Search Results

Search found 16324 results on 653 pages for 'per thread'.

Page 83/653 | < Previous Page | 79 80 81 82 83 84 85 86 87 88 89 90  | Next Page >

  • A few things I learned regarding Azure billing policies

    - by Vincent Grondin
    An hour of small computing time: 0,12$ per hour A Gig of storage in the cloud: 0,15$ per hour 1 Gig of relational database using Azure SQL: 9,99$  per month A Visual Studio Professional with MSDN Premium account: 2500$ per year Winning an MSDN Professional account that comes preloaded with 750 free hours of Azure per month:  PRICELESS !!!      But was it really free???? Hmmm… Let’s see.....   Here's a few things I learned regarding Azure billing policies when I attended a promotional training at Microsoft last week...   1)  An instance deployed in the cloud really means whatever you upload in there... it doesn't matter if it's in STAGING OR PRODUCTION!!!!   Your MSDN account comes with 750 free hours of small computing time per month which should be enough hours per month for one instance of one application deployed in the cloud...  So we're cool, the application you run in the cloud doesn't cost you a penny....  BUT the one that's in staging is still consuming time!!!   So if you don’t want to end up having to pay 42$ at the end of the month on your credit card like this happened to a friend of mine, DELETE them staging applications once you’ve put them in production! This also applies to the instance count you can modify in the configuration file… So stop and think before you decide you want to spawn 50 of those hello world apps  .     2) If you have an MSDN account, then you have the promotional 750 hours of Azure credits per month and can use the Azure credits to explore the Cloud! But be aware, this promotion ends in 8 months (maybe more like 7 now) and then you will most likely go back to the standard 250 hours of Azure credits. If you do not delete your applications by then, you’ll get billed for the extra hours, believe me…   There is a switch that you can toggle and which will STOP your automatic enrollment after the promotion and prevent you from renewing the Azure Account automatically. Yes the default setting is to automatically renew your account and remember, you entered your credit card information in the registration process so, yes, you WILL be billed…  Go disable that ASAP    Log into your account, go to “Windows Azure Platform” then click the “Subscriptions” tab and on the right side, you’ll see a drop down with different “Actions” into it… Choose “Opt out of auto renew” and, NOW you’re safe…   Still, this is a great offer by Microsoft and I think everyone that has a chance should play a bit with Azure to get to know this technology a bit more...     Happy Cloud Computing All

    Read the article

  • 10/100 Network performing at 1.5 to 2.0 megabyte per second - is that below normal?

    - by burnt1ce
    This comes out to about 12 to 16 megabit/seond. I've read in forums that people are getting much higher speeds (ie: "40-60 Mb/s" http://forums.cnet.com/5208-7589_102-0.html?threadID=265967). I'm getting my benchmark by having a unmanged 5 port switch connected to a WRT54GS router connect. I'm sending a file from a computer connect to the WRT54GS to another computer that's connect to the unmanaged 5 port switch. Is the linkage of the switch causing this massive overhead? i doubt it. What could explain the slow down? electrical interference?

    Read the article

  • TOSM e WPC

    - by Valter Minute
    Per chi ha tempo e voglia di fare quattro chiacchiere sui sistemi embedded microsoft, il sottoscritto parteciperà al TOSM, dal 16 al 18 Novembre a Torino e, in qualità di speaker, a WPC 2011, il principale evento formativo Italiano per le tecnologie Microsoft dal 22 al 24 Novembre a Milano (Assago). Saranno due occasioni per presentare queste tecnologie a un’audience un po’ diversa da quella che di solito frequenta gli eventi embedded e per scambiare idee e opinioni con chi non lavora sui sistemi embedded ma, magari, pensa di poterli utilizzare in futuro.

    Read the article

  • "Add correct host key in known_hosts" / multiple ssh host keys per hostname?

    - by Samuel Edwin Ward
    Trying to ssh into a computer I control, I'm getting the familiar message: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY! Someone could be eavesdropping on you right now (man-in-the-middle attack)! It is also possible that a host key has just been changed. The fingerprint for the RSA key sent by the remote host is [...]. Please contact your system administrator. Add correct host key in /home/sward/.ssh/known_hosts to get rid of this message. Offending RSA key in /home/sward/.ssh/known_hosts:86 RSA host key for [...] has changed and you have requested strict checking. Host key verification failed. I did indeed change the key. And I read a few dozen postings saying that the way to resolve this problem is by deleting the old key from the known_hosts file. But what I would like is to have ssh accept both the old key and the new key. The language in the error message ("Add correct host key") suggests that there should be some way to add the correct host key without removing the old one. I have not been able to figure out how to add the new host key without removing the old one. Is this possible, or is the error message just extremely misleading?

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Apache 2.4 Prefork vs. PHP-FPM Event shows sig decrease in requests per second

    - by Mark
    On my Apache 2.4.2 server with a standard mod_php Prefork setup these are my server-status results Current Time: Wednesday, 24-Oct-2012 19:36:24 CDT Restart Time: Wednesday, 24-Oct-2012 01:27:30 CDT Parent Server Config. Generation: 1 Parent Server MPM Generation: 0 Server uptime: 18 hours 8 minutes 54 seconds Total accesses: 14304233 - Total Traffic: 342.3 GB CPU Usage: u12584.6 s721.93 cu.66 cs3.43 - 20.4% CPU load 219 requests/sec - 5.4 MB/second - 25.1 kB/request 507 requests currently being processed, 355 idle workers ______KKKKR_K______W_KKC___CKK_K_K_W__CC_KKK_KK._K_K_KK._KKKK_K_ K_____KK_KKKK_K_KK__K___KK_K___K_____CKKK_WK_K_____KCKK__K___K_K K_CK_K_K_____K__KKKK_K__K___K_KK_K_K_KKKCK____________KK_CK__KKK __C_KKKKKKK___CK___C_KKK_K__C__K_CK____KKK__K__K__K_K__KK_CK_K__ _KKKKK_K_W__KK______K___K__W___C_K__K____KKKKKKKK.KKKKKKKCK_K___ _C_KK_K_WK__K_KK__K__RK_KK___K____K_KK_K_K___RKC_KKKK___KKKC_K_W _C_KK_KK__W____KC__KKK__KKK___K___KKK_KK_K_KKW__K_KR_KK_KK__KKK_ R__KKK__KKKKKK__K_KKKKK_K__K_K___KKW_________KK_K___KKK___KK.K_C KKKKKKW_____K__K_KKC_KCKK_K_KK_K__KK__K___K__KK_KK__________KK__ __K___KK_K__K_C_KK_K___KK__KK__K__KCK_K__KK_________K_K_KK__.K__ K_CKK.CCRW__KKKKKKKKKKKC__W____K___KWK_KK_KKC______.K_K_KK_KKKC_ __KKK_W_KCKKK_K_K____CCCK__KC_KKKK_K____K_CK_K____K__K____KKK_KK KK___K_K_K__KW__KCKKKK____WKWK__K_KKRKK__C_K_KK_KK_K__KKCC_K__C_ KK_K___K_KK______K_____CKK_K_______KK_CKCK__KKKKK____K__K..K____ __KKWK_KW__KKK__K_KKK___K_KK_KKK__KK___KK___KK_KK___KK____KKWKKC KK_KKKK_................................` When I switch to a PHP-FPM setup with the Event MPM with no other variables changes, my requests/sec plummet and overall apache response is garbage. Current Time: Wednesday, 24-Oct-2012 19:51:21 CDT Restart Time: Wednesday, 24-Oct-2012 19:48:03 CDT Parent Server Config. Generation: 1 Parent Server MPM Generation: 0 Server uptime: 3 minutes 18 seconds Total accesses: 18720 - Total Traffic: 307.1 MB CPU Usage: u16.57 s4.74 cu0 cs0 - 10.8% CPU load 94.5 requests/sec - 1.6 MB/second - 16.8 kB/request 15 requests currently being processed, 49 idle workers PID Connections Threads Async connections total accepting busy idle writing keep-alive closing 11701 114 no 10 22 0 66 38 11702 134 no 5 27 0 81 48 Sum 248 15 49 0 147 86 __R_R__W___RRW________RR__R___W_W_______W_____W_____________R_R_ Is there any obvious reason anyone could think of why this would be the case. I can provide any other additional stats or server setup info to help out. Ive tried tweaking everything up and down and nothing really helps get the PHP-FPM setup anywhere near a baseic prefork/mod-php setup. Thanks!

    Read the article

  • Full speed internal switch bandwidth but per-port set external bandwidth?

    - by garg
    I am in an environment where all the machines are behind a switch that I don't have access to. Each ethernet wall port has limited bandwidth depending on how much has been paid for each port. The problem is that some people have 10Mbps connections and some have 100Mbps connections and this causes problems with local intranet file transfers and operating system/software deployments. Operating systems can take hours to be deployed if the machine is on 10mbps. Do you know if it is possible with most switches to set a rule that would limit bandwidth coming in/going out to an extranet, but keep full bandwidth if the packets are destined to go to a local machine? For example, the internet might be limited to 10Mbps, but internal servers would get gigabit speeds? Thanks

    Read the article

  • Why doesn't the Windows 7 volume mixer remember per-application levels for all applications?

    - by mdives
    If I have the device's master level set to 50, and then lower an application level to 25; Once I close that application and reopen it, the volume levels should persist. The master level should remain at 50 and the application's at 25. This does happen for most applications. However, for one in particular, Napster, it does not. I subscribe to Napster's streaming service. I use the Napster desktop application to connect to that service. Every time that I open the Napster app, I have to adjust the application's volume level down in the volume mixer. When I open the app again after closing it, I have to do the same thing, the volume mixer is not remembering the set level. In fact. The level is reset back to 50, the same level as the device's master level. Has anyone else experienced this, with Napster or any other application? Is there a solution or is this a known issue?

    Read the article

  • bash: per-command history. How does it work?

    - by romainl
    OK. I have an old G5 running Leopard and a Dell running Ubuntu 10.04 at home and a MacPro also running Leopard at work. I use Terminal.app/bash a lot. On my home G5 it exhibits a nice feature: using ? to navigate history I get the last command starting with the few letters that I've typed. This is what I mean (| represents the caret): $ ssh user@server $ vim /some/file/just/to/populate/history $ ss| So, I've typed the two first letters of "ssh", hitting ? results in this: $ ssh user@server instead of this, which is the behaviour I get everywhere else : $ vim /some/file/just/to/populate/history If I keep on hitting ? or ?, I can navigate through the history of ssh like this: $ ssh otheruser@otherserver $ ssh user@server $ ssh yetanotheruser@yetanotherserver It works the same for any command like cat, vim or whatever. That's really cool. Except that I have no idea how to mimic this behaviour on my other machines. Here is my .profile: export PATH=/Developer/SDKs/flex_sdk_3.4/bin:/opt/local/bin:/opt/local/sbin:/usr/local/bin:/sw/bin:/sw/sbin:/bin:/sbin:/bin:/sbin:/usr/bin:/usr/sbin:$HOME/Applications/bin:/usr/X11R6/bin export MANPATH=/usr/local/share/man:/usr/local/man:opt/local/man:sw/share/man export INFO=/usr/local/share/info export PERL5LIB=/opt/local/lib/perl5 export PYTHONPATH=/opt/local/bin/python2.7 export EDITOR=/opt/local/bin/vim export VISUAL=/opt/local/bin/vim export JAVA_HOME=/System/Library/Frameworks/JavaVM.framework/Versions/1.6.0/Home export TERM=xterm-color export GREP_OPTIONS='--color=auto' GREP_COLOR='1;32' export CLICOLOR=1 export LS_COLORS='no=00:fi=00:di=01;34:ln=target:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:*.tar=00;31:*.tgz=00;31:*.arj=00;31:*.taz=00;31:*.lzh=00;31:*.zip=00;31:*.z=00;31:*.Z=00;31:*.gz=00;31:*.bz2=00;31:*.deb=00;31:*.rpm=00;31:*.TAR=00;31:*.TGZ=00;31:*.ARJ=00;31:*.TAZ=00;31:*.LZH=00;31:*.ZIP=00;31:*.Z=00;31:*.Z=00;31:*.GZ=00;31:*.BZ2=00;31:*.DEB=00;31:*.RPM=00;31:*.jpg=00;35:*.png=00;35:*.gif=00;35:*.bmp=00;35:*.ppm=00;35:*.tga=00;35:*.xbm=00;35:*.xpm=00;35:*.tif=00;35:*.png=00;35:*.fli=00;35:*.gl=00;35:*.dl=00;35:*.psd=00;35:*.JPG=00;35:*.PNG=00;35:*.GIF=00;35:*.BMP=00;35:*.PPM=00;35:*.TGA=00;35:*.XBM=00;35:*.XPM=00;35:*.TIF=00;35:*.PNG=00;35:*.FLI=00;35:*.GL=00;35:*.DL=00;35:*.PSD=00;35:*.mpg=00;36:*.avi=00;36:*.mov=00;36:*.flv=00;36:*.divx=00;36:*.qt=00;36:*.mp4=00;36:*.m4v=00;36:*.MPG=00;36:*.AVI=00;36:*.MOV=00;36:*.FLV=00;36:*.DIVX=00;36:*.QT=00;36:*.MP4=00;36:*.M4V=00;36:*.txt=00;32:*.rtf=00;32:*.doc=00;32:*.odf=00;32:*.rtfd=00;32:*.html=00;32:*.css=00;32:*.js=00;32:*.php=00;32:*.xhtml=00;32:*.TXT=00;32:*.RTF=00;32:*.DOC=00;32:*.ODF=00;32:*.RTFD=00;32:*.HTML=00;32:*.CSS=00;32:*.JS=00;32:*.PHP=00;32:*.XHTML=00;32:' export LC_ALL=C export LANG=C stty cs8 -istrip -parenb bind 'set convert-meta off' bind 'set meta-flag on' bind 'set output-meta on' alias ip='curl http://www.whatismyip.org | pbcopy' alias ls='ls -FhLlGp' alias la='ls -AFhLlGp' alias couleurs='$HOME/Applications/bin/colors2.sh' alias td='$HOME/Applications/bin/todo.sh' alias scale='$HOME/Applications/bin/scale.sh' alias stree='$HOME/Applications/bin/tree' alias envoi='$HOME/Applications/bin/envoi.sh' alias unfoo='$HOME/Applications/bin/unfoo' alias up='cd ..' alias size='du -sh' alias lsvn='svn list -vR' alias jsc='/System/Library/Frameworks/JavaScriptCore.framework/Versions/A/Resources/jsc' alias asl='sudo rm -f /private/var/log/asl/*.asl' alias trace='tail -f $HOME/Library/Preferences/Macromedia/Flash\ Player/Logs/flashlog.txt' alias redis='redis-server /opt/local/etc/redis.conf' source /Users/johncoltrane/Applications/bin/git-completion.sh export GIT_PS1_SHOWUNTRACKEDFILES=1 export GIT_PS1_SHOWUPSTREAM="verbose git" export GIT_PS1_SHOWDIRTYSTATE=1 export PS1='\n\[\033[32m\]\w\[\033[0m\] $(__git_ps1 "[%s]")\n\[\033[1;31m\]\[\033[31m\]\u\[\033[0m\] $ \[\033[0m\]' mkcd () { mkdir -p "$*" cd "$*" } function cdl { cd $1 la } n() { $EDITOR ~/Dropbox/nv/"$*".txt } nls () { ls -c ~/Dropbox/nv/ | grep "$*" } copy(){ curl -s -F 'sprunge=<-' http://sprunge.us | pbcopy } if [ -f /opt/local/etc/profile.d/cdargs-bash.sh ]; then source /opt/local/etc/profile.d/cdargs-bash.sh fi if [ -f /opt/local/etc/bash_completion ]; then . /opt/local/etc/bash_completion fi Any idea?

    Read the article

  • Using INotifyPropertyChanged in background threads

    - by digitaldias
    Following up on a previous blog post where I exemplify databinding to objects, a reader was having some trouble with getting the UI to update. Here’s the rough UI: The idea is, when pressing Start, a background worker process starts ticking at the specified interval, then proceeds to increment the databound Elapsed value. The problem is that event propagation is limeted to current thread, meaning, you fire an event in one thread, then other threads of the same application will not catch it. The Code behind So, somewhere in my ViewModel, I have a corresponding bethod Start that initiates a background worker, for example: public void Start( ) { BackgroundWorker backgroundWorker = new BackgroundWorker( ); backgroundWorker.DoWork += IncrementTimerValue; backgroundWorker.RunWorkerAsync( ); } protected void IncrementTimerValue( object sender, DoWorkEventArgs e ) { do { if( this.ElapsedMs == 100 ) this.ElapsedMs = 0; else this.ElapsedMs++; }while( true ); } Assuming that there is a property: public int ElapsedMs { get { return _elapsedMs; } set { if( _elapsedMs == value ) return; _elapsedMs = value; NotifyThatPropertyChanged( "ElapsedMs" ); } } The above code will not work. If you step into this code in debug, you will find that INotifyPropertyChanged is called, but it does so in a different thread, and thus the UI never catches it, and does not update. One solution Knowing that the background thread updates the ElapsedMs member gives me a chance to activate BackgroundWorker class’ progress reporting mechanism to simply alert the main thread that something has happened, and that it is probably a good idea to refresh the ElapsedMs binding. public void Start( ) { BackgroundWorker backgroundWorker = new BackgroundWorker( ); backgroundWorker.DoWork += IncrementTimerValue; // Listen for progress report events backgroundWorker.WorkerReportsProgress = true; // Tell the UI that ElapsedMs needs to update backgroundWorker.RunWorkerCompleted += ( sender, e ) => { NotifyThatPropertyChanged( "ElapsedMs" ) }; backgroundWorker.RunWorkerAsync( ); } protected void IncrementTimerValue( object sender, DoWorkEventArgs e ) { do { if( this.ElapsedMs == 100 ) this.ElapsedMs = 0; else this.ElapsedMs++; // report any progress ( sender as BackgroundWorker ).ReportProgress( 0 ); }while( true ); } What happens above now is that I’ve used the BackgroundWorker cross thread mechanism to alert me of when it is ok for the UI to update it’s ElapsedMs field. Because the property itself is being updated in a different thread, I’m removing the NotifyThatPropertyChanged call from it’s Set method, and moving that responsability to the anonymous method that I created in the Start method. This is one way of solving the issue of having a background thread update your UI. I would be happy to hear of other cross-threading mechanisms for working in a MCP/MVC/MVVM pattern.

    Read the article

  • Monitor network traffic on a per-app basis in OS X?

    - by dougoftheabaci
    Title says it all. I'm looking for an app for OS X that will tell me what applications are using the network and what their in/out is. I can get most of the way there with LittleSnitch but it's the bandwidth part that it fails at. The only app I've come across that comes close is "Rubbernet" and while it does look like it would probably do what I want, it's very expensive (more than LittleSnitch) and doesn't look like it gets regular feature updates. Any recommendations?

    Read the article

  • Is there any way to limit my Internet connection to a per program basis?

    - by Igoru
    My Linux connection is REALLY free. I live in Brazil, so where I live I can only have 1 Mbit/s. Yes I know it's sad, but it's not the point. Everytime I'm updating my Ubuntu 9.04 or downloading something, it does eat all my bandwidth. Like, while update-manager is downloading the packages, I can see by netspeed applet in my panel that the incoming traffic goes to 110 kB/s. And then, my Emesene suddenly goes disconnected, and I can't navigate. As you can imagine, I can't use my Internet connection again until the packages are all downloaded or I cancel the update in the middle. As I said, same thing happens when I'm dowloading something, but less intrusive and immediate. The question is: is there any way to limit that APT/downloads traffic to some way I can still use my other Internet services, or to reserve some bandwidth for common navigation tasks (like we have on Windows, but I forgot this thing's name, it's like "something packages".

    Read the article

  • Azure Linux Virtual Machines Price per Hour, Computation or Running?

    - by Arjun Bajaj
    first of all, I couldn't find a StackExchange site on Cloud Computing. I think this is the most appropriate site, because some of you might be using Azure. So I just wanted to know: The Windows Azure Pricing Page shows Linux Virtual Machine Price as $0.013/hr for an extra small VM. The monthly price comes up to about $10. Is this price charged as number of hours of computation done on the VM or number of hours of running the VM? And if I shutdown the VM, will I be charged anything?

    Read the article

  • Airport Express chokes Wi-Fi for a few seconds, several times per hour. Any idea why?

    - by user13727
    I'm using a MacBookPro connected to an AiportExpress' Wi-FI network. Every once in a while, the Wi-Fi will choke up and either drop some packets, or lag horribly for several seconds. I'm losing hair over this because every time I chat on Skype, the call hangs randomly due to this problem. Any idea what's wrong? Some more details: two networks are set up: 2.4Ghz and 5Ghz, and the issue happens on both the network uses WPA2 Personal for security the Airport is in the same room with my computer the Airport is fairly new, bought this summer, model number off the back: A1392 tried connecting to a neighbours wifi to see if it's a problem with my computer, or interference. It's not, it doesn't happen on their network. tried resetting it several times tried changing channels manually Ping results are below, so you can see what I'm talking about. EDIT: 10.0.1.1 is the Airport's IP 64 bytes from 10.0.1.1: icmp_seq=1795 ttl=255 time=0.813 ms 64 bytes from 10.0.1.1: icmp_seq=1796 ttl=255 time=3.335 ms 64 bytes from 10.0.1.1: icmp_seq=1797 ttl=255 time=3.403 ms 64 bytes from 10.0.1.1: icmp_seq=1798 ttl=255 time=3.414 ms 64 bytes from 10.0.1.1: icmp_seq=1799 ttl=255 time=3.227 ms 64 bytes from 10.0.1.1: icmp_seq=1800 ttl=255 time=3.274 ms 64 bytes from 10.0.1.1: icmp_seq=1801 ttl=255 time=3.253 ms 64 bytes from 10.0.1.1: icmp_seq=1802 ttl=255 time=3.292 ms >>>> choke starts <<< 64 bytes from 10.0.1.1: icmp_seq=1803 ttl=255 time=53.977 ms 64 bytes from 10.0.1.1: icmp_seq=1804 ttl=255 time=35.049 ms 64 bytes from 10.0.1.1: icmp_seq=1805 ttl=255 time=19.820 ms >>>> choke ends <<< 64 bytes from 10.0.1.1: icmp_seq=1806 ttl=255 time=0.716 ms 64 bytes from 10.0.1.1: icmp_seq=1807 ttl=255 time=0.705 ms 64 bytes from 10.0.1.1: icmp_seq=1808 ttl=255 time=0.919 ms 64 bytes from 10.0.1.1: icmp_seq=1809 ttl=255 time=0.659 ms 64 bytes from 10.0.1.1: icmp_seq=1810 ttl=255 time=0.877 ms 64 bytes from 10.0.1.1: icmp_seq=1811 ttl=255 time=0.679 ms 64 bytes from 10.0.1.1: icmp_seq=1812 ttl=255 time=0.854 ms 64 bytes from 10.0.1.1: icmp_seq=1813 ttl=255 time=0.644 ms 64 bytes from 10.0.1.1: icmp_seq=1814 ttl=255 time=3.779 ms ... time passes .. 64 bytes from 10.0.1.1: icmp_seq=1599 ttl=255 time=0.674 ms 64 bytes from 10.0.1.1: icmp_seq=1600 ttl=255 time=0.930 ms 64 bytes from 10.0.1.1: icmp_seq=1601 ttl=255 time=0.665 ms 64 bytes from 10.0.1.1: icmp_seq=1602 ttl=255 time=1.085 ms Request timeout for icmp_seq 1603 Request timeout for icmp_seq 1604 64 bytes from 10.0.1.1: icmp_seq=1605 ttl=255 time=104.969 ms 64 bytes from 10.0.1.1: icmp_seq=1606 ttl=255 time=11.521 ms 64 bytes from 10.0.1.1: icmp_seq=1607 ttl=255 time=0.926 ms 64 bytes from 10.0.1.1: icmp_seq=1608 ttl=255 time=0.993 ms 64 bytes from 10.0.1.1: icmp_seq=1609 ttl=255 time=0.745 ms And the Signal-Noise ratio:

    Read the article

  • How to configure autofs5 timeout on per-filesystem basis?

    - by Norman Ramsey
    Because of a show-stopping bug in Debian autofs 4, I just upgraded to autofs5. It is not honoring the timeout option in my auto.master file: /var/autofs/removable /etc/auto.removable --timeout=2 I use this map for thumb drives and so on; I don't want a general default timeout of 2 seconds. I did some digging and although the --timeout option worked in autofs 4, and it appears in some examples on the Web, it is not actually sanctioned (or even mentioned) in the documentation for the auto.master file. So I don't feel I can report the problem as a bug. How can I get autofs5 to timeout after 2 seconds only on designated filesystems? Update: I am using a Debian-packaged autofs5, version 5.0.4-3.2.

    Read the article

  • Is there a way to see any tar progress per file?

    - by Svish
    I have a couple of big files that I would like to compress. I can do this with for example tar cvfj big-files.tar.bz2 folder-with-big-files The problem is that I can't see any progress, so I don't have a clue how long it will take or anything like that. Using v I can at least see when each file is completed, but when the files are few and large this isn't the most helpful. Is there a way I can get tar to show more detailed progress? Like a percentage done or a progress bar or estimated time left or something. Either for each single file or all of them or both.

    Read the article

< Previous Page | 79 80 81 82 83 84 85 86 87 88 89 90  | Next Page >