Search Results

Search found 27161 results on 1087 pages for 'information schema'.

Page 82/1087 | < Previous Page | 78 79 80 81 82 83 84 85 86 87 88 89  | Next Page >

  • Get graphics information from font file. How to develop font parser similar to PDFView's font parser

    - by HBA
    Hi, I am trying to convert text into graphics using c#. My input is character string and output is bitmap with the input text. After lot of search I found some ways to do it, I found some techiques which uses this kind of techinque. For Example While creating Captcha, we have to print the character in the bitmap. But for that I should have the font installed in my windows. I can not perform such operation without installing the font. I have .ttf file with me but I dont want to install it because my work for that font is temporary only. Is there any way where I can extract out the Font's graphical information by providing the Character? I have also found font parser code http://swinglabs.java.sun.com/hudson/job/PDFRenderer%20Weekly%20Build/javadoc/com/sun/pdfview/font/package-summary.html Can anyone please provide me how to develpo similar thing using c#.Net? Or From where can I get the algorithm to parce font?

    Read the article

  • Resolve naming conflict in included XSDs for JAXB compilation

    - by Jason Faust
    I am currently trying to compile with JAXB (IBM build 2.1.3) a pair of schema files into the same package. Each will compile on it's own, but when trying to compile them together i get a element naming conflict due to includes. My question is; is there a way to specify with an external binding a resolution to the naming collision. Example files follow. In the example the offending element is called "Common", which is defined in both incA and incB: incA.xsd <?xml version="1.0" encoding="UTF-8"?> <schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.example.org/" xmlns:tns="http://www.example.org/" elementFormDefault="qualified"> <complexType name="TypeA"> <sequence> <element name="ElementA" type="string"></element> </sequence> </complexType> <!-- Conflicting element --> <element name="Common" type="tns:TypeA"></element> </schema> incB.xsd <?xml version="1.0" encoding="UTF-8"?> <schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.example.org/" xmlns:tns="http://www.example.org/" elementFormDefault="qualified"> <complexType name="TypeB"> <sequence> <element name="ElementB" type="int"></element> </sequence> </complexType> <!-- Conflicting element --> <element name="Common" type="tns:TypeB"></element> </schema> A.xsd <?xml version="1.0" encoding="UTF-8"?> <schema targetNamespace="http://www.example.org/" elementFormDefault="qualified" xmlns="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://www.example.org/"> <include schemaLocation="incA.xsd"></include> <complexType name="A"> <sequence> <element ref="tns:Common"></element> </sequence> </complexType> </schema> B.xsd <?xml version="1.0" encoding="UTF-8"?> <schema targetNamespace="http://www.example.org/" elementFormDefault="qualified" xmlns="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://www.example.org/"> <include schemaLocation="incB.xsd"></include> <complexType name="B"> <sequence> <element ref="tns:Common"></element> </sequence> </complexType> </schema> Compiler error when both are compiled from one evocation of xjb: [ERROR] 'Common' is already defined line 9 of file:/C:/temp/incB.xsd [ERROR] (related to above error) the first definition appears here line 9 of file:/C:/temp/incA.xsd (For reference, this is a generalization to resolve an issue with compiling the OAGIS8 SP3 package)

    Read the article

  • Can Eclipse parse and use emacs-style meta information in source code?

    - by ataylor
    In emacs, it is possible to start a file off with a line this: /* -*- mode: java; c-basic-offset: 4; indent-tabs-mode: nil -*- */ This instructs emacs to use 4 spaces for indentation. I like the idea of storing this coding style meta-information directly and explicitly in the source code. Are there any options for doing this in other IDEs? Does eclipse in particular have the ability to configure itself from a line in the emacs format or something equivalent?

    Read the article

  • dynamic html "more information" callout / annotation (jquery? ajax control toolkit?)

    - by nailitdown
    Hola, I have an app i'm building in c#, and i'd like to have the ability to have a user click a "more information" icon next to a field, which will then show a callout with some blurb about why the field contains what it does. ideally it'd look a lot like the ValidatorCallout, but instead of being shown as a result of validation, it'll be shown as a result of a mouseclick, or hover. Anyone know of a nice way to do this with either the ajaxcontroltoolkit, or jquery? cheers for any help you can give me.

    Read the article

  • How can I have a Visual Studio Report(.rdlc) with account information and also a chart in the same r

    - by Paul Mendoza
    I'm working on a report in Visual Studio 2008 with their Report tooling and I'm not sure how to approach this conceptually. I have a report I want to generate. At the top of the report will be a bunch of information about a customer of our site (Name, Address, Phone). Then below will be a chart of the purchases that customer has each month. My problem is that I want the content at the top of the page to use a query that selects from my Users table in my database. But then I need another query that gets all of the purchases grouped by month. I've thought one way to approach this would be to place a subreport on the parent report that only contained the chart. The parent report would have the details of the account. Is this the correct approach?

    Read the article

  • Can I get information about the IIS7 virtual directory from Application_Start?

    - by Keith
    I have 3 IIS7 virtual directories which point to the same physical directory. Each one has a unique host headers bound to it and each one runs in its own app pool. Ultimately, 3 instances of the same ASP.NET application. In the Application_Start event handler of global.asax I would like to identify which instance of the application is running (to conditionally execute some code). Since the Request object is not available, I cannot interrogate the current URL so I would like to interrogate the binding information of the current virtual directory? Since the host header binding is unique for each site, it would allow me to identify which application instance is starting up. Does anyone know how to do this or have a better suggestion?

    Read the article

  • What information about me and my system do compilers add to executeables?

    - by I can't tell you my name.
    I'm currently using Microsoft Visual Studio 2010. If we say that we give 10 different people a copy of MSVC 10 and a short C++ Hello, World listing. They all create a new project using exactly the same settings, add a new cpp file with the Hello, World program and compile it. Do they all get the exactly same binary? If not, what are the exact differences? What information about my system does MSVC add to my executeable? Paranoia!

    Read the article

  • Spring MVC application - URL gives No file found (404)

    - by user1700184
    I created a Spring-MVC project. web.xml: <servlet> <servlet-name>mvc-dispatcher</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>mvc-dispatcher</servlet-name> <url-pattern>/soundmails</url-pattern> </servlet-mapping> mvc-dispatcher-servlet.xml <?xml version="1.0"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:mvc="http://www.springframework.org/schema/mvc" xmlns:context="http://www.springframework.org/schema/context" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/mvc http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.0.xsd"> <mvc:annotation-driven /> <context:component-scan base-package="somepkg.controllers" /> <bean id="multipartResolver" class="org.gmr.web.multipart.GMultipartResolver"> <property name="maxUploadSize" value="1048576" /> </bean> <bean id="placeholderConfig" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> <!-- property name="location"> <value>/WEB-INF/social.properties</value> </property--> </bean> <bean id="jacksonMessageConverter" class="org.springframework.http.converter.json.MappingJacksonHttpMessageConverter"></bean> <bean class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter"> <property name="messageConverters"> <list> <ref bean="jacksonMessageConverter"/> </list> </property> </bean> </beans> The controller has this code: ProjectController.java @Controller @RequestMapping("/soundmails") public class FileUploadController { @RequestMapping(value="/test", method=RequestMethod.GET) public @ResponseBody String test() { System.out.println("Hai"); return "Hai"; } } I am using Google App Engine in my local machine to test this. I am getting these in my log: [INFO] Oct 24, 2013 1:54:18 AM com.google.appengine.tools.development.LocalResourceFileServlet doGet [INFO] WARNING: No file found for: /soundmails/test I tried /soundmails/soundmails/test as well. That is also giving the same error. I am using Spring 3.1.0.RELEASE Can someone help me figure out what I am missing - /soundmails/test is giving 404 error. Edit I am unable to enable DEBUG logs for this. For some reason, it is not taking log level configured in logging.properties But I observed something interesting: 1) If I map the request to empty string (value = "") @RequestMapping(value="", method=RequestMethod.GET) public @ResponseBody String test() { System.out.println("Hai"); return "Hai"; } Then, when I try to access 127.0.0.1/soundmails, it works fine (returns string "Hai"). 2) When I have value="/test" @RequestMapping(value="/test", method=RequestMethod.GET) public @ResponseBody String test() { System.out.println("Hai"); return "Hai"; } and I try to access 127.0.0.1/soundmails/test, it is giving HTTP 404. This is weird.

    Read the article

  • Passing array to function with pointer loses array size information!

    - by Narek
    If I write int main() { int a[100] = {1,2,3,4,}; cout<<sizeof(a)/sizeof(a[0])<<endl; return 0; } I get 400! If I write void func(int *a); int main() { int a[100] = {1,2,3,4,}; func(a); return 0; } void func(int *a) { cout<<sizeof(a)/sizeof(a[0])<<endl; } Then I get 400! So why passing array to function with pointer loses array size information?

    Read the article

  • How to use Crypto++ to extract the textual information in a file?

    - by JL
    I have a file that is signed with a certificate located here. CrytoAPI has not worked out for me because of server differences in 2003 / 2008+, and different file inputs. I am now considering using Crypto++ to get the job done. Essentially, all I would like to do is extract the text information from this file, and others like it, and save it as XML. There are some bits in the XML that are marked as < encoded data but those sections are just base64 encoded, so before I can get to the XML envelope, I need to deal with the certificate thats obfuscating the plain text. Anyone with experience in Crypto++ know how this is done? With CrytoAPI, I was doing something like this : byte[] fileContents = File.ReadAllBytes(outFileName); var contentInfo = new ContentInfo(fileContents); var signedCms = new SignedCms(contentInfo); signedCms.Decode(fileContents); signedCms.RemoveSignature(0); byte[] outfileContent = signedCms.ContentInfo.Content;

    Read the article

  • Best way to Store Passwords, User information/Profile data and Photo/Video albums for a social websi

    - by Nick
    Need some help figuring out how to best Store Passwords, User information/Profile data and Photo/Video albums for a social website? For photos/videos the actual photo/video + even encrypting the URL with the IDs to the photo/videos so other users cannot figure it out. Creating a site like myspace and designing retirement documents but i am unsure how to specify the security requirements for the database. Two things: 1) Protect from outside users 2) Protect all these from employees being able to access this info For #2, the additional question is: If we encrypt the user info and password so even the system admins cannot get in, how can we retrieve the user data tomorrow if someone flags the user's account as spam and admin needs to check it out or if law enforcement wants info on a user? Thanks.

    Read the article

  • What is the pythonic way to add type information to an object's attributes?

    - by Tikitu
    I'm building classes where I know the types of the attributes, but Python of course doesn't. While it's un-pythonic to want to tell it, supposing I do want to, is there an idiomatic way to do so? Why: I'm reading in serialised data (without type information) involving objects-nested-inside-objects. It's easy to put it into nested dictionaries, but I want it in objects of my class-types, to get the right behaviours as well as the data. For instance: suppose my class Book has an attribute isbn which I will fill with an ISBNumber object. My serialised data gives me the isbn as a string; I would like to be able to look at Book and say "That field should be filled by ISBNumber(theString)." Bonus glee for me if the solution can be applied to classes I get from someone else without editing their code.

    Read the article

  • What is the standard way of using a sitemap with pages that require specific information passed to t

    - by Mike
    Hi, I have a website for which many pages rely on information passed to them (usually in the form of a querystring) or on a session variable. When making a web application, how do you normally handle these particular pages in regards to the sitemap? If you're using the standard ASP.NET menu control, it will render the node on the menu and if you click it, you could get an exception stating that a session variable doesn't exist (if it hasn't been created yet). For example, if you're making a user management area: All of these nodes get rendered, but I don't want the user to click on edit user or delete user without specifying someone to edit or delete. Any tips or suggestions would be greatly appreciated.

    Read the article

  • HTML: should I add meta information to the forwarding php page ?

    - by Patrick
    hi, I've to correct the google search title and summary for a website having the following code as home page: <?php header("Location:/mil/index.php"); ?> It forwards the user to another page. I know this is not good, but I was wondering how to quickly fix it. If I add etc... to this page, is enough ? Is google grabbing the information from this page ? Or is it grabbing from the website pages and bypassing this page ? thanks

    Read the article

  • How to expose information about a running .NET exe?

    - by Doug
    I have a .NET exe that I wrote and it has a couple properties that I made public and want to expose. I want to shell this exe (Process.Start()) and then somehow reference this exe and get access to these public properties. These properties expose information about the running exe. I know how to shell to the exe. And I know how to add a reference to the exe from my project that I want to use this object. But how do I get access to the properties of this running exe? I hope I am explaining myself well. If you do know the answer maybe you could just tell me what the standard method is to expose properties of a running exe to another application at run-time. Thanks for any help!

    Read the article

  • How to read system information in C++ on Windows and Linux?

    - by f4
    I need to read system information like CPU/RAM/disks usage in C++. Maybe swap, network and process too but that's less important. It has probably been done thousand of times before so I first tried to search for a library. Someone here suggested SIGAR, which seems to fit my needs but it has a GPL license and it is for inclusion in a proprietary product. So it's not an option here. I feel like it's something not that easy to implement, as it'll need testing on several platforms. So a library would be welcome. If you don't know of any library, could you point me in the right direction for both platforms?

    Read the article

  • If I write a framework that gets information from the Internet, should I make a degelate or use blocks?

    - by Time Machine
    Say I'm writing a publicly available framework for the Vimeo API. This framework needs to get information from the Internet. Because this can take some time, I need to use threadin to prevent the UI from hanging. Foundation uses delegates for this, like NSURLConnectionDelegate. However, Game Kit uses blocks as callback functions. What is the recommended way of doing this? I know blocks aren't supported in standard GCC versions, but they require less, much less code for the one that uses my framework. Delegates, on the other hand, are real methods and when protocols are used, I'm sure the methods are implemented. Thanks.

    Read the article

  • BNF – how to read syntax?

    - by Piotr Rodak
    A few days ago I read post of Jen McCown (blog) about her idea of blogging about random articles from Books Online. I think this is a great idea, even if Jen says that it’s not exciting or sexy. I noticed that many of the questions that appear on forums and other media arise from pure fact that people asking questions didn’t bother to read and understand the manual – Books Online. Jen came up with a brilliant, concise acronym that describes very well the category of posts about Books Online – RTFM365. I take liberty of tagging this post with the same acronym. I often come across questions of type – ‘Hey, i am trying to create a table, but I am getting an error’. The error often says that the syntax is invalid. 1 CREATE TABLE dbo.Employees 2 (guid uniqueidentifier CONSTRAINT DEFAULT Guid_Default NEWSEQUENTIALID() ROWGUIDCOL, 3 Employee_Name varchar(60) 4 CONSTRAINT Guid_PK PRIMARY KEY (guid) ); 5 The answer is usually(1), ‘Ok, let me check it out.. Ah yes – you have to put name of the DEFAULT constraint before the type of constraint: 1 CREATE TABLE dbo.Employees 2 (guid uniqueidentifier CONSTRAINT Guid_Default DEFAULT NEWSEQUENTIALID() ROWGUIDCOL, 3 Employee_Name varchar(60) 4 CONSTRAINT Guid_PK PRIMARY KEY (guid) ); Why many people stumble on syntax errors? Is the syntax poorly documented? No, the issue is, that correct syntax of the CREATE TABLE statement is documented very well in Books Online and is.. intimidating. Many people can be taken aback by the rather complex block of code that describes all intricacies of the statement. However, I don’t know better way of defining syntax of the statement or command. The notation that is used to describe syntax in Books Online is a form of Backus-Naur notatiion, called BNF for short sometimes. This is a notation that was invented around 50 years ago, and some say that even earlier, around 400 BC – would you believe? Originally it was used to define syntax of, rather ancient now, ALGOL programming language (in 1950’s, not in ancient India). If you look closer at the definition of the BNF, it turns out that the principles of this syntax are pretty simple. Here are a few bullet points: italic_text is a placeholder for your identifier <italic_text_in_angle_brackets> is a definition which is described further. [everything in square brackets] is optional {everything in curly brackets} is obligatory everything | separated | by | operator is an alternative ::= “assigns” definition to an identifier Yes, it looks like these six simple points give you the key to understand even the most complicated syntax definitions in Books Online. Books Online contain an article about syntax conventions – have you ever read it? Let’s have a look at fragment of the CREATE TABLE statement: 1 CREATE TABLE 2 [ database_name . [ schema_name ] . | schema_name . ] table_name 3 ( { <column_definition> | <computed_column_definition> 4 | <column_set_definition> } 5 [ <table_constraint> ] [ ,...n ] ) 6 [ ON { partition_scheme_name ( partition_column_name ) | filegroup 7 | "default" } ] 8 [ { TEXTIMAGE_ON { filegroup | "default" } ] 9 [ FILESTREAM_ON { partition_scheme_name | filegroup 10 | "default" } ] 11 [ WITH ( <table_option> [ ,...n ] ) ] 12 [ ; ] Let’s look at line 2 of the above snippet: This line uses rules 3 and 5 from the list. So you know that you can create table which has specified one of the following. just name – table will be created in default user schema schema name and table name – table will be created in specified schema database name, schema name and table name – table will be created in specified database, in specified schema database name, .., table name – table will be created in specified database, in default schema of the user. Note that this single line of the notation describes each of the naming schemes in deterministic way. The ‘optionality’ of the schema_name element is nested within database_name.. section. You can use either database_name and optional schema name, or just schema name – this is specified by the pipe character ‘|’. The error that user gets with execution of the first script fragment in this post is as follows: Msg 156, Level 15, State 1, Line 2 Incorrect syntax near the keyword 'DEFAULT'. Ok, let’s have a look how to find out the correct syntax. Line number 3 of the BNF fragment above contains reference to <column_definition>. Since column_definition is in angle brackets, we know that this is a reference to notion described further in the code. And indeed, the very next fragment of BNF contains syntax of the column definition. 1 <column_definition> ::= 2 column_name <data_type> 3 [ FILESTREAM ] 4 [ COLLATE collation_name ] 5 [ NULL | NOT NULL ] 6 [ 7 [ CONSTRAINT constraint_name ] DEFAULT constant_expression ] 8 | [ IDENTITY [ ( seed ,increment ) ] [ NOT FOR REPLICATION ] 9 ] 10 [ ROWGUIDCOL ] [ <column_constraint> [ ...n ] ] 11 [ SPARSE ] Look at line 7 in the above fragment. It says, that the column can have a DEFAULT constraint which, if you want to name it, has to be prepended with [CONSTRAINT constraint_name] sequence. The name of the constraint is optional, but I strongly recommend you to make the effort of coming up with some meaningful name yourself. So the correct syntax of the CREATE TABLE statement from the beginning of the article is like this: 1 CREATE TABLE dbo.Employees 2 (guid uniqueidentifier CONSTRAINT Guid_Default DEFAULT NEWSEQUENTIALID() ROWGUIDCOL, 3 Employee_Name varchar(60) 4 CONSTRAINT Guid_PK PRIMARY KEY (guid) ); That is practically everything you should know about BNF. I encourage you to study the syntax definitions for various statements and commands in Books Online, you can find really interesting things hidden there. Technorati Tags: SQL Server,t-sql,BNF,syntax   (1) No, my answer usually is a question – ‘What error message? What does it say?’. You’d be surprised to know how many people think I can go through time and space and look at their screen at the moment they received the error.

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • SQL SERVER – Using expressor Composite Types to Enforce Business Rules

    - by pinaldave
    One of the features that distinguish the expressor Data Integration Platform from other products in the data integration space is its concept of composite types, which provide an effective and easily reusable way to clearly define the structure and characteristics of data within your application.  An important feature of the composite type approach is that it allows you to easily adjust the content of a record to its ultimate purpose.  For example, a record used to update a row in a database table is easily defined to include only the minimum set of columns, that is, a value for the key column and values for only those columns that need to be updated. Much like a class in higher level programming languages, you can also use the composite type as a way to enforce business rules onto your data by encapsulating a datum’s name, data type, and constraints (for example, maximum, minimum, or acceptable values) as a single entity, which ensures that your data can not assume an invalid value.  To what extent you use this functionality is a decision you make when designing your application; the expressor design paradigm does not force this approach on you. Let’s take a look at how these features are used.  Suppose you want to create a group of applications that maintain the employee table in your human resources database. Your table might have a structure similar to the HumanResources.Employee table in the AdventureWorks database.  This table includes two columns, EmployeID and rowguid, that are maintained by the relational database management system; you cannot provide values for these columns when inserting new rows into the table. Additionally, there are columns such as VacationHours and SickLeaveHours that you might choose to update for all employees on a monthly basis, which justifies creation of a dedicated application. By creating distinct composite types for the read, insert and update operations against this table, you can more easily manage this table’s content. When developing this application within expressor Studio, your first task is to create a schema artifact for the database table.  This process is completely driven by a wizard, only requiring that you select the desired database schema and table.  The resulting schema artifact defines the mapping of result set records to a record within the expressor data integration application.  The structure of the record within the expressor application is a composite type that is given the default name CompositeType1.  As you can see in the following figure, all columns from the table are included in the result set and mapped to an identically named attribute in the default composite type. If you are developing an application that needs to read this table, perhaps to prepare a year-end report of employees by department, you would probably not be interested in the data in the rowguid and ModifiedDate columns.  A typical approach would be to drop this unwanted data in a downstream operator.  But using an alternative composite type provides a better approach in which the unwanted data never enters your application. While working in expressor  Studio’s schema editor, simply create a second composite type within the same schema artifact, which you could name ReadTable, and remove the attributes corresponding to the unwanted columns. The value of an alternative composite type is even more apparent when you want to insert into or update the table.  In the composite type used to insert rows, remove the attributes corresponding to the EmployeeID primary key and rowguid uniqueidentifier columns since these values are provided by the relational database management system. And to update just the VacationHours and SickLeaveHours columns, use a composite type that includes only the attributes corresponding to the EmployeeID, VacationHours, SickLeaveHours and ModifiedDate columns. By specifying this schema artifact and composite type in a Write Table operator, your upstream application need only deal with the four required attributes and there is no risk of unintentionally overwriting a value in a column that does not need to be updated. Now, what about the option to use the composite type to enforce business rules?  If you review the composition of the default composite type CompositeType1, you will note that the constraints defined for many of the attributes mirror the table column specifications.  For example, the maximum number of characters in the NationaIDNumber, LoginID and Title attributes is equivalent to the maximum width of the target column, and the size of the MaritalStatus and Gender attributes is limited to a single character as required by the table column definition.  If your application code leads to a violation of these constraints, an error will be raised.  The expressor design paradigm then allows you to handle the error in a way suitable for your application.  For example, a string value could be truncated or a numeric value could be rounded. Moreover, you have the option of specifying additional constraints that support business rules unrelated to the table definition. Let’s assume that the only acceptable values for marital status are S, M, and D.  Within the schema editor, double-click on the MaritalStatus attribute to open the Edit Attribute window.  Then click the Allowed Values checkbox and enter the acceptable values into the Constraint Value text box. The schema editor is updated accordingly. There is one more option that the expressor semantic type paradigm supports.  Since the MaritalStatus attribute now clearly specifies how this type of information should be represented (a single character limited to S, M or D), you can convert this attribute definition into a shared type, which will allow you to quickly incorporate this definition into another composite type or into the description of an output record from a transform operator. Again, double-click on the MaritalStatus attribute and in the Edit Attribute window, click Convert, which opens the Share Local Semantic Type window that you use to name this shared type.  There’s no requirement that you give the shared type the same name as the attribute from which it was derived.  You should supply a name that makes it obvious what the shared type represents. In this posting, I’ve overviewed the expressor semantic type paradigm and shown how it can be used to make your application development process more productive.  The beauty of this feature is that you choose when and to what extent you utilize the functionality, but I’m certain that if you opt to follow this approach your efforts will become more efficient and your work will progress more quickly.  As always, I encourage you to download and evaluate expressor Studio for your current and future data integration needs. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: CodeProject, Pinal Dave, PostADay, SQL, SQL Authority, SQL Documentation, SQL Query, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • SOA Suite Integration: Part 3: Loading files

    - by Anthony Shorten
    One of the most common scenarios in SOA Integration is the loading of a file into the product from an external source. In Oracle SOA Suite there is a File Adapter that can process many file types into your BPEL process. For this example I will use the File Adapter to load a file of user and emails to update the user object within the Oracle Utilities Application Framework. Remember you can repeat this process with other objects and other file types. Again I am illustrating the ease of integration. The first thing is to create an empty BPEL process that will hold our flow. In Oracle JDeveloper this can be achieved by specifying the Define Service Later template (as other templates have predefined inputs and outputs and in this case we want to specify those). So I will create simpleFileLoad process to house our process. You will start with an empty canvas so you need to first specify the load part of the process using the File Adapter. Select the File Adapter from the Component Palette under BPEL Services and drag and drop it to the left side Partner Links (left is input). You name the Service. In this case I chose LoadFile. Press Next. We will define the interface as part of the wizard so select Define from operation and schema (specified later). Press Next. We are going to choose Read File to denote that we will read the file and specify the default Operation Name as Read. Press Next. The next step is to tell the Adapter the location of the files, how to process them and what to do with them after they have been processed. I am using hardcoded locations in this example but you can have logical locations as well. Press Next. I am now going to tell the adapter how to recognize the files I want to load. In my case I am using CSV files and more importantly I am tell the adapter to run the process for each record in the file it encounters. Press Next. Now, I tell the adapter how often I want to poll for the files. I have taken the defaults. Press Next. At this stage I have no explanation of the format of the input. So I am going to invoke the Native Format Wizard which will guide me through the process of creating the file input format. Clicking the purple cog icon will start the wizard. After an introduction screen (not shown), you specify the format of the input file. The File Adapter supports multiple format types. For this example, I will use Delimited as I am going to load a CSV file. Press Next. The best way for the wizard to work is with a sample. I have a sample file and the wizard will ask how much of the file to use as a template. I will use the defaults. Note: If you are using a language that has other languages other than US-ASCII, it is at this point you specify the character set to use.  Press Next. The sample contains multiple instances of a single record type. The wizard supports complex types as well. We will use the appropriate setting for our file. Press Next. You have to specify the file element and the record element. This will be used by the input wizard to translate the CSV data into an XML structure (this will make sense later). I am using LoadUsers as my file delimiter (root element) and User Record as my record root element. Press Next. As the file is CSV the delimiter is "," so I will also specify that the End Of Line (EOL) indicator indicates the end of a record. Press Next. Up until this point your have not given the columns their names. In my case my sample includes the column names in the first record. This is not always the case but you can specify the names and formats of columns in this dialog (not shown). Press Next. The wizard now generates the schema for the input file. You can specify a name for the schema. I have used userupdate.xsd. We want to verify the schema so press Test. You can test the schema by specifying an input sample. and pressing the green play button. You will see the delimiters you specified earlier for the file and the records. Press Ok to continue. A confirmation screen will be displayed showing you the location of the schema in your project. Press Finish to return to the File Adapter configuration. You will now see the schema and elements prepopulated from the wizard. Press Next. The File Adapter configuration is now complete. Press Finish. Now you need to receive the input from the LoadFile component so we need to place a Receive node in the BPEL process by drag and dropping the Receive component from the Component Palette under BPEL Constructs onto the BPEL process. We link the receive process with the LoadFile component by dragging the left most connect node of the Receive node to the LoadFile component. Once the link is established you need to name the Receive node appropriately and as in the post of the last part of this series you need to generate input variables for the BPEL process to hold the input records in. You need to now add the product Web Service. The process is the same as described in the post of the last part of this series. You drop the Web Service BPEL Service onto the right side of the process and fill in the details of the WSDL URL . You also have to add an Invoke node to call the service and generate the input and outputs variables for the call in the Invoke node. Now, to get the inputs from File to the service. You have to use a Transform (you can use an Assign action but a Transform action is more flexible). You drag and drop the Transform component from the Component Palette under Oracle Extensions and place it between the Receive and Invoke nodes. We name the Transform Node, Mapper File and associate the source of the mapping the schema from the Receive node and the output will be the input variable from the Invoke node. We now build the transform. We first map the user and email attributes by drag and drop the elements from the left to the right. The reason we needed to use the transform is that we will be telling the AS-User service that we want to issue an update action. Remember when we registered the service we actually used Read as the default. If we do not otherwise inform the service to use the Update action it will use the Read action instead (which is not desired). To specify the update action you need to click on the transactionType node on the right and select Set Text to set the action. You need to specify the transactionType of UPD (for update). The mapping is now complete. The final BPEL process is ready for deployment. You then deploy the BPEL process to the server and to test the service by simply dropping a file, in the same pattern/name as you specified, in the directory you specified in the File Adapter. You will see each record as a separate instance entry in the Fusion Middleware Control console. You can now load files into the product. You can repeat this process for each type of file to process. While this was a simple example it illustrates the method of loading data can be achieved using SOA Suite in conjunction with our products.

    Read the article

  • Log call information whenever there is a phone call.

    - by linuxdoniv
    Hi, I have written the android application and I want the application to send the call information whenever there is an incoming call and it ends. This way I would be sending all calls to the server irrespective of size of the call log. Here is the code public class PhoneInfo extends BroadcastReceiver { private int incoming_call = 0; private Cursor c; Context context; public void onReceive(Context con, Intent intent) { c = con.getContentResolver().query( android.provider.CallLog.Calls.CONTENT_URI, null, null, null, android.provider.CallLog.Calls.DATE+ " DESC"); context = con; IncomingCallListener phoneListener=new IncomingCallListener(); TelephonyManager telephony = (TelephonyManager) con.getSystemService(Context.TELEPHONY_SERVICE); telephony.listen(phoneListener,PhoneStateListener.LISTEN_CALL_STATE); } public class IncomingCallListener extends PhoneStateListener { public void onCallStateChanged(int state,String incomingNumber){ switch(state){ case TelephonyManager.CALL_STATE_IDLE: if(incoming_call == 1){ CollectSendCallInfo(); incoming_call = 0; } break; case TelephonyManager.CALL_STATE_OFFHOOK: break; case TelephonyManager.CALL_STATE_RINGING: incoming_call = 1; break; } } } private void CollectSendCallInfo() { int numberColumn = c.getColumnIndex( android.provider.CallLog.Calls.NUMBER); int dateColumn = c.getColumnIndex( android.provider.CallLog.Calls.DATE); int typeColumn = c.getColumnIndex( android.provider.CallLog.Calls.TYPE); int durationColumn=c.getColumnIndex( android.provider.CallLog.Calls.DURATION); ArrayList<String> callList = new ArrayList<String>(); try{ boolean moveToFirst=c.moveToFirst(); } catch(Exception e) { ; // could not move to the first row. return; } int row_count = c.getCount(); int loop_index = 0; int is_latest_call_read = 0; String callerPhonenumber = c.getString(numberColumn); int callDate = c.getInt(dateColumn); int callType = c.getInt(typeColumn); int duration=c.getInt(durationColumn); while((loop_index <row_count) && (is_latest_call_read != 1)){ switch(callType){ case android.provider.CallLog.Calls.INCOMING_TYPE: is_latest_call_read = 1; break; case android.provider.CallLog.Calls.MISSED_TYPE: break; case android.provider.CallLog.Calls.OUTGOING_TYPE: break; } loop_index++; c.moveToNext(); } SendCallInfo(callerPhonenumber, Integer.toString(duration), Integer.toString(callDate)); } private void SendCallInfo(String callerPhonenumber, String callDuration, String callDate) { JSONObject j = new JSONObject(); try { j.put("Caller", callerPhonenumber); j.put("Duration", callDuration); j.put("CallDate", callDate); } catch (JSONException e) { Toast.makeText(context, "Json object failure!", Toast.LENGTH_LONG).show(); } String url = "http://xxxxxx.xxx.xx/xxxx/xxx.php"; Map<String, String> kvPairs = new HashMap<String, String>(); kvPairs.put("phonecall", j.toString()); HttpResponse re; try { re = doPost(url, kvPairs); String temp; try { temp = EntityUtils.toString(re.getEntity()); if (temp.compareTo("SUCCESS") == 0) { ; } else ; } catch (ParseException e1) { Toast.makeText(context, "Parse Exception in response!", Toast.LENGTH_LONG) .show(); e1.printStackTrace(); } catch (IOException e1) { Toast.makeText(context, "Io exception in response!", Toast.LENGTH_LONG).show(); e1.printStackTrace(); } } catch (ClientProtocolException e1) { Toast.makeText(context, "Client Protocol Exception!", Toast.LENGTH_LONG).show(); e1.printStackTrace(); } catch (IOException e1) { Toast.makeText(context, "Client Protocol Io exception!", Toast.LENGTH_LONG).show(); e1.printStackTrace(); } } and here is the manifest file <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"></uses-permission> <uses-permission android:name="android.permission.INTERNET"></uses-permission> <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"></uses-permission> <uses-permission android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS"></uses-permission> <uses-permission android:name="android.permission.INSTALL_LOCATION_PROVIDER"></uses-permission> <uses-permission android:name="android.permission.SET_DEBUG_APP"></uses-permission> <uses-permission android:name="android.permission.RECEIVE_SMS"></uses-permission> <uses-permission android:name="android.permission.READ_PHONE_STATE"></uses-permission> <uses-permission android:name="android.permission.READ_SMS"></uses-permission> <application android:icon="@drawable/icon" android:label="@string/app_name"> <activity android:name=".Friend" android:label="@string/app_name"> <intent-filter> <action android:name="android.intent.action.MAIN" /> <category android:name="android.intent.category.LAUNCHER" /> </intent-filter> </activity> <activity android:name=".LoginInfo" android:label="@string/app_name"> <intent-filter> <action android:name="android.intent.action.DEFAULT" /> </intent-filter> </activity> <service android:exported="true" android:enabled="true" android:name=".GeoUpdateService" > </service> <receiver android:name=".SmsInfo" > <intent-filter> <action android:name= "android.provider.Telephony.SMS_RECEIVED" /> </intent-filter> </receiver> <receiver android:name=".PhoneInfo" > <intent-filter> <action android:name="android.intent.action.PHONE_STATE"></action> </intent-filter> </receiver> </application> The application just crashes when there is an incoming call.. i have been able to log the information about incoming SMS, but this call info logging is failing. Thanks for any help.

    Read the article

  • How do I get spring to inject my EntityManager?

    - by Trampas Kirk
    I'm following the guide here, but when the DAO executes, the EntityManager is null. I've tried a number of fixes I found in the comments on the guide, on various forums, and here (including this), to no avail. No matter what I seem to do the EntityManager remains null. Here are the relevant files, with packages etc changed to protect the innocent. spring-context.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:tx="http://www.springframework.org/schema/tx" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd" xmlns:p="http://www.springframework.org/schema/p"> <context:component-scan base-package="com.group.server"/> <context:annotation-config/> <tx:annotation-driven/> <bean id="propertyPlaceholderConfigurer" class="com.group.DecryptingPropertyPlaceholderConfigurer" p:systemPropertiesModeName="SYSTEM_PROPERTIES_MODE_OVERRIDE"> <property name="locations"> <list> <value>classpath*:spring-*.properties</value> <value>classpath*:${application.environment}.properties</value> </list> </property> </bean> <bean id="orderDao" class="com.package.service.OrderDaoImpl"/> <bean class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor"/> <bean id="entityManagerFactory" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"> <property name="persistenceUnitName" value="MyServer"/> <property name="loadTimeWeaver"> <bean class="org.springframework.instrument.classloading.InstrumentationLoadTimeWeaver"/> </property> <property name="dataSource" ref="dataSource"/> <property name="jpaVendorAdapter"> <bean class="org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter"> <property name="showSql" value="${com.group.server.vendoradapter.showsql}"/> <property name="generateDdl" value="${com.group.server.vendoradapter.generateDdl}"/> <property name="database" value="${com.group.server.vendoradapter.database}"/> </bean> </property> </bean> <bean id="transactionManager" class="org.springframework.orm.jpa.JpaTransactionManager"> <property name="entityManagerFactory" ref="entityManagerFactory"/> <property name="dataSource" ref="dataSource"/> </bean> <bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource"> <property name="driverClassName" value="${com.group.server.datasource.driverClassName}"/> <property name="url" value="${com.group.server.datasource.url}"/> <property name="username" value="${com.group.server.datasource.username}"/> <property name="password" value="${com.group.server.datasource.password}"/> </bean> <bean id="executorService" class="java.util.concurrent.Executors" factory-method="newCachedThreadPool"/> </beans> persistence.xml <persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0"> <persistence-unit name="MyServer" transaction-type="RESOURCE_LOCAL"/> </persistence> OrderDaoImpl package com.group.service; import com.group.model.Order; import org.springframework.stereotype.Repository; import org.springframework.transaction.annotation.Transactional; import javax.persistence.EntityManager; import javax.persistence.PersistenceContext; import javax.persistence.Query; import java.util.List; @Repository @Transactional public class OrderDaoImpl implements OrderDao { private EntityManager entityManager; @PersistenceContext public void setEntityManager(EntityManager entityManager) { this.entityManager = entityManager; } @Override public Order find(Integer id) { Order order = entityManager.find(Order.class, id); return order; } @Override public List<Order> findAll() { Query query = entityManager.createQuery("select o from Order o"); return query.getResultList(); } @Override public List<Order> findBySymbol(String symbol) { Query query = entityManager.createQuery("select o from Order o where o.symbol = :symbol"); return query.setParameter("symbol", symbol).getResultList(); } }

    Read the article

  • How to fix "could not find a base address that matches schema http"... in WCF

    - by Craig Shearer
    I'm trying to deploy a WCF service to my server, hosted in IIS. Naturally it works on my machine :) But when I deploy it, I get the following error: This collection already contains an address with scheme http. There can be at most one address per scheme in this collection. Googling on this, I find that I have to put a serviceHostingEnvironment element into the web.config file: <serviceHostingEnvironment> <baseAddressPrefixFilters> <add prefix="http://mywebsiteurl"/> </baseAddressPrefixFilters> </serviceHostingEnvironment> But once I have done this, I get the following: Could not find a base address that matches scheme http for the endpoint with binding BasicHttpBinding. Registered base address schemes are [https]. It seems it doesn't know what the base address is, but how do I specify it? Here's the relevant section of my web.config file: <system.serviceModel> <serviceHostingEnvironment> <baseAddressPrefixFilters> <add prefix="http://mywebsiteurl"/> </baseAddressPrefixFilters> </serviceHostingEnvironment> <behaviors> <serviceBehaviors> <behavior name="WcfPortalBehavior"> <serviceMetadata httpGetEnabled="true"/> <serviceDebug includeExceptionDetailInFaults="true"/> </behavior> </serviceBehaviors> </behaviors> <bindings> <basicHttpBinding> <binding name="BasicHttpBinding_IWcfPortal" maxBufferSize="2147483647" maxReceivedMessageSize="2147483647" receiveTimeout="00:10:00" sendTimeout="00:10:00" openTimeout="00:10:00" closeTimeout="00:10:00"> <readerQuotas maxBytesPerRead="2147483647" maxArrayLength="2147483647" maxStringContentLength="2147483647"/> </binding> </basicHttpBinding> </bindings> <services> <service behaviorConfiguration="WcfPortalBehavior" name="Csla.Server.Hosts.Silverlight.WcfPortal"> <endpoint address="" binding="basicHttpBinding" contract="Csla.Server.Hosts.Silverlight.IWcfPortal" bindingConfiguration="BasicHttpBinding_IWcfPortal"> </endpoint> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange"/> </service> </services> </system.serviceModel> Can anybody shed some light on what's going on and how to fix it? Thanks! Craig

    Read the article

  • Microsoft Sync Framework - How to reprovision a table (or entire scope) fater schema changes?

    - by Rabbi
    B"H I have already setup Syncing with Microsoft Sync Framework, and now I need to add fields to a table. How do I re-provision the databases? The setup is exceedingly simple: Two sql express 2008 servers The scope includes the entire database Using Microsoft Sync Framework 2.0 Synchronizing by direct access. Using the standard new SqlSyncProvider Do I make the structural changes at both ends? Or do I only change one Server and let Sync Framework somehow propagate the change? Do I need to delete the _tracking tables and/or the stored procedures? How about the triggers? Has anyone been using the Sync Framework? Please help.

    Read the article

< Previous Page | 78 79 80 81 82 83 84 85 86 87 88 89  | Next Page >