) ) (global-set-key "\C-c\C-f" 'format-column) Although it seems to work, I'm sure this function is poorly coded. The repetitive calls to goto-char, search-forward, and replace-match and the switching from buffer to string and back to buffer seems ugly and inelegant. My entire approach may be wrong-headed, but I don't know enough elisp to make this more beautiful. Do you see a better way to write format-column, and/or could you make suggestions on how to improve this code?

    Read the article

< Previous Page | 77 78 79 80 81 82 83 84 85 86 87 88  | Next Page >