Search Results

Search found 2101 results on 85 pages for 'c str'.

Page 82/85 | < Previous Page | 78 79 80 81 82 83 84 85  | Next Page >

  • Parallelism in .NET – Part 14, The Different Forms of Task

    - by Reed
    Before discussing Task creation and actual usage in concurrent environments, I will briefly expand upon my introduction of the Task class and provide a short explanation of the distinct forms of Task.  The Task Parallel Library includes four distinct, though related, variations on the Task class. In my introduction to the Task class, I focused on the most basic version of Task.  This version of Task, the standard Task class, is most often used with an Action delegate.  This allows you to implement for each task within the task decomposition as a single delegate. Typically, when using the new threading constructs in .NET 4 and the Task Parallel Library, we use lambda expressions to define anonymous methods.  The advantage of using a lambda expression is that it allows the Action delegate to directly use variables in the calling scope.  This eliminates the need to make separate Task classes for Action<T>, Action<T1,T2>, and all of the other Action<…> delegate types.  As an example, suppose we wanted to make a Task to handle the ”Show Splash” task from our earlier decomposition.  Even if this task required parameters, such as a message to display, we could still use an Action delegate specified via a lambda: // Store this as a local variable string messageForSplashScreen = GetSplashScreenMessage(); // Create our task Task showSplashTask = new Task( () => { // We can use variables in our outer scope, // as well as methods scoped to our class! this.DisplaySplashScreen(messageForSplashScreen); }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This provides a huge amount of flexibility.  We can use this single form of task for any task which performs an operation, provided the only information we need to track is whether the task has completed successfully or not.  This leads to my first observation: Use a Task with a System.Action delegate for any task for which no result is generated. This observation leads to an obvious corollary: we also need a way to define a task which generates a result.  The Task Parallel Library provides this via the Task<TResult> class. Task<TResult> subclasses the standard Task class, providing one additional feature – the ability to return a value back to the user of the task.  This is done by switching from providing an Action delegate to providing a Func<TResult> delegate.  If we decompose our problem, and we realize we have one task where its result is required by a future operation, this can be handled via Task<TResult>.  For example, suppose we want to make a task for our “Check for Update” task, we could do: Task<bool> checkForUpdateTask = new Task<bool>( () => { return this.CheckWebsiteForUpdate(); }); Later, we would start this task, and perform some other work.  At any point in the future, we could get the value from the Task<TResult>.Result property, which will cause our thread to block until the task has finished processing: // This uses Task<bool> checkForUpdateTask generated above... // Start the task, typically on a background thread checkForUpdateTask.Start(); // Do some other work on our current thread this.DoSomeWork(); // Discover, from our background task, whether an update is available // This will block until our task completes bool updateAvailable = checkForUpdateTask.Result; This leads me to my second observation: Use a Task<TResult> with a System.Func<TResult> delegate for any task which generates a result. Task and Task<TResult> provide a much cleaner alternative to the previous Asynchronous Programming design patterns in the .NET framework.  Instead of trying to implement IAsyncResult, and providing BeginXXX() and EndXXX() methods, implementing an asynchronous programming API can be as simple as creating a method that returns a Task or Task<TResult>.  The client side of the pattern also is dramatically simplified – the client can call a method, then either choose to call task.Wait() or use task.Result when it needs to wait for the operation’s completion. While this provides a much cleaner model for future APIs, there is quite a bit of infrastructure built around the current Asynchronous Programming design patterns.  In order to provide a model to work with existing APIs, two other forms of Task exist.  There is a constructor for Task which takes an Action<Object> and a state parameter.  In addition, there is a constructor for creating a Task<TResult> which takes a Func<Object, TResult> as well as a state parameter.  When using these constructors, the state parameter is stored in the Task.AsyncState property. While these two overloads exist, and are usable directly, I strongly recommend avoiding this for new development.  The two forms of Task which take an object state parameter exist primarily for interoperability with traditional .NET Asynchronous Programming methodologies.  Using lambda expressions to capture variables from the scope of the creator is a much cleaner approach than using the untyped state parameters, since lambda expressions provide full type safety without introducing new variables.

    Read the article

  • Parallelism in .NET – Part 15, Making Tasks Run: The TaskScheduler

    - by Reed
    In my introduction to the Task class, I specifically made mention that the Task class does not directly provide it’s own execution.  In addition, I made a strong point that the Task class itself is not directly related to threads or multithreading.  Rather, the Task class is used to implement our decomposition of tasks.  Once we’ve implemented our tasks, we need to execute them.  In the Task Parallel Library, the execution of Tasks is handled via an instance of the TaskScheduler class. The TaskScheduler class is an abstract class which provides a single function: it schedules the tasks and executes them within an appropriate context.  This class is the class which actually runs individual Task instances.  The .NET Framework provides two (internal) implementations of the TaskScheduler class. Since a Task, based on our decomposition, should be a self-contained piece of code, parallel execution makes sense when executing tasks.  The default implementation of the TaskScheduler class, and the one most often used, is based on the ThreadPool.  This can be retrieved via the TaskScheduler.Default property, and is, by default, what is used when we just start a Task instance with Task.Start(). Normally, when a Task is started by the default TaskScheduler, the task will be treated as a single work item, and run on a ThreadPool thread.  This pools tasks, and provides Task instances all of the advantages of the ThreadPool, including thread pooling for reduced resource usage, and an upper cap on the number of work items.  In addition, .NET 4 brings us a much improved thread pool, providing work stealing and reduced locking within the thread pool queues.  By using the default TaskScheduler, our Tasks are run asynchronously on the ThreadPool. There is one notable exception to my above statements when using the default TaskScheduler.  If a Task is created with the TaskCreationOptions set to TaskCreationOptions.LongRunning, the default TaskScheduler will generate a new thread for that Task, at least in the current implementation.  This is useful for Tasks which will persist for most of the lifetime of your application, since it prevents your Task from starving the ThreadPool of one of it’s work threads. The Task Parallel Library provides one other implementation of the TaskScheduler class.  In addition to providing a way to schedule tasks on the ThreadPool, the framework allows you to create a TaskScheduler which works within a specified SynchronizationContext.  This scheduler can be retrieved within a thread that provides a valid SynchronizationContext by calling the TaskScheduler.FromCurrentSynchronizationContext() method. This implementation of TaskScheduler is intended for use with user interface development.  Windows Forms and Windows Presentation Foundation both require any access to user interface controls to occur on the same thread that created the control.  For example, if you want to set the text within a Windows Forms TextBox, and you’re working on a background thread, that UI call must be marshaled back onto the UI thread.  The most common way this is handled depends on the framework being used.  In Windows Forms, Control.Invoke or Control.BeginInvoke is most often used.  In WPF, the equivelent calls are Dispatcher.Invoke or Dispatcher.BeginInvoke. As an example, say we’re working on a background thread, and we want to update a TextBlock in our user interface with a status label.  The code would typically look something like: // Within background thread work... string status = GetUpdatedStatus(); Dispatcher.BeginInvoke(DispatcherPriority.Normal, new Action( () => { statusLabel.Text = status; })); // Continue on in background method .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This works fine, but forces your method to take a dependency on WPF or Windows Forms.  There is an alternative option, however.  Both Windows Forms and WPF, when initialized, setup a SynchronizationContext in their thread, which is available on the UI thread via the SynchronizationContext.Current property.  This context is used by classes such as BackgroundWorker to marshal calls back onto the UI thread in a framework-agnostic manner. The Task Parallel Library provides the same functionality via the TaskScheduler.FromCurrentSynchronizationContext() method.  When setting up our Tasks, as long as we’re working on the UI thread, we can construct a TaskScheduler via: TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); We then can use this scheduler on any thread to marshal data back onto the UI thread.  For example, our code above can then be rewritten as: string status = GetUpdatedStatus(); (new Task(() => { statusLabel.Text = status; })) .Start(uiScheduler); // Continue on in background method This is nice since it allows us to write code that isn’t tied to Windows Forms or WPF, but is still fully functional with those technologies.  I’ll discuss even more uses for the SynchronizationContext based TaskScheduler when I demonstrate task continuations, but even without continuations, this is a very useful construct. In addition to the two implementations provided by the Task Parallel Library, it is possible to implement your own TaskScheduler.  The ParallelExtensionsExtras project within the Samples for Parallel Programming provides nine sample TaskScheduler implementations.  These include schedulers which restrict the maximum number of concurrent tasks, run tasks on a single threaded apartment thread, use a new thread per task, and more.

    Read the article

  • Parallelism in .NET – Part 6, Declarative Data Parallelism

    - by Reed
    When working with a problem that can be decomposed by data, we have a collection, and some operation being performed upon the collection.  I’ve demonstrated how this can be parallelized using the Task Parallel Library and imperative programming using imperative data parallelism via the Parallel class.  While this provides a huge step forward in terms of power and capabilities, in many cases, special care must still be given for relative common scenarios. C# 3.0 and Visual Basic 9.0 introduced a new, declarative programming model to .NET via the LINQ Project.  When working with collections, we can now write software that describes what we want to occur without having to explicitly state how the program should accomplish the task.  By taking advantage of LINQ, many operations become much shorter, more elegant, and easier to understand and maintain.  Version 4.0 of the .NET framework extends this concept into the parallel computation space by introducing Parallel LINQ. Before we delve into PLINQ, let’s begin with a short discussion of LINQ.  LINQ, the extensions to the .NET Framework which implement language integrated query, set, and transform operations, is implemented in many flavors.  For our purposes, we are interested in LINQ to Objects.  When dealing with parallelizing a routine, we typically are dealing with in-memory data storage.  More data-access oriented LINQ variants, such as LINQ to SQL and LINQ to Entities in the Entity Framework fall outside of our concern, since the parallelism there is the concern of the data base engine processing the query itself. LINQ (LINQ to Objects in particular) works by implementing a series of extension methods, most of which work on IEnumerable<T>.  The language enhancements use these extension methods to create a very concise, readable alternative to using traditional foreach statement.  For example, let’s revisit our minimum aggregation routine we wrote in Part 4: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re doing a very simple computation, but writing this in an imperative style.  This can be loosely translated to English as: Create a very large number, and save it in min Loop through each item in the collection. For every item: Perform some computation, and save the result If the computation is less than min, set min to the computation Although this is fairly easy to follow, it’s quite a few lines of code, and it requires us to read through the code, step by step, line by line, in order to understand the intention of the developer. We can rework this same statement, using LINQ: double min = collection.Min(item => item.PerformComputation()); Here, we’re after the same information.  However, this is written using a declarative programming style.  When we see this code, we’d naturally translate this to English as: Save the Min value of collection, determined via calling item.PerformComputation() That’s it – instead of multiple logical steps, we have one single, declarative request.  This makes the developer’s intentions very clear, and very easy to follow.  The system is free to implement this using whatever method required. Parallel LINQ (PLINQ) extends LINQ to Objects to support parallel operations.  This is a perfect fit in many cases when you have a problem that can be decomposed by data.  To show this, let’s again refer to our minimum aggregation routine from Part 4, but this time, let’s review our final, parallelized version: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Here, we’re doing the same computation as above, but fully parallelized.  Describing this in English becomes quite a feat: Create a very large number, and save it in min Create a temporary object we can use for locking Call Parallel.ForEach, specifying three delegates For the first delegate: Initialize a local variable to hold the local state to a very large number For the second delegate: For each item in the collection, perform some computation, save the result If the result is less than our local state, save the result in local state For the final delegate: Take a lock on our temporary object to protect our min variable Save the min of our min and local state variables Although this solves our problem, and does it in a very efficient way, we’ve created a set of code that is quite a bit more difficult to understand and maintain. PLINQ provides us with a very nice alternative.  In order to use PLINQ, we need to learn one new extension method that works on IEnumerable<T> – ParallelEnumerable.AsParallel(). That’s all we need to learn in order to use PLINQ: one single method.  We can write our minimum aggregation in PLINQ very simply: double min = collection.AsParallel().Min(item => item.PerformComputation()); By simply adding “.AsParallel()” to our LINQ to Objects query, we converted this to using PLINQ and running this computation in parallel!  This can be loosely translated into English easily, as well: Process the collection in parallel Get the Minimum value, determined by calling PerformComputation on each item Here, our intention is very clear and easy to understand.  We just want to perform the same operation we did in serial, but run it “as parallel”.  PLINQ completely extends LINQ to Objects: the entire functionality of LINQ to Objects is available.  By simply adding a call to AsParallel(), we can specify that a collection should be processed in parallel.  This is simple, safe, and incredibly useful.

    Read the article

  • Launching a WPF Window in a Separate Thread, Part 1

    - by Reed
    Typically, I strongly recommend keeping the user interface within an application’s main thread, and using multiple threads to move the actual “work” into background threads.  However, there are rare times when creating a separate, dedicated thread for a Window can be beneficial.  This is even acknowledged in the MSDN samples, such as the Multiple Windows, Multiple Threads sample.  However, doing this correctly is difficult.  Even the referenced MSDN sample has major flaws, and will fail horribly in certain scenarios.  To ease this, I wrote a small class that alleviates some of the difficulties involved. The MSDN Multiple Windows, Multiple Threads Sample shows how to launch a new thread with a WPF Window, and will work in most cases.  The sample code (commented and slightly modified) works out to the following: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { // Create and show the Window Window1 tempWindow = new Window1(); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Set the apartment state newWindowThread.SetApartmentState(ApartmentState.STA); // Make the thread a background thread newWindowThread.IsBackground = true; // Start the thread newWindowThread.Start(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This sample creates a thread, marks it as single threaded apartment state, and starts the Dispatcher on that thread. That is the minimum requirements to get a Window displaying and handling messages correctly, but, unfortunately, has some serious flaws. The first issue – the created thread will run continuously until the application shuts down, given the code in the sample.  The problem is that the ThreadStart delegate used ends with running the Dispatcher.  However, nothing ever stops the Dispatcher processing.  The thread was created as a Background thread, which prevents it from keeping the application alive, but the Dispatcher will continue to pump dispatcher frames until the application shuts down. In order to fix this, we need to call Dispatcher.InvokeShutdown after the Window is closed.  This would require modifying the above sample to subscribe to the Window’s Closed event, and, at that point, shutdown the Dispatcher: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { Window1 tempWindow = new Window1(); // When the window closes, shut down the dispatcher tempWindow.Closed += (s,e) => Dispatcher.CurrentDispatcher.BeginInvokeShutdown(DispatcherPriority.Background); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Setup and start thread as before This eliminates the first issue.  Now, when the Window is closed, the new thread’s Dispatcher will shut itself down, which in turn will cause the thread to complete. The above code will work correctly for most situations.  However, there is still a potential problem which could arise depending on the content of the Window1 class.  This is particularly nasty, as the code could easily work for most windows, but fail on others. The problem is, at the point where the Window is constructed, there is no active SynchronizationContext.  This is unlikely to be a problem in most cases, but is an absolute requirement if there is code within the constructor of Window1 which relies on a context being in place. While this sounds like an edge case, it’s fairly common.  For example, if a BackgroundWorker is started within the constructor, or a TaskScheduler is built using TaskScheduler.FromCurrentSynchronizationContext() with the expectation of synchronizing work to the UI thread, an exception will be raised at some point.  Both of these classes rely on the existence of a proper context being installed to SynchronizationContext.Current, which happens automatically, but not until Dispatcher.Run is called.  In the above case, SynchronizationContext.Current will return null during the Window’s construction, which can cause exceptions to occur or unexpected behavior. Luckily, this is fairly easy to correct.  We need to do three things, in order, prior to creating our Window: Create and initialize the Dispatcher for the new thread manually Create a synchronization context for the thread which uses the Dispatcher Install the synchronization context Creating the Dispatcher is quite simple – The Dispatcher.CurrentDispatcher property gets the current thread’s Dispatcher and “creates a new Dispatcher if one is not already associated with the thread.”  Once we have the correct Dispatcher, we can create a SynchronizationContext which uses the dispatcher by creating a DispatcherSynchronizationContext.  Finally, this synchronization context can be installed as the current thread’s context via SynchronizationContext.SetSynchronizationContext.  These three steps can easily be added to the above via a single line of code: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { // Create our context, and install it: SynchronizationContext.SetSynchronizationContext( new DispatcherSynchronizationContext( Dispatcher.CurrentDispatcher)); Window1 tempWindow = new Window1(); // When the window closes, shut down the dispatcher tempWindow.Closed += (s,e) => Dispatcher.CurrentDispatcher.BeginInvokeShutdown(DispatcherPriority.Background); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Setup and start thread as before This now forces the synchronization context to be in place before the Window is created and correctly shuts down the Dispatcher when the window closes. However, there are quite a few steps.  In my next post, I’ll show how to make this operation more reusable by creating a class with a far simpler API…

    Read the article

  • How to Upload a file from client to server using OFBIZ?

    - by SIVAKUMAR.J
    I'm new to ofbiz so try to keep your answer as simple as possibly. If you can give examples that would be kind. My problem is I created a project inside the ofbiz/hot-deploy folder namely productionmgntSystem. Inside the folder ofbiz\hot-deploy\productionmgntSystem\webapp\productionmgntSystem I created a file app_details_1.ftl. The following are the code of this file <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> <title>Insert title here</title> <script TYPE="TEXT/JAVASCRIPT" language=""JAVASCRIPT"> function uploadFile() { //alert("Before calling upload.jsp"); window.location='<@ofbizUrl>testing_service1</@ofbizUrl>' } </script> </head> <!-- <form action="<@ofbizUrl>testing_service1</@ofbizUrl>" enctype="multipart/form-data" name="app_details_frm"> --> <form action="<@ofbizUrl>logout1</@ofbizUrl>" enctype="multipart/form-data" name="app_details_frm"> <center style="height: 299px; "> <table border="0" style="height: 177px; width: 788px"> <tr style="height: 115px; "> <td style="width: 103px; "> <td style="width: 413px; "><h1>APPLICATION DETAILS</h1> <td style="width: 55px; "> </tr> <tr> <td style="width: 125px; ">Application name : </td> <td> <input name="app_name_txt" id="txt_1" value=" " /> </td> </tr> <tr> <td style="width: 125px; ">Excell sheet &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;: </td> <td> <input type="file" name="filename"/> </td> </tr> <tr> <td> <!-- <input type="button" name="logout1_cmd" value="Logout" onclick="logout1()"/> --> <input type="submit" name="logout_cmd" value="logout"/> </td> <td> <!-- <input type="submit" name="upload_cmd" value="Submit" /> --> <input type="button" name="upload1_cmd" value="Upload" onclick="uploadFile()"/> </td> </tr> </table> </center> </form> </html> the following coding is present in the file ofbiz\hot-deploy\productionmgntSystem\webapp\productionmgntSystem\WEB-INF\controller.xml ...... ....... ........ <request-map uri="testing_service1"> <security https="true" auth="true"/> <event type="java" path="org.ofbiz.productionmgntSystem.web_app_req.WebServices1" invoke="testingService"/> <response name="ok" type="view" value="ok_view"/> <response name="exception" type="view" value="exception_view"/> </request-map> .......... ............ .......... <view-map name="ok_view" type="ftl" page="ok_view.ftl"/> <view-map name="exception_view" type="ftl" page="exception_view.ftl"/> ................ ............. ............. The following are the coding present in the file ofbiz\hot-deploy\productionmgntSystem\src\org\ofbiz\productionmgntSystem\web_app_req\WebServices1.java package org.ofbiz.productionmgntSystem.web_app_req; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import java.io.DataInputStream; import java.io.FileOutputStream; import java.io.IOException; public class WebServices1 { public static String testingService(HttpServletRequest request, HttpServletResponse response) { //int i=0; String result="ok"; System.out.println("\n\n\t*************************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response)- Start"); String contentType=request.getContentType(); System.out.println("\n\n\t*************************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response)- contentType : "+contentType); String str=new String(); // response.setContentType("text/html"); //PrintWriter writer; if ((contentType != null) && (contentType.indexOf("multipart/form-data") >= 0)) { System.out.println("\n\n\t**********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) after if (contentType != null)"); try { // writer=response.getWriter(); System.out.println("\n\n\t**********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) - try Start"); DataInputStream in = new DataInputStream(request.getInputStream()); int formDataLength = request.getContentLength(); byte dataBytes[] = new byte[formDataLength]; int byteRead = 0; int totalBytesRead = 0; //this loop converting the uploaded file into byte code while (totalBytesRead < formDataLength) { byteRead = in.read(dataBytes, totalBytesRead,formDataLength); totalBytesRead += byteRead; } String file = new String(dataBytes); //for saving the file name String saveFile = file.substring(file.indexOf("filename=\"") + 10); saveFile = saveFile.substring(0, saveFile.indexOf("\n")); saveFile = saveFile.substring(saveFile.lastIndexOf("\\")+ 1,saveFile.indexOf("\"")); int lastIndex = contentType.lastIndexOf("="); String boundary = contentType.substring(lastIndex + 1,contentType.length()); int pos; //extracting the index of file pos = file.indexOf("filename=\""); pos = file.indexOf("\n", pos) + 1; pos = file.indexOf("\n", pos) + 1; pos = file.indexOf("\n", pos) + 1; int boundaryLocation = file.indexOf(boundary, pos) - 4; int startPos = ((file.substring(0, pos)).getBytes()).length; int endPos = ((file.substring(0, boundaryLocation)).getBytes()).length; //creating a new file with the same name and writing the content in new file FileOutputStream fileOut = new FileOutputStream("/"+saveFile); fileOut.write(dataBytes, startPos, (endPos - startPos)); fileOut.flush(); fileOut.close(); System.out.println("\n\n\t**********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) - try End"); } catch(IOException ioe) { System.out.println("\n\n\t*********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) - Catch IOException"); //ioe.printStackTrace(); return("exception"); } catch(Exception ex) { System.out.println("\n\n\t*********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) - Catch Exception"); return("exception"); } } else { System.out.println("\n\n\t********************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response) else part"); result="exception"; } System.out.println("\n\n\t*************************************\n\tInside WebServices1.testingService(HttpServletRequest request, HttpServletResponse response)- End"); return(result); } } I want to upload a file to the server. The file is get from user " tag in the "app_details_1.ftl" file & it is updated into the server by using the method "testingService(HttpServletRequest request, HttpServletResponse response)" in the class "WebServices1". But the file is not uploaded. Give me a good solution for uploading a file to the server.

    Read the article

  • Creating and maintaining Orchard translations

    - by Bertrand Le Roy
    Many volunteers have already stepped up to provide translations for Orchard. There are many challenges to overcome with translating such a project. Orchard is a very modular CMS, so the translation mechanism needs to account for the core as well as first and third party modules and themes. Another issue is that every new version of Orchard or of a module changes some localizable strings and adds new ones as others enter obsolescence. In order to address those problems, I've built a small Orchard module that automates some of the most complex tasks that maintaining a translation implies. In this post, I'll walk you through the operations I had to do to update the French translation for Orchard 1.0. In order to make sure you translate all the first party modules, I would recommend that you start from a full source code enlistment. The reason is that I'll show how you can extract the default en-US translation from any source code enlistment. That enables you to create a translation that is even more up-to-date than what is currently on the site. Alternatively, you could start by downloading the current en-US translation. If you decide to do so, just skip the relevant paragraphs. First, let's install the Orchard Translation Manager. I'm starting from a vanilla clone of the latest in the code repository. After you've setup the site, go into the dashboard and click on Gallery. Locate the Orchard Translation Manager in the list of modules and click "Install". Once the module is installed, you need to enable its one feature by going into Configuration/Features and clicking "Enable" next to Vandelay.TranslationManager. We're done with the setup that we need in order to start our translation work. We'll now switch to the command-line and to our favorite text editor. Open a command-line on the Orchard web site folder. I found the easiest way to do this is to do a SHIFT+right-click on the Orchard.Web folder in Windows Explorer and to click "Open command window here". Type bin\orchard to enter the Orchard command-line environment. If you do a "help commands" you should see four commands in the list that came from the module we just installed: extract default translation, install translation, package translation and sync translation. First, we're going to generate the default translation. Note that it is possible to generate that default translation for a specific list of modules and themes by using the /Extensions: switch, which should facilitate the translation of third party extensions, but in this tutorial we're going to generate it for the whole of the Orchard source code. extract default translation /Output:\temp .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This should have created an Orchard.en-us.po.zip file in the temp directory. Extract that archive into an orchard.po folder under \temp. The next step depends on whether you have an existing translation that you want to update or not. If you do have an existing translation, just extract it into the same \temp\orchard.po directory. That should result in a file structure where you have the default en-US translation alongside your own. If you don't have an existing translation, just continue, the commands will be the same. We are now going to synchronize those translations (or generate the stub for a new one if you didn't start from an existing translation). sync translation /Input:\temp\orchard.po /Culture:fr-FR After this command (where you should of course substitute fr-FR with the culture you're working on), we now have updated files that contain a few useful flags. Open each of the .po files under the culture you are working on (there should be around 36) with your favorite text editor. For all the strings that are still valid in the latest version, nothing changes and you don't need to do anything. For all the strings that disappeared from the default culture, the old translation will still be there but they will be prefixed with the following comment: # Obsolete translation Conveniently, all the obsolete strings will be grouped at the end of the file. You can select all those and delete them. For all the new strings, you will see the following comment: # Untranslated string This is where the hard work begins. You'll need to translate each of those new strings by entering the translation between the quotes in: msgstr "" Don't introduce hard carriage returns in the strings, just stay on one line (your text editor should do some reasonable wrapping so this shouldn't be a big deal). Once you're done with a file, save it. Make sure, and this is very important, that your text editor is saving using the UTF-8 encoding. In Notepad, that setting can be found in the file saving dialog by doing a "Save As" rather than a plain "Save": When all the po files have been edited, you are ready to package the translation for submission (a.k.a. sending e-mail to the localization mailing list). package translation /Culture:fr-FR /Input:\temp\orchard.po /Output:\temp You should now see a Orchard.fr-FR.po.zip file in temp that is ready to be submitted. That is, once you've tested it, which can be done by deploying it into the site: install translation \temp\orchard.fr-fr.po.zip Once this is done you can go into the dashboard under Configuration/Settings and click on "Add or remove supported cultures for the site". Choose your culture and click "Add". You can go back to settings and set the default culture. Save. You may now take a tour of the application and verify that everything works as expected: And that's it really. Creating a translation for Orchard is a matter of a few hours. If you don't see a translation for your culture, please consider creating it.

    Read the article

  • New Features in ASP.NET Web API 2 - Part I

    - by dwahlin
    I’m a big fan of ASP.NET Web API. It provides a quick yet powerful way to build RESTful HTTP services that can easily be consumed by a variety of clients. While it’s simple to get started using, it has a wealth of features such as filters, formatters, and message handlers that can be used to extend it when needed. In this post I’m going to provide a quick walk-through of some of the key new features in version 2. I’ll focus on some two of my favorite features that are related to routing and HTTP responses and cover additional features in a future post.   Attribute Routing Routing has been a core feature of Web API since it’s initial release and something that’s built into new Web API projects out-of-the-box. However, there are a few scenarios where defining routes can be challenging such as nested routes (more on that in a moment) and any situation where a lot of custom routes have to be defined. For this example, let’s assume that you’d like to define the following nested route:   /customers/1/orders   This type of route would select a customer with an Id of 1 and then return all of their orders. Defining this type of route in the standard WebApiConfig class is certainly possible, but it isn’t the easiest thing to do for people who don’t understand routing well. Here’s an example of how the route shown above could be defined:   public static class WebApiConfig { public static void Register(HttpConfiguration config) { config.Routes.MapHttpRoute( name: "CustomerOrdersApiGet", routeTemplate: "api/customers/{custID}/orders", defaults: new { custID = 0, controller = "Customers", action = "Orders" } ); config.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); GlobalConfiguration.Configuration.Formatters.Insert(0, new JsonpFormatter()); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   With attribute based routing, defining these types of nested routes is greatly simplified. To get started you first need to make a call to the new MapHttpAttributeRoutes() method in the standard WebApiConfig class (or a custom class that you may have created that defines your routes) as shown next:   public static class WebApiConfig { public static void Register(HttpConfiguration config) { // Allow for attribute based routes config.MapHttpAttributeRoutes(); config.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); } } Once attribute based routes are configured, you can apply the Route attribute to one or more controller actions. Here’s an example:   [HttpGet] [Route("customers/{custId:int}/orders")] public List<Order> Orders(int custId) { var orders = _Repository.GetOrders(custId); if (orders == null) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.NotFound)); } return orders; }   This example maps the custId route parameter to the custId parameter in the Orders() method and also ensures that the route parameter is typed as an integer. The Orders() method can be called using the following route: /customers/2/orders   While this is extremely easy to use and gets the job done, it doesn’t include the default “api” string on the front of the route that you might be used to seeing. You could add “api” in front of the route and make it “api/customers/{custId:int}/orders” but then you’d have to repeat that across other attribute-based routes as well. To simply this type of task you can add the RoutePrefix attribute above the controller class as shown next so that “api” (or whatever the custom starting point of your route is) is applied to all attribute routes: [RoutePrefix("api")] public class CustomersController : ApiController { [HttpGet] [Route("customers/{custId:int}/orders")] public List<Order> Orders(int custId) { var orders = _Repository.GetOrders(custId); if (orders == null) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.NotFound)); } return orders; } }   There’s much more that you can do with attribute-based routing in ASP.NET. Check out the following post by Mike Wasson for more details.   Returning Responses with IHttpActionResult The first version of Web API provided a way to return custom HttpResponseMessage objects which were pretty easy to use overall. However, Web API 2 now wraps some of the functionality available in version 1 to simplify the process even more. A new interface named IHttpActionResult (similar to ActionResult in ASP.NET MVC) has been introduced which can be used as the return type for Web API controller actions. To return a custom response you can use new helper methods exposed through ApiController such as: Ok NotFound Exception Unauthorized BadRequest Conflict Redirect InvalidModelState Here’s an example of how IHttpActionResult and the helper methods can be used to cleanup code. This is the typical way to return a custom HTTP response in version 1:   public HttpResponseMessage Delete(int id) { var status = _Repository.DeleteCustomer(id); if (status) { return new HttpResponseMessage(HttpStatusCode.OK); } else { throw new HttpResponseException(HttpStatusCode.NotFound); } } With version 2 we can replace HttpResponseMessage with IHttpActionResult and simplify the code quite a bit:   public IHttpActionResult Delete(int id) { var status = _Repository.DeleteCustomer(id); if (status) { //return new HttpResponseMessage(HttpStatusCode.OK); return Ok(); } else { //throw new HttpResponseException(HttpStatusCode.NotFound); return NotFound(); } } You can also cleanup post (insert) operations as well using the helper methods. Here’s a version 1 post action:   public HttpResponseMessage Post([FromBody]Customer cust) { var newCust = _Repository.InsertCustomer(cust); if (newCust != null) { var msg = new HttpResponseMessage(HttpStatusCode.Created); msg.Headers.Location = new Uri(Request.RequestUri + newCust.ID.ToString()); return msg; } else { throw new HttpResponseException(HttpStatusCode.Conflict); } } This is what the code looks like in version 2:   public IHttpActionResult Post([FromBody]Customer cust) { var newCust = _Repository.InsertCustomer(cust); if (newCust != null) { return Created<Customer>(Request.RequestUri + newCust.ID.ToString(), newCust); } else { return Conflict(); } } More details on IHttpActionResult and the different helper methods provided by the ApiController base class can be found here. Conclusion Although there are several additional features available in Web API 2 that I could cover (CORS support for example), this post focused on two of my favorites features. If you have .NET 4.5.1 available then I definitely recommend checking the new features out. Additional articles that cover features in ASP.NET Web API 2 can be found here.

    Read the article

  • Adding RSS to tags in Orchard

    - by Bertrand Le Roy
    A year ago, I wrote a scary post about RSS in Orchard. RSS was one of the first features we implemented in our CMS, and it has stood the test of time rather well, but the post was explaining things at a level that was probably too abstract whereas my readers were expecting something a little more practical. Well, this post is going to correct this by showing how I built a module that adds RSS feeds for each tag on the site. Hopefully it will show that it's not very complicated in practice, and also that the infrastructure is pretty well thought out. In order to provide RSS, we need to do two things: generate the XML for the feed, and inject the address of that feed into the existing tag listing page, in order to make the feed discoverable. Let's start with the discoverability part. One might be tempted to replace the controller or the view that are responsible for the listing of the items under a tag. Fortunately, there is no need to do any of that, and we can be a lot less obtrusive. Instead, we can implement a filter: public class TagRssFilter : FilterProvider, IResultFilter .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } On this filter, we can implement the OnResultExecuting method and simply check whether the current request is targeting the list of items under a tag. If that is the case, we can just register our new feed: public void OnResultExecuting(ResultExecutingContext filterContext) { var routeValues = filterContext.RouteData.Values; if (routeValues["area"] as string == "Orchard.Tags" && routeValues["controller"] as string == "Home" && routeValues["action"] as string == "Search") { var tag = routeValues["tagName"] as string; if (! string.IsNullOrWhiteSpace(tag)) { var workContext = _wca.GetContext(); _feedManager.Register( workContext.CurrentSite + " – " + tag, "rss", new RouteValueDictionary { { "tag", tag } } ); } } } The registration of the new feed is just specifying the title of the feed, its format (RSS) and the parameters that it will need (the tag). _wca and _feedManager are just instances of IWorkContextAccessor and IFeedManager that Orchard injected for us. That is all that's needed to get the following tag to be added to the head of our page, without touching an existing controller or view: <link rel="alternate" type="application/rss+xml" title="VuLu - Science" href="/rss?tag=Science"/> Nifty. Of course, if we navigate to the URL of that feed, we'll get a 404. This is because no implementation of IFeedQueryProvider knows about the tag parameter yet. Let's build one that does: public class TagFeedQuery : IFeedQueryProvider, IFeedQuery IFeedQueryProvider has one method, Match, that we can implement to take over any feed request that has a tag parameter: public FeedQueryMatch Match(FeedContext context) { var tagName = context.ValueProvider.GetValue("tag"); if (tagName == null) return null; return new FeedQueryMatch { FeedQuery = this, Priority = -5 }; } This is just saying that if there is a tag parameter, we will handle it. All that remains to be done is the actual building of the feed now that we have accepted to handle it. This is done by implementing the Execute method of the IFeedQuery interface: public void Execute(FeedContext context) { var tagValue = context.ValueProvider.GetValue("tag"); if (tagValue == null) return; var tagName = (string)tagValue.ConvertTo(typeof (string)); var tag = _tagService.GetTagByName(tagName); if (tag == null) return; var site = _services.WorkContext.CurrentSite; var link = new XElement("link"); context.Response.Element.SetElementValue("title", site.SiteName + " - " + tagName); context.Response.Element.Add(link); context.Response.Element.SetElementValue("description", site.SiteName + " - " + tagName); context.Response.Contextualize(requestContext => link.Add(GetTagUrl(tagName, requestContext))); var items = _tagService.GetTaggedContentItems(tag.Id, 0, 20); foreach (var item in items) { context.Builder.AddItem(context, item.ContentItem); } } This code is resolving the tag content item from its name and then gets content items tagged with it, using the tag services provided by the Orchard.Tags module. Then we add those items to the feed. And that is it. To summarize, we handled the request unobtrusively in order to inject the feed's link, then handled requests for feeds with a tag parameter and generated the list of items for that tag. It remains fairly simple and still it is able to handle arbitrary content types. That makes me quite happy about our little piece of over-engineered code from last year. The full code for this can be found in the Vandelay.TagCloud module: http://orchardproject.net/gallery/List/Modules/ Orchard.Module.Vandelay.TagCloud/1.2

    Read the article

  • Creating a podcast feed for iTunes & BlackBerry users using WCF Syndication

    - by brian_ritchie
     In my previous post, I showed how to create a RSS feed using WCF Syndication.  Next, I'll show how to add the additional tags needed to turn a RSS feed into an iTunes podcast.   A podcast is merely a RSS feed with some special characteristics: iTunes RSS tags.  These are additional tags beyond the standard RSS spec.  Apple has a good page on the requirements. Audio file enclosure.  This is a link to the audio file (such as mp3) hosted by your site.  Apple doesn't host the audio, they just read the meta-data from the RSS feed into their system. The SyndicationFeed class supports both AttributeExtensions & ElementExtensions to add custom tags to the RSS feeds. A couple of points of interest in the code below: The imageUrl below provides the album cover for iTunes (170px × 170px) Each SyndicationItem corresponds to an audio episode in your podcast So, here's the code: .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: XNamespace itunesNS = "http://www.itunes.com/dtds/podcast-1.0.dtd"; 2: string prefix = "itunes"; 3:   4: var feed = new SyndicationFeed(title, description, new Uri(link)); 5: feed.Categories.Add(new SyndicationCategory(category)); 6: feed.AttributeExtensions.Add(new XmlQualifiedName(prefix, 7: "http://www.w3.org/2000/xmlns/"), itunesNS.NamespaceName); 8: feed.Copyright = new TextSyndicationContent(copyright); 9: feed.Language = "en-us"; 10: feed.Copyright = new TextSyndicationContent(DateTime.Now.Year + " " + ownerName); 11: feed.ImageUrl = new Uri(imageUrl); 12: feed.LastUpdatedTime = DateTime.Now; 13: feed.Authors.Add(new SyndicationPerson() {Name=ownerName, Email=ownerEmail }); 14: var extensions = feed.ElementExtensions; 15: extensions.Add(new XElement(itunesNS + "subtitle", subTitle).CreateReader()); 16: extensions.Add(new XElement(itunesNS + "image", 17: new XAttribute("href", imageUrl)).CreateReader()); 18: extensions.Add(new XElement(itunesNS + "author", ownerName).CreateReader()); 19: extensions.Add(new XElement(itunesNS + "summary", description).CreateReader()); 20: extensions.Add(new XElement(itunesNS + "category", 21: new XAttribute("text", category), 22: new XElement(itunesNS + "category", 23: new XAttribute("text", subCategory))).CreateReader()); 24: extensions.Add(new XElement(itunesNS + "explicit", "no").CreateReader()); 25: extensions.Add(new XDocument( 26: new XElement(itunesNS + "owner", 27: new XElement(itunesNS + "name", ownerName), 28: new XElement(itunesNS + "email", ownerEmail))).CreateReader()); 29:   30: var feedItems = new List<SyndicationItem>(); 31: foreach (var i in Items) 32: { 33: var item = new SyndicationItem(i.title, null, new Uri(link)); 34: item.Summary = new TextSyndicationContent(i.summary); 35: item.Id = i.id; 36: if (i.publishedDate != null) 37: item.PublishDate = (DateTimeOffset)i.publishedDate; 38: item.Links.Add(new SyndicationLink() { 39: Title = i.title, Uri = new Uri(link), 40: Length = i.size, MediaType = i.mediaType }); 41: var itemExt = item.ElementExtensions; 42: itemExt.Add(new XElement(itunesNS + "subtitle", i.subTitle).CreateReader()); 43: itemExt.Add(new XElement(itunesNS + "summary", i.summary).CreateReader()); 44: itemExt.Add(new XElement(itunesNS + "duration", 45: string.Format("{0}:{1:00}:{2:00}", 46: i.duration.Hours, i.duration.Minutes, i.duration.Seconds) 47: ).CreateReader()); 48: itemExt.Add(new XElement(itunesNS + "keywords", i.keywords).CreateReader()); 49: itemExt.Add(new XElement(itunesNS + "explicit", "no").CreateReader()); 50: itemExt.Add(new XElement("enclosure", new XAttribute("url", i.url), 51: new XAttribute("length", i.size), new XAttribute("type", i.mediaType))); 52: feedItems.Add(item); 53: } 54:   55: feed.Items = feedItems; If you're hosting your podcast feed within a MVC project, you can use the code from my previous post to stream it. Once you have created your feed, you can use the Feed Validator tool to make sure it is up to spec.  Or you can use iTunes: Launch iTunes. In the Advanced menu, select Subscribe to Podcast. Enter your feed URL in the text box and click OK. After you've verified your feed is solid & good to go, you can submit it to iTunes.  Launch iTunes. In the left navigation column, click on iTunes Store to open the store. Once the store loads, click on Podcasts along the top navigation bar to go to the Podcasts page. In the right column of the Podcasts page, click on the Submit a Podcast link. Follow the instructions on the Submit a Podcast page. Here are the full instructions.  Once they have approved your podcast, it will be available within iTunes. RIM has also gotten into the podcasting business...which is great for BlackBerry users.  They accept the same enhanced-RSS feed that iTunes uses, so just create an account with them & submit the feed's URL.  It goes through a similar approval process to iTunes.  BlackBerry users must be on BlackBerry 6 OS or download the Podcast App from App World. In my next post, I'll show how to build the podcast feed dynamically from the ID3 tags within the MP3 files.

    Read the article

  • Segfault when iterating over a map<string, string> and drawing its contents using SDL_TTF

    - by Michael Stahre
    I'm not entirely sure this question belongs on gamedev.stackexchange, but I'm technically working on a game and working with SDL, so it might not be entirely offtopic. I've written a class called DebugText. The point of the class is to have a nice way of printing values of variables to the game screen. The idea is to call SetDebugText() with the variables in question every time they change or, as is currently the case, every time the game's Update() is called. The issue is that when iterating over the map that contains my variables and their latest updated values, I get segfaults. See the comments in DrawDebugText() below, it specifies where the error happens. I've tried splitting the calls to it-first and it-second into separate lines and found that the problem doesn't always happen when calling it-first. It alters between it-first and it-second. I can't find a pattern. It doesn't fail on every call to DrawDebugText() either. It might fail on the third time DrawDebugText() is called, or it might fail on the fourth. Class header: #ifndef CLIENT_DEBUGTEXT_H #define CLIENT_DEBUGTEXT_H #include <Map> #include <Math.h> #include <sstream> #include <SDL.h> #include <SDL_ttf.h> #include "vector2.h" using std::string; using std::stringstream; using std::map; using std::pair; using game::Vector2; namespace game { class DebugText { private: TTF_Font* debug_text_font; map<string, string>* debug_text_list; public: void SetDebugText(string var, bool value); void SetDebugText(string var, float value); void SetDebugText(string var, int value); void SetDebugText(string var, Vector2 value); void SetDebugText(string var, string value); int DrawDebugText(SDL_Surface*, SDL_Rect*); void InitDebugText(); void Clear(); }; } #endif Class source file: #include "debugtext.h" namespace game { // Copypasta function for handling the toString conversion template <class T> inline string to_string (const T& t) { stringstream ss (stringstream::in | stringstream::out); ss << t; return ss.str(); } // Initializes SDL_TTF and sets its font void DebugText::InitDebugText() { if(TTF_WasInit()) TTF_Quit(); TTF_Init(); debug_text_font = TTF_OpenFont("LiberationSans-Regular.ttf", 16); TTF_SetFontStyle(debug_text_font, TTF_STYLE_NORMAL); } // Iterates over the current debug_text_list and draws every element on the screen. // After drawing with SDL you need to get a rect specifying the area on the screen that was changed and tell SDL that this part of the screen needs to be updated. this is done in the game's Draw() function // This function sets rects_to_update to the new list of rects provided by all of the surfaces and returns the number of rects in the list. These two parameters are used in Draw() when calling on SDL_UpdateRects(), which takes an SDL_Rect* and a list length int DebugText::DrawDebugText(SDL_Surface* screen, SDL_Rect* rects_to_update) { if(debug_text_list == NULL) return 0; if(!TTF_WasInit()) InitDebugText(); rects_to_update = NULL; // Specifying the font color SDL_Color font_color = {0xff, 0x00, 0x00, 0x00}; // r, g, b, unused int row_count = 0; string line; // The iterator variable map<string, string>::iterator it; // Gets the iterator and iterates over it for(it = debug_text_list->begin(); it != debug_text_list->end(); it++) { // Takes the first value (the name of the variable) and the second value (the value of the parameter in string form) //---------THIS LINE GIVES ME SEGFAULTS----- line = it->first + ": " + it->second; //------------------------------------------ // Creates a surface with the text on it that in turn can be rendered to the screen itself later SDL_Surface* debug_surface = TTF_RenderText_Solid(debug_text_font, line.c_str(), font_color); if(debug_surface == NULL) { // A standard check for errors fprintf(stderr, "Error: %s", TTF_GetError()); return NULL; } else { // If SDL_TTF did its job right, then we now set a destination rect row_count++; SDL_Rect dstrect = {5, 5, 0, 0}; // x, y, w, h dstrect.x = 20; dstrect.y = 20*row_count; // Draws the surface with the text on it to the screen int res = SDL_BlitSurface(debug_surface,NULL,screen,&dstrect); if(res != 0) { //Just an error check fprintf(stderr, "Error: %s", SDL_GetError()); return NULL; } // Creates a new rect to specify the area that needs to be updated with SDL_Rect* new_rect_to_update = (SDL_Rect*) malloc(sizeof(SDL_Rect)); new_rect_to_update->h = debug_surface->h; new_rect_to_update->w = debug_surface->w; new_rect_to_update->x = dstrect.x; new_rect_to_update->y = dstrect.y; // Just freeing the surface since it isn't necessary anymore SDL_FreeSurface(debug_surface); // Creates a new list of rects with room for the new rect SDL_Rect* newtemp = (SDL_Rect*) malloc(row_count*sizeof(SDL_Rect)); // Copies the data from the old list of rects to the new one memcpy(newtemp, rects_to_update, (row_count-1)*sizeof(SDL_Rect)); // Adds the new rect to the new list newtemp[row_count-1] = *new_rect_to_update; // Frees the memory used by the old list free(rects_to_update); // And finally redirects the pointer to the old list to the new list rects_to_update = newtemp; newtemp = NULL; } } // When the entire map has been iterated over, return the number of lines that were drawn, ie. the number of rects in the returned rect list return row_count; } // The SetDebugText used by all the SetDebugText overloads // Takes two strings, inserts them into the map as a pair void DebugText::SetDebugText(string var, string value) { if (debug_text_list == NULL) { debug_text_list = new map<string, string>(); } debug_text_list->erase(var); debug_text_list->insert(pair<string, string>(var, value)); } // Writes the bool to a string and calls SetDebugText(string, string) void DebugText::SetDebugText(string var, bool value) { string result; if (value) result = "True"; else result = "False"; SetDebugText(var, result); } // Does the same thing, but uses to_string() to convert the float void DebugText::SetDebugText(string var, float value) { SetDebugText(var, to_string(value)); } // Same as above, but int void DebugText::SetDebugText(string var, int value) { SetDebugText(var, to_string(value)); } // Vector2 is a struct of my own making. It contains the two float vars x and y void DebugText::SetDebugText(string var, Vector2 value) { SetDebugText(var + ".x", to_string(value.x)); SetDebugText(var + ".y", to_string(value.y)); } // Empties the list. I don't actually use this in my code. Shame on me for writing something I don't use. void DebugText::Clear() { if(debug_text_list != NULL) debug_text_list->clear(); } }

    Read the article

  • Anatomy of a .NET Assembly - Custom attribute encoding

    - by Simon Cooper
    In my previous post, I covered how field, method, and other types of signatures are encoded in a .NET assembly. Custom attribute signatures differ quite a bit from these, which consequently affects attribute specifications in C#. Custom attribute specifications In C#, you can apply a custom attribute to a type or type member, specifying a constructor as well as the values of fields or properties on the attribute type: public class ExampleAttribute : Attribute { public ExampleAttribute(int ctorArg1, string ctorArg2) { ... } public Type ExampleType { get; set; } } [Example(5, "6", ExampleType = typeof(string))] public class C { ... } How does this specification actually get encoded and stored in an assembly? Specification blob values Custom attribute specification signatures use the same building blocks as other types of signatures; the ELEMENT_TYPE structure. However, they significantly differ from other types of signatures, in that the actual parameter values need to be stored along with type information. There are two types of specification arguments in a signature blob; fixed args and named args. Fixed args are the arguments to the attribute type constructor, named arguments are specified after the constructor arguments to provide a value to a field or property on the constructed attribute type (PropertyName = propValue) Values in an attribute blob are limited to one of the basic types (one of the number types, character, or boolean), a reference to a type, an enum (which, in .NET, has to use one of the integer types as a base representation), or arrays of any of those. Enums and the basic types are easy to store in a blob - you simply store the binary representation. Strings are stored starting with a compressed integer indicating the length of the string, followed by the UTF8 characters. Array values start with an integer indicating the number of elements in the array, then the item values concatentated together. Rather than using a coded token, Type values are stored using a string representing the type name and fully qualified assembly name (for example, MyNs.MyType, MyAssembly, Version=1.0.0.0, Culture=neutral, PublicKeyToken=0123456789abcdef). If the type is in the current assembly or mscorlib then just the type name can be used. This is probably done to prevent direct references between assemblies solely because of attribute specification arguments; assemblies can be loaded in the reflection-only context and attribute arguments still processed, without loading the entire assembly. Fixed and named arguments Each entry in the CustomAttribute metadata table contains a reference to the object the attribute is applied to, the attribute constructor, and the specification blob. The number and type of arguments to the constructor (the fixed args) can be worked out by the method signature referenced by the attribute constructor, and so the fixed args can simply be concatenated together in the blob without any extra type information. Named args are different. These specify the value to assign to a field or property once the attribute type has been constructed. In the CLR, fields and properties can be overloaded just on their type; different fields and properties can have the same name. Therefore, to uniquely identify a field or property you need: Whether it's a field or property (indicated using byte values 0x53 and 0x54, respectively) The field or property type The field or property name After the fixed arg values is a 2-byte number specifying the number of named args in the blob. Each named argument has the above information concatenated together, mostly using the basic ELEMENT_TYPE values, in the same way as a method or field signature. A Type argument is represented using the byte 0x50, and an enum argument is represented using the byte 0x55 followed by a string specifying the name and assembly of the enum type. The named argument property information is followed by the argument value, using the same encoding as fixed args. Boxed objects This would be all very well, were it not for object and object[]. Arguments and properties of type object allow a value of any allowed argument type to be specified. As a result, more information needs to be specified in the blob to interpret the argument bytes as the correct type. So, the argument value is simple prepended with the type of the value by specifying the ELEMENT_TYPE or name of the enum the value represents. For named arguments, a field or property of type object is represented using the byte 0x51, with the actual type specified in the argument value. Some examples... All property signatures start with the 2-byte value 0x0001. Similar to my previous post in the series, names in capitals correspond to a particular byte value in the ELEMENT_TYPE structure. For strings, I'll simply give the string value, rather than the length and UTF8 encoding in the actual blob. I'll be using the following enum and attribute types to demonstrate specification encodings: class AttrAttribute : Attribute { public AttrAttribute() {} public AttrAttribute(Type[] tArray) {} public AttrAttribute(object o) {} public AttrAttribute(MyEnum e) {} public AttrAttribute(ushort x, int y) {} public AttrAttribute(string str, Type type1, Type type2) {} public int Prop1 { get; set; } public object Prop2 { get; set; } public object[] ObjectArray; } enum MyEnum : int { Val1 = 1, Val2 = 2 } Now, some examples: Here, the the specification binds to the (ushort, int) attribute constructor, with fixed args only. The specification blob starts off with a prolog, followed by the two constructor arguments, then the number of named arguments (zero): [Attr(42, 84)] 0x0001 0x002a 0x00000054 0x0000 An example of string and type encoding: [Attr("MyString", typeof(Array), typeof(System.Windows.Forms.Form))] 0x0001 "MyString" "System.Array" "System.Windows.Forms.Form, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" 0x0000 As you can see, the full assembly specification of a type is only needed if the type isn't in the current assembly or mscorlib. Note, however, that the C# compiler currently chooses to fully-qualify mscorlib types anyway. An object argument (this binds to the object attribute constructor), and two named arguments (a null string is represented by 0xff and the empty string by 0x00) [Attr((ushort)40, Prop1 = 12, Prop2 = "")] 0x0001 U2 0x0028 0x0002 0x54 I4 "Prop1" 0x0000000c 0x54 0x51 "Prop2" STRING 0x00 Right, more complicated now. A type array as a fixed argument: [Attr(new[] { typeof(string), typeof(object) })] 0x0001 0x00000002 // the number of elements "System.String" "System.Object" 0x0000 An enum value, which is simply represented using the underlying value. The CLR works out that it's an enum using information in the attribute constructor signature: [Attr(MyEnum.Val1)] 0x0001 0x00000001 0x0000 And finally, a null array, and an object array as a named argument: [Attr((Type[])null, ObjectArray = new object[] { (byte)2, typeof(decimal), null, MyEnum.Val2 })] 0x0001 0xffffffff 0x0001 0x53 SZARRAY 0x51 "ObjectArray" 0x00000004 U1 0x02 0x50 "System.Decimal" STRING 0xff 0x55 "MyEnum" 0x00000002 As you'll notice, a null object is encoded as a null string value, and a null array is represented using a length of -1 (0xffffffff). How does this affect C#? So, we can now explain why the limits on attribute arguments are so strict in C#. Attribute specification blobs are limited to basic numbers, enums, types, and arrays. As you can see, this is because the raw CLR encoding can only accommodate those types. Special byte patterns have to be used to indicate object, string, Type, or enum values in named arguments; you can't specify an arbitary object type, as there isn't a generalised way of encoding the resulting value in the specification blob. In particular, decimal values can't be encoded, as it isn't a 'built-in' CLR type that has a native representation (you'll notice that decimal constants in C# programs are compiled as several integer arguments to DecimalConstantAttribute). Jagged arrays also aren't natively supported, although you can get around it by using an array as a value to an object argument: [Attr(new object[] { new object[] { new Type[] { typeof(string) } }, 42 })] Finally... Phew! That was a bit longer than I thought it would be. Custom attribute encodings are complicated! Hopefully this series has been an informative look at what exactly goes on inside a .NET assembly. In the next blog posts, I'll be carrying on with the 'Inside Red Gate' series.

    Read the article

  • C# Performance Pitfall – Interop Scenarios Change the Rules

    - by Reed
    C# and .NET, overall, really do have fantastic performance in my opinion.  That being said, the performance characteristics dramatically differ from native programming, and take some relearning if you’re used to doing performance optimization in most other languages, especially C, C++, and similar.  However, there are times when revisiting tricks learned in native code play a critical role in performance optimization in C#. I recently ran across a nasty scenario that illustrated to me how dangerous following any fixed rules for optimization can be… The rules in C# when optimizing code are very different than C or C++.  Often, they’re exactly backwards.  For example, in C and C++, lifting a variable out of loops in order to avoid memory allocations often can have huge advantages.  If some function within a call graph is allocating memory dynamically, and that gets called in a loop, it can dramatically slow down a routine. This can be a tricky bottleneck to track down, even with a profiler.  Looking at the memory allocation graph is usually the key for spotting this routine, as it’s often “hidden” deep in call graph.  For example, while optimizing some of my scientific routines, I ran into a situation where I had a loop similar to: for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i]); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This loop was at a fairly high level in the call graph, and often could take many hours to complete, depending on the input data.  As such, any performance optimization we could achieve would be greatly appreciated by our users. After a fair bit of profiling, I noticed that a couple of function calls down the call graph (inside of ProcessElement), there was some code that effectively was doing: // Allocate some data required DataStructure* data = new DataStructure(num); // Call into a subroutine that passed around and manipulated this data highly CallSubroutine(data); // Read and use some values from here double values = data->Foo; // Cleanup delete data; // ... return bar; Normally, if “DataStructure” was a simple data type, I could just allocate it on the stack.  However, it’s constructor, internally, allocated it’s own memory using new, so this wouldn’t eliminate the problem.  In this case, however, I could change the call signatures to allow the pointer to the data structure to be passed into ProcessElement and through the call graph, allowing the inner routine to reuse the same “data” memory instead of allocating.  At the highest level, my code effectively changed to something like: DataStructure* data = new DataStructure(numberToProcess); for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i], data); } delete data; Granted, this dramatically reduced the maintainability of the code, so it wasn’t something I wanted to do unless there was a significant benefit.  In this case, after profiling the new version, I found that it increased the overall performance dramatically – my main test case went from 35 minutes runtime down to 21 minutes.  This was such a significant improvement, I felt it was worth the reduction in maintainability. In C and C++, it’s generally a good idea (for performance) to: Reduce the number of memory allocations as much as possible, Use fewer, larger memory allocations instead of many smaller ones, and Allocate as high up the call stack as possible, and reuse memory I’ve seen many people try to make similar optimizations in C# code.  For good or bad, this is typically not a good idea.  The garbage collector in .NET completely changes the rules here. In C#, reallocating memory in a loop is not always a bad idea.  In this scenario, for example, I may have been much better off leaving the original code alone.  The reason for this is the garbage collector.  The GC in .NET is incredibly effective, and leaving the allocation deep inside the call stack has some huge advantages.  First and foremost, it tends to make the code more maintainable – passing around object references tends to couple the methods together more than necessary, and overall increase the complexity of the code.  This is something that should be avoided unless there is a significant reason.  Second, (unlike C and C++) memory allocation of a single object in C# is normally cheap and fast.  Finally, and most critically, there is a large advantage to having short lived objects.  If you lift a variable out of the loop and reuse the memory, its much more likely that object will get promoted to Gen1 (or worse, Gen2).  This can cause expensive compaction operations to be required, and also lead to (at least temporary) memory fragmentation as well as more costly collections later. As such, I’ve found that it’s often (though not always) faster to leave memory allocations where you’d naturally place them – deep inside of the call graph, inside of the loops.  This causes the objects to stay very short lived, which in turn increases the efficiency of the garbage collector, and can dramatically improve the overall performance of the routine as a whole. In C#, I tend to: Keep variable declarations in the tightest scope possible Declare and allocate objects at usage While this tends to cause some of the same goals (reducing unnecessary allocations, etc), the goal here is a bit different – it’s about keeping the objects rooted for as little time as possible in order to (attempt) to keep them completely in Gen0, or worst case, Gen1.  It also has the huge advantage of keeping the code very maintainable – objects are used and “released” as soon as possible, which keeps the code very clean.  It does, however, often have the side effect of causing more allocations to occur, but keeping the objects rooted for a much shorter time. Now – nowhere here am I suggesting that these rules are hard, fast rules that are always true.  That being said, my time spent optimizing over the years encourages me to naturally write code that follows the above guidelines, then profile and adjust as necessary.  In my current project, however, I ran across one of those nasty little pitfalls that’s something to keep in mind – interop changes the rules. In this case, I was dealing with an API that, internally, used some COM objects.  In this case, these COM objects were leading to native allocations (most likely C++) occurring in a loop deep in my call graph.  Even though I was writing nice, clean managed code, the normal managed code rules for performance no longer apply.  After profiling to find the bottleneck in my code, I realized that my inner loop, a innocuous looking block of C# code, was effectively causing a set of native memory allocations in every iteration.  This required going back to a “native programming” mindset for optimization.  Lifting these variables and reusing them took a 1:10 routine down to 0:20 – again, a very worthwhile improvement. Overall, the lessons here are: Always profile if you suspect a performance problem – don’t assume any rule is correct, or any code is efficient just because it looks like it should be Remember to check memory allocations when profiling, not just CPU cycles Interop scenarios often cause managed code to act very differently than “normal” managed code. Native code can be hidden very cleverly inside of managed wrappers

    Read the article

  • Setting useLegacyV2RuntimeActivationPolicy At Runtime

    - by Reed
    Version 4.0 of the .NET Framework included a new CLR which is almost entirely backwards compatible with the 2.0 version of the CLR.  However, by default, mixed-mode assemblies targeting .NET 3.5sp1 and earlier will fail to load in a .NET 4 application.  Fixing this requires setting useLegacyV2RuntimeActivationPolicy in your app.Config for the application.  While there are many good reasons for this decision, there are times when this is extremely frustrating, especially when writing a library.  As such, there are (rare) times when it would be beneficial to set this in code, at runtime, as well as verify that it’s running correctly prior to receiving a FileLoadException. Typically, loading a pre-.NET 4 mixed mode assembly is handled simply by changing your app.Config file, and including the relevant attribute in the startup element: <?xml version="1.0" encoding="utf-8" ?> <configuration> <startup useLegacyV2RuntimeActivationPolicy="true"> <supportedRuntime version="v4.0"/> </startup> </configuration> .csharpcode { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { margin: 0em } .csharpcode .rem { color: #008000 } .csharpcode .kwrd { color: #0000ff } .csharpcode .str { color: #006080 } .csharpcode .op { color: #0000c0 } .csharpcode .preproc { color: #cc6633 } .csharpcode .asp { background-color: #ffff00 } .csharpcode .html { color: #800000 } .csharpcode .attr { color: #ff0000 } .csharpcode .alt { background-color: #f4f4f4; margin: 0em; width: 100% } .csharpcode .lnum { color: #606060 } This causes your application to run correctly, and load the older, mixed-mode assembly without issues. For full details on what’s happening here and why, I recommend reading Mark Miller’s detailed explanation of this attribute and the reasoning behind it. Before I show any code, let me say: I strongly recommend using the official approach of using app.config to set this policy. That being said, there are (rare) times when, for one reason or another, changing the application configuration file is less than ideal. While this is the supported approach to handling this issue, the CLR Hosting API includes a means of setting this programmatically via the ICLRRuntimeInfo interface.  Normally, this is used if you’re hosting the CLR in a native application in order to set this, at runtime, prior to loading the assemblies.  However, the F# Samples include a nice trick showing how to load this API and bind this policy, at runtime.  This was required in order to host the Managed DirectX API, which is built against an older version of the CLR. This is fairly easy to port to C#.  Instead of a direct port, I also added a little addition – by trapping the COM exception received if unable to bind (which will occur if the 2.0 CLR is already bound), I also allow a runtime check of whether this property was setup properly: public static class RuntimePolicyHelper { public static bool LegacyV2RuntimeEnabledSuccessfully { get; private set; } static RuntimePolicyHelper() { ICLRRuntimeInfo clrRuntimeInfo = (ICLRRuntimeInfo)RuntimeEnvironment.GetRuntimeInterfaceAsObject( Guid.Empty, typeof(ICLRRuntimeInfo).GUID); try { clrRuntimeInfo.BindAsLegacyV2Runtime(); LegacyV2RuntimeEnabledSuccessfully = true; } catch (COMException) { // This occurs with an HRESULT meaning // "A different runtime was already bound to the legacy CLR version 2 activation policy." LegacyV2RuntimeEnabledSuccessfully = false; } } [ComImport] [InterfaceType(ComInterfaceType.InterfaceIsIUnknown)] [Guid("BD39D1D2-BA2F-486A-89B0-B4B0CB466891")] private interface ICLRRuntimeInfo { void xGetVersionString(); void xGetRuntimeDirectory(); void xIsLoaded(); void xIsLoadable(); void xLoadErrorString(); void xLoadLibrary(); void xGetProcAddress(); void xGetInterface(); void xSetDefaultStartupFlags(); void xGetDefaultStartupFlags(); [MethodImpl(MethodImplOptions.InternalCall, MethodCodeType = MethodCodeType.Runtime)] void BindAsLegacyV2Runtime(); } } Using this, it’s possible to not only set this at runtime, but also verify, prior to loading your mixed mode assembly, whether this will succeed. In my case, this was quite useful – I am working on a library purely for internal use which uses a numerical package that is supplied with both a completely managed as well as a native solver.  The native solver uses a CLR 2 mixed-mode assembly, but is dramatically faster than the pure managed approach.  By checking RuntimePolicyHelper.LegacyV2RuntimeEnabledSuccessfully at runtime, I can decide whether to enable the native solver, and only do so if I successfully bound this policy. There are some tricks required here – To enable this sort of fallback behavior, you must make these checks in a type that doesn’t cause the mixed mode assembly to be loaded.  In my case, this forced me to encapsulate the library I was using entirely in a separate class, perform the check, then pass through the required calls to that class.  Otherwise, the library will load before the hosting process gets enabled, which in turn will fail. This code will also, of course, try to enable the runtime policy before the first time you use this class – which typically means just before the first time you check the boolean value.  As a result, checking this early on in the application is more likely to allow it to work. Finally, if you’re using a library, this has to be called prior to the 2.0 CLR loading.  This will cause it to fail if you try to use it to enable this policy in a plugin for most third party applications that don’t have their app.config setup properly, as they will likely have already loaded the 2.0 runtime. As an example, take a simple audio player.  The code below shows how this can be used to properly, at runtime, only use the “native” API if this will succeed, and fallback (or raise a nicer exception) if this will fail: public class AudioPlayer { private IAudioEngine audioEngine; public AudioPlayer() { if (RuntimePolicyHelper.LegacyV2RuntimeEnabledSuccessfully) { // This will load a CLR 2 mixed mode assembly this.audioEngine = new AudioEngineNative(); } else { this.audioEngine = new AudioEngineManaged(); } } public void Play(string filename) { this.audioEngine.Play(filename); } } Now – the warning: This approach works, but I would be very hesitant to use it in public facing production code, especially for anything other than initializing your own application.  While this should work in a library, using it has a very nasty side effect: you change the runtime policy of the executing application in a way that is very hidden and non-obvious.

    Read the article

  • Who could ask for more with LESS CSS? (Part 3 of 3&ndash;Clrizr)

    - by ToString(theory);
    Welcome back!  In the first two posts in this series, I covered some of the awesome features in CSS precompilers such as SASS and LESS, as well as how to get an initial project setup up and running in ASP.Net MVC 4. In this post, I will cover an actual advanced example of using LESS in a project, and show some of the great productivity features we gain from its usage. Introduction In the first post, I mentioned two subjects that I will be using in this example – constants, and color functions.  I’ve always enjoyed using online color scheme utilities such as Adobe Kuler or Color Scheme Designer to come up with a scheme based off of one primary color.  Using these tools, and requesting a complementary scheme you can get a couple of shades of your primary color, and a couple of shades of a complementary/accent color to display. Because there is no way in regular css to do color operations or store variables, there was no way to accomplish something like defining a primary color, and have a site theme cascade off of that.  However with tools such as LESS, that impossibility becomes a reality!  So, if you haven’t guessed it by now, this post is on the creation of a plugin/module/less file to drop into your project, plugin one color, and have your primary theme cascade from it.  I only went through the trouble of creating a module for getting Complementary colors.  However, it wouldn’t be too much trouble to go through other options such as Triad or Monochromatic to get a module that you could use off of that. Step 1 – Analysis I decided to mimic Adobe Kuler’s Complementary theme algorithm as I liked its simplicity and aesthetics.  Color Scheme Designer is great, but I do believe it can give you too many color options, which can lead to chaos and overload.  The first thing I had to check was if the complementary values for the color schemes were actually hues rotated by 180 degrees at all times – they aren’t.  Apparently Adobe applies some variance to the complementary colors to get colors that are actually more aesthetically appealing to users.  So, I opened up Excel and began to plot complementary hues based on rotation in increments of 10: Long story short, I completed the same calculations for Hue, Saturation, and Lightness.  For Hue, I only had to record the Complementary hue values, however for saturation and lightness, I had to record the values for ALL of the shades.  Since the functions were too complicated to put into LESS since they aren’t constant/linear, but rather interval functions, I instead opted to extrapolate the HSL values using the trendline function for each major interval, onto intervals of spacing 1. For example, using the hue extraction, I got the following values: Interval Function 0-60 60-140 140-270 270-360 Saturation and Lightness were much worse, but in the end, I finally had functions for all of the intervals, and then went the route of just grabbing each shades value in intervals of 1.  Step 2 – Mapping I declared variable names for each of these sections as something that shouldn’t ever conflict with a variable someone would define in their own file.  After I had each of the values, I extracted the values and put them into files of their own for hue variables, saturation variables, and lightness variables…  Example: /*HUE CONVERSIONS*/@clrizr-hue-source-0deg: 133.43;@clrizr-hue-source-1deg: 135.601;@clrizr-hue-source-2deg: 137.772;@clrizr-hue-source-3deg: 139.943;@clrizr-hue-source-4deg: 142.114;.../*SATURATION CONVERSIONS*/@clrizr-saturation-s2SV0px: 0;@clrizr-saturation-s2SV1px: 0;@clrizr-saturation-s2SV2px: 0;@clrizr-saturation-s2SV3px: 0;@clrizr-saturation-s2SV4px: 0;.../*LIGHTNESS CONVERSIONS*/@clrizr-lightness-s2LV0px: 30;@clrizr-lightness-s2LV1px: 31;@clrizr-lightness-s2LV2px: 32;@clrizr-lightness-s2LV3px: 33;@clrizr-lightness-s2LV4px: 34;...   In the end, I have 973 lines of mapping/conversion from source HSL to shade HSL for two extra primary shades, and two complementary shades. The last bit of the work was the file to compose each of the shades from these mappings. Step 3 – Clrizr Mapper The final step was the hardest to overcome as I was still trying to understand LESS to its fullest extent.  Imports As mentioned previously, I had separated the HSL mappings into different files, so the first necessary step is to import those for use into the Clrizr plugin: @import url("hue.less");@import url("saturation.less");@import url("lightness.less"); Extract Component Values For Each Shade Next, I extracted the necessary information for each shade HSL before shade composition: @clrizr-input-saturation: 1px+floor(saturation(@clrizr-input))-1;@clrizr-input-lightness: 1px+floor(lightness(@clrizr-input))-1; @clrizr-complementary-hue: formatstring("clrizr-hue-source-{0}", ceil(hue(@clrizr-input))); @clrizr-primary-2-saturation: formatstring("clrizr-saturation-s2SV{0}",@clrizr-input-saturation);@clrizr-primary-1-saturation: formatstring("clrizr-saturation-s1SV{0}",@clrizr-input-saturation);@clrizr-complementary-1-saturation: formatstring("clrizr-saturation-c1SV{0}",@clrizr-input-saturation); @clrizr-primary-2-lightness: formatstring("clrizr-lightness-s2LV{0}",@clrizr-input-lightness);@clrizr-primary-1-lightness: formatstring("clrizr-lightness-s1LV{0}",@clrizr-input-lightness);@clrizr-complementary-1-lightness: formatstring("clrizr-lightness-c1LV{0}",@clrizr-input-lightness); Here, you can see a couple of odd things…  On the first line, I am using operations to add units to the saturation and lightness.  This is due to some limitations in the operations that would give me saturation or lightness in %, which can’t be in a variable name.  So, I use first add 1px to it, which casts the result of the following functions as px instead of %, and then at the end, I remove that pixel.  You can also see here the formatstring method which is exactly what it sounds like – something like String.Format(string str, params object[] obj). Get Primary & Complementary Shades Now that I have components for each of the different shades, I can now compose them into each of their pieces.  For this, I use the @@ operator which will look for a variable with the name specified in a string, and then call that variable: @clrizr-primary-2: hsl(hue(@clrizr-input), @@clrizr-primary-2-saturation, @@clrizr-primary-2-lightness);@clrizr-primary-1: hsl(hue(@clrizr-input), @@clrizr-primary-1-saturation, @@clrizr-primary-1-lightness);@clrizr-primary: @clrizr-input;@clrizr-complementary-1: hsl(@@clrizr-complementary-hue, @@clrizr-complementary-1-saturation, @@clrizr-complementary-1-lightness);@clrizr-complementary-2: hsl(@@clrizr-complementary-hue, saturation(@clrizr-input), lightness(@clrizr-input)); That’s is it, for the most part.  These variables now hold the theme for the one input color – @clrizr-input.  However, I have one last addition… Perceptive Luminance Well, after I got the colors, I decided I wanted to also get the best font color that would go on top of it.  Black or white depending on light or dark color.  Now I couldn’t just go with checking the lightness, as that is half the story.  You see, the human eye doesn’t see ALL colors equally well but rather has more cells for interpreting green light compared to blue or red.  So, using the ratio, we can calculate the perceptive luminance of each of the shades, and get the font color that best matches it! @clrizr-perceptive-luminance-ps2: round(1 - ( (0.299 * red(@clrizr-primary-2) ) + ( 0.587 * green(@clrizr-primary-2) ) + (0.114 * blue(@clrizr-primary-2)))/255)*255;@clrizr-perceptive-luminance-ps1: round(1 - ( (0.299 * red(@clrizr-primary-1) ) + ( 0.587 * green(@clrizr-primary-1) ) + (0.114 * blue(@clrizr-primary-1)))/255)*255;@clrizr-perceptive-luminance-ps: round(1 - ( (0.299 * red(@clrizr-primary) ) + ( 0.587 * green(@clrizr-primary) ) + (0.114 * blue(@clrizr-primary)))/255)*255;@clrizr-perceptive-luminance-pc1: round(1 - ( (0.299 * red(@clrizr-complementary-1)) + ( 0.587 * green(@clrizr-complementary-1)) + (0.114 * blue(@clrizr-complementary-1)))/255)*255;@clrizr-perceptive-luminance-pc2: round(1 - ( (0.299 * red(@clrizr-complementary-2)) + ( 0.587 * green(@clrizr-complementary-2)) + (0.114 * blue(@clrizr-complementary-2)))/255)*255; @clrizr-col-font-on-primary-2: rgb(@clrizr-perceptive-luminance-ps2, @clrizr-perceptive-luminance-ps2, @clrizr-perceptive-luminance-ps2);@clrizr-col-font-on-primary-1: rgb(@clrizr-perceptive-luminance-ps1, @clrizr-perceptive-luminance-ps1, @clrizr-perceptive-luminance-ps1);@clrizr-col-font-on-primary: rgb(@clrizr-perceptive-luminance-ps, @clrizr-perceptive-luminance-ps, @clrizr-perceptive-luminance-ps);@clrizr-col-font-on-complementary-1: rgb(@clrizr-perceptive-luminance-pc1, @clrizr-perceptive-luminance-pc1, @clrizr-perceptive-luminance-pc1);@clrizr-col-font-on-complementary-2: rgb(@clrizr-perceptive-luminance-pc2, @clrizr-perceptive-luminance-pc2, @clrizr-perceptive-luminance-pc2); Conclusion That’s it!  I have posted a project on clrizr.codePlex.com for this, and included a testing page for you to test out how it works.  Feel free to use it in your own project, and if you have any questions, comments or suggestions, please feel free to leave them here as a comment, or on the contact page!

    Read the article

  • Super constructor must be a first statement in Java constructor [closed]

    - by Val
    I know the answer: "we need rules to prevent shooting into your own foot". Ok, I make millions of programming mistakes every day. To be prevented, we need one simple rule: prohibit all JLS and do not use Java. If we explain everything by "not shooting your foot", this is reasonable. But there is not much reason is such reason. When I programmed in Delphy, I always wanted the compiler to check me if I read uninitializable. I have discovered myself that is is stupid to read uncertain variable because it leads unpredictable result and is errorenous obviously. By just looking at the code I could see if there is an error. I wished if compiler could do this job. It is also a reliable signal of programming error if function does not return any value. But I never wanted it do enforce me the super constructor first. Why? You say that constructors just initialize fields. Super fields are derived; extra fields are introduced. From the goal point of view, it does not matter in which order you initialize the variables. I have studied parallel architectures and can say that all the fields can even be assigned in parallel... What? Do you want to use the unitialized fields? Stupid people always want to take away our freedoms and break the JLS rules the God gives to us! Please, policeman, take away that person! Where do I say so? I'm just saying only about initializing/assigning, not using the fields. Java compiler already defends me from the mistake of accessing notinitialized. Some cases sneak but this example shows how this stupid rule does not save us from the read-accessing incompletely initialized in construction: public class BadSuper { String field; public String toString() { return "field = " + field; } public BadSuper(String val) { field = val; // yea, superfirst does not protect from accessing // inconstructed subclass fields. Subclass constr // must be called before super()! System.err.println(this); } } public class BadPost extends BadSuper { Object o; public BadPost(Object o) { super("str"); this. o = o; } public String toString() { // superconstructor will boom here, because o is not initialized! return super.toString() + ", obj = " + o.toString(); } public static void main(String[] args) { new BadSuper("test 1"); new BadPost(new Object()); } } It shows that actually, subfields have to be inilialized before the supreclass! Meantime, java requirement "saves" us from writing specializing the class by specializing what the super constructor argument is, public class MyKryo extends Kryo { class MyClassResolver extends DefaultClassResolver { public Registration register(Registration registration) { System.out.println(MyKryo.this.getDepth()); return super.register(registration); } } MyKryo() { // cannot instantiate MyClassResolver in super super(new MyClassResolver(), new MapReferenceResolver()); } } Try to make it compilable. It is always pain. Especially, when you cannot assign the argument later. Initialization order is not important for initialization in general. I could understand that you should not use super methods before initializing super. But, the requirement for super to be the first statement is different. It only saves you from the code that does useful things simply. I do not see how this adds safety. Actually, safety is degraded because we need to use ugly workarounds. Doing post-initialization, outside the constructors also degrades safety (otherwise, why do we need constructors?) and defeats the java final safety reenforcer. To conclude Reading not initialized is a bug. Initialization order is not important from the computer science point of view. Doing initalization or computations in different order is not a bug. Reenforcing read-access to not initialized is good but compilers fail to detect all such bugs Making super the first does not solve the problem as it "Prevents" shooting into right things but not into the foot It requires to invent workarounds, where, because of complexity of analysis, it is easier to shoot into the foot doing post-initialization outside the constructors degrades safety (otherwise, why do we need constructors?) and that degrade safety by defeating final access modifier When there was java forum alive, java bigots attecked me for these thoughts. Particularly, they dislaked that fields can be initialized in parallel, saying that natural development ensures correctness. When I replied that you could use an advanced engineering to create a human right away, without "developing" any ape first, and it still be an ape, they stopped to listen me. Cos modern technology cannot afford it. Ok, Take something simpler. How do you produce a Renault? Should you construct an Automobile first? No, you start by producing a Renault and, once completed, you'll see that this is an automobile. So, the requirement to produce fields in "natural order" is unnatural. In case of alarmclock or armchair, which are still chair and clock, you may need first develop the base (clock and chair) and then add extra. So, I can have examples where superfields must be initialized first and, oppositely, when they need to be initialized later. The order does not exist in advance. So, the compiler cannot be aware of the proper order. Only programmer/constructor knows is. Compiler should not take more responsibility and enforce the wrong order onto programmer. Saying that I cannot initialize some fields because I did not ininialized the others is like "you cannot initialize the thing because it is not initialized". This is a kind of argument we have. So, to conclude once more, the feature that "protects" me from doing things in simple and right way in order to enforce something that does not add noticeably to the bug elimination at that is a strongly negative thing and it pisses me off, altogether with the all the arguments to support it I've seen so far. It is "a conceptual question about software development" Should there be the requirement to call super() first or not. I do not know. If you do or have an idea, you have place to answer. I think that I have provided enough arguments against this feature. Lets appreciate the ones who benefit form it. Let it just be something more than simple abstract and stupid "write your own language" or "protection" kind of argument. Why do we need it in the language that I am going to develop?

    Read the article

  • WCF on Windows Phone 7 (Silverlight 4)

    - by Igor Zevaka
    Has anyone been able to communicate using WCF on Windows Phone Series 7 emulator? I've been trying for the past two days and it's just happening for me. I can get a normal Silverlight control to work in both Silverlight 3 and Silverlight 4, but not the phone version. Here are two versions that I've tried: Version 1 - Using Async Pattern BasicHttpBinding basicHttpBinding = new BasicHttpBinding(); EndpointAddress endpointAddress = new EndpointAddress("http://localhost/wcf/Authentication.svc"); Wcf.IAuthentication auth1 = new ChannelFactory<Wcf.IAuthentication>(basicHttpBinding, endpointAddress).CreateChannel(endpointAddress); AsyncCallback callback = (result) => { Action<string> write = (str) => { this.Dispatcher.BeginInvoke(delegate { //Display something }); }; try { Wcf.IAuthentication auth = result.AsyncState as Wcf.IAuthentication; Wcf.AuthenticationResponse response = auth.EndLogin(result); write(response.Success.ToString()); } catch (Exception ex) { write(ex.Message); System.Diagnostics.Debug.WriteLine(ex.Message); } }; auth1.BeginLogin("user0", "test0", callback, auth1); This version breaks on this line: Wcf.IAuthentication auth1 = new ChannelFactory<Wcf.IAuthentication>(basicHttpBinding, endpointAddress).CreateChannel(endpointAddress); Throwing System.NotSupportedException. The exception is not very descriptive and the callstack is equally not very helpful: at System.ServiceModel.DiagnosticUtility.ExceptionUtility.BuildMessage(Exception x) at System.ServiceModel.DiagnosticUtility.ExceptionUtility.LogException(Exception x) at System.ServiceModel.DiagnosticUtility.ExceptionUtility.ThrowHelperError(Exception e) at System.ServiceModel.ChannelFactory`1.CreateChannel(EndpointAddress address) at WindowsPhoneApplication2.MainPage.DoLogin() .... Version 2 - Blocking WCF call Here is the version that doesn't use the async pattern. [System.ServiceModel.ServiceContract] public interface IAuthentication { [System.ServiceModel.OperationContract] AuthenticationResponse Login(string user, string password); } public class WcfClientBase<TChannel> : System.ServiceModel.ClientBase<TChannel> where TChannel : class { public WcfClientBase(string name, bool streaming) : base(GetBinding(streaming), GetEndpoint(name)) { ClientCredentials.UserName.UserName = WcfConfig.UserName; ClientCredentials.UserName.Password = WcfConfig.Password; } public WcfClientBase(string name) : this(name, false) {} private static System.ServiceModel.Channels.Binding GetBinding(bool streaming) { System.ServiceModel.BasicHttpBinding binding = new System.ServiceModel.BasicHttpBinding(); binding.MaxReceivedMessageSize = 1073741824; if(streaming) { //binding.TransferMode = System.ServiceModel.TransferMode.Streamed; } /*if(XXXURLXXX.StartsWith("https")) { binding.Security.Mode = BasicHttpSecurityMode.Transport; binding.Security.Transport.ClientCredentialType = HttpClientCredentialType.None; }*/ return binding; } private static System.ServiceModel.EndpointAddress GetEndpoint(string name) { return new System.ServiceModel.EndpointAddress(WcfConfig.Endpoint + name + ".svc"); } protected override TChannel CreateChannel() { throw new System.NotImplementedException(); } } auth.Login("test0", "password0"); This version crashes in System.ServiceModel.ClientBase<TChannel> constructor. The call stack is a bit different: at System.Reflection.MethodInfo.get_ReturnParameter() at System.ServiceModel.Description.ServiceReflector.HasNoDisposableParameters(MethodInfo methodInfo) at System.ServiceModel.Description.TypeLoader.CreateOperationDescription(ContractDescription contractDescription, MethodInfo methodInfo, MessageDirection direction, ContractReflectionInfo reflectionInfo, ContractDescription declaringContract) at System.ServiceModel.Description.TypeLoader.CreateOperationDescriptions(ContractDescription contractDescription, ContractReflectionInfo reflectionInfo, Type contractToGetMethodsFrom, ContractDescription declaringContract, MessageDirection direction) at System.ServiceModel.Description.TypeLoader.CreateContractDescription(ServiceContractAttribute contractAttr, Type contractType, Type serviceType, ContractReflectionInfo& reflectionInfo, Object serviceImplementation) at System.ServiceModel.Description.TypeLoader.LoadContractDescriptionHelper(Type contractType, Type serviceType, Object serviceImplementation) at System.ServiceModel.Description.TypeLoader.LoadContractDescription(Type contractType) at System.ServiceModel.ChannelFactory1.CreateDescription() at System.ServiceModel.ChannelFactory.InitializeEndpoint(Binding binding, EndpointAddress address) at System.ServiceModel.ChannelFactory1..ctor(Binding binding, EndpointAddress remoteAddress) at System.ServiceModel.ClientBase1..ctor(Binding binding, EndpointAddress remoteAddress) at Wcf.WcfClientBase1..ctor(String name, Boolean streaming) at Wcf.WcfClientBase`1..ctor(String name) at Wcf.AuthenticationClient..ctor() at WindowsPhoneApplication2.MainPage.DoLogin() ... Any ideas?

    Read the article

  • SharePoint 2010 - Access denied during ApplyWebConfigModifications()

    - by tcoalson
    I have SharePoint 2010 installed on a Windows Server 2008 R2 machine which is also hosting SQL Sever 2008 R2. I am attempting to deploy a solution that includes web parts in the 2010 environment that is working fine in MOSS 2007. The Web Part feature has a feature receiver that updates the web.config. When I try to activate the feature through the Site Collection Feature GUI, I receive an access denied message. I am logged on to the server and in SharePoint with the APP Pool account which is also a member of the domain administrator group, local administrator group and SharePoint Farm Admin group. This account is also dbo on SQL Server. This same feature activates fine using the stsadm command. I have dug into this issue at length and here is what I have found: Looking at the Microsoft assemblies in reflector, my error is coming from the SPWebApplication.ApplyWebConfigModifications() method. I can see the trace statements from SPWebConfigFileChanges.RemoveModificationsWebConfigXMLDocument and SPWebConfigFileChanges.ApplyModificationsWebConfigXMLDocument. The next line is a Save(str). Below is the output from the SharePoint logs that pertain to this error: Apply web config modifications to web app 5a817a37-7bf6-4d26-be51-207369e38f5b 02/24/2010 16:05:41.09 w3wp.exe (0x0F64) 0x1034 SharePoint Foundation General 8grn Medium WebConfigModification: Applying web config modifications to web app in server tw-s1-m4400-007 5a817a37-7bf6-4d26-be51-207369e38f5b 02/24/2010 16:05:41.09 w3wp.exe (0x0F64) 0x1034 SharePoint Foundation Topology 88gw Medium WebConfigModification: Applying web config modifications to file C:\inetpub\wwwroot\wss\VirtualDirectories\2008\web.config 5a817a37-7bf6-4d26-be51-207369e38f5b 02/24/2010 16:05:41.09 w3wp.exe (0x0F64) 0x1034 SharePoint Foundation Topology 887b Medium Removing web config node - Path configuration/system.web/httpModules Node name add[@name='JivePageController'] 5a817a37-7bf6-4d26-be51-207369e38f5b 02/24/2010 16:05:41.09 w3wp.exe (0x0F64) 0x1034 SharePoint Foundation Topology 887b Medium Removing web config node - Path configuration/system.web/httpHandlers Node name add[@path='ScriptResource.axd'] 5a817a37-7bf6-4d26-be51-207369e38f5b 02/24/2010 16:05:41.09 w3wp.exe (0x0F64) 0x1034 SharePoint Foundation Topology 887b Medium Removing web config node - Path configuration/runtime/*[local-name()="assemblyBinding" and namespace-uri()="urn:schemas-microsoft-com:asm.v1"] Node name [local-name()="dependentAssembly"][/@name="System.Web.Extensions.Design"] 5a817a37-7bf6-4d26-be51-207369e38f5b 02/24/2010 16:05:41.09 w3wp.exe (0x0F64) 0x1034 SharePoint Foundation Topology 887b Medium Removing web config node - Path configuration/runtime/*[local-name()="assemblyBinding" and namespace-uri()="urn:schemas-microsoft-com:asm.v1"] Node name [local-name()="dependentAssembly"][/@name="System.Web.Extensions"] 5a817a37-7bf6-4d26-be51-207369e38f5b 02/24/2010 16:05:41.09 w3wp.exe (0x0F64) 0x1034 SharePoint Foundation Topology 8gp8 Medium WebConfigModification: Adding web config node - Path - configuration/runtime/*[local-name()="assemblyBinding" and namespace-uri()="urn:schemas-microsoft-com:asm.v1"] Node name - [local-name()="dependentAssembly"][/@name="System.Web.Extensions"] Node value - in web.config file C:\inetpub\wwwroot\wss\VirtualDirectories\2008\web.config 5a817a37-7bf6-4d26-be51-207369e38f5b 02/24/2010 16:05:41.09 w3wp.exe (0x0F64) 0x1034 SharePoint Foundation Topology 8gp8 Medium WebConfigModification: Adding web config node - Path - configuration/runtime/*[local-name()="assemblyBinding" and namespace-uri()="urn:schemas-microsoft-com:asm.v1"] Node name - [local-name()="dependentAssembly"][/@name="System.Web.Extensions.Design"] Node value - in web.config file C:\inetpub\wwwroot\wss\VirtualDirectories\2008\web.config 5a817a37-7bf6-4d26-be51-207369e38f5b 02/24/2010 16:05:41.09 w3wp.exe (0x0F64) 0x1034 SharePoint Foundation Topology 8gp8 Medium WebConfigModification: Adding web config node - Path - configuration/system.web/httpHandlers Node name - add[@path='ScriptResource.axd'] Node value - in web.config file C:\inetpub\wwwroot\wss\VirtualDirectories\2008\web.config 5a817a37-7bf6-4d26-be51-207369e38f5b 02/24/2010 16:05:41.09 w3wp.exe (0x0F64) 0x1034 SharePoint Foundation Topology 8gp8 Medium WebConfigModification: Adding web config node - Path - configuration/system.web/httpModules Node name - add[@name='JivePageController'] Node value - in web.config file C:\inetpub\wwwroot\wss\VirtualDirectories\2008\web.config 5a817a37-7bf6-4d26-be51-207369e38f5b 02/24/2010 16:05:41.09 w3wp.exe (0x15C4) 0x1444 SharePoint Foundation Topology e5mb Medium WcfReceiveRequest: LocalAddress: 'http://tw-s1-m4400-007.jivedemo.local:32843/15702467ece1408f881abeabac3b5077/MetadataWebService.svc' Channel: 'System.ServiceModel.Channels.ServiceChannel' Action: xxx MessageId: 'urn:uuid:4e859532-ed7f-4937-8b88-68d3af43d589' 9f403ede-2c94-490b-a05c-e169cc5fe58d 02/24/2010 16:05:41.10 w3wp.exe (0x0F64) 0x1034 SharePoint Foundation Topology f6kh High WebConfigModification: Save of web.config file C:\inetpub\wwwroot\wss\VirtualDirectories\2008\web.config for applying modifications to web app SharePoint - 2008 failed. Error message - Access to the path 'C:\inetpub\wwwroot\wss\VirtualDirectories\2008\web.config' is denied. 5a817a37-7bf6-4d26-be51-207369e38f5b 02/24/2010 16:05:41.10 w3wp.exe (0x0F64) 0x1034 SharePoint Foundation Topology 8j2o High WebConfigModification: Changes not applied to web application SharePoint - 2008 with Url xxx 5a817a37-7bf6-4d26-be51-207369e38f5b Any help would be appreciated!

    Read the article

  • boost::asio::async_read_until problem

    - by user368831
    Hi again, I'm modify the boost asio echo example to use async_read_until to read the input word by word. Even though I am using async_read_until all the data sent seems to be read from the socket. Could someone please advise: #include <cstdlib> #include <iostream> #include <boost/bind.hpp> #include <boost/asio.hpp> using boost::asio::ip::tcp; class session { public: session(boost::asio::io_service& io_service) : socket_(io_service) { } tcp::socket& socket() { return socket_; } void start() { std::cout<<"starting"<<std::endl; boost::asio::async_read_until(socket_, buffer, ' ', boost::bind(&session::handle_read, this, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred)); } void handle_read(const boost::system::error_code& error, size_t bytes_transferred) { std::ostringstream ss; ss<<&buffer; std::string s = ss.str(); std::cout<<s<<std::endl; if (!error) { boost::asio::async_write(socket_, boost::asio::buffer(s), boost::bind(&session::handle_write, this, boost::asio::placeholders::error)); } else { delete this; } } void handle_write(const boost::system::error_code& error) { std::cout<<"handling write"<<std::endl; if (!error) { } else { delete this; } } private: tcp::socket socket_; boost::asio::streambuf buffer; }; class server { public: server(boost::asio::io_service& io_service, short port) : io_service_(io_service), acceptor_(io_service, tcp::endpoint(tcp::v4(), port)) { session* new_session = new session(io_service_); acceptor_.async_accept(new_session->socket(), boost::bind(&server::handle_accept, this, new_session, boost::asio::placeholders::error)); } void handle_accept(session* new_session, const boost::system::error_code& error) { if (!error) { new_session->start(); new_session = new session(io_service_); acceptor_.async_accept(new_session->socket(), boost::bind(&server::handle_accept, this, new_session, boost::asio::placeholders::error)); } else { delete new_session; } } private: boost::asio::io_service& io_service_; tcp::acceptor acceptor_; }; int main(int argc, char* argv[]) { try { if (argc != 2) { std::cerr << "Usage: async_tcp_echo_server <port>\n"; return 1; } boost::asio::io_service io_service; using namespace std; // For atoi. server s(io_service, atoi(argv[1])); io_service.run(); } catch (std::exception& e) { std::cerr << "Exception: " << e.what() << "\n"; } return 0; } Thanks!

    Read the article

  • Python - pyparsing unicode characters

    - by mgj
    Hi..:) I tried using w = Word(printables), but it isn't working. How should I give the spec for this. 'w' is meant to process Hindi characters (UTF-8) The code specifies the grammar and parses accordingly. 671.assess :: ????? ::2 x=number + "." + src + "::" + w + "::" + number + "." + number If there is only english characters it is working so the code is correct for the ascii format but the code is not working for the unicode format. I mean that the code works when we have something of the form 671.assess :: ahsaas ::2 i.e. it parses words in the english format, but I am not sure how to parse and then print characters in the unicode format. I need this for English Hindi word alignment for purpose. The python code looks like this: # -*- coding: utf-8 -*- from pyparsing import Literal, Word, Optional, nums, alphas, ZeroOrMore, printables , Group , alphas8bit , # grammar src = Word(printables) trans = Word(printables) number = Word(nums) x=number + "." + src + "::" + trans + "::" + number + "." + number #parsing for eng-dict efiledata = open('b1aop_or_not_word.txt').read() eresults = x.parseString(efiledata) edict1 = {} edict2 = {} counter=0 xx=list() for result in eresults: trans=""#translation string ew=""#english word xx=result[0] ew=xx[2] trans=xx[4] edict1 = { ew:trans } edict2.update(edict1) print len(edict2) #no of entries in the english dictionary print "edict2 has been created" print "english dictionary" , edict2 #parsing for hin-dict hfiledata = open('b1aop_or_not_word.txt').read() hresults = x.scanString(hfiledata) hdict1 = {} hdict2 = {} counter=0 for result in hresults: trans=""#translation string hw=""#hin word xx=result[0] hw=xx[2] trans=xx[4] #print trans hdict1 = { trans:hw } hdict2.update(hdict1) print len(hdict2) #no of entries in the hindi dictionary print"hdict2 has been created" print "hindi dictionary" , hdict2 ''' ####################################################################################################################### def translate(d, ow, hinlist): if ow in d.keys():#ow=old word d=dict print ow , "exists in the dictionary keys" transes = d[ow] transes = transes.split() print "possible transes for" , ow , " = ", transes for word in transes: if word in hinlist: print "trans for" , ow , " = ", word return word return None else: print ow , "absent" return None f = open('bidir','w') #lines = ["'\ #5# 10 # and better performance in business in turn benefits consumers . # 0 0 0 0 0 0 0 0 0 0 \ #5# 11 # vHyaapaar mEmn bEhtr kaam upbhOkHtaaomn kE lIe laabhpHrdd hOtaa hAI . # 0 0 0 0 0 0 0 0 0 0 0 \ #'"] data=open('bi_full_2','rb').read() lines = data.split('!@#$%') loc=0 for line in lines: eng, hin = [subline.split(' # ') for subline in line.strip('\n').split('\n')] for transdict, source, dest in [(edict2, eng, hin), (hdict2, hin, eng)]: sourcethings = source[2].split() for word in source[1].split(): tl = dest[1].split() otherword = translate(transdict, word, tl) loc = source[1].split().index(word) if otherword is not None: otherword = otherword.strip() print word, ' <-> ', otherword, 'meaning=good' if otherword in dest[1].split(): print word, ' <-> ', otherword, 'trans=good' sourcethings[loc] = str( dest[1].split().index(otherword) + 1) source[2] = ' '.join(sourcethings) eng = ' # '.join(eng) hin = ' # '.join(hin) f.write(eng+'\n'+hin+'\n\n\n') f.close() ''' if an example input sentence for the source file is: 1# 5 # modern markets : confident consumers # 0 0 0 0 0 1# 6 # AddhUnIk baajaar : AshHvsHt upbhOkHtaa . # 0 0 0 0 0 0 !@#$% the ouptut would look like this :- 1# 5 # modern markets : confident consumers # 1 2 3 4 5 1# 6 # AddhUnIk baajaar : AshHvsHt upbhOkHtaa . # 1 2 3 4 5 0 !@#$% Output Explanation:- This achieves bidirectional alignment. It means the first word of english 'modern' maps to the first word of hindi 'AddhUnIk' and vice versa. Here even characters are take as words as they also are an integral part of bidirectional mapping. Thus if you observe the hindi WORD '.' has a null alignment and it maps to nothing with respect to the English sentence as it doesn't have a full stop. The 3rd line int the output basically represents a delimiter when we are working for a number of sentences for which your trying to achieve bidirectional mapping. What modification should i make for it to work if the I have the hindi sentences in Unicode(UTF-8) format.

    Read the article

  • Implementing a popularity algorithm in Django

    - by TheLizardKing
    I am creating a site similar to reddit and hacker news that has a database of links and votes. I am implementing hacker news' popularity algorithm and things are going pretty swimmingly until it comes to actually gathering up these links and displaying them. The algorithm is simple: Y Combinator's Hacker News: Popularity = (p - 1) / (t + 2)^1.5` Votes divided by age factor. Where` p : votes (points) from users. t : time since submission in hours. p is subtracted by 1 to negate submitter's vote. Age factor is (time since submission in hours plus two) to the power of 1.5.factor is (time since submission in hours plus two) to the power of 1.5. I asked a very similar question over yonder http://stackoverflow.com/questions/1964395/complex-ordering-in-django but instead of contemplating my options I choose one and tried to make it work because that's how I did it with PHP/MySQL but I now know Django does things a lot differently. My models look something (exactly) like this class Link(models.Model): category = models.ForeignKey(Category) user = models.ForeignKey(User) created = models.DateTimeField(auto_now_add = True) modified = models.DateTimeField(auto_now = True) fame = models.PositiveIntegerField(default = 1) title = models.CharField(max_length = 256) url = models.URLField(max_length = 2048) def __unicode__(self): return self.title class Vote(models.Model): link = models.ForeignKey(Link) user = models.ForeignKey(User) created = models.DateTimeField(auto_now_add = True) modified = models.DateTimeField(auto_now = True) karma_delta = models.SmallIntegerField() def __unicode__(self): return str(self.karma_delta) and my view: def index(request): popular_links = Link.objects.select_related().annotate(karma_total = Sum('vote__karma_delta')) return render_to_response('links/index.html', {'links': popular_links}) Now from my previous question, I am trying to implement the algorithm using the sorting function. An answer from that question seems to think I should put the algorithm in the select and sort then. I am going to paginate these results so I don't think I can do the sorting in python without grabbing everything. Any suggestions on how I could efficiently do this? EDIT This isn't working yet but I think it's a step in the right direction: from django.shortcuts import render_to_response from linkett.apps.links.models import * def index(request): popular_links = Link.objects.select_related() popular_links = popular_links.extra( select = { 'karma_total': 'SUM(vote.karma_delta)', 'popularity': '(karma_total - 1) / POW(2, 1.5)', }, order_by = ['-popularity'] ) return render_to_response('links/index.html', {'links': popular_links}) This errors out into: Caught an exception while rendering: column "karma_total" does not exist LINE 1: SELECT ((karma_total - 1) / POW(2, 1.5)) AS "popularity", (S... EDIT 2 Better error? TemplateSyntaxError: Caught an exception while rendering: missing FROM-clause entry for table "vote" LINE 1: SELECT ((vote.karma_total - 1) / POW(2, 1.5)) AS "popularity... My index.html is simply: {% block content %} {% for link in links %} karma-up {{ link.karma_total }} karma-down {{ link.title }} Posted by {{ link.user }} to {{ link.category }} at {{ link.created }} {% empty %} No Links {% endfor %} {% endblock content %} EDIT 3 So very close! Again, all these answers are great but I am concentrating on a particular one because I feel it works best for my situation. from django.db.models import Sum from django.shortcuts import render_to_response from linkett.apps.links.models import * def index(request): popular_links = Link.objects.select_related().extra( select = { 'popularity': '(SUM(links_vote.karma_delta) - 1) / POW(2, 1.5)', }, tables = ['links_link', 'links_vote'], order_by = ['-popularity'], ) return render_to_response('links/test.html', {'links': popular_links}) Running this I am presented with an error hating on my lack of group by values. Specifically: TemplateSyntaxError at / Caught an exception while rendering: column "links_link.id" must appear in the GROUP BY clause or be used in an aggregate function LINE 1: ...karma_delta) - 1) / POW(2, 1.5)) AS "popularity", "links_lin... Not sure why my links_link.id wouldn't be in my group by but I am not sure how to alter my group by, django usually does that.

    Read the article

  • System.UnsupportedException using WCF on Windows Phone 7

    - by Igor Zevaka
    Has anyone been able to communicate using WCF on Windows Phone Series 7 emulator? I've been trying for the past two days and it's just happening for me. I can get a normal Silverlight control to work in both Silverlight 3 and Silverlight 4, but not the phone version. Here are two versions that I've tried: Version 1 - Using Async Pattern BasicHttpBinding basicHttpBinding = new BasicHttpBinding(); EndpointAddress endpointAddress = new EndpointAddress("http://localhost/wcf/Authentication.svc"); Wcf.IAuthentication auth1 = new ChannelFactory<Wcf.IAuthentication>(basicHttpBinding, endpointAddress).CreateChannel(endpointAddress); AsyncCallback callback = (result) => { Action<string> write = (str) => { this.Dispatcher.BeginInvoke(delegate { //Display something }); }; try { Wcf.IAuthentication auth = result.AsyncState as Wcf.IAuthentication; Wcf.AuthenticationResponse response = auth.EndLogin(result); write(response.Success.ToString()); } catch (Exception ex) { write(ex.Message); System.Diagnostics.Debug.WriteLine(ex.Message); } }; auth1.BeginLogin("user0", "test0", callback, auth1); This version breaks on this line: Wcf.IAuthentication auth1 = new ChannelFactory<Wcf.IAuthentication>(basicHttpBinding, endpointAddress).CreateChannel(endpointAddress); Throwing System.NotSupportedException. The exception is not very descriptive and the callstack is equally not very helpful: at System.ServiceModel.DiagnosticUtility.ExceptionUtility.BuildMessage(Exception x) at System.ServiceModel.DiagnosticUtility.ExceptionUtility.LogException(Exception x) at System.ServiceModel.DiagnosticUtility.ExceptionUtility.ThrowHelperError(Exception e) at System.ServiceModel.ChannelFactory`1.CreateChannel(EndpointAddress address) at WindowsPhoneApplication2.MainPage.DoLogin() .... Version 2 - Blocking WCF call Here is the version that doesn't use the async pattern. [System.ServiceModel.ServiceContract] public interface IAuthentication { [System.ServiceModel.OperationContract] AuthenticationResponse Login(string user, string password); } public class WcfClientBase<TChannel> : System.ServiceModel.ClientBase<TChannel> where TChannel : class { public WcfClientBase(string name, bool streaming) : base(GetBinding(streaming), GetEndpoint(name)) { ClientCredentials.UserName.UserName = WcfConfig.UserName; ClientCredentials.UserName.Password = WcfConfig.Password; } public WcfClientBase(string name) : this(name, false) {} private static System.ServiceModel.Channels.Binding GetBinding(bool streaming) { System.ServiceModel.BasicHttpBinding binding = new System.ServiceModel.BasicHttpBinding(); binding.MaxReceivedMessageSize = 1073741824; if(streaming) { //binding.TransferMode = System.ServiceModel.TransferMode.Streamed; } /*if(XXXURLXXX.StartsWith("https")) { binding.Security.Mode = BasicHttpSecurityMode.Transport; binding.Security.Transport.ClientCredentialType = HttpClientCredentialType.None; }*/ return binding; } private static System.ServiceModel.EndpointAddress GetEndpoint(string name) { return new System.ServiceModel.EndpointAddress(WcfConfig.Endpoint + name + ".svc"); } protected override TChannel CreateChannel() { throw new System.NotImplementedException(); } } auth.Login("test0", "password0"); This version crashes in System.ServiceModel.ClientBase<TChannel> constructor. The call stack is a bit different: at System.Reflection.MethodInfo.get_ReturnParameter() at System.ServiceModel.Description.ServiceReflector.HasNoDisposableParameters(MethodInfo methodInfo) at System.ServiceModel.Description.TypeLoader.CreateOperationDescription(ContractDescription contractDescription, MethodInfo methodInfo, MessageDirection direction, ContractReflectionInfo reflectionInfo, ContractDescription declaringContract) at System.ServiceModel.Description.TypeLoader.CreateOperationDescriptions(ContractDescription contractDescription, ContractReflectionInfo reflectionInfo, Type contractToGetMethodsFrom, ContractDescription declaringContract, MessageDirection direction) at System.ServiceModel.Description.TypeLoader.CreateContractDescription(ServiceContractAttribute contractAttr, Type contractType, Type serviceType, ContractReflectionInfo& reflectionInfo, Object serviceImplementation) at System.ServiceModel.Description.TypeLoader.LoadContractDescriptionHelper(Type contractType, Type serviceType, Object serviceImplementation) at System.ServiceModel.Description.TypeLoader.LoadContractDescription(Type contractType) at System.ServiceModel.ChannelFactory1.CreateDescription() at System.ServiceModel.ChannelFactory.InitializeEndpoint(Binding binding, EndpointAddress address) at System.ServiceModel.ChannelFactory1..ctor(Binding binding, EndpointAddress remoteAddress) at System.ServiceModel.ClientBase1..ctor(Binding binding, EndpointAddress remoteAddress) at Wcf.WcfClientBase1..ctor(String name, Boolean streaming) at Wcf.WcfClientBase`1..ctor(String name) at Wcf.AuthenticationClient..ctor() at WindowsPhoneApplication2.MainPage.DoLogin() ... Any ideas?

    Read the article

  • Best style for Python programs: what do you suggest?

    - by Noctis Skytower
    A friend of mine wanted help learning to program, so he gave me all the programs that he wrote for his previous classes. The last program that he wrote was an encryption program, and after rewriting all his programs in Python, this is how his encryption program turned out (after adding my own requirements). #! /usr/bin/env python ################################################################################ """\ CLASS INFORMATION ----------------- Program Name: Program 11 Programmer: Stephen Chappell Instructor: Stephen Chappell for CS 999-0, Python Due Date: 17 May 2010 DOCUMENTATION ------------- This is a simple encryption program that can encode and decode messages.""" ################################################################################ import sys KEY_FILE = 'Key.txt' BACKUP = '''\ !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO\ PQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ _@/6-UC'GzaV0%5Mo9g+yNh8b">Bi=<Lx [sQn#^R.D2Xc(\ Jm!4e${lAEWud&t7]H\`}pvPw)FY,Z~?qK|3SOfk*:1;jTrI''' ################################################################################ def main(): "Run the program: loads key, runs processing loop, and saves key." encode_map, decode_map = load_key(KEY_FILE) try: run_interface_loop(encode_map, decode_map) except SystemExit: pass save_key(KEY_FILE, encode_map) def run_interface_loop(encode_map, decode_map): "Shows the menu and runs the appropriate command." print('This program handles encryption via a customizable key.') while True: print('''\ MENU ==== (1) Encode (2) Decode (3) Custom (4) Finish''') switch = get_character('Select: ', tuple('1234')) FUNC[switch](encode_map, decode_map) def get_character(prompt, choices): "Gets a valid menu option and returns it." while True: sys.stdout.write(prompt) sys.stdout.flush() line = sys.stdin.readline()[:-1] if not line: sys.exit() if line in choices: return line print(repr(line), 'is not a valid choice.') ################################################################################ def load_key(filename): "Gets the key file data and returns encoding/decoding dictionaries." plain, cypher = open_file(filename) return dict(zip(plain, cypher)), dict(zip(cypher, plain)) def open_file(filename): "Load the keys and tries to create it when not available." while True: try: with open(filename) as file: plain, cypher = file.read().split('\n') return plain, cypher except: with open(filename, 'w') as file: file.write(BACKUP) def save_key(filename, encode_map): "Dumps the map into two buffers and saves them to the key file." plain = cypher = str() for p, c in encode_map.items(): plain += p cypher += c with open(filename, 'w') as file: file.write(plain + '\n' + cypher) ################################################################################ def encode(encode_map, decode_map): "Encodes message for the user." print('Enter your message to encode (EOF when finished).') message = get_message() for char in message: sys.stdout.write(encode_map[char] if char in encode_map else char) def decode(encode_map, decode_map): "Decodes message for the user." print('Enter your message to decode (EOF when finished).') message = get_message() for char in message: sys.stdout.write(decode_map[char] if char in decode_map else char) def custom(encode_map, decode_map): "Allows user to edit the encoding/decoding dictionaries." plain, cypher = get_new_mapping() for p, c in zip(plain, cypher): encode_map[p] = c decode_map[c] = p ################################################################################ def get_message(): "Gets and returns text entered by the user (until EOF)." buffer = [] while True: line = sys.stdin.readline() if line: buffer.append(line) else: return ''.join(buffer) def get_new_mapping(): "Prompts for strings to edit encoding/decoding maps." while True: plain = get_unique_chars('What do you want to encode from?') cypher = get_unique_chars('What do you want to encode to?') if len(plain) == len(cypher): return plain, cypher print('Both lines should have the same length.') def get_unique_chars(prompt): "Gets strings that only contain unique characters." print(prompt) while True: line = input() if len(line) == len(set(line)): return line print('There were duplicate characters: please try again.') ################################################################################ # This map is used for dispatching commands in the interface loop. FUNC = {'1': encode, '2': decode, '3': custom, '4': lambda a, b: sys.exit()} ################################################################################ if __name__ == '__main__': main() For all those Python programmers out there, your help is being requested. How should the formatting (not necessarily the coding by altered to fit Python's style guide? My friend does not need to be learning things that are not correct. If you have suggestions on the code, feel free to post them to this wiki as well.

    Read the article

  • asp.net listbox

    - by lodun
    Why this code don't work,when i want run this code vwd 2008 express show me this error: Object reference not set to an instance of an object. Line 73: kom.Parameters.Add("@subcategories", SqlDbType.Text).Value = s_categoreis.SelectedItem.ToString(); This is my ascx file: <asp:ListBox ID="categories" runat="server" Height="380px" CssClass="kat" AutoPostBack="true" DataSourceID="SqlDataSource1" DataTextField="Categories" DataValueField="ID" onselectedindexchanged="kategorije_SelectedIndexChanged"></asp:ListBox> <asp:Button ID="Button1" CssClass="my" runat="server" Text="click" onclick="Button1_Click" /> <asp:UpdatePanel ID="UpdatePanel1" runat="server"> <ContentTemplate> <asp:ListBox ID="s_categoreis" CssClass="pod" Height="150px" Enabled="true" runat="server"></asp:ListBox></ContentTemplate> <Triggers> <asp:AsyncPostBackTrigger ControlID="categories" EventName="SelectedIndexChanged" /> </Triggers> </asp:UpdatePanel> <asp:SqlDataSource ID="SqlDataSource1" runat="server" ConnectionString="<%$ ConnectionStrings:estudent_piooConnectionString %>" SelectCommand="SELECT [ID], [Categories] FROM [categories]"> </asp:SqlDataSource> and this is my ascx.cs: SqlConnection veza; SqlCommand kom = new SqlCommand(); SqlParameter par1 = new SqlParameter(); SqlParameter par2 = new SqlParameter(); SqlParameter par3 = new SqlParameter(); SqlParameter par4 = new SqlParameter(); SqlParameter par5 = new SqlParameter(); SqlParameter par6 = new SqlParameter(); SqlParameter par7 = new SqlParameter(); SqlParameter par8 = new SqlParameter(); SqlParameter par9 = new SqlParameter(); protected void Page_Load(object sender, EventArgs e) { Listapod_kategorije(1); } protected void kategorije_SelectedIndexChanged(object sender, EventArgs e) { Listapod_kategorije(Convert.ToInt32(kategorije.SelectedValue)); } private void Listapod_kategorije(int broj) { SqlDataSource ds = new SqlDataSource(); ds.ConnectionString = ConfigurationManager.ConnectionStrings["estudent_piooConnectionString"].ConnectionString; ds.SelectCommand = "Select * from pod_kategorije where kat_id=" + broj; pod_kategorije.DataSource = ds; pod_kategorije.DataTextField = "pkategorija"; pod_kategorije.DataValueField = "ID"; pod_kategorije.DataBind(); } protected void Button1_Click(object sender, EventArgs e) { Guid jk = new Guid(); object datum = DateTime.Now; veza = new SqlConnection(@"server=85.94.76.170\PADME; database=estudent_pioo;uid=pioo;pwd=1234567"); Random broj = new Random(); int b_kor = broj.Next(1, 1000); kom.Parameters.Add("@text", SqlDbType.Text).Value = str; kom.Parameters.Add("@user", SqlDbType.UniqueIdentifier).Value = jk; kom.Parameters.Add("@date", SqlDbType.DateTime).Value = datum; kom.Parameters.Add("@visits", SqlDbType.Int).Value = 0; kom.Parameters.Add("@answers", SqlDbType.Int).Value = 0; kom.Parameters.Add("@username", SqlDbType.Text).Value = "unknown_" + b_kor.ToString(); ; kom.Parameters.Add("@categories", SqlDbType.Text).Value = categories.SelectedItem.ToString(); kom.Parameters.Add("@sub_categories", SqlDbType.Text).Value = s_categoreis.SelectedItem.ToString(); veza.Open(); kom.ExecuteNonQuery(); veza.Close(); Response.Redirect("default.aspx");

    Read the article

  • 42 passed to TerminateProcess, sometimes GetExitCodeProcess returns 0

    - by Emil
    After I get a handle returned by CreateProcess, I call TerminateProcess, passing 42 for the process exit code. Then, I use WaitForSingleObject for the process to terminate, and finally I call GetExitCodeProcess. None of the function calls report errors. The child process is an infinite loop and does not terminate on its own. The problem is that sometimes GetExitCodeProcess returns 42 for the exit code (as it should) and sometimes it returns 0. Any idea why? #include <string> #include <sstream> #include <iostream> #include <assert.h> #include <windows.h> void check_call( bool result, char const * call ); #define CHECK_CALL(call) check_call(call,#call); int main( int argc, char const * argv[] ) { if( argc>1 ) { assert( !strcmp(argv[1],"inf") ); for(;;) { } } int err=0; for( int i=0; i!=200; ++i ) { STARTUPINFO sinfo; ZeroMemory(&sinfo,sizeof(STARTUPINFO)); sinfo.cb=sizeof(STARTUPINFO); PROCESS_INFORMATION pe; char cmd_line[32768]; strcat(strcpy(cmd_line,argv[0])," inf"); CHECK_CALL((CreateProcess(0,cmd_line,0,0,TRUE,0,0,0,&sinfo,&pe)!=0)); CHECK_CALL((CloseHandle(pe.hThread)!=0)); CHECK_CALL((TerminateProcess(pe.hProcess,42)!=0)); CHECK_CALL((WaitForSingleObject(pe.hProcess,INFINITE)==WAIT_OBJECT_0)); DWORD ec=0; CHECK_CALL((GetExitCodeProcess(pe.hProcess,&ec)!=0)); CHECK_CALL((CloseHandle(pe.hProcess)!=0)); err += (ec!=42); } std::cout << err; return 0; } std::string get_last_error_str( DWORD err ) { std::ostringstream s; s << err; LPVOID lpMsgBuf=0; if( FormatMessageA( FORMAT_MESSAGE_ALLOCATE_BUFFER|FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS, 0, err, MAKELANGID(LANG_NEUTRAL,SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, 0) ) { assert(lpMsgBuf!=0); std::string msg; try { std::string((LPCSTR)lpMsgBuf).swap(msg); } catch( ... ) { } LocalFree(lpMsgBuf); if( !msg.empty() && msg[msg.size()-1]=='\n' ) msg.resize(msg.size()-1); if( !msg.empty() && msg[msg.size()-1]=='\r' ) msg.resize(msg.size()-1); s << ", \"" << msg << '"'; } return s.str(); } void check_call( bool result, char const * call ) { assert(call && *call); if( !result ) { std::cerr << call << " failed.\nGetLastError:" << get_last_error_str(GetLastError()) << std::endl; exit(2); } }

    Read the article

  • Differing styles in Python program: what do you suggest?

    - by Noctis Skytower
    A friend of mine wanted help learning to program, so he gave me all the programs that he wrote for his previous classes. The last program that he wrote was an encryption program, and after rewriting all his programs in Python, this is how his encryption program turned out (after adding my own requirements). #! /usr/bin/env python ################################################################################ """\ CLASS INFORMATION ----------------- Program Name: Program 11 Programmer: Stephen Chappell Instructor: Stephen Chappell for CS 999-0, Python Due Date: 17 May 2010 DOCUMENTATION ------------- This is a simple encryption program that can encode and decode messages.""" ################################################################################ import sys KEY_FILE = 'Key.txt' BACKUP = '''\ !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO\ PQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ _@/6-UC'GzaV0%5Mo9g+yNh8b">Bi=<Lx [sQn#^R.D2Xc(\ Jm!4e${lAEWud&t7]H\`}pvPw)FY,Z~?qK|3SOfk*:1;jTrI''' ################################################################################ def main(): "Run the program: loads key, runs processing loop, and saves key." encode_map, decode_map = load_key(KEY_FILE) try: run_interface_loop(encode_map, decode_map) except SystemExit: pass save_key(KEY_FILE, encode_map) def run_interface_loop(encode_map, decode_map): "Shows the menu and runs the appropriate command." print('This program handles encryption via a customizable key.') while True: print('''\ MENU ==== (1) Encode (2) Decode (3) Custom (4) Finish''') switch = get_character('Select: ', tuple('1234')) FUNC[switch](encode_map, decode_map) def get_character(prompt, choices): "Gets a valid menu option and returns it." while True: sys.stdout.write(prompt) sys.stdout.flush() line = sys.stdin.readline()[:-1] if not line: sys.exit() if line in choices: return line print(repr(line), 'is not a valid choice.') ################################################################################ def load_key(filename): "Gets the key file data and returns encoding/decoding dictionaries." plain, cypher = open_file(filename) return dict(zip(plain, cypher)), dict(zip(cypher, plain)) def open_file(filename): "Load the keys and tries to create it when not available." while True: try: with open(filename) as file: plain, cypher = file.read().split('\n') return plain, cypher except: with open(filename, 'w') as file: file.write(BACKUP) def save_key(filename, encode_map): "Dumps the map into two buffers and saves them to the key file." plain = cypher = str() for p, c in encode_map.items(): plain += p cypher += c with open(filename, 'w') as file: file.write(plain + '\n' + cypher) ################################################################################ def encode(encode_map, decode_map): "Encodes message for the user." print('Enter your message to encode (EOF when finished).') message = get_message() for char in message: sys.stdout.write(encode_map[char] if char in encode_map else char) def decode(encode_map, decode_map): "Decodes message for the user." print('Enter your message to decode (EOF when finished).') message = get_message() for char in message: sys.stdout.write(decode_map[char] if char in decode_map else char) def custom(encode_map, decode_map): "Allows user to edit the encoding/decoding dictionaries." plain, cypher = get_new_mapping() for p, c in zip(plain, cypher): encode_map[p] = c decode_map[c] = p ################################################################################ def get_message(): "Gets and returns text entered by the user (until EOF)." buffer = [] while True: line = sys.stdin.readline() if line: buffer.append(line) else: return ''.join(buffer) def get_new_mapping(): "Prompts for strings to edit encoding/decoding maps." while True: plain = get_unique_chars('What do you want to encode from?') cypher = get_unique_chars('What do you want to encode to?') if len(plain) == len(cypher): return plain, cypher print('Both lines should have the same length.') def get_unique_chars(prompt): "Gets strings that only contain unique characters." print(prompt) while True: line = input() if len(line) == len(set(line)): return line print('There were duplicate characters: please try again.') ################################################################################ # This map is used for dispatching commands in the interface loop. FUNC = {'1': encode, '2': decode, '3': custom, '4': lambda a, b: sys.exit()} ################################################################################ if __name__ == '__main__': main() For all those Python programmers out there, your help is being requested. How should the formatting (not necessarily the coding by altered to fit Python's style guide? My friend does not need to be learning things that are not correct. If you have suggestions on the code, feel free to post them to this wiki as well.

    Read the article

< Previous Page | 78 79 80 81 82 83 84 85  | Next Page >